九州大学学術情報リポジトリ Kyushu University Institutional Repository

蛋白質原子座標の情報処理プログラム・システム: PSPCS

武富, 敬 九州大学大型計算機センター研究開発部

水野, 裕重 九州大学理学部物理学教室

郷, 信広 九州大学理学部物理学教室

https://doi.org/10.15017/1474881

出版情報:九州大学大型計算機センター広報. 13 (2), pp. 171-188, 1980-06-10. 九州大学大型計算機センター広報. 13 (2), pp. 171-188, 1980-06-10. 九州大学大型計算機センター

バージョン: 権利関係:

蛋白質原子座標の情報処理プログラム・システム - PSPCS -

武富 敬 , 水野 裕重 , 郷 信広 **

1. はじめに

分子生物学のもたらした主要な成果の一つとして、遺伝物質核酸の塩基配列として担われている遺伝情報が、蛋白質の一次元アミノ酸配列 -- 蛋白質の一次構造 -- を決定しているということの発見があげられる。この事は、取りも直さず、生物の持つ多様な機能は、蛋白質あるいはその集合体の機能に還元されることを意味する。1960年代の初めに、初めて蛋白質のX線結晶解析に成功し、この分子の三次元立体構造 -- 蛋白質の三次構造 -- が原子レベルで解明されて以来、X線解析により原子座標データの得られている蛋白質分子の数は、着実に増大しつつある。この間、このX線解析の成果により明らかにされた事のうちで最大のものの一つは、蛋白質の立体構造の中に、蛋白質の持つ機能に関する情報が含まれているということの発見である。今日では、いかなる蛋白質の物理化学的研究にも、立体構造のイメージが額を出し、いわば欠かせないベースになったと言ってよい。

ところで、一般の蛋白質研究者にとって、原子座標データを加工して自分の研究に必要な情報を取り出すプログラムの作成を考えたとしても、その事自体それほど容易なことではない。そこで、それを支援するツールとしての役割を果たす、簡単に利用できるプログラム群を用意しておくことは意義のあることである。また、もし、そのようなプログラム群が組織的に体系づけられて開発されたとすれば、そこから産み出される情報は、さらに次の段階の基礎データとして使えるような、蓄積可能な学術情報としての価値を持つ性質のものである。

以上のような観点から、1976年度から3年間、筆者の一人、郷を中心として、科研費特定研究「情報システムの形成過程と学術情報の組織化」の中に一つのグループを作成し、蛋白質原子座標データを処理するプログラムの開発に取り組んできた。このグループの作成するプログラム・システムを「Program System for Protein Conformation Study」と呼び、PSPCSと略称する[1]。また、1979年度は、科研費の生物物理学分科における試験研究「蛋白質原子座標の情報処理プログラムのシステム化」において、それまでに蓄積されたプログラム群の見直し、書き替えを行い、プログラム・システムとして整備することを試みた。以下は、このPSPCS作成グループの活動とPSPCSの利用法の紹介である。

2.では、蛋白質原子座標データの入手に関し、Protein Data Bankの活動について述べる。

3.では、PSPCS作成グループの活動について、まずPSPCSへの入力データフォーマットの整備・統一について述べ、次に開発されたプログラム群の内容について、最後にPSPCS作成グループ以外で開発された有用なプログラムの導入について述べる。**4.**では、PSPCSの利用法について述べる。**5.**では、筆者の一人、水野によって開発された、蛋白質原子座標データの簡便な検索システムについて紹介する。

2. 蛋白質原子座標データ - Protein Data Bank -

蛋白質分子のX線結晶解析が成功し、その成果が論文誌に発表されても、原子座標データは、かなり膨大な量

^{*} 九州大学大型計算機センター研究開発部

^{**} 九州大学理学部物理学教室

にのぼるので掲載されない、代わりに、現在では、これらの原子座標データの預託・仲介機関として、Protein Data Bank(以下、PDBと略称する)が設立され、アメリカのBNL(Brookhaven National Laboratory)において、データの収集・標準化・領布などの管理業務が執り行われている[2]. 日本では、大阪大学蛋白質研究所付属結晶解析研究センターが、BNLと連携して我国の利用者に対する窓口業務を行っている「3].

```
HEADER
                    PROTEINASE INHIBITOR (TRYPSIN)
                                                                                                       01-NOU-76 3FTT
                                                                                                                                                      3PTT
                    PROTEINASE INHIBITOR (INTESIN) 01-NOV
TRYPSIN INHIBITOR
BOUINE (BOS TAURUS) PANCREAS
R.HUBER,D.KUKLA,A.RUEHLMANN,O.EPP,H.FORMANEK,
                                                                                                                                                      3PTI
3PTI
3PTIB
SOURCE
AUTHOR
                  2 J.DEISENHOFER, W.STEIGEMANN
                                                                                                                                                      SPITE
REMARK
REMARK
                      REFERENCE 1
                  1 REFERENCE 1
1 AUTH J.DEISENHOFER.W.STEIGEMANN
1 TITL CRYSTALLOGRAPHIC REFINEMENT OF THE STRUCTURE OF
1 TITL 2 BOUINE PANCREATIC TRYPSIN INHIBITOR AT
1 TITL 3 1.5 ANOSTROMS RESOLUTION
1 REF ACTA CRYSTALLOGR.SECT.B V. 31 238 1975
1 REFN ASTM ACECAR DK ISSN 0001-5520 107
REMARK
REMARK
REMARK
REMARK
REMARK
                                                                                                                                                      3PTIB
                                                                                                                                                      3PT IB
REMARK
REMARK
                  2 RESOLUTION. 1.5 ANGSTROMS
                                                                                                                                                      3FTI
REMARK
                  3 REFINEMENT, BY REAL-SPACE PROCEDURE OF R. DIAMOND WITH
3 INTERMEDIATE RECALCULATION OF ELECTRON-DENSITY MAP AND
3 CORRECTIONS BY HAND, SEE REFERENCE 1 ABOVE.
REMARK
REMARK
REMARK
                                      ACE ARG PRO ASP PHE CYS LEU GLU PRO PRO TYR THR GLY PRO CYS LYS ALA ARG ILE ILE ARG TYR PHE TYR ASN ALLYS ALA GLY LEU CYS GLN THR PHE VAL TYR GLY GLY CYS ARG ALA LYS ARG ASN ASN PHE LYS SER ALA GLU ASP CYS MET ARG THR CYS GLY GLY ALG
                                                                                                                                                       3PTI
3PTI
3PTI
 ernore
 SEGRES
SEGRES
                                59
59
                                                                                                                                                                    42
43
 SERRES
                                                                                                                                                       3PTT
 SEGRES
FINOTE
FINOTE
FINOTE
                    1 THESE ATOMS WERE NOT FOUND IN THE ELECTRON DENSITY MAP.
1 THEIR COORDINATES WERE GENERATED USING STEREOCHEMICAL
                                                                                                                                                       3PTI
3PTI
                    1 THEIR COORDINATES WERI

1 CRITERIA.

2 HOH *47(H2 OI)

1 H1 SER 47 GLY

1 SI 2 ALA 16 ALA

2 SI 2 GLY 28 GLY

1 CYS 5 CYS

2 CYS 14 CYS
 FTNOTE
FORMUL
HELIX
SHEET
                                                                                                                                                       3PTI
3PTIB
3PTI
                                                                         56 1
25 0
                                                                                                                                                       3PTI
                                                                                                                                                                   51
 SHEET
                                                                         36 -1
                                                                                                                                                       3PTI
 SSBOND
                                                                     55
38
                    3 CYS
                                        30
 SSBOND
                                                    CYS
                                                                     51
                                                                                                                                                       3PTIB
                    43.100 22.900 48.60
1.000000 0.000000
0.000000 1.000000
0.000000 0.000000
                                                                                      90.00 90.00 F 21 21 21
                                                                                                                                                       3PTI
 CRYST1
                                                        48.600
                                                                         90.00
 ORIGX1
ORIGX2
                                                                   0.000000
                                                                                                  0.000000
                                                                                                                                                       3FTI
3FTI
                        ORIGX3
                                                                   1,000000
                                                                                                   0.000000
                                                                                                                                                       3PTT
 SCALE1
                                                                   0.000000
                                                                                                   0.000000
                                                                                                                                                       3PTT
                                                                                                                                                                   57
                                                                   SCALE2
SCALE3
ATOM
                                                                                                                                                       3PTI
3PTI
3PTI
                                                                                                                                                                   58
59
60
 ATOM
ATOM
ATOM
ATOM
                           O ACE
CH3 ACE
N ARG
CA ARG
                                                                                                                                 0.00
                                                                                                                                                       3PTI
3PTI
3PTI
3PTI
                                                                                                    -.466
-.612
-2.248
-2.379
-2.979
                                                                   26.256
27.268
 MOTA
                            C
                                    ARG
                                                                                                                                  0.00
                                                                                                                                                       3PTI
                                                                                    25.519
25.885
24.458
23.541
 ATOM
                                    ARG
                                                                                                                      1.00
                                                                                                                                  0.00
                                                                                                                                                       3PTI
 ATOM
ATOM
ATOM
                    8
9
10
                           CB
CG
                                   ARG
ARG
ARG
                                                                   24.610
25.171
24.124
                                                                                                                      1.00
                                                                                                                                                       3PTI
3PTI
                                                                                                                                                                   69
70
71
72
                                                                                                                      1.00
                                                                                                                                  0.00
                                                                                                                                                       3PTI
 ATOM
ATOM
ATOM
                           NE ARG
CZ ARG
NH1 ARG
                                                                   23.644
24.299
23.797
                                                                                    24.058
                                                                                                     -4.269
                                                                                                                      1.00
                                                                                                                                  0.00
                                                                                                                                                       3PTT
                                                                   23.797
25.434
25.669
26.191
26.248
25.462
25.364
                                                                                    23.152
                                                                                                     -5.473
 MOTA
                    14
15
                           NH2 ARG
                                                                                                                      1.00
                                                                                                                                  0.00
                                                                                                                                                       3PTI
 ATOM
                                    PRO
                                                                                    26.420
                                                                                                          . 698
                                                                                                                      1.00
                                                                                                                                  0.00
                                                                                                                                                       3PTT
                    16
17
18
19
                           CA
C
                                                                                    25.807
24.283
23.661
26.408
                                                                                                       1.926
1.838
1.112
3.014
                                                                                                                      1.00
1.00
1.00
1.00
                                                                                                                                  0.00
                                                                                                                                                       3PTI
3PTI
3PTI
                                                                                                                                                                   75
76
77
78
 ATOM
                                    PRO
                                    PRO
PRO
PRO
 ATOM
ATOM
 ATOM
                            CB
                                                                                                                                                       3PTI
 MOTA
MOTA
                                                                                    27.554
27.414
                    20
                                    PRO
                                                                    24.531
                                                                                                       2.480
                                                                                                                      1.00
                                                                                                                                  0.00
                                                                                                                                                       3PTT
```

図1. Protein Data Bankのトリプシンインヒビターのデータレコードの抜粋

レコード識別子	レコードの内容
	この蛋白質の機能, PDBへの登録の日付, データコード名(3
	文字で蛋白質を表わし,その前に付けた1桁の数字で,精密化
HEADER	などの異なるデータであることを示す),データコード名は,
	本稿5.でコマンドのオペランドとして使用されるので重要であ
	გ.
COMPND	蛋白質名
SOURCE	この蛋白質を採取した物質名
AUTHOR	この蛋白質を解析した研究者名
REMARK	参照論文,X線分解能など
SEQRES	この蛋白質のアミノ酸残基数と、アミノ酸配列順序
FTNOTE	特別の残基や原子に関する脚注
HELIX	著者の報告した二次構造αーヘリックスの部分
SHEET	著者の報告した二次構造βーシートの部分
SSBOND	との蛋白質のS-S結合の部位
4,70.14	原子の通し番号(原子一連番号)、原子名、属するアミノ酸残基
ATOM	の略名とその番号, x, y, zの各座標値, 占有率, 温度因子

表1. PDBのデータフォーマットの説明

九州大学関係では,筆者の一人,郷のもとに,阪大からPDBデータの入った2400 ftの磁気テープ1本が送られてきて,九大大型計算機センターにクローズド磁気テープとして保管されているので,一般の利用者も使える形になっている.BNLから発行されるPDBニュースレターの最新号(1980年1月)によると,現在,t-RNAも含めて126セットの原子座標データが集録されている.

図1.に、PDBのデータレコードの抜粋を示す。ある一定のフォーマット(BNLフォーマットと呼ぶ)に従って書かれた、1レコード80パイトのカード・イメージのデータである。各レコードは、最初の6欄のレコード識別子により識別される。表1.に、主なレコード識別子と、その識別子により区別されるレコードの内容との対応表を掲げたので、図1.の内容は容易にご理解いただけるものと思う。

3. PSPCS作成グループの活動

3.1. 入力データフォーマット - PSPCSフォーマット -

BNLフォーマットによるPDBデータは,よく考案されてはいるものの,いくつかの点で不満足な面も見受けられる.例えば,アミノ酸残基名や原子名などは,BNLフォーマットでは英字コードだけだが,これらに数値コードを与えておけば,応用プログラムを作成する側としては,英字と番号の両方で検索できたり,特に番号については論理 IF 文や計算型GOT O文が活用できたり,そのまま配列の添字として使用できたり,また,番号の組み合わせで短時間に検索できるなど,応用プログラムの構造を簡単にする上で,そのメリットは大きい.

そこで、応用プログラムを意識した立場のフォーマットとして、BNLフォーマットの1レコード80バイトの

後ろ60×イトに、上述の数値コード、それに共有結合のデータを付加した、1レコード 140 ×イトの新しいフォーマット(PSPCSフォーマットと呼ぶ)を考案し、これをPSPCSの入力データフォーマットとすることにした。後者の共有結合データは、アミノ酸配列と原子座標の一次データから計算によって出すことのできる二次データではあるが、応用プログラム中にしばしば現われるものであり、プログラムの構造を簡単にする上で、その役割は大きいので、あたかも一次データのごとく付加してある。

HEADER	PROTEINASE INHIBITOR (TRYPSIN) 01-NOV-76 3PTI	3PTI 3 11
COMPND	TRYPSIN INHIBITOR	3PTI 4 12
SOURCE	BOVINE (BOS TAURUS) PANCREAS	3PTI 5 13
AUTHOR	BOVINE (BOS TAURUS) PANCREAS R.HUBER, D.KUKLAN, A.RUEHLMANN, O.EPP, H.FORMANEK,	3PTIB 1 14
AUTHOR	2 J.DEISENHOFER, W.STEIGEMANN	3PTIB 2 14
REMARK	1	3PTIB 3 16
REMARK	1 REFERENCE 1	SPTIB 4 16
REMARK	1 AUTH J.DEISENHOFER, W.STEIGEMANN	3PTIB S 16
REMARK	1 TITL CRYSTALLOGRAPHIC REFINEMENT OF THE STRUCTURE OF	3PTIB 6 16
REMARK	1 TITL 2 BOVINE PANCREATIC TRYPSIN INHIBITOR AT	3PTIR 7 16
REMARK		
REMARK	1 REF ACTA CRYSTALLOGR., SECT. B V. 31 238 1975	7PTTR 9 14
REMARK	1 TIL 3 1.5 ANGSTRUMS RESOLUTION 1 REF ACTA CRYSTALLORG. SECT. B V. 31 238 1975 1 REFN ASTM ACBCAR DK ISSN 0001-5520 107	30TTB 10 14
	10,	31 112 10 10
REMARK	2 RESOLUTION. 1.5 ANGSTROMS	3PTI 32 16
REMARK	3	3PTI 33 16
REMARK	3 REFINEMENT. BY REAL-SPACE PROCEDURE OF R. DIAMOND WITH	3PTI 34 16
REMARK	3 REFINEMENT, BY REAL-SPACE PROCEDURE OF R. DIAMOND WITH 3 INTERMEDIATE RECALCULATION OF ELECTRON-DENSITY MAP AND	3FTI 35 16
REMARK	3 CORRECTIONS BY HAND. SEE REFERENCE 1 ABOVE.	3PTI 36 16
SEGRES	1 59 ACE ARG PRO ASP PHE CYS LEU GLU PRO PRO TYR THR GLY	
SEGRES	2 59 PRO CYS LYS ALA ARG ILE ILE ARG TYR PHE TYR ASN ALA	3FTI 42 21
	3 59 LYS ALA GLY LEU CYS GLN THR PHE VAL TYR GLY GLY CYS	
	4 59 ARG ALA LYS ARG ASN ASN PHE LYS SER ALA GLU ASP CYS	
SEGRES	5 59 MET ARG THR CYS GLY GLY ALA	3PTI 45 21
FTNOTE	1	3PTI 46 22
FTNOTE	1 THESE ATOMS WERE NOT FOUND IN THE ELECTRON DENSITY MAP.	3PTI 47 22
FTNOTE	1 THEIR COORDINATES WERE GENERATED USING STEREOCHEMICAL	3FTI 48 22
FTNOTE	1 CRITERIA.	3PTI 49 22
FORMUL	1 CK116K1A. 2 HOH *47(H2 D1) 1 H1 SER 47 GLY 56 1 1 S1 2 ALA 16 ALA 25 0 2 S1 2 GLY 28 GLY 36 -1 1 CYS 5 CYS 55 2 CYS 14 CYS 38 3 CYS 30 CYS 51	3PTIB 61 24
HELIX	1 H1 SER 47 GLY 56 1	3PTI 50 31
SHEET	1 S1 2 ALA 16 ALA 25 0	3PTI 51 32
SHEET	2 S1 2 GLY 28 GLY 36 -1	3FTI 52 32
SSBOND	1 CYS 5 CYS 55	3PTIB 62 34
SSBOND	2 CYS 14 CYS 38	3PTIB 63 34
SSBOND	0.0.0	3PTIB 64 34 3PTI 53 51
	43,100 22,900 48.600 90.00 90.00 90.00 F 21 21 21 4 1.000000 0.0000000 0.0000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.0000000 0.0000000 0.0000000 0.0000000	3PTI 54 52
ORIGX1	1.000000 0.000000 0.000000	3FTI 54 52 3FTI 55 52
ORIGX2 ORIGX3	0.00000 1.00000 0.00000	3PTI 56 52
	0.000000 0.000000 1.000000 0.000000	3PTI 57 53
SCALE1	0.00000	3FTI 58 53
SCALE2 SCALE3	0.00000 .04588 0.00000 0.00000	
	1 C ACE 0 27.468 28.283 -2.381 1.00 0.00 1	3FTI 60 61 1 0 022 11
ATOM	0.000000 0.000000 .020574 0.0000000 1 C ACE 0 27.468 28.283 -2.381 1.00 0.00 1 2 0 ACE 0 27.468 28.283 -2.381 1.00 0.00 1 3 CH3 ACE 0 28.349 28.731 -1.239 1.00 0.00 1 4 N ARG 1 26.522 27.417 -2.687 1.00 0.00 6 C ARG 1 26.522 27.417 -2.687 1.00 0.00 6 C ARG 1 26.522 27.417 -2.687 1.00 0.00 6 C ARG 1 26.256 26.217 -4.464 1.00 0.00 7 0 ARG 1 27.268 25.519 -6.612 1.00 0.00 8 C ARG 1 27.268 25.519 -6.612 1.00 0.00 8 C ARG 1 27.268 25.519 -2.248 1.00 0.00 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0	3PTI 61 61 2 0 022 23
MOTA	3 CH3 ACE 0 28.349 28.731 -3.544 1 00 0 00 1	3PTI 62 61 3 0 022 31
ATOM	4 N ARR 1 24.522 27.417 =2.487 1.00 0.00	3PTI 63 61 4 0 115 12
ATOM	5 CA ARG 1 25.603 26.909 -1.661 1.00 0.00	3PTI 64 61 5 0 115 21
ATOM	6 C ARR 1 24.256 24.217 466 1.00 0.00	3FTI 65 61 6 0 115 31
ATOM	7 0 ARG 1 27,268 25,519 -,612 1,00 0,00	3FTI 66 61 7 0 115 43
ATOM	8 CR ARG 1 24.610 25.885 -2.248 1.00 0.00	3PTI 67 61 8 0 115 51
ATOM	9 CG ARG 1 25,171 24,458 -2,379 1,00 0,00	3PTI 68 61 9 0 115 61
ATOM	10 CD ARG 1 24.124 23.541 -2.979 1.00 0.00	3FTI 69 61 10 0 115 71
ATOM	11 NE ARG 1 23.644 24.058 -4.269 1.00 0.00	3PTI 70 61 11 0 115 82
ATOM	12 CZ ARG 1 24.299 23.863 -5.432 1.00 0.00	3PTI 70 61 11 0 115 82 3PTI 71 61 12 0 115 91
ATOM	13 NH1 ARG 1 23.797 24.379 -6.539 1.00 0.00	3PTI 72 61 13 0 115102
ATOM	14 NH2 ARG 1 25.434 23.152 -5.473 1.00 0.00	3FTI 73 61 14 0 115112
ATOM	15 N PRO 2 25.669 26.420 .698 1.00 0.00	3FTI 74 61 15 0 220 12
ATOM	16 CA PRD 2 26.191 25.807 1.926 1.00 0.00	3PTI 75 61 16 0 220 21
ATOM	17 C PRO 2 26.248 24.283 1.838 1.00 0.00	3PTI 76 61 17 0 220 31
ATOM	18 0 PRO 2 25.462 23.661 1.112 1.00 0.00	3FTI 77 61 18 0 220 43
ATOM	19 CB PRO 2 25.364 26.408 3.014 1.00 0.00	3PTI 78 61 19 0 220 51
ATOM	10 CB ARG 1 24.124 23.541 -2.979 1.00 0.00 11 NE ARG 1 23.644 24.058 -4.269 1.00 0.00 12 CZ ARG 1 24.299 23.863 -5.432 1.00 0.00 14 NH2 ARG 1 23.797 24.379 -6.539 1.00 0.00 14 NH2 ARG 1 25.434 23.152 -5.473 1.00 0.00 15 N PRO 2 25.434 23.152 -5.473 1.00 0.00 16 CA PRO 2 26.491 25.807 1.926 1.00 0.00 16 CA PRO 2 26.492 1.00 0.00 18 0 PRO 2 25.462 23.661 1.112 1.00 0.00 18 0 PRO 2 25.462 23.661 1.112 1.00 0.00 20 CG PRO 2 25.434 23.155 1.00 0.00 0.00 18 0 PRO 2 25.434 24.293 1.838 1.00 0.00 0.00 18 0 PRO 2 25.462 23.661 1.112 1.00 0.00 0.00 18 0 PRO 2 25.462 23.661 1.112 1.00 0.00 0.00 18 0 PRO 2 25.344 26.408 3.014 1.00 0.00 0.00 10 PRO 2 25.349 26.408 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.	3PTI 79 61 20 0 220 61
ATOM	21 CD FRO 2 24.639 27.414 .964 1.00 0.00	3PTI 80 61 21 0 220 71

図2. PSPCSフォーマットによるトリプシンインヒビターのデータレコードの抜粋. 現在は、まだ共有結合のデータを付加する機能が欠けている.

図2.に、PSPCSフォーマットによるデータレコードの抜粋を示す。BNLフォーマットからPSPCSフォーマットへのデータ変換プログラムは、後述するように、<math>PSPCS中に一つの応用プログラムとして含まれている。要約すると、PSPCSフォーマットの利点としては、

- 1)各種の数値コードを付加することにより、検索が容易になり、また、それによって応用プログラムの構造が簡単化できて、開発の手間を軽減することができる。
- 2) BNLフォーマットの1レコードを長くしただけで、それとの一対一対応は保たれているので、BNLフォーマットで書かれたプログラムも何の変更もなしに通すことができる。

がある.

入力データフォーマットの些少な変更に対しても、応用プログラムを書き替えなければならないことの苦痛は大きい、この事を無しですます。すなわちデータ独立性を保つ最良の方法は、Data Base Management System (DBMSと略称)によりデータベースを構築することである[4]。また、そうすれば、前述のPDB データのように、シーケンシャルなアクセスだけに依らずにすむので、検索時間も短縮できる。これに関しては、阪大大型計算機センター、磯本征雄氏らによる、DBMS、INQを用いた「蛋白質データベースPROTEIN ーDB」の研究開発がある[3,5]。

3.2. PSPCSのプログラム群

表 2.に、PSPCS作成グループにより開発されたプログラムの主なものと、その概要を掲げる[1,6,7,8]. 表 2. PSPCS中の主なプログラムとその概要

プログラム名が明示してあるものが、現在使用できるものである。長野氏の、アミノ**酸配**列から二次構造を 予測する、著名な二次構造予測プログラムは、原子座標データをなまに使う訳ではないが、PSPCSに含まれている。

プログラムの内容	作 成 者	プログラム名
BNL座標データのフォーマット変換	九大・理 水野裕重	CONVRT
蛋白質分子鎖立体構造のステレオ投影図プロット	九大•理 水野裕重 郷信広 花田光弘	STEREO
最白質分子の透視図	群馬大•教養中田吉郎	
(Yプロッタによる距離マップの図示	九大•理 水野裕重	DISMAP
ブラフィックディスプレイによる距離マップの図示	京大•化研 大畠玄久	
PRINTRONIXによる距離マップの印刷	早大・理工 輪湖 博	
り, ♥値のRamachandran プロット	京大·化研 大畠玄久 西川建 大井竜夫	
Φ, ♥面の等高線のプロット	早大•理工輪湖博	
1傍原子の探索	九大・計セ 武富 敬	NASH
tーへリックスの探索	東大・薬長野晃三	
最白質における二次構造の同定	九大・理 宮沢三造	
二次構造予測法	東大•薬 長野晃三	
BENDER模型用プログラム	九大・理 栄 智英	BENDER
上鎖のボンド長、ボンド角および二面角の計算	九大・理 郷 通子	
Accessible Surface Areaの計算	九大·理 水野裕重 和 信広	ASA
Voronoi Polyhedronの計算	九大·理 宮沢三造 九大·理 郷 通子	
こつの立体構造の重ね合わせ	京大・化研 西川 建	SUPPOS
最白質分子の水素原子座標の計算	群馬大•教養中田吉郎	
6日質分子の変形とエネルギー地図の作成	群馬大•教養中田吉郎	
Lab Quipモデルの原子座標の修正	東大· 楽 宮本秀一 東大・ 楽 長野晃三	
nultiple momentsの計算および電荷分布図のプ	東」 - 中村春木	
コット		
蛋白質内部の局所的な電場、電位の計算	東大・理 中村春木 和田昭允	
	NL座標データのフォーマット変換 自質分子鎖立体構造のステレオ投影図プロット 自質分子の透視図 Yプロッタによる距離マップの図示 ラフィックディスプレイによる距離マップの図示 PRINTRONIXによる距離マップの印刷 , V 値のR amachandran ブロット の、 V 面の等高線のプロット 特原子の探索 ーヘリックスの探索 に白質における二次構造の同定 た次構造予測法 ENDER模型用プログラム に鎖のボンド長、ボンド角および二面角の計算 ccessible Surface Areaの計算 のつの立体構造の重ね合わせ に白質分子の水素原子座標の計算 に白質分子の変形とエネルギー地図の作成 ab Quipモデルの原子座標の修正 ultiple momentsの計算および電荷分布図のプ	NL座標データのフォーマット変換

現在、PSPCSのプログラムは、まだ完全に整備されている訳ではなく、表2.でプログラム名が明示してあるものだけが使用できる。PSPCSでは、原則としてソースプログラムを公開する特にサブルーチン形式のプログラムでは、蛋白質の立体構造の複雑さに対応できるほどの機能を持って書かれていることは少いと思われるので、各利用者で自分の研究に必要なように改編して、適宜、自分のプログラムに組み込んで使用するのが望ましいと思われる。

3.3. PSPCS以外の有用なプログラムの導入

PSPCS作成グループ以外にも,蛋白質原子座標データを処理するプログラムを開発している研究者は少なくないと思われる。有用なプログラムについては,どしどし導入して,PSPCSを一つのかなり完備したソフトウェアパッケージにしたいと考えているので,筆者まで連絡をとられることを希望する。その候補の一つは,名大・理学部・物理学教室の別府良孝氏による,分子構造表示プログラム「NAMOD」である[9,10].

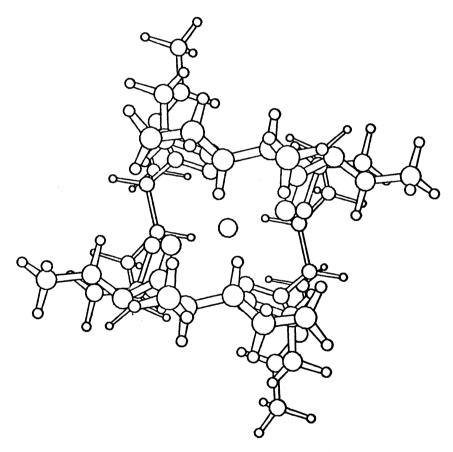


図3. 分子構造表示プログラムNAMODを用いて描いたノナクチンの遠近図,名大 別府氏の御好意により掲載。

NAMODは、図3.に示すように、球と棒模型で分子構造をグラフィック・ディスプレイ上に表示するもので、 隔線消去を施しつつ、手前の原子や結合ほど大きく太く描くので、遠近感のある図の表示に適している。また、 αー炭素原子を結ぶ蛋白質の骨格構造をリボン状に描く、A.D. Mac Lachlan のRIBBONプログラムも考慮したいものの一つである。

4. PSPCSの利用法

PSPCSのプログラムは,種々の応用プログラムの中に頻繁に現われる機能をプログラム化したサブルーチン形式のものと,ある一まとまりの機能を持つコンプリートプログラム形式のものとから成る。3.2.で述べたように,すべてのプログラムが整備されている訳ではないが,現在,使えるものに対しては,文献[11]にまとめてあり,これが利用者用のマニュアルとなる。このマニュアルを希望される方は,筆者(郷,内線4149)まで申し込んでいただきたい。

4.1. サブルーチン形式プログラムの利用例

種々の応用プログラム中で、ある特定の原子の近傍に存在する原子を探索しなければならない場合によく出会 う。原子数の増大に伴い、探索の手間は急激に増加するので、その高速化のためにメッシュ法を採用したプログ ラムを作成した。

```
//
      EXEC FORTXCG
//FORT.SYSIN DD
     MAIN PROGRAM
      DIMENSION HATH (2000), NORD (2000), NARD (2000)
      DIMENSION CORD(3,2000), INV(3,2000)
      DIMENSION IZ(200), DIST(200)
      READ(5,100) IN, ICUT, IJK, KKK
      READ (5,200) M, WDM, R
      READ(5,300) NAS, NAE
      CALL <u>HASIN</u>(IN, IJK, H, NATH, NARD, NORD, CORD, N)
      CALL MESH (WDN, N, N, CORD, INW)
      DO 20 IC = NAS, NAE
       CALL NASUB (IC, N, M, NORD, ISA, HRA)
       IEA = ISA + MRA - 1
       DO 10 II = ISA, IEA
        CALL MASH (II, KKK, WDM, R, N, M, CORD, INV, MM, IZ, DIST)
        CALL NASOUT (II, IOUT, H, NATH, NARD, NORD, MH, IZ, DIST)
   10
       CONTINUE
   20 CONTINUE
  100 FORMAT (412)
  200 FORMAT (15, 2F5.1)
  300 FORMAT(215)
      STOP
      EMD
//GO.SYSIN
            DD
 1 6 0 1
      2.5
 1000
             5.0
                               እታ PDB テ⁵- ዓ
        30
//GO.FT01F001 DD DSN=F9999.PCSDT(PCS3PTI),DISP=SHR
```

図4. プログラムNASH(5つのサブルーチンプログラムから成る)を用いた、残基 番号による近傍原子の探索の例、整合配列を用いて作成してある。 図4.に、ある蛋白質分子の、残基番号NASからNAEまでの原子について、近傍原子を探索する場合の例を示す。下線部分が、PSPCSに含まれるサブルーチンプログラムである。

4.2. コンプリート形式プログラムの利用例

1) カタログドプロシジャ P R O C S の説明

プロシジャ名	記号パラメータ	プロシジャステップ名
PROCS	PROG=プログラム名 $ \begin{bmatrix} , SYSOUT = \begin{cases} \frac{\mathbf{A}}{K} \\ R \\ S \end{bmatrix} \end{bmatrix} $	GO

機能:PSPCSのコンプリート形式プログラムを実行する

記号パラメータ:

PROG:表2.のプログラム名を指定する

SYSOUT:出力クラスを指定する

2) BN L座標データのフォーマット変換

図5に、3.1で述べた、BNLフォーマットからPSPCSフォーマットのデータに変換する場合の例を示す。

```
// EXEC PROCS,PROG=CONVRT
//GO.SYSIN DD *
0 1 2
//GO.FT01F001 DD DSN=F9999.PCSDT(BNL3PTI),DISP=SHR
//GO.FT02F001 DD DSN=F9999.PCS3PTI,DISP=(NEW,CATLG),UNIT=PUB,
SPACE=(TRK,(10,10),RLSE),
DCB=(RECFH=FE,LRECL=140,BLKSIZE=6300)
```

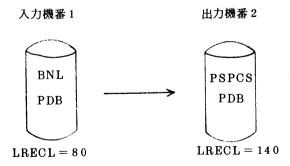


図5. プログラムCONVRTによる、BNLフォーマットからPSPCSフォーマット へのデータ変換の例・

^{*} PRO tein Conformation Study から採った

3) XYプロッタによる距離マップの図示

これは、蛋白質分子の三次元空間における折れたたみ構造を、二次元の紙の上に表示する一つの方法である。 図 6 は、カルボキシペプチダーゼAの α 一炭素原子間の距離の分布を、三角形地図として残基番号の組に対してプロットしたものである。これにより、 α ーヘリックス、 β ーシートなどの二次構造や長距離の相互作用の特徴 [12 , 13] などが抽出できる。

```
// EXEC PROCS, PROG=DISHAP
//GO.SYSIN DD *
1 CA
1 CA
1 0.0 7.0 21.0 15.0
1 0.0 9.0 18.0 15.0 PRIN
//GO.FT16P001 DD DSN=F9999.PCSDT(PCS1CPA),DISP=SHR
//GO.FT16P001 DD SYSOUT=0
```

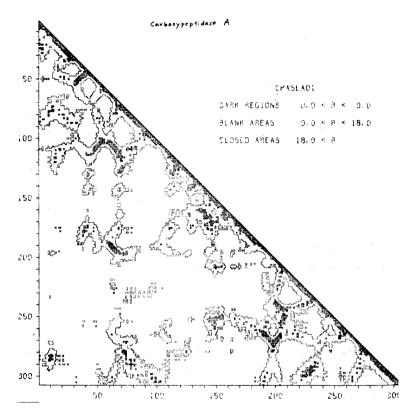


図6. プログラムDISMAPで描いたカルボキシペプチダーゼAの距離マップ。 黒い部分が、9.0 Å以内の残基の組を示している。

4) 蛋白質分子鎖立体構造のステレオ投影図プロット

蛋白質分子の立体構造を、二次元の紙の上に表示して立体的に見るために、ステレオ投影図を描く、図7は、トリプシンインヒビターのα一炭素原子を結ぶ骨格構造と側鎖の配置をステレオ投影図で描いたものである。 左右の図の間に白い紙を立て、右眼で右図を、左眼で左図を見ると、少し訓練すれば立体的に見えるようになる。

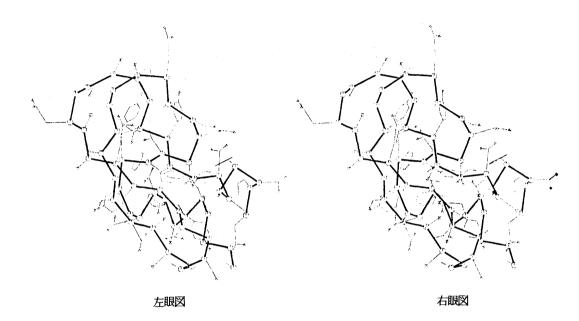


図7. プログラムSTEREOで描いたトリプシンインヒビターのステレオ投影図。 側鎖の配置まで観察できるのか特徴である。

5) その他のプログラム

その他に使用できるものとして、針金模型で蛋白質の骨格構造を製作するために必要な構造パラメータを計算するプログラムBENDER、相同蛋白質などの類似した二つの立体構造を最適に重ね合わせて構造比較などを行うSUPPOS、疎水相互作用の定量化などの目的で、蛋白質分子中の各原子の水に対する接触表面積を計算するプログラムASAがある。

5. 蛋白質原子座標検索システム

PSPCSのプログラム群はすべてプロティン・データ・バンク (PDB) のデータに簡単な変換を施した PSPCSデータを入力データとしているが、これを用いて実際に計算を行なう場合には、予めデータについて計算に必要な情報を知っておかねばならない。例えば、αーヘリックス部分の溶媒に対する表面積を計算しようとするような場合、目的とする蛋白質分子のαーヘリックス部分の残基番号と残基名を予め知っておく必要がある。このような場合、従来までは数十ページからなるPDBデータのリストを取って調べるとか、磁気テープに格納されているPDBデータをディスクにコピーしてTSSで調べるとかの方法を取っていた。しかし、これでは作

業に費す労力が大きく、計算費もその分だけ無駄になった。そとで今回、TSSで上述のことを手軽に調べることができるように簡単な検索システムを開発したので以下に紹介する。

5.1. システムの概要

このシステムは、現在のところデータベースと6つのコマンドプロシジャから構成されている。データベースはリマークデータセットとデータステイタスデータセットから成る。前者は、PDBデータからATOM、HETATM、CON ECTレコード以外のリマーク部分を抜き出したもので、後者には、データコード名、分子名、PDBに登録された日付、登録者名、α炭素だけのデータであるとか主鎖だけのデータであるとかを表わすデータスティタス、一般利用者のためにPDBデータが絡納されているセンタークローズド磁気テープのボリューム名、データセット名、及び関連するニュースレター名などの情報が収納されている。用意されている6つのコマンドでデータコード名やレコード名などを指定することによって、上述のデータベースから必要な情報を取り出す仕組みになっている。

5.2. システムの機能

このシステムは以下のような機能を持っている。なお、以下の説明では出力は特に断わらない限り端末に出力することを意味する。ここで用意されているコマンドは、コマンドライブラリとして登録されているので、普通のコマンドと同様に入力すればよい。

- 1) PDBデータの一覧,及びステイタス別のデータの一覧(データコード名,分子名,データ登録者名,格納 磁気テープボリューム名,データセット名,関連ニュースレター番号,その他)を得ることができる.
- 2) レコード検索によって、目的とするPDBデータに関して1)で述べた情報以外に、採取資料名、X線解析に関する各種の変換マトリックス、 $アミノ酸配列、<math>\alpha$ ヘリックス・ β シートなどの二次構造、結合部位、ジスルフィド結合、ヘムなどのヘテロな残基、関連文献名などの情報を得ることができる。
- 3) PDBデータのレコード構成や、ディスク上にコピーする場合のスペースを知ることができる。
- 4) PDBデータのリマーク部分のリスト (ラインプリンタ出力) を得ることができる.
- 5) 6 つのコマンドの入力形式・機能を教えるコマンドが用意されている.

5.3. コマンドの説明

- (1) REFERコマンド
 - 1)入力形式

コマンド	オ	~	ラ	ン	۴		
REFER	データコード名	NUM		[]	PAU	SE)	
		SNU	м	(1	10 P.	AUSE	

2)機能

指定したPDBリマークデータから入力促進に対して応答して指定したレコードを出力する。

- 3) オペランドの説明
 - a. データコード名

PDBで定められているデータコード名を指定する. (表1参照)

b. NUM/SNUM

NUMを指定すると行番号フィールドまで出力し、SNUMを指定すると行番号フィールドを出力しない。

NUM も SNUM も省略した場合、NUMが指定されたものとみなす。

c. PAUSE/NOPAUSE

PAUSEを指定した場合一画面分(23 行)出力した後一旦ポーズし、次の処理を問い合わせてくる。 NOPAUSEを指定した場合はポーズしない、PAUSE & NOPAUSE & 省略した場合、NOPAUSE が指定されたものとみなす。

4) 入力促進に対する応答

レコード識別子,またはその並び(最大 10 個),または \PALL を指定する. これらは任意省略形(先頭の文字を含む任意長の部分文字列)で指定してよい. \PALL を指定した場合,リマーク部分のすべてのレコードを出力する.

5) READYモードへの復帰

入力促進をやめさせREADYモードへ戻したい場合は、入力促進に対して直ちに空行を返すか、応答の並びの最後に ▼END▼を指定する。

(2) DSCANコマンド

1) 入力形式

コマンド	オ	ペ	ラ	ン	۴	
DSCAN	データコード名					

2)機能

指定したPDBデータの種類別レコード数、ディスクにコピーする場合に必要なスペース量を出力する。

3) オペランドの説明

a. データコード名

REFERコマンドの場合と同じである.

(3) DSTATUSコマンド

1) 入力形式

コマンド	オ	~	ラ	ン	۴	
DSTATUS	PAUSE	1			-	
	NOPAUS	\mathbf{E}				

2)機能

入力促進に対する応答として指定したPDBデータまたはプログラムに関して、或は、指定したスティタスを持つPDBデータに関して、①エントリー番号、②データ又はプログラムコード名、③分子名又はプログラムの機能、④登録者名、⑤登録日、⑥データスティタス又はプログラムサポートの有無、⑦格納されているセンタークローズド磁気テープのボリューム名、⑧データセット名、⑨更新コード、⑩関連ニュースレター番号、⑪更新日、⑫コメントを出力する。

3) オペランドの説明

a. PAUSE/NOPAUSE

REFERコマンドの場合と同じである.

4) 入力促進に対する応答

a. コード名リスト

データまたはプログラムコード名,または ▼*AAA▼,またはこれらの並び(最大10個)を指定する.

▼*AAA▼を指定した場合,データコードの後ろ3文字がAAAのデータに関するステイタス情報を出力する。コード名リスト指定の場合は、2)の①~②の情報全てを出力する。

b. INFORMATION

システム管理者, PDBデータ磁気テープボリューム名と属性, ステイタスコード名, 更新コード名, 最新ニュースレター番号などを出力する.

c. NEW [ALL]

最新のニュースレターで新規登録されたデータ及びプログラムに関する情報を出力する.

d. CORRECTED [ALL]

最新のニュースレターで更新されたデータ及びプログラムに関する情報を出力する.

e. STANDARD [ALL]

標準的データに関する情報を出力する.

f. ALPHA [ALL]

α炭素だけのデータに関する情報を出力する.

g. BACKBONE [ALL]

主鎖原子だけのデータに関する情報を出力する.

h. PROMISED [ALL]

更新が予定されているデータに関する情報を出力する.

i. APPROVAL [ALL]

新規登録が予定されているデータに関する情報を出力する.

i. PREPARE [ALL]

登録準備中のデータに関する情報を出力する.

k. REPLACE [ALL]

古いパラメータセットに代って新しいパラメータセットでリファインし直されたデータに関する情報を 出力する.

1. PROGRAM [ALL]

すべてのプログラムエントリーに関する情報を出力する.

m. DATA [ALL]

すべてのデータエントリーに関する情報を出力する.

n. ALL [ALL]

すべてのプログラムエントリーとデータエントリーについての情報を出力する。

 $\mathbf{a} \sim \mathbf{n}$ の応答は同時に指定することはできない。もし誤まって指定すると、並びの最初の応答で $\mathbf{a} \sim \mathbf{n}$ の うちのどの応答かを判断する。

研究開発

- b~n の第1応答は他の応答と区別できる任意省略形で指定することができる.
- ・ $c \sim n$ の第2応答で ALL を省略すると2)で述べた出力情報のうち $1 \sim 3$ 及び $6 \sim 8$ を出力し、指定すると $1 \sim 2$ の情報全てを出力する。
- 5) READYモードへの復帰

REFERコマンドの場合と同じである.

(4) PRINTRコマンド

1) 入力形式

コマンド	オペランド
PRINTR	CODE(データコード名リスト)
	NUM (COLUMN (整数)) (MAXLINE (整数))
	(DSTATUS)

2) 機能

指定したデータのリマークをラインプリンタへ出力する。

- 3) オペランドの説明
 - a. CODE (データコード名リスト)

データコードまたはデータコードの*表現またはそれらの並びを指定する. 並びを指定する場合は,全体を一対の引用符でくくる.

b. NUM/SNUM

REFERコマンドの場合と同じである.

c. COLUMN (整数)

出力位置を指定する。ラインプリンタ用紙の左から数えて整数で指定したバイト目から出力される。省略時はCOLUMN(21)がとられる。

d. MAXLINE (整数)

1ページに出力する行数を整数で指定する.省略時はMAXLINE(64)がとられる.

e. DSTATUS

現在のPDBの座標データエントリー及びプログラムエントリーのスティタスの一覧をラインプリンタに出力する. DSTATUSを指定した場合, CODE指定をしていても無視される.

(5) RECORDコマンド

1)入力形式

コマンド			才	~	ラ	ン	۴		
RECORD	な	l							

2)機能

入力促進に対する応答によって、PDBデータのレコード識別子の一覧を出力したり、指定したレコード

識別子を持つレコードに記載されている事項の意味を出力する。

3) 入力促進に対する応答

以下のa~cは任意省略形で指定することができる。

a. NAMES

レコード識別子の一覧を出力する.

b. レコード識別子またはその並び(最大 10 個)

指定されたレコード識別子を持つレコードに記載されている事項の意味を出力する。

c. ALL

全てのレコード識別子とそれらのレコードに記載されている事項の意味を出力する。ALLを指定すると出力後READYモードに戻る。

(6) TELLコマンド

1) 入力形式

コマンド		オ	ペ	ラ	ン	۲	
TELL	NAMES)					
	ALL						
	コマンド名	;					

2)機能

用意されているコマンドの一覧や、指定されたコマンドの入力形式、機能、オペランドの説明を出力する。

- 3) オペランドの説明
 - a. NAMES

コマンドの一覧を出力する.

b. ALL

全てのコマンドに関する2)で述べた情報を出力する。

c. コマンド名

指定したコマンドに関する2)で述べた情報を出力する.

5.4. 簡単な使用例

以下にREFERコマンドとDSTATUSコマンドの使用例を示す。下線の部分が利用者の入力する部分である。(左端の番号を参照のこと。)REFERコマンドの例は,蛋白質リゾチームに関する情報検索の例である。

READY	
① REFER 1LYZ ② +RECORD ID> HELIX SHEET SSBOND	
<pre><records 'helix'="" 1lyz="" for=""> HELIX 1 A ARG 5 HIS 15 1</records></pre>	1LYZ 218
HELIX 2 B LEU 25 GLU 35 1 HELIX 3 C CYS 80 LEU 84 5	1LYZ 219 1LYZ 220
HELIX 4 D THR 89 LYS 96 1 <records 'sheet'="" 1lyz="" for=""></records>	1LYZ 221
SHEET 1 S1 2 LYS 1 PHE 3 0 SHEET 2 S1 2 PHE 30 THR 40 -1 N THR 40 O LYS 1	1LYZ 222 1LYZ 223
SHEET 1 S2 3 ALA 42 ASN 46 0	1LYZ 224
SHEET 2 S2 3 SER 50 GLY 54 -1 N ASN 46 O SER 50 SHEET 3 S2 3 GLN 57 SER 60 -1 N TYR 53 O ILE 58	1LYZ 225 1LYZ 226
<pre><records 'ssbond'="" 1lyz="" for=""> SSBOND 1 CYS 6 CYS 127</records></pre>	lLYZB 92
SSBOND 2 CYS 30 CYS 115 SSBOND 3 CYS 64 CYS 80	llyzb 93 llyzb 94
SSBOND 4 CYS 76 CYS 94 ③ +RECORD ID> HEADER COMPND SOURCE AUTHOR	1LYZB 95
<pre><records 'header'="" 1lyz="" for=""></records></pre>	lLYZ 3
<pre><records 'compnd'="" 1lyz="" for=""></records></pre>	
COMPND LYSOZYME (E.C.3.2.1.17) <records 'source'="" 1lyz="" for=""></records>	llyzB 1
SOURCE HEN (GALLUS GALLUS) EGG WHITE <records 'author'="" 1lyz="" for=""></records>	lLYZB 2
AUTHOR R.DIAMOND,D.C.PHILLIPS,C.C.F.BLAKE,A.C.T.NORTH (4) +RECORD ID> FORMUL HET JRNL	1LYZE 3
<pre><records 'formul'="" 1lyz="" for=""> FORMUL 2 HOH *97(H2 O1)</records></pre>	lLYZB 91
<pre><records 'jrnl'="" 1lyz="" for=""> JRNL AUTH R.DIAMOND</records></pre>	1LYZB 4
JRNL TITL REAL-SPACE REFINEMENT OF THE STRUCTURE OF HEN	llyzB 5
JRNL TITL 2 EGG-WHITE LYSOZYME JRNL REF J.MOL.BIOL. V. 82 371 1974	lLYZB 6 lLYZB 7
	1LYZB 8
MSG: NOT FOUND REQUEST(S) - 'HET'	12122
(9) +RECORD ID> MASTER END	
© +RECORD ID> <u>MASTER END</u> <records 'master'="" 1lyz="" for=""> MASTER 106 145 0 4 5 11 0 6 1102 1 8 10</records>	LYZB 96
© +RECORD ID> MASTER END <records 'master'="" 1lyz="" for=""> MASTER 106 145 0 4 5 11 0 6 1102 1 8 10 READY</records>	
<pre>\$\begin{align*} \text{*RECORD ID> MASTER END} \\</pre>) llyzb 96
S +RECORD ID> MASTER END <records 'master'="" 1lyz="" for=""> MASTER 106 145 0 4 5 11 0 6 1102 1 8 10 READY 6 DSTATUS 7 +REQUEST(S)> 1LYZ *CHA 3PTI 80 <1LYZ> LYSOZYME (HEN EGG-WHITE, SET W2) /DEPOSITOR/R.DIAMOND,D.C.PHILLIPS /DATE/ 2.75</records>) llyzb 96
S +RECORD ID> MASTER END <pre></pre>	0 1LYZB 96 DS/DS077
S +RECORD ID> MASTER END <pre></pre>	0 1LYZB 96 0S/DS077 0S/DS029
S +RECORD ID> MASTER END <pre></pre>	0 1LYZB 96 0S/DS077 0S/DS029
S +RECORD ID> MASTER END <pre></pre>	0 1LYZB 96 0S/DS077 0S/DS029 0S/DS030
S +RECORD ID> MASTER END <pre></pre>	0 1LYZB 96 0S/DS077 0S/DS029 0S/DS030
\$\text{\$\c	0 1LYZB 96 0S/DS077 0S/DS029 0S/DS030
\$\text{\$\t	DS/DS077 DS/DS029 DS/DS030 DS/DS129 DS/DS015
\$\text{\$\t	D 1LYZB 96 DS/DS077 DS/DS029 DS/DS030 DS/DS129 DS/DS021 DS/DS021 DS/DS021
S + RECORD ID MASTER END	D 1LYZB 96 DS/DS077 DS/DS029 DS/DS030 DS/DS129 DS/DS015 DS/DS021 DS/DS021 DS/DS028 DS/DS055
### STATUS ALTER STATUS	DS/DS029 DS/DS030 DS/DS029 DS/DS029 DS/DS029 DS/DS029 DS/DS020 DS/DS021 DS/DS021 DS/DS028 DS/DS055 DS/DS056 DS/DS068
(S) +RECORD ID> MASTER END (RECORDS 'MASTER' FOR 1LYZ) MASTER 106 145 0 4 5 11 0 6 1102 1 8 10 READY (D) STATUS (T) + REQUEST(S) > 1LYZ *CHA 3PTI (T)	DS/DS077 DS/DS029 DS/DS030 DS/DS029 DS/DS029 DS/DS029 DS/DS025 DS/DS028 DS/DS028 DS/DS056 DS/DS056 DS/DS070 DS/DS071
### RECORD ID> MASTER END	DS/DS077 DS/DS029 DS/DS030 DS/DS030 DS/DS015 DS/DS021 DS/DS028 DS/DS028 DS/DS056 DS/DS056 DS/DS070 DS/DS070 DS/DS070 DS/DS070 DS/DS085 DS/DS091
### STER NO 1D> MASTER END CRECORDS 'MASTER' FOR 1LYZ> MASTER	DS/DS077 DS/DS029 DS/DS030 DS/DS029 DS/DS029 DS/DS021 DS/DS021 DS/DS028 DS/DS055 DS/DS056 DS/DS068 DS/DS070 DS/DS070 DS/DS071 DS/DS085 DS/DS099 DS/DS099 DS/DS099

```
108 <1PYK> PYRUVATE KINASE (CAT)
                                                            /ST/AN /MT/
                                                                                /DS/
  120 <1SSI> SUBTILISIN INHIBITOR (STREPTOMYCES)
123 <1SOD> SUPEROXIDE DISMUTASE
                                                                   /MT/F02213 /DS/DS115
                                                            /ST/A
                                                            /ST/A
                                                                    /MT/F02213 /DS/DS118
  126 <1SRX> THIOREDOXIN (E.COLI, OXIDISED)
                                                            /ST/A
                                                                  /MT/F02213 /DS/DS121
() +REQUEST(S) > BACKBONE ALL
   KENTRIES WITH BACKBONE ATOMS ONLY>
   105 <2PGK> PHOSPHOGLYCERATE KINASE (HORSE)
                                                            /ST/B /MT/F02213 /DS/DS101
/DATE/ 9.76
                                                            /ST/B
               /DEPOSITOR/P.EVANS, C.BLAKE
               /CORRECT/
                                     /NEWS/
                                                            /COMMENT/
   136 <1SBV> VIRUS COAR PROTEIN (SOUTHERN BEAN MOSA
                                                            /ST/BN /MT/
                                                                                /DS/
               /DEPOSITOR/M.ROSSMAUU
                                                            /DATE/12.79
                CORRECT/
                                     /NEWS/
                                                            /COMMENT/AWAIT NXT DISTRBTN
(0) + REQUEST(S) > CORRECTED
   <CORRECTED ENTRIES>
    57 <2DHB> HENOGLOBIN (HORSE, DEOXY)
                                                            /ST/
                                                                   /HT/F02213 /DS/DS058
                                                                   /MT/F02213 /DS/DS074
/MT/F02213 /DS/DS075
    77 <1LDX> LACTATE DEHYDROGENASE (MOUSE TESTES)
                                                            /ST/
    78 <1HBL> LEGHEMOGLOBIN (ACETATE, MET)
                                                            /sg/
    84 <5LYZ> LYSOZYME (HEN EGG-WHITE, SET RS12A)
                                                            /ST/
                                                                    /MT/F02213 /DS/DS081
   120 <1SSI> SUBTILISIN INHIBITOR (STREPTONYCES)
                                                            /ST/A
                                                                   /NT/F02213 /DS/DS115
   135 <3PTP> TRYPSIN (DIP INHIBITED)
                                                                   /MT/F02213 /DS/DS130
                                                            /ST/R
(1) +REQUEST(S) > PROMISED ALL END
MSG: NOT FOUND REQUEST(S) - 'PROMISED'
  READY
```

(使用例の説明)

- ① データコード名1 LYZのリマークのレコード検索を開始する.
- ② レコード識別子HELIX, SHEET, SSBONDを持つレコードを出力させる.
- ③ レコード識別子HEADER, COMPND, SOURCE, AUTHORを持つレコードを出力させる.
- ④ レコード識別子FORMUL, HET, JRNLを持つレコードを出力させる。 ▼MSG:▼ として, HETレコードが1 LYZのデータの中にないことを知らせてきている.
- ⑤ レコード識別子MASTERを持つレコードを出力した後READYモードに戻す.
- ⑥ データステイタス検索を開始する.
- ⑦ データコード1 LYZ, コード名の後ろ3文字がCHAのデータ, 3 PTIのデータに関する情報を出力させる。
- ⑧ ALPHA炭素だけのデータを出力させる。ALLは省略する.
- ⑨ 主鎖原子だけのデータを出力させる. ALLを指定する.
- 00 今回のニュースレターで更新されたデータを出力させる.
- ① 登録が予定されているデータに関する情報をALL指定で出力させた後READYモードに戻す。
 - ▼MSG:▼で今のところ登録予定データがないことを示してきている.

6. おわりに

最初に述べたように、今日では、いかなる蛋白質の物理化学的研究も、立体構造のイメージを基礎に据えて議論しなければならない場合が多くなった。一般の蛋白質研究者も、原子座標データを処理して自分の研究に役立てるような場合が、これからますます増えることは間違いない。しかし、日頃計算機にあまり馴染のない研究者にとっては、この間のギャップはかなり大きいと思われる。

PSPCSは、そのような潜在的な利用者にも使いやすいように開発したつもりである。また、ある程度、熟達した利用者には、PSPCSのプログラムを自分の研究に最適に改編して使用したり、PSPCSを使って得た成果を基礎データとして、さらに一段階進んだ研究に使用するなど、その応用できる範囲は広いと思われる。利用

研究開発

者の方々のいろいろなで意見・ご批判をお願いしたい。

なお、PDBを使用した研究成果を発表する時には、文献[2]を引用することが望まれる。また、PSPCSを利用した場合には、各プログラム名と作成者・改訂者名を明記する必要があることを付加しておく[11].

PSPCSは、分子科学研究所の計算機センターにも、すでに登録されていて利用できる。また、名大、京大、阪大の各大型計算機センターでも使えるよう現在作業中である。

最後に、いろいろで協力いただいたPSPCS作成グループのメンバーの方々 (表 2.に氏名が出ている) 、試験研究グループの方々、日頃いろいろで教示いただいている名大・理学部・化学教室の佐々木教佑氏、阪大大型計算機センターの機本征雄氏、阪大蛋白質研究所の安岡則武氏、図 3.の原図を送っていただいた名大・理学部・物理学教室の別府良孝氏に感謝する。

参考文献

- 1. 郷 信広, 水野裕重, 郷 通子, 宮沢三造, 武富 敬 蛋白質原子座標データとその情報処理, 蛋白質・核酸・酵素, Vol. 23, No. 13, pp. 1336 1344, 1978.
- 2. Bernstein, F. C., Koetzle, T. F., Williams, G. J. B., Meyer, E. F., Jr., Brice, M. D., Rodgers, J. R., Kennard, O., Shimanouchi, T., & Tasumi, M. The Protein Data Bank: A Computer-based Archival File for Macromolecular Structures, J. Mol. Biol., Vol. 112, pp. 535 542, 1977.
- 3. 角戸正夫,安岡則武 蛋白質データベース,日本結晶学会誌, Vol. 19, pp. 294 296, 1977.
- 4. 武富 敬 データベース,九大大型計算機センター広報, Vol. 10, No. 4, pp. 257 271, 1977.
- 5. **磯本征雄,安岡則武**,田中信夫,松浦良樹,角戸正夫 学術研究用たんぱく質データベース PROTEIN-DB,情報処理, Vol. 21, No. 1, pp. 15 22, 1980.
- 6. タンパク質原子座標の情報処理プログラム・システム[【] , 科研費報告集, 1977.
- 7. タンパク質原子座標の情報処理プログラム・システム[Ⅱ],科研費報告集,1978.
- 8. タンパク質原子座標の情報処理プログラム・システム[Ⅲ],科研費報告集,1979.
- 9. 別府良孝 電子計算機による分子構造の表示,生化学, Vol. 51, No. 1, pp. 24 28, 1979.
- 10. 別府良孝 分子構造表示プログラムNAMODについて,名大大型計算機センターニュース, Vol. 9, No. 2, pp. 123 134, 1978.
- 11. タンパク質原子座標の情報処理プログラム・システム[N],科研費報告集,1980. これが、PSPCS利用者マニュアルとなる.
- 12. Taketomi, H., Ueda, Y. & Go, N. Studies on Protein Folding, Unfolding and Fluctuations by Computer Simulation. I., Int. J. Peptide Protein Res., Vol. 7, pp. 445 459, 1975.
- 13. Go. N. & Taketomi, H. Respective Roles of Short and Long range Interactions in Protein Folding, Proc. Natl. Acad. Sci., USA, Vol. 75, pp. 559 563, 1978.