
九州大学学術情報リポジトリ
Kyushu University Institutional Repository

Acceleration of Bounded Model Checking based on
Satisfiability-Modulo-Theories for Embedded
Software Designs

劉, 楽源

https://doi.org/10.15017/1470601

出版情報：九州大学, 2014, 博士（工学）, 課程博士
バージョン：
権利関係：全文ファイル公表済



Acceleration of Bounded Model Checking

based on Satisfiability-Modulo-Theories

for Embedded Software Designs

Leyuan Liu

August 2014

Department of Advanced Information Technology
Graduate School of Information Science and Electrical Engineering

Kyushu University



Abstract i

Abstract

Software has become a critical part of our lives nowadays. Many software affects public

security and our health care, such as those used in nuclear reactors, modern avionics system

controllers, and artificial cardiac pacemaker etc. Consequentially, human life has become more

and more dependent on the services provided by these systems. Embedded software is a very

important proportion of such applications. Software failures in embedded systems are usually

life-threatening and expensive in most cases. However, the complexity of embedded software

increases substantially, which makes it challenging to develop techniques for ensuring highly

reliable embedded software while considering the complexity, especially in the development

of concurrent embedded software.

Proposing formal verification techniques to improve the reliability of embedded software

is the topic of this thesis. In particular, the emphasis is put on verifying the correctness of

designs rather than source code of embedded software. Verifying designs have the advantage

that it helps to reveal bugs in the early phase of a software development process, and thus,

avoid the expensive costs that are generally required for revising a bug found in source code.

Among the existing various formal verification techniques, satisfiability-modulo-theory

(SMT) based bounded model checking (BMC) is adopted in this thesis. SMT-based BMC

has the potential to avoid the notorious state-space explosion problem often suffered by other

automated verification techniques such as explicit model checking and BDD-based symbolic

model checking. Regarding embedded software designs, the thesis considers those developed
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Abstract ii

using the Hierarchical State Transition Matrix (HSTM) modeling language that is popular in

Japans embedded software industry.

The main contributions of the thesis are as follows: (1) the thesis first proposes a basic

SMT-based BMC algorithm (encoding approach) for HSTM designs. The designs consist

of concurrent processes that communicate through shared-variables or asynchronous message

passing. (2) since the verification speed of the algorithm is relatively slow, especially for large-

scale designs, the thesis further proposes techniques to accelerate the BMC process. The key

idea is to reduce the formula size of the design by exploring and memorizing legal execution

paths of the designs with explicit state-space exploration techniques. During such state space

exploration, state-space abstraction techniques, such as bounded context switch (BCS), are

applied to filter out those execution paths that are unnecessary for revealing concurrent bugs.

(3) the thesis proposes heuristics-based techniques to classify memorized execution paths into

path clusters, and additionally, proposes a multicore computation structure for verifying those

path clusters separately and concurrently. (4) the proposed techniques are implemented into an

existing formal verification tool called Garakabu2. The experimental results demonstrate that

verification speed can be accelerated significantly.

The structure of the thesis is as follows: Chapter 2 introduces fundamental knowledge

related to model checking; Chapter 3 introduces an encoding approach to translating an em-

bedded software design developed with HSTM into quantifier-free formulas, representing a

BMC problem, which could be solved by an SMT solver; Chapter 4 proposes acceleration

techniques which takes the advantage of explicit model checking as a pre-procedure; With the

purpose of decreasing the state space of the design, Chapter 5 introduces the algorithms that

integrate BCS into the explicit state space exploration procedure, and then the heuristic predi-

cates for classifying possible system execution paths into path clusters; Chapter 6 describes a

distributed SMT solving framework. Chapter 7 describes the implementation of the distributed

framework and the acceleration techniques proposed in Chapters 4 and 5. As shown by the
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experimental results, the scalability and efficiency of SMT-based BMC can be improved sig-

nificantly; Chapter 8 concludes the contributions of this thesis and presents the limitation and

future work.
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Chapter 1 Introduction 1

Chapter 1

Introduction

1.1 Overview

Software has become an critical part of our lives nowadays. Many software affects pub-

lic security and our health care. This kind of software ranges from such as nuclear reactors

and modern avionics system controllers, to artificial cardiac pacemaker that helps maintain

adequate heart rate for patients who suffer from arrhythmia. Consequentially, human life has

also become more and more dependent on the services provided by these types of system.

Embedded system is a very important proportion of such applications.

Embedded system could be defined in general: an embedded system is a computer system

with a dedicated funtion within a larger mechanical or electrical system, often with real-time

computing constraints [1]. Embedded software is computer software, written to control an

embedded system or a part of it [2]. Embedded software has its own characteristics which are

different from conventional desktop applications. For instance, embedded software has the re-

quirement to meet the timing constraints, access the memory region, handling concurrency and

control the hardware. Therefore, the high reliability is required by embedded software. Soft-

ware failures in embedded system are usually lifethreatening and expensive at most cases [3].

The Therac-25 accident [4, 5] is a tragic example of embedded software failure. The Therac-
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Chapter 1 Introduction 2

25 was a radiation therapy machine produced by Atomic Energy of Canada Limited (AECL).

It was involved in at least six accidents between 1985 and 1987, in which patients were given

massive overdoses of radiation. As a result, several people died and others were seriously in-

jured. The reason of failure is that a one-byte counter frequently overflowed and causes the

interlock to prevent the overdoses of radiation fail to work. These accidents highlighted the

dangers of software control of safety-critical systems. Another example of of embedded soft-

ware defects is the recall of Toyota Prius in 2010. It was reported that some drivers in USA

and Japan claimed the brake problems had let the car crash. Toyota said that it was caused by

a software glitch.

On the other hand, the complexity of embedded software increasing substantially. For

instance, the code of control software of spacecrafts lunched by NASA is more complex and

uses more control software than its predecessor [6]. The control software of lander Viking [7],

which was lunched in 1976, has 5 KLOC (Lines of Code in Thousands) onboard. Meanwhile,

the code of lander Phoenix, which was lunched in 2007, has 300 KLOC. The MSLRover upped

the ante to 3000 KLOC [6].

From a market point of view, the software development methodologies must be applied in

order to manage the develop team size, the product requirements and the project’s constraints

(time-to-market and costs control,etc.) [8]. It is difficult to regulate the development to manage

all the requirements and constraints which are often in opposition to each other. For example,

we could not develop an embedded software which has more functionalities in a short time

considering the economic factor and software quality.

Due to the reason mentioned above it is hard to verify correctness of embedded software

although the verification is quite necessary. In the mean time, the exiting methods, peer re-

viewing, testing, etc., which are used to ensure the reliability and accountability, have a lot of

shortcomings. Therefore, new method is needed to meet this demand.

Model checking is an automatic technique for verifying finite state concurrent systems [9].
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It has a lot of advantages over original approaches to this problem such as peer viewing and

testing. The process of model checking consists of system modeling, requirement specification

and verification. Boolean Satisfiability (SAT) based bounded model checking (BMC) [10] is

one important model checking techniques. This technique has been successfully applied to

verify sequential software in industrial embedded software verification [11]. However, the

concurrency of embedded software makes the verification which uses SAT-based BMC more

difficult. The major advantage of BMC is considering the system state transition under a con-

straint of bound. Then the reduced state space is exploited internally by the state-of-the-art

SAT solver with the DPLL algorithm [12, 13]. The basic idea of BMC is reasoning coun-

terexamples within the execution paths restricted by the bound k of a system M that violate

properties specified f in Linear Temporal Logic (LTL). The model checker unrolls the system

k times and translates the unrolled M with f into a propositional formula to verify whether

f is satisfy or not. The formula is satisfiable if and only if f has a counterexample of depth

less than or equal to k. Recent years, the Satisfiability Modulo Theories (SMT) solver, which

is an extension of SAT is used instead of SAT solvers [14]. The M and f are encoded into a

quantifier-free formula and and use a state-of-the-art SMT solver to perform the satisfiability

checking. With this method, a more compact and expressive formula can be obtained than

using SAT solving.

Although the SMT-based BMC has a lot of advantages than the previous methods, it still

has its inherent vice that makes it inpractical. For instance, the encoding approach of SMT-

based BMC doesn’t distinguish the reachability of the states, which leads to a large size of the

encoded formula. The time consumption of BMC increases exponentially even if the checking

bound is not very deep.
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1.2 Objectives

In this thesis, the research focuses on providing acceleration methods for SMT-based

bounded model checking of concurrent system designs to make it more practical. The basic

ideas are 1) introduces explicit model checking algorithms to reduce the unnecessary states; 2)

further more, takes the advantage of distributed computing to accelerate checking efficiency.

It should be noted that the system designs is concerned neither the source code nor the system

with time constrains. In particular, the research has been done on the following aspects:

1) Proposing a formalization of a system designed by Hierarchical State Transition Matrix

(HSTM) [15] giving an encoding approach to translate the formalized system to logic

formulas;

2) Exploring efficient model checking algorithm to reduce the state-space of the system to

be verified. Algorithms are designed to reduce the state space of target system designs

and explore the remaining parts efficiently. It appears as making the formulas more com-

pact;

3) Developing solving methods to accelerating model checking process further more. It is

means that we try to conduct a new solving architecture to improve the model checking

efficiency;

4) Implementing a tool using proposed algorithms and methods to support effective soft-

ware verification. All algorithms are implemented on a bounded model checker named

Garakabu2.
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1.3 Contributions

The main contributions of this thesis are the development, implementation, and evaluation

of a serial methods to accelerate SMT-based bounded model checking from multiple perspec-

tives. In this view, this thesis makes three major novel contributions.

First, this thesis provides formal verification support to HSTM designs that employ message-

passing as the means of communication (hereinafter called message-passing HSTM designs or

just HSTM Designs for simplicity). For this purpose, the structures and behaviors of HSTM

designs are formalized. Consequentially, a symbolic encoding method is proposed, through

which an HSTM design could be Bounded Model Checked using SMT solver. Furthermore,

we have implemented the formal verification of software designs in HSTMs on a tool named

Garakabu2. This work reveals the low efficiency shortcoming of previous solving methods

which uses the classic BMC algorithm.

Second, the approaches to accelerating SMT-based bounded model checking are proposed.

The approaches center around an unrolled bounded reachability tree (BRT) of a HSTM de-

sign which is built with stateless explicit state exploration (that is, states are not saved during

exploration). Specifically, reachability of invalid cells (representing undesired states) of an

HSTM design, which occurs within the bound concerned, could be discovered during con-

struction of the BRT, and furthermore, if no such occurrence, the constructed BRT could be

utilized to rule out unnecessary subformulas of a BMC instance and thus make the instance

easier to solve. By such combination, the benefits of both explicit exploration and BMC with

respect to speed as well as memory could be enjoyed. In addition, The observation shows

that much BMC verification time is consumed by iterative search (i.e., gradually increase the

search depth till the concerned bound), which is necessary for finding the shortest counterex-

amples. A binary search algorithm is presented to avoid iteration but still guarantee to find

the shortest counterexamples, if any. These approaches are implemented in Garakabu2. The

preliminary experiments show that verification could be accelerated substantially.
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Third, bounded context switch (BCS) [16, 17], an under-approximation technique, is inte-

grated into stateless explicit-state exploration (SESE). It has been found that only a few context

switches (i.e., execution-order changes) are suffice to reveal concurrency bugs [16, 18]. Such

integration thus allows SESE to explore limited number of context switches of multiple par-

allel processes in the system so as to reduce the state space. Further, rather than encoding all

legal execution paths, which are memorized during SESE, into a single (usually large) formula

and inquiring its satisfiability of SMT solvers, we introduce heuristic predicates and use them

to classify the paths into path clusters. Each path cluster can be considered as an independent

BMC instance, which is usually smaller and easier to solve. Furthermore, multiple such BMC

instances can be solved concurrently with multiple SMT solvers running on multicores. Since

no information sharing is needed among these independent BMC instances, once a counterex-

ample is found, the computation on all other cores can be safely terminated. In addition, rather

than directly applying SESE and BMC to a user-specified bound, we gradually deepen the

checking depth from 0 with a fixed incremental number. Such iteration finishes until a coun-

terexample is found or the bound is reached. In this way, counterexamples that are shorter than

the user-specified bound can be revealed while avoiding expensive computation between the

depths where the counterexample is found and the specified bound.

Fourth, a distributed SMT solving architecture is presented. The second and third contri-

butions affect on the first stage of SMT-based BMC by reducing the reachable states of target

system. The distributed SMT solving architecture affects on the second stage of SMT-based

BMC. The whole BMC speed is enhanced further more by using this distributed solving archi-

tecture. The basic idea of this contribution is utilizing the computational capacity of multiple

PCs. If the state space of the target system could be decomposed into smaller sub-state space

which are encoded into formulas respectively, we may use SMT solvers to solve these formu-

las distributively. The experimental results show that the solving efficiency can be increased

substantially at the most cases.
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1.4 Outline

This section briefly presents the outline of this thesis and overviews of each chapter.

Chapter 2 is devoted to an introduction of fundamentals which are used in model checking.

The related work of accelerating SMT-based BMC are classified and introduced also.

Chapter 3 introduces the formalization of HSTM and the methods to encode HSTM to

quantifier-free formulas that could be solved by an SMT solver.

Chapter 4 proposed the first acceleration technique which takes the advantage of explicit

model checking.

Chapter 5 introduces our algorithms which integrate bounded context switch (BCS) into

SESE. Then a method to classify the possible execution paths of the system into path clus-

ter is proposed. In addition, an incremental method is presented to ensure that the shortest

counterexamples could be revealed.

Chapter 6 describes the implementation of distributed SMT solving, which contains the

original method and its improvements.

Chapter 7 presents a series of experiments to evaluated the acceleration techniques pro-

posed in the above chapters.

Chapter 8 concludes the contributions of this thesis. Further more, this chapter presents the

limitation of our work and points some directions for future work.
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Chapter 2

Background and Related Work

In this chapter, some preliminary knowledge which is necessary to understand the following

chapter is given. The related work of acceleration techniques for symbolic BMC is discussed.

2.1 Logic Fundamentals

Logic is the use and study of valid reasoning [19]. The study of logic features most promi-

nently in the subjects of philosophy, mathematics, and computer science. In [20], logic is

defined as a system of rules to manipulate symbols. Due to the discussion of logic is not the

key topic of this thesis, the logic fundamentals, which are the basis to understand the proposed

theories in the following chapters, are briefly introduced in this section. Further information

can be found in textbook [19, 20, 11].

2.1.1 Propositional Logic

The aim of logic in computer science is to develop languages to model the situations we en-

counter as computer science professionals [21]. Propositional logic is widely used in database

queries, artificial intelligence (planning problems), automated reasoning and circuit design

[20]. Following the definition given above, the syntax of a propositional logic formula is de-
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Table. 2.1: The Basic Rules in Propositional Logic

Syntax Meaning

¬ The Negation of a variable p is denoted by ¬p.

∨ Given p1 and p2 which we may wish to state at least one
of them is true. p1 ∨ p2 is called the disjunction of p1 and p2

∧ p1 ∧ p2 is true if and only if the two variables are true.
It is called the conjunction of p1 and p2

→ p1 → p2 expresses an implication relation between p1 and
p2. It suggests that p2 is a result of p1.

fined as the following [21].

f ormula : f ormula ∧ f ormula |¬ f ormula | ( f ormula) | atom

atom : Boolean − identi f ier | TRUE | FALS E

The f ormula above consists of basic symbols and rules. Informally, the formula is referred to

“sentences”. The propositional logic is a two-valued logic. Every “sentence” is assumed to be

either true or false. The minimum elements of propositional logic are the constants TRUE and

FALSE and some propositional variables: p1, p2, . . . , pn, which can be used to construct more

complex sentences in a compositional way. The basic operators, namely the rules with which

we can construct complex sentences are shown in Table 2.1. They are “negative” (¬), “and”

(∧), “or” (∨) and “implies” (→). Actually, the other operators can be obtained by using ¬ and

∧. We assume that p1 and p2 are propositional variables. These rules are shown as follows:

p1 ∨ p2 ≡ ¬(¬p1 ∧ ¬p1)

p1 → p2 ≡ ¬p1 ∨ p2

The logic operators shown in Table 2.1 have different relative precedence which are ¬, ∧,
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Table. 2.2: The Truth Table of Propositional Logic

p1 p2 ¬p1 p1 ∨ p2 p1 ∧ p2 p1 → p2

F F T F F T
F T T T F T
T F F T F F
T T F T T T

∨ and → from the highest to lowest. With the purpose of determine the formula is true or

false, there is a mechanism for evaluating the propositional variables, namely interpretations.

That means every propositional variable exactly is assigned with one truth value. For a given

formula, the truth value can be computed by a truth table or induction. The truth table of the

propositional variables and its operation are shown in Table 2.2. In this table, the truth value

of p1 and p2 are determined so that we can use the truth table to obtain the truth value of their

conjunction, disjunction and imply. Induction is another way to determine the truth value of a

propositional formula. The details of induction will not be presented here. An introduction of

induction can be found in Chapter 1 of textbook [21].

2.1.2 Satisfiability Modulo Theories

SMT is a research topic that concerns with the satisfiability of formulas with respect to

some background theories [11]. The development of SMT can be traced back to early work in

the late 1970s and early 1980s. In the past two decades, SMT solvers have been well researched

in both academic and industry, and achieved significant improvements on performance and

capability, and thus it becomes possible to use SMT solver in BMC problem solving.

SMT is an extension of propositional satisfiability (SAT), which is the most well-known

constraint-satisfaction problem [22]. SMT generalizes boolean SAT by adding equality reason-

ing, arithmetic, fixed-size bit-vectors, arrays, quantifiers, and other useful first-order theories.

An SMT solver is a tool for deciding the satisfiability (or dually the validity) of formulas in
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these theories [23]. In analogy with SAT, SMT procedures (whether they are decision proce-

dures or not) are usually referred to as SMT solvers [11].

Actually, the SMT problem emerges in many fields, such as intelligence, formal verifica-

tion for software and hardware, static program analysis, scheduling and planning, etc.. We

focus on its application in formal verification especially BMC.

2.1.3 Linear Temporal Logic

Linear temporal logic [9], namely LTL for short, is a temporal logic, with connectives that

allow us to refer to the future. Time is modeled as a sequence of states, extending infinitely

into the future [21]. In software verification, we more concern about the sequences of states

transitions of a system, and time is not mentioned in an explicit way, such as “eventually” and

“never” are used for specifying the formula. Generally speaking, LTL extends propositional

logic by considering temporal operators. The syntax of LTL is defined over a set of atomic

propositions, logical operators and temporal operators as follows:

f ormula : TRUE | FALS E | p |¬ f | f ∧ g | f ∨ g | f → g |

X f |F f | G f | f U g | f R g|

p, f , g are all LTL atomic formulas.

In LTL, besides the logic operators ¬,∧,∨,→ which are the same as in propositional logic,

there are five temporal operators which are represented as “next state” X, “some state in the

future (eventually)” F, “all future state (globally)” G, “until” U and “release” R [9]. We

assume that f and g are LTL path formulas over a set of states, the intuitive meanings of the

five temporal operators are shown in Table 2.3. In Figure 2.1, the six linear transition shows

the temporal operators’ meanings intuitively. Assuming a and b are all atomic propositions,

the first linear transition is an atomic property a which currently holds. The second transition

shows that the atomic a holds next time. F a meanings that a will hold in some time point in
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Table. 2.3: The Function of Temporal Operators

Operator Meanings

X f f has to hold at the neXt time point.
F f f has to hold at some time point in the Future.
G f f has to hold Globally.

f U g f has to hold continuously. Until g holds.
f R g g has to hold when f holds, f Releases g.

the future. G a represents that a holds always. a U b denotes a must hold until b holds. The

last transition means that a remains false till b becomes holds, and a is released.

a arbitrary arbitrary arbitrary arbitrary

atomic prop. a

arbitrary a arbitrary arbitrary arbitrary

X a

¬ a ¬ a ¬ a a arbitrary

F a

a a a a a

G a

a˄¬ b a˄¬ b a˄¬ b b arbitrary

a U b

¬ a˄¬b ¬ a˄¬b ¬ a˄¬b b arbitrary

a R b

Figure. 2.1: Intuitive Semantics of LTL.
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2.2 SMT-Based Bounded Model Checking

2.2.1 Model Checking

Model checking [24] is wildly acknowledged as an effective formal technique for verifying

whether a finite state system satisfies desired properties expressed in temporal logic. The state

space of the system is traversed automatically either in an explicit or symbolic manner in order

to verify the properties. If the property fails to hold, a counterexample is generated in the form

of a sequence of state transitions. This traverse usually is an exhaustive search of the state

space. Generally, the properties can be classified into safety and liveness properties, where

generally the former means that something bad will never happen and the latter means that

something good will eventually happen. Model checking is often used for fasifying a system

(namely to find designing errors) rather than verifying (namely to prove the correctness of) the

system.

There are primarily two types of model checking approaches: explicit model checking

and symbolic model checking. Initially, the model checking algorithms proposed are explicit

ones, which enumerate all reachable states explicitly and checks whether a given property

holds on each of the states. However, explicit model checking suffers from the notorious state

exploration problem, namely that the state space of a system grows exponentially such that

it could not be automatically analyzed with limited computing resource and time. Symbolic

model checking was introduced firstly in [25]. This algorithm, which is different from explicit

model checking, represents the states of the system symbolically using Boolean functions.

In order to improve the efficiency, Boolean formulas are represented using ordered binary

decision diagrams (OBDD or BDD for short). Although BDD-based symbolic model checking

could increase significantly the state space that could be analyzed, one of the disadvantages is

that the order of state variables, which usually has to be adjusted by human verifiers manually,

can heavily influence the size of BDD and thus the performance of this method.
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2.2.2 Bounded Model Checking and SMT-based BMC

To mitigate this disadvantage of BDD-based symbolic model checking technique, bounded

model checking (BMC) was proposed in [10] [26]. The basic idea of BMC is to search for

counterexamples (i.e., design bugs) in transitions (state space) whose length is restricted by an

integer bound k. If no counterexample is found, then k increases and the analysis procedure

repeats until either a counterexample is found or the pre-defined upper bound is reached. It

is commonly acknowledged as an complementary technique to BDD-based symbolic model

checking [26]. In BMC, a model checking problem is boiled down to a propositional satisfi-

ability problem that can be solved with SAT solvers [11]. This model checking technique is

named as SAT-based BMC. SAT-based BMC can benefit from the development of SAT tech-

nique in the aspects of both formula size and solving speed.

In SAT procedure the variables involved must be of the type Boolean, which, however,

makes SAT to be inexpressive for industrial problems, e.g. computer program. That is, vari-

ables of types other than Boolean must be encoded into Boolean/bit variables, which can result

in a large formula size.

Recent years, with the development of modern efficient SMT solvers like Z3 [23] and

CVC4 [27] etc., there is a trend to use SMT solvers instead of SAT solvers in BMC for better

expresiveness.

A bit more formally, BMC can be defined as follows: Given a finite state transition system

M and a temporal property P, for the state space of all possible transitions of M whose length

is bounded by an integer k, verify the property P to find a counterexample. A BMC problem

in M with P is formulated in the seminal paper [10] like:

BMC(M, P, k) = I0 ∧

k−1∧
i=0

Ti ∧ (¬P) (2.1)

where I0 represents the initial states of system M, Ti denotes the transition relation of M with
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step i, and I0 ∧
∧k−1

i=0 Ti represents all possible paths from an initial state of the system M. The

negative form of P is a formula used to represent the situation that the property is violated. If

there exits an assignment to all the variables used in formula (2.1) which makes (2.1) evaluate

to true, then a counterexample is founded. Otherwise, the property is satisfied by the behaviors

of M bounded by k. Although BMC can also be used for proving correctness (see [10] for

more details), BMC is more often used for finding counterexamples rather than correctness

proof. The negative form of property is used because the SAT solvers and SMT solvers tend

to find the assignments that make the formula being evaluated true.

Actually in addition to SAT and SMT, diverse methods are exploited by academics for

conducting BMC. In a nutshell, BMC can be divided into four types, which are BDD-based

BMC, explicit-state BMC, SAT-based BMC and SMT-based BMC. It is difficult to judge which

is the best methods, for every method has its advantage and shortcoming comparing with the

others. In [28], the authors compared different methods for BMC by utilizing comprehensive

industrial benchmarks. The results indicate that BDD-based BMC is better at targeting deep

counterexamples. For the benchmarks with shallow counterexamples, SAT-based and explicit

BMC are more efficient. In this thesis, the SMT-based BMC is considered.

Over the last several years, BMC has attracted scientists in developing bounded model

checker or improving existing model checkers so as to make the checkers support BMC. Here

we list and describe some of them.

SPIN [29, 30, 31] is a popular open-source software verification tool, which can be used

for the formal verification of multi-threaded software applications. The tool is developed at

Bell Lab, starting in 1980. SPIN uses PROMELA, a high level language, as its specification

language and it supports embedded C code as part of model specification. SPIN works on-the-

fly, supports multicore computers, and can cope with BMC problem. It is an explicit model

checker that allows checking properties expressed in Linear Temporal Logic (LTL) [9].

NuSMV [32, 33] is a symbolic model checker based on BDDs and SAT. NuSMV has been
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designed to be an open architecture for model checking, which can be reliably used for the

verification of industrial designs. NuSMV allows for the representation of synchronous and

asynchronous finite state systems and the properties expressed in Computation Tree Logic

(CTL) [9] and LTL. The NuSMV supports SAT-based BMC. Minisat [34, 35] SAT Solver

and zChaff [36] SAT Solver are used as back-end solvers. The model checking problem is

generated to be a propositional propositional problem, then a SAT solver is called to solve it.

SAL [37] stands for Symbolic Analysis Laboratory. It is a framework for combining differ-

ent tools for abstraction, program analysis, theorem proving, and model checking toward the

calculation of properties (symbolic analysis) of transition systems. The current generation of

SAL tools comprises a collection of state of the art LTL model checkers and auxiliary tools

based on them [37]. There are two tools that can perform bounded model checking procedure,

SAT-based bounded model checking (sal-bmc tool) for finite state systems and SMT-based

bounded model checking (sal-inf-bmc tool) for infinite state systems.

2.3 Classification of Acceleration Techniques for SMT-based BMC

Although SMT-based BMC can obtain more compact and expressive first-order-logic for-

mulas compared to SAT-based BMC, it still suffers from the state space explosion problem

because the BMC instance becomes bigger in size and more complex to solve when unrolling

the target system’s executing steps [38]. In order to make SMT-based BMC more efficient and

scalable, many research studies have been carried out on accelerating this technique. Recall

again that, in a SMT-based BMC procedure, the system M and the property P are encoded into

formulas written in first-order-logic, then the formulas are given to the backend SMT solver.

So we will discuss the acceleration techniques in two aspects in this section.
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2.3.1 Methods on Accelerating SMT-Based BMC

The first aspect is the acceleration methods used “befor” SMT solving, namely to reduce

the state space or make the encoded formulas simpler before SMT solving.

1) Parallelization

The industrial size verification problems are hard to solve by model checker, though re-

search on model checking have obtained significant performance enhancement. Meanwhile,

hardware has been developing rapidly. When facing such a BMC problem, parallelization is

a natural and intuitive way. Multicore CPU and multi-CPUs become a dominant trend. A PC

has a multicore CPU and shared memory. It is possible to perform model checking problem on

desktop. Distributed model checking algorithms have been studied for many years, but most

of them are restricted to safety properties, but for liveness properties there is no good parallel

solution.

In [39], the authors present a tool D-TSR for checking safety properties of low-level em-

bedded software. D-TSR is a parallel SMT-based bounded model checking tool. Tunneling

and slicing reduce method is used in this tool. Tunneling is a partition technique to decompose

the system’s control state graph into independent subgraphs. S licing is used to simplify the

results obtained from tunneling. The distribution framework consists of a central controller

and several workers. The tunnels are created by each worker at every BMC unrolled depth

statically and deterministically to reduce the communication overhead. The authors consider

the uneven load balance problem in their framework by using relaxed synchronization criteria.

The master can dynamically adjust an available client pool during synchronization, in which

slower clients are removed from the pool. Consequently the idle time for clients is reduced.

The master and clients are grouped as a star topology [39], while only clients can communi-

cate with the master. The master creates the partitions for a BMC instance and assigns the

partitions to available clients. Next, the master sends initial order to all available clients and

waits for the results from different clients. Because the tunnels which the clients work on
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are disjunctive subproblems of a BMC instance, if one of the clients reports satisfiable, then

a counterexample is returned. The master sends an abort command to other clients who is

working on some tunnels. For a client, if it receives the initial command, it will do the tun-

neling and control state reachability with the bound. When it receives the solve command, it

unrolls the sub BMC problem, simplifies the formulated subproblem, and performs BMC on

the tunnel. If the result is satisfiable, a counterexample will be reported to the master. After re-

ceiving the Abort command, the client will abort and report to the master. Comparing with the

work in [40, 41, 42], the authors’ framework uses tunneling technique to decompose the BMC

instance into independent subproblems so that the communication overhead is reduced signif-

icantly. The D-TSR performs BMC on different clients with the reduced and simplified tunnel

(partition), and usually the decomposed BMC instances are easier to solve on parallel clients

separately than the original one. The message communicating with the clients and master is

just the id of tunnels or some command, not as same as the work in [41] which transfers the

whole partition between master and clients. Although the authors’ work scales almost linearly

with the number of CPUs, the tool only applies to safety properties.

2) Abstraction

Abstraction is one of the most important techniques for reducing the state space of systems

in the model checking field. There are two important but basic abstraction techniques, the

cone o f in f luence reduction (COI) and data abstraction. Both of them are used in high level

description of systems [9].

The cone o f in f luence reduction attempts to eliminate the state transitions of the system

by considering that the variables, which are in the system specification but not in the property

to be verified, can be eliminated if they don’t influence the variables in the properties. In

such a way, the property expressed with temple logic is preserved but the system’s state space

becomes smaller.

Data abstraction can map the actual data values in the specification to a smaller data set.

Graduate School of Information Science and Electrical Engineering, Kyushu University



Chapter 2 Background and Related Work 19

Then through extending the mapping to the whole system specification, an abstracted system

model can be obtained, which is smaller than original. Usually, the abstracted model is easier

to be checked.

In [43], the authors propose a high-level SMT-based BMC framework in order to reduce

the gap between theoretical and practical solution for high-levels of abstraction. Their frame-

work consists of five steps. First, they use an extended finite state machine (EFSM) to model

the system. Second, the system model M and property P are performed with a series of prop-

erty preserving transformations. Third, they do a control state reachability on the results of

transformations. Fourth, using this reachability, a further reduced state space is obtained. Fi-

nally, the reduced model is unrolling to do a BMC with P. The COI is used in step two where

the EFSM is abstracted to obtain the abstracted model M′. Considering the property, non-

contributed state and the outgoing transitions are removed from M. All the non-contributed

transitions are replaced by an transition to a state marked as S INK. In this framework, the

COI is not the main technique for accelerating BMC directly. The result of COI is used for

obtaining a smaller model to perform the control reachability. If there is a large size BMC

instance, it is expensive and difficult to determine a state or transition is contributed or not.

In [38], the authors present a slicing technique to simplify the execution path of system.

The basic idea of slicing is that for a formulated BMC problem, the irrelevant path can be

sliced. In this paper, firstly, the BMC problem is decomposed to smaller subproblem on in-

dependent partitions (called tunnel) T1, T2, ... Ti. Then the irrelevant paths not in Ti can be

removed from BMC subproblem BMCk
Ti

. The relevance used to eliminate the irrelevant paths

are obtained by a high level control state reachability analysis (a Breadth-First Search (BFS)

traversal of the Control Flow Graph of the system). Because the BMC instance is decomposed

into small tunnel, it is easy to determine the correlation among different tunnels.

In [44], Jeremy Morse et al. propose an SMT-based BMC algorithm with context-bound

for ANSI-C software. Their approach converts the liveness properties expressed with LTL
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into Büchi automata and finally into C monitor threads. The method used in their work to

mitigate state space explosion is called state hashing. This technique can reduce the number

of redundant interleavings in context-bounded model checking. During the exploration to

determine the reachability tree of multi-threads software, many interleavings pass the identical

states in the reachability tree. For instance, v1 and v5 are two nodes in the reachability tree

of the multi-threads program. The transition from them leads to the same state further. When

exploring the state v5, the transitions originating from it can be eliminated simply. Then a set of

hashes represent the states of nodes that have been explored on reachability tree. State hashing

technique is used in explicit model checking and cannot be implemented on symbolic model

checking directly. Thus they propose a two-level hashing scheme: a node-level hash represents

a particular reachability tree node and a variable level hash represents the constraints that affect

a particular assignment to a variable [44].

In [45], the authors use Boogie programming language to represent C program, then gener-

ate a verification condition solved by SMT solver from the BoogiePL program that considers

context-bounded switches. In order to make their verification more scalable, they propose

a f ield slicing technique. The basic idea of the technique is based on that the verification

of a given property typically depends only on a small number of field in the data structures

of the program [45]. Their algorithm partitions the set of fields into tracked and untracked

fields. Only the tracked fields are accessed while the untracked fields are abstracted away. It

means that the program context-switches from the untracked fields are dropped completely.

The complexity of of the verification is reduced.

3) Partition-Based Methods

The partition based methods denote a technique that is used in symbolic state space traver-

sal [38]. This technique can be used in BMC to decompose a big BMC problem into smaller

subproblems. Then the memory utilization can be reduced, or even doing the BMC with the

subproblems in parallel. It should be notice that the partition-based methods is used to decom-
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pose a big state space into several smaller sub-space, make it possible to model check a system

in parallel. Actually, the decomposed several sub-space can be solved in a serial manner.

Tunneling is such a technique that decomposes a BMC instance disjunctively into smaller

and independent subproblems [38], e.g., sets of control paths. For instance, Suppose that

BMCk presents the bounded model checking problem with bound k, after the tunneling method

is performed, the control path of the system is decomposed to T1, T2,..., Ti, then the BMC sub-

problem is obtained as BMCk
T1

, BMCk
T2

,..., BMCk
Ti

. If there exits at least one satisfiableBMCk
Ti

,

then BMCk is satisfiable. The authors also propose a partitioning heuristic, combined with

subproblem ordering scheme targeted at exploiting incremental solving [38]. Their method

not only decomposes the paths of the system, but also obtains a good balance between the

number of partitions and their size.

4) Hybrid

Hybrid is such a technique that combines the symbolic model checking algorithms with the

explicit model checking algorithms in order to take the advantage of explicit algorithms. At

the early years, BMC is based purely on symbolic techniques, such as BDDs, SAT and SMT.

Subsequently, explicit model checking algorithms support BMC also.

In [46], the authors propose an acceleration method that combines BMC with explicit

model checking technique. They use Hierarchical State Transition Matrix (HSTM) [15], which

is a table based modeling language for developing designs of software systems, to specify the

target system. Then the HSTM is translated into logic formulas. Finally, the formulas are

solved by the backend SMT solver CVC3 [47]. The basic idea of their method is removing

unnecessary transitions from BMC procedure at step[k]. They use explicit state exploration

technique (BFS is adopted) to execute HSTM design and construct a Bounded Reachability

Tree (BRT). It is different from the exploration with normal (bounded) BFS model checking

algorithms [9, 48]. In their method, states that have been explored are not saved in memory

(except those temporally saved in state queue). Saving explored states is necessary for normal
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BFS to avoid exploring same states, otherwise the normal BFS may simply fall into a loop.

After the BFS exploration, the reduced system is encoded to logic formulas for conducting

BMC. The use of explicit BFS in their method prevents the exploration from state explosion

problem that normal BFS search suffers.

In [18], the authors describe and evaluate three approaches to model check multi-threaded

software using bounded model checking based on SMT. They combine explicit state space

exploration with symbolic model checking. An explicit exploration algorithm is used for ex-

ploring all the possible interleaving while the interleaving is treated symbolically to obtain a

reachability tree of the multi-threads program. The multi-threads ANSI-C program is trans-

lated into goto-language, which is the internal language of the CMBC model checker. They

symbolically execute each instruction of the goto-program written in goto-language, and ex-

pand the reachability trees by four rules they predefined. At this stage, the properties are not

checked. The reachability tree is used to reduce the size of states to be explored by the DFS

algorithm at the next stage.

2.3.2 Improvement of SMT Solver and Model Checker

SMT-based Bounded model checking (BMC) has benefited also from the advances of re-

search on SMT solvers. As efficiency and capacity of SMT solver improve, BMC becomes

more efficient in solving industrial-sized instances. We introduce two state-of-the-art SMT

solvers about their advances to accelerating BMC.

1) Z3

Z3 [49] is a theorem prover being developed by Microsoft. The first external release of Z3

was in September 2007 [23]. It supports linear real, integer arithmetic, fixed-size bit-vectors,

arrays, uninterpreted functions and quantifiers. It is integrated in some model checker for

bounded model checking, e.g., CBMC [50]. In [51], the authors propose a portfolio approach

to deciding the satisfiability of SMT formulas, and they introduce how they implement the
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parallel version of Z3. They parallelize the sequential solver by running multiple solvers and

each of them is configured to use different heuristics. Lemmas are shared between different

solvers periodically. The input is copied to every core so that there is no need for locking

the formulas during the solving, and the shared lemmas are the same. They claim that the

parallel Z3 outperforms the previous sequential Z3, on many benchmarks, parallel version

beats sequential version by orders of magnitude.

2) CVC4

CVC4 [27] is an efficient open-source automatic theorem prover for SMT problems. It

can be used to prove the validity (or, dually, the satisfiability) of first-order formulas in a large

number of built-in logical theories and their combination. [27]. Currently, CVC4 has supports

for equality over free function and predicate symbols, real and integer linear arithmetic, bit

vectors, arrays, tuples, records and user defined inductive data types.

CVC4 supports CVC4’s native language, SMT-LIB 2.0 [52], SMT-LIB 1.0 [53], and sup-

plies API for C++, JAVA. The most recent Nightly Build version of CVC4 supporting for

parallel solving to increase the solving efficiency [54].

2.4 Related Work

This thesis primarily focus on related works on improving BMC performance through

hybrid (combining explicit-state and symbolic) or parallel algorithms. The recent work in

[18, 50] presents a hybrid BMC approach for the verification of multi-threaded software (called

lazy approach, which performs best among the three proposed approaches). The approach first

traverses a reachability tree (RT) for a given software in a depth-first manner while limiting

the number of context switches, and then encodes each RT path into a formula and verifies

it with BMC. The procedure stops when a counterexample is found or all paths are explored.

However, in the case that no counterexample exists, this procedure has to explore all RT paths,
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the number of which can grows exponentially with the number of parallel processes as well as

the checking bound. In our approach, we explore reachability under the context of BCS (while

checking deadlock and safety properties), and classify RT paths into clusters, which are then

separately encoded and checked in parallel for liveness properties. In this way, path explosion

could be avoided and multicore computation could further improve efficiency.

The work in [55] (an improvement of a similar work on JPF in [56]) presents a hybrid

approach by firstly using explicit-state techniques to traverse the control flow graph, in con-

trast to the reachability tree/graph as above and in our approach, of a program and encodes the

variable values of representative control flow paths (to avoid non-legal paths) into BMC in-

stances to be solved. Only invariant (safety) properties are considered in this approach. Partial

order reduction (POR) [9] can be trivially, as stated, integrated into this approach, while this

is highly non-trivial for our approach since states explored are not saved, and we thus instead

utilize BCS to reduce the state space.

The work in [57] also proposes a hybrid approach, in which explicit-state exploration is

used to compute a set of frontier states at a certain depth (the states before reaching the frontier

set are not stored), and the state space starting from that frontier set to some deeper depth is

encoded and solved with BMC. Such interleaving between explicit exploration and symbolic

encoding happens once memory limit is reached. The states in frontier set can be decomposed

and thus enables a divide-and-conquer approach with multicore computation similar to ours.

However, losing state information before frontier set makes this approach only possible for

checking safety properties (our technique is stateless but path information is remained).

The work in [38] proposes to classify control flow paths, constructed explicitly but stati-

cally, into clusters based on tunnels, and each cluster of paths is then encoded and solved with

BMC possibly in parallel with multicore computation. Our work is based on dynamic com-

putation of reachability tree, rather than control flow. Also, program assertions are necessary

for computing tunnels, which again makes the approach only applicable for verifying safety
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properties.

In [58] the authors study to develop a verification strategy that make it possible to finish

large verification problems with a high quality results. They focus on explore applying the

parallelism and search diversification on the SPIN model checker [29, 30, 31]. They suppose

that there already exits several different model checking problems. By using their strategy, the

number of states explored in unit time (a default time duration) could be increased significantly.

The verification time could be reduced from days to hours. How to decomposed one hard

verification problem into several easy problems is not mentioned in this paper. In Chapter 5 of

this thesis, an algorithm is proposed that can decompose the state space of one model checking

problem into smaller ones.

Last, regarding parallel BMC solving, it is necessary to mention that modern SMT solvers

like Z3 [23] and CVC4 [59] are designed to support multicore computation through lemma

sharing in their own infrastructure, by which, a large BMC instance is divided and computed

in multicores. However, in our divide-and-conquer strategy, a verification problem is firstly

divided into smaller (and simpler) subproblems and encoded into independent BMC instances,

which are then solved in different solvers. Our strategy can avoid the workload for communi-

cation between solvers, and furthermore, counterexamples that reside only in certain subprob-

lems may possibly be revealed earlier and faster.
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Chapter 3

Encoding Approaches for HSTM Design

In this chapter, the first minor contribution of this thesis is described. For BMC, the first thing

is using one kind of modeling language to model the target system, then translating the system

model into logic formulas. The first contribution is the encoding approaches by which the

system model is translated to formulas.

3.1 Introduction

State Transition Matrix (STM) [15] is a table-based modeling language for developing

software system designs. Each STM abstracts a function module of the design in the form

of a table, in which the behavior of the module is specified according to the dispatch of cer-

tain events on certain states. A Hierarchical STM (HSTM) consists of several STMs that are

structured hierarchically. An HSTM Design is a system developed with HSTM. The STMs in

an HSTM design execute asynchronously and communicate with each other through shared

variables or message passing. It lacks formal methods for automatic checking the correctness

to improve reliability, though HSTM design is widely used and adopted by software indus-

try especially in embedded software development in Japan (e.g., the commercial model-based

CASE tools ZIPC [60]).
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It is difficult to apply model checking [9] to concurrent software systems like HSTM de-

signs, due to the tremendous number of possible interleavings of events and combinations of

variable values [61], which usually cause the state explosion problem. Symbolic algorithms

like Binary Decision Diagrams (BDD) [9] and Satisfiability Modulo Theories (SMT) [62, 11]

based model checking, relieve this problem by representing and enumerating system state

symbolically (comparing with explicit algorithms, e.g., SPIN [48]). Compared to BDD based

techniques [10], the SMT based approach needs no human intervention and supports more

background theories, .

The formalization of HSTM designs (that utilize message passing) presented in this chap-

ter is based on our previous work in [63] and [64]. In [63], we proposed an encoding approach

to formal verification of HSTM designs (that utilize shared variables) based on SMT solving.

That is, a formalization of HSTM designs as state transition systems is presented firstly. Con-

sequentially, based on this formalization, a symbolic encoding approach is proposed, through

which correctness of an HSTM design with respect to LTL properties could be represented as

Bounded Model Checking (BMC) problems that could be determined by SMT solving. In [64],

we proposed an encoding approach to STM designs whose communication uses the method of

message-passing (non-hierarchical). The static and dynamic behaviors of STMs are encoded

into formulas that can be solved by SMT solvers.

The subject of this chapter is providing formal verification support to HSTM designs that

employ message-passing and shared variables as the means of communication (hereinafter

called message-passing HSTM designs or just HSTM Designs for simplicity). For this pur-

pose, we first formalize structures and behaviors of HSTM designs. Consequentially, we pro-

pose a symbolic encoding method, through which an HSTM design could be Bounded Model

Checked using SMT solver. The work in [63] by considering communication among STMs

by means of message-passing and sharing variables is extended here. Furthermore, the formal

verification of software designs in HSTMs are implemented on a tool named Garakabu2. The
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designs are encoded for conducting BMC problem with respect to LTL properties checked by

Garakabu2, which equipped with user-friendly features towards improving its usabilities for

software engineers who are generally not specialists in formal techniques.

The formalization of HSTM designs has been influenced by the work on formalization and

verification of hierarchical UML (HUML) state machines [65, 66]. HSTM and HUML are

different in several aspects. For instance, cells in an HSTM is executed atomically and thus

special care for this manner is necessary in our formalization and encoding, especially when

call to and return from child STMs; the action language used to formalize HSTM involves

program-specific elements such as the return statement, etc. Regarding verification, the pri-

mary focus of our work, the work in [65] proposed to translate UML models into SPIN, and

the work in [66] proposed a symbolic encoding approach of UML models into NuSMV [67],

through which BDD based [9] and (boolean) SAT based [11] model checking could be con-

ducted. Our work is based on SMT, which is an extension of SAT with underlying theories

such as linear arithmetic and arrays etc., and is more expressive and results in more compact

formulas to be solved [14].

A simplified Money-Exchange Machine (MEM) shown in Figure 3.1 is used to demon-

strate our method. MEM is modeled as two HSTMs and each consists of two STMs. The

hierarchical structure is shown in the bottom-right of Figure 3.1, where MainInterface and Re-

turnController are root STMs, and Exchanger and Returner are their child STMs respectively.

The function and working process of MEM are described as follow: With MainInterface, bills

of small denominations could be deposited into MEM, and customers could request to ex-

change large bills into small ones; after the request is dispatched, the Exchanger will be called

by MainInterface and exchange bill, and small bills are transferred to Returner; Returner takes

charge of returning those bills to the customer under the control of ReturnController. Irrelevant

details of MEM is omitted. For instance, xUser10KRequest is used to denote a user request to

exchange 10K large-denomination bill, but whether the 10K bill is inserted or not, and where it

Graduate School of Information Science and Electrical Engineering, Kyushu University



Chapter 3 Encoding Approaches for HSTM Design 29

□0 M_IDLE M_WAIT_BILL_TAKEN

0 2

M_ACTIVE

Balance= Balance+10000;

event(BillReady) event(BillReady);

M_ACTIVE

dealCount=dealCount+1;

/

/ □1 /

×

BillOutputAmount>0

M_WAIT_BILL_TAKEN

else

M_IDLE /2

UserBillObtained 3 × /

xUserOperation 1

0 /

RequestProcessed

xMachinesPrepare

STM0: MainInterface

M_ACTIVE

1

□0 R_IDLE R_ACTIVE

0 1

R_ACTIVE

event(ReturnController, BillOutput)

R_IDLE

□1

STM0: RetrunController

BillReady 0 ×

Billoutput 1 ×

□1

0

xUserBillTake 0

R_BILL_RETURN

BillOutputAmount=0;

event(MainInterface, UserBillObtained);

return;

STM1: Retruner

R_BILL_RETURN
□1

STM1: Exchanger

M_WAIT_REQUEST

0

xUser10KRequest 0

Balance>=10000

M_WAIT_REQUEST

Balance<10000

M_WAIT_REQUEST

Blance = Balance-10000;

BillOutputAmount=10000;

event(MainInterface, RequestProcessed);

return;

event(MainInterface, RequestProcessed);

return;

Money Exchange Machine

STM0: MainInterface

STM1: Exchanger

STM0: ReturnController

STM1: Returner

Figure. 3.1: Running example: A simplified Money-Exchange Machine modeled as two
HSTMs with roots MainInterface and ReturnController.

goes if inserted, are not modeled. In addition, the number 10000 inside the STM denote bills of

small-denominations (e.g., 1K denomination). Last, we intentionally introduced design errors

into the HSTM model of MEM for demonstration purpose, for instance MEM’s behaviors are

unreasonably defined when there is no enough balance in Exchanger, which is to be discussed

in detail in Section 3.2 and Section 3.3.

The chapter is organized as follows. Section 3.2 presents a formalization of message-

passing HSTM designs and their dynamic behaviors , then proposes an encoding approach

from HSTM designs (and LTL properties) into logical formulas that represent BMC problems.

Section 3.3 proposed the formalization and encoding approach of HSTM designs communi-

cating by sharing variables. Section 3.4 summarize this chapter and mentions future work.

3.2 Formalization and Encoding for HSTM Design Communicating by

Message-passing

3.2.1 Formalization

In the first place we introduce an action language L to define HSTM designs. L is chosen

to be a simple subset of C language with C’s conventional syntax and semantics. Type sys-
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tem of L consists of boolean, integers, and reals. Supported expressions of L are (1) Boolean

literals true and false, integer and real literals, (2) Variable identifiers, and (3) Infix ex-

pressions le f texpr op rightexpr, where op can be one of +, -, *, /, &&, ||, >, <, >=, <=,

==, or !=, with the semantics of C. Supported statements of L are (1) Assignments of the

form lhs = rhs, (2) Child STM calling statements of the form �child S T M id, (3) Parent

STM returning statements written as return, and (4) Message sending statements of the form

event(HS T M.q name, event name), with the meaning of sending a message (usually an event)

event name to the message queue of HS T M.q name. We use Lbool and Lstmt to denote the set

of boolean expressions, and respectively the set of statements, of L.

Definition 1 (STM). Assuming the action language L, an STM is a tuple STM = (S, E, C)

where S is a finite set of status, E is a finite set of events, and C is a finite set of cells.

Each s ∈ S has a (unique) index denoted by index(s) ∈ Nat. The index(s) maps a status

s to a unique integer number. At any time only one status denoted active(S T M) is active

and initially s with index(s) = 0. E is the events sent to or retrieved from a message queue

of the HSTM, which the STM is belonging to. There are two types of events, one is Eint,

which is dispatched by a execution of a cell, the other is Eext that dispatched by the envi-

ronment. Each e ∈ Eint is represented by a boolean expression and has a (unique) index

denoted index(e) ∈ Nat. In the implementation on the Garakabu2, we use unique integers to

represent the status and events in all STMs for simplicity. C consists of three types of cell,

which are normal cells Cnor, ignore cells Cign, and invalid cells Cinv. Each cN ∈ Cnor is a tuple

〈s, e, u, a, s′〉 ∈ S ×E×Lbool×Lstmt×S . We define source(cN)= s, event(cN)=e, guards(cN)=u,

actions(cN) = a, and target(cN) = s′. Each ignore cell is a tuple 〈s, e, /〉, and each invalid cell

is a tuple 〈s, e,×〉. Functions source and event are also defined for cI ∈ Cign ∪ Cinv as for cN ,

but guards, actions and target are not. Intuitively, a cell c of an STM, pinpointed by indexes
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(index(source(c)), index(event(c))), specifies behaviors of the STM when event(c) is retrieved

from the message queue while source(c) is active. If c ∈ Cnor, actions(c) is executed atom-

ically and then target(c) is set to be active at the following step. If c ∈ Cign, denoted in an

STM by symbol “/”, nothing changes. If c ∈ Cinv, denoted in an STM by symbol ”×”, an error

occurs. Informally, an ignore cell means the dispatch of an event in a status is ignored, and an

invalid cell means the dispatch of an event in a status should never be possible.

We give more explanation to the above notations by using MEM in Figure 3.1. Cell (0,0)

of STM1: Exchanger with guard Balance>=10000 of STM Exchanger, denoted c for sim-

plicity, is a normal cell, where source(c) = M WAIT REQUEST, event(c) = xUser10KRequest,

target(c)=M WAIT REQUEST, and actions(c) consists of three assignment, one message-sending

statement and one returning statement. Intuitive meaning of c is that: (After a customer starts

operating MEM, namely calling to Exchanger) if an event (from the customer) for requesting

an exchange of 10K bills occurs and a message is dispatched and sent into message queue of

an HSTM which Exchanger is belonging to. When Exchanger is waiting for a request, then a

message is retrieved and dequeue from the message queue and has enough small denomina-

tions, Exchanger reduces the balance of MEM with 10000, sets BillOutputAmount as 10000 to

express outputting 10000 small bills to Returner, enqueue the message RequestProcessed to

the message queue (actually the unique index of the event is send to message-queue), express

that the exchange request has been processed, and last returns to cell (1,1), the calling cell, of

MainInterface and Exchanger switches to status M WATI REQUEST to wait for another request.

Cell (0,1) of MainInterface is an ignore cell, meaning intuitively that nothing changes if a cus-

tomer operates MEM (denoted by event xUserOperation) when it is not on work (denoted by

status M IDLE). Cell (0,3) of MainInterface is an invalid cell, meaning that the event – a cus-

tomer has obtained small bills (denoted by UserBillObtained) – should never be dispatched

when MainInterface is not on work.

Definition 2 (STM Configuration). Let STM = (S , E,C) by assuming L. Let VS (S T M) =
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Var(S T M)∪{actS tatus}, where Var(STM) denotes all L variables used in STM, and actStatus

is an additional integer variable denoting (the index of) STM’s status that is currently active.

An STM configuration Cstm is the valuation of variables VS(STM).

An STM configuration essentially captures a state of an STM. However, we do not describe

directly the behaviors (namely state evolution) of an STM, but postpone it to the later descrip-

tions for an HSTM design’s behaviors.

Definition 3 (HSTM). Let M = {0, 1, . . . ,m}. An HSTM is a tuple HSTM = (STM0, STM1,

. . . , STMm, q, R), where STM0 is called root STM, q is a First-In-First-Out (FIFO) message

queue, shared by STM0, STM1, . . ., STMm and R : M, M → boolean defines a parent-child

relation among STMs of the HSTM such that R(i,j)=true iff S T Mi is the direct parent of

S T M j.

For the MEM example, MainInterface and ReturnController are root STMs of their corre-

sponding HSTMs. And R(0, 1) is true for both of the two HSTMs respectively.

Definition 4 (HSTM Configuration). Let HSTM = (STM0, STM1,. . ., STMm, q , R). Let

VS(STMi) = VS(STMi) ∪ {c-flagi}, where 0≤ i ≤m and c-flagi is an additional boolean vari-

able introduced to each STMi. An HSTM configuration is defined as Chstm = {Cstm0 , . . . ,Cstmm ,

q}.

The variable c-flagi is named and used as a control variable. Purpose of introducing such a

variable to each STMi is to control which STMs could be executed at one time step. That is, an

STM is executable iff when its c-flag is true. The value of c-flag is changed when call to and

return from a child STM, and initially c-flag is true for all the root STMs and false for all the

other STMs. q is a finite FIFO message queue with the operation size(q), top(q), push(q,m),

pop(q) and predicates empty(q), full(q). Each message m in q is integer type. event(HSTM j.q,
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(1) If actions(c) is a list of statements in the form of Case1:
C′hstm j

= {Cstm0 ,. . . ,Cstmi[v(rhs)/v(lhs), index(target(c))/v(actS tatus j
i )], . . . ,Cstmm , q}

For C′hstmw
, where 0 ≤ w ≤ m ∧ w , j, C′hstmw

= Chstmw

(2) If actions(c) is a list of statements in the form of Case2:
C′hstm j

= {Cstm0 , . . . , Cstmi[v(rhs)/v(lhs), false/v(c− f lag j
i )],. . . , Cstmz[true/v(c-flag j

z)],
. . . ,Cstmm , q}

For C′hstmw
, where 0 ≤ w ≤ m ∧ w , j,
C′hstmw

= {Cw
stm0

[false/v(c − f lagw
0 )],Cw

stm1
, . . . ,Cw

stmm
}

(3) If actions(c) is a list of statements in the form of Case3:
C′hstm j

= {Cstm0 ,. . . , Cstmi[false/v(c − f lag j
i ), index(target(c))/v(actS tatus j

i )],
. . . , Cstmz[true/v(c − f lag j

z), v(rhs′)/v(lhs′), index(target(cz))/v(actS tatus j
z)],

. . . , Cstmm , q}
For C′hstmw

, where 0 ≤ w ≤ m ∧ w , j, C′hstmw
= {Cw

stm0
[true/v(c − f lagw

0 )],
Cw

stm1
, . . . ,Cw

stmm
}

(4) If actions(c) is a list of statements in the form of Case4:
C′hstm j

= {Cstm0 ,. . . , Cstmm , q[(tail + 1)/tail, index(e)/qc(tail)]} or
C′hstm j

= {Cstm0 ,. . . , Cstmm , q[(head + 1)/head]}
For C′hstmw

, where 0 ≤ w ≤ m ∧ w , j, C′hstmw
= Chstmw

Figure. 3.2: Definition of C′hstm j
with respect to transition rule r1.

c) means sending message c to the message q of HSTM j and retrieve(HSTM j.q) implies re-

trieving a message from message queue of HSTM j. More details will be introduced later when

explaining encoding approach for a message queue.

Definition 5 (An HSTM Design). Let N = {0, 1,. . . , n}. An HSTM design D is defined as a

tuple D = (HSTM0,. . . , HSTMn). Dynamic behaviors of D is captured by a transition system

of the form (CD, ID, →), where CD denotes all reachable configuration of D, and each CD ∈

CD is of the form {Chstm0 ,. . ., Chstmn}; ID = {Ihstm0 ,. . ., Ihstmn} is the initial configuration; and →

is the transition relation characterizing how D evolves from on configuration to another, i.e.,

CD → C
′
D.
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Transition relation→ is defined with two rules, r1 is internal rules corresponding to the execu-

tion of a normal cell of an STM and r2 is external rules for external events dispatched by the

environment. Each rule consists of (enable/effective) conditions that captures the condition

under which the rule could be executed, and e f f ects that captures its execution effects. We

introduce and use symbol T [v′p/vp, . . . , v′q/vq] to denote updating vp with v′p, . . ., and vq with

v′q in T , while all the other elements in T remain unchanged.

The rule r1, which corresponds to the execution of a normal cell c in S T Mi ∈ HS T M j,

0≤ i≤m and 0≤ j≤n, is written as: CD
r
−→ C′D, where

r1.condition , v(c − f lag j
i ) ∧ v(event(c))

= v(retrieve(HS T M j.q)) ∧ v(guards(c))

∧ v(actS tatus j
i ) = index(source(c))

r1.e f f ects , C′D = CD[C′hstm0
/Chstm0 ,. . . ,C

′
hstmn

/Chstmn]

We define function v(x) to map a variable or an expression to its value. C′hstm0
, . . . ,C′hstmn

are

defined by case analysis on composition of statements that actions(c) may contain. We use

retrieve(HS T M j.q) to denote retrieving a message from message queue q. In this chapter, we

demonstrate our approach with four most common operations while it could be easily extended

for other cases. (1) Case1: actions(c) is of the form: a list of lhs = rhs assignment statements;

(2) Case2: actions(c) is of the form: a list of lhs = rhs, a calling �z to a child STM z, and a list

of lhs′ = rhs′ statements, where the pre-/post-positioned (to �z) lists of assignment statements

can be empty; and (3) Case3: actions(c) is of the form: a list of lhs = rhs, and a returning

statement return, where S T Mi (that c belongs to) is called by a cell cz of its parent S T Mz and

actions(cz) is of the same form as Case2, and similarly, all the assignment statements there can

be empty; (4) Case4: action(c) is of the form: a list of lhs = rhs, an operation on message
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queue is taken place (message sending or retrieving). Detailed definition of C′hstm0
, . . . ,C′hstmn

are shown in Figure 3.2.

Informally, sub-rule (1) in Figure 3.2 states that the configuration of S T Mi is changed by

executing the assignments and setting status target(c) as active. Configurations of all the other

STMs and HSTMs remain unchanged; sub-rule (2) states that the list of lhs = rhs assignments

be f ore the calling are executed, control flag c-flagi (of the calling STM) is set to false and

correspondingly flag c-flagz (of the called STM) is set to true, and control flags of the root

STMs of all the other HSTMs are set to false. This change of c-flag variables is necessary

since each cell is supposed to execute atomically and no other cells should interrupt before

the calling finishes (returns); sub-rule (3) is similar to sub-rule (2) with respect to setting

control flags reversely. A point that should be noticed is that the remaining list of lhs′ =

rhs′ assignments a f ter the calling statement in cz (of the parent STM) are executed here, and

additionally, the target status of cz is set as active. These are also due to the atomic execution

style of STM cells; sub-rule (4) states that action of a normal cell contains an operation of

enqueue or dequeue. When enqueue, the variable tail is updated by tail + 1 and an event e

is assigned to qc(tail) in q. head is updated by assignment head + 1 when dequeue. Others

remain unchanged.

The second rule r2 corresponding to the dispatch of the external event eExt to a S T Mi ∈

HS T M j, is defined as:

CD
r2
−→ C′D, where

r2.condition , v(xExt) = false

r2.e f f ect , C′D = CD[C′hstm j
/Chstm j],where

C′hstm j
= {Cstm0 , . . . ,Cstmi[true/v(xExt)],

. . . ,Cstmm , eExt/q[(tail + 1)/tail, index(eExt)/qc(tail)]}

The rule r2 states that if the variable xExt equivalent to false means there were no external
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events dispatched, so that a new external event can be dispatched. After the external event xExt

was sent to message-queue of HS T M j, value of xExt is updated with true denotes an external

event can be dispatched at any time.

3.2.2 A Symbolic Encoding Approach

The encoding is demonstrated by considering an HSTM design D = (HS T M0, . . . ,HS T Mn),

where for 0 ≤ j ≤ n, HSTM j = (S T M j
0,. . . , S T M j

m, q), and the given bound is bd (namely,

we encode all execution sequence of D whose length is bd). For demonstration simplicity,

we use VS (HS T M j) = {x | x ∈ VS (S T M j
i ), 0 ≤ i ≤ m} to denote all variables contained in

HS T M j. Similarly, we use VS (D) to denote all variables contained in D. For each (time) step

k, 0≤ k≤ bd, we use x[k], expr[k], and stmt[k] to denote, respectively, a new variable, a new

expression, and a new statement (all of language L) used in step k. The ways of generating

expr[k] and stmt[k] from respectively expr and stmt are introduced later.

Encoding Message Queues

As far as we know, the state-of-the-art SMT solvers, don’t support the queues theory, there-

fore we have to encode the message queue and its operations to formulas that could be solved

by SMT solver. In this Chapter, the widely supported theories of uninterpreted f unctions

(UIF) and linearrealarithmetics (LRA).

We adopted and used the linear approach proposed in [68]. Basic idea of this approach is

to represent each queue HS T M j.q as an uninterpreted function qc : Index→Element, which is

common to (shared by) all execution steps. Int for both Index and Element, the function could

be re-declared as qc : Int → Int. Contents and attributes of q at each step k are defined us-

ing a set of variables q[k] = {head[k]:Index, tail[k]:Index, empty[k]:Boolean, f ull[k]:Boolean,

1st[k]:Element}, where variables whose names are suffixed with [k] are fresh variables gener-

ated and used in step k. Changes of the contents and attributes are described as follows:
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head[k+1] , if pop(q)[k] then head[k]+1 else head[k];

tail[k+1] , if push(q,m)[k] then tail[k]+1 else tail[k];

empty[k] , (tail[k] = head[k]);

f ull[k] , (tail[k] = head[k]+Z);

1st[k] , qc(head[k]);

push(q,m)[k]⇒ (qc(tail[k]) = m).

In the formulas above, variable head[k] holds the the first element of q at step k; variable

tail[k] holds the last position that is unused of the q; function pop(q)[k] and push(q,m)[k] is

an enqueue and dequeue operation respectively at step k; empty(q) and f ull(q) are Boolean

variables. All the messages in q are integers. We use eventHS T Mi[k] to denote the current

event dispatched to HS T Mi as follows:

eventHS T Mi[k] , top(HS T Mi.q) ∧ HS T Mi.q = pop(HS T Mi.q)

Considering an event dispatched by the environment where the HSTM design resides in,

we need to define the encoding rule for the external events at step k. ext(e)[k] is used to denote

an external events dispatched at step k.

enable(ext(e)[k]) , ¬ f ull j[k − 1]

e f f ects(ext(e)[k]) , push(HS T Mi.q, index(e))[k]

∧

n, j,i∧
j=1

(q[k] = q[k − 1]) ∧
n∧

j=1

(event j[k] = event j[k − 1]) ∧
∧

x∈VS (D)

(x[k] = x[k − 1])

Enable condition of enqueuing a massage to HSTMi, says that the message queue HSTMi.q at

the previous step k-1 is not full. Effects say that the variables of a queue of target HSTM are

updated, the variables of other queues hold the values at previous step.
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Encoding for HSTM Design Communicating by Message-passing

Encoded formula for step 0, denoted step[0], that represents the initial configuration of

HSTM Design D is defined as:

step[0] ,
∧

x∈VS(D)

x[0] = v(x) ∧
∧

y∈v(q)

y[0] = v(y)

∧

n∧
j=0

(empty(HS T M j.q)= true)

The formula simply expresses that all variables involved in D, at the initial step have their

default values. For 0 ≤ i ≤ m and 0 ≤ j ≤ n: initial values for actS tatus j
i are 0; initial values

for c-flag j
0 are true and other c − f lag variables are false; the message queue (denoted by

HSTM j.q) are empty for all HSTMs, the symbol dot means that q is the element of HSTM j;

other unmentioned variables’ initial values are given by user. The initial values for c-flag

variables of root STMs are true imply that only root STMs are possible to execute at initial

step. To describe encoding method for other steps, in the first place, we define encoding

rules for a normal cell of STM. The encoding rules for external events are defined later. To

define encoded formulas for steps other than 0, we first encode rule r1 that corresponds to the

execution a normal cell, and then encode rule r2 that corresponds to the dispatch of an external

event.

For rule r1, we consider a normal cell c in S T Mi ∈ HS T M j. The formula for enabling

condition of r1 is defined as follows:

r1.condition[k] , c − f lag j
i [k−1] ∧ event(c)[k−1]

= retrieve(HS T M j.q) ∧ guards(c)[k−1]

∧ actS tatus j
i [k−1] = index(source(c))

Expressions event(c)[k−1] and guards(c)[k−1] are generated by simply giving step number
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k−1 to all variables involved in them. Variable actS tatus j
i [k−1] is generated by renaming.

eventHS T M j.q denotes that the message is retrieved from the message queue of HS T M j.

If a normal cell c contains a message-sending operation to multiple queues,∧t
j=1 event(HS T M j.q,m), where 1 ≤ t ≤ n, the condition for it is defined as:

r1.condition[k] , c − f lag j
i [k−1] ∧ event(c)[k−1]

= retrieve(HS T M j.q) ∧ guards(c)[k−1]

∧ actS tatus j
i [k−1] = index(source(c))

∧ (
t∧

j=0

¬ f ull(HS T M j.q)[k − 1]

The encoded formula for effects of r1 is defined as:

r1.e f f ects[k] , actions(c)[k] ∧

 ∧
x∈VS (D)/X

x[k] = x[k−1]


where X denotes the set of variables that have been changed (i.e., informally, appear in left-

hand side of equations) in actions(c). It implies that the other variables keep the values at step

k − 1. We then directly follow the case analysis shown in Figure 3.2 to define actions(c)[k].

If actions(c) is of the form Case1. We assume that the list of lhs = rhs assignments is

st1, . . . , stt. Then each stl[k], 1≤ l ≤ t, is defined as lhsl[k] = rhsl[k−1|k], where rhsl[k−1|k]

means (1) if variables lhs1, . . . , lhsl−1 occurs in rhsl, the occurrence of these variables in rhsl

is given step number k, and (2) for all other variables, step number k−1 is given. Note that,

this encoding approach could not handle multiple assignments to a same variable in actions(c).

Please refer to [69] for the solution that we have proposed for this. The formula for actions(c)

is defined as follows where change of active status is added.

actions(c)[k] ,

 t∧
l=1

stl[k]

 ∧ actS tatus j
i [k]= index(target(c))
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If actions(c) is of the form Case2. We assume that the calling statement is �z and that the

list of lhs = rhs assignments before it is st1, . . . , stt. The formula for actions(c) is defined as

follows, where each assignment stl is encoded in the same way as in Case1.

actions(c)[k] , ¬c − f lag j
i [k] ∧ c − f lag j

z[k] ∧

 t∧
l=1

stl[k]

 ∧
 w, j∧

0≤w≤n

¬c − f lagw
0 [k]


If actions(c) is of the form Case3. We assume that the remaining list of lhs′ = rhs′

assignments after the calling statement in the cell cz is st′1, . . . , st′t . The formula for actions(c)

is defined as follows similar to Case2.

actions(c)[k] , ¬c − f lag j
i [k]∧ c − f lag j

z[k] ∧

 t∧
l=1

st′l [k]

 ∧
 w, j∧

0≤w≤n

c − f lagw
0 [k]


∧ actS tatus j

i [k]= index(target(c)) ∧ actS tatus j
z[k]= index(target(cz))

If actions(c) is of the form Case4. We can encode enqueue and dequeue operation as

follows:

Firstly, if the stl is an enqueue (message-sending) operation enq(q, e)[k] that sends a mes-

sage e to queue HS T M j.q can be encoded as:

enable(enq(HS T M j.q, e)) , ¬ f ull j[k − 1]

∧ eventHS T M j[k − 1] = −1

e f f ects(enq(HS T M j.q, e)[k]) , head j[k] = head j[k − 1]

∧ tail(HS T M j.q)[k] = tail(HS T M j.q)[k − 1] + 1 ∧ push(HS T M j.q, e)

Enable condition for enqueuing a message e to HS T M j.q says that q is not full and at step

k − 1, no new event was dispatched.

Secondly, if the stl is a dequeue (message retrieving) operation which dequeues a message
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HS T Mi.q at step k, we define the encoding rules for it as:

enable(deq(HS T Mi.q))[k] , (eventHS T M j[k−1]=-1 ∧ ¬emptyi[k−1])

e f fects(deq(HS T Mi.q))[k] , eventHS T Mi[k] = 1sti[k−1] ∧ pop(HS T Mi.q)[k]

∧

n, j,i∧
j=1

(eventHS T M j[k]=eventHS T M j[k−1] ∧ q[k]=q[k−1]) ∧
∧

x∈VS(D)

(x[k]= x[k − 1])

The enable condition of dequeue a message says that the queue is not empty and at the

previous step, k− 1, no events are dispatched. The effects of dequeue operation are (1) the first

message (head) is dispatched to HSTM j.q; (2) corresponding value changes to message queue

are done; (3) all the other variables of message queues are not change.

Encoded formula for r1 that corresponds to the execution of a normal cell is defined as

follows by combining r1’s encoded condition and effects formulas.

r1[k] , r1.condition[k] ∧ r1.e f f ects[k]

Encoded formula for r2 which dispatch a message ext(e)[k] at step k by environment is

defined as:

r2.condition , ¬ f ull j[k − 1]

r2.e f f ects , push(HS T Mi.q, index(e))[k] ∧
n, j,i∧
j=1

(q[k] = q[k − 1])

∧

n∧
j=1

event j[k] = event j[k − 1] ∧
∧

x∈VS (D)

(x[k] = x[k − 1])

We define the whole encoded formula executed at one step k. We use R1 and R2 to denote

the set of internal and external events in D respectively and |R1| + |R2| = u. We introduce a set

of boolean variables { f l1, . . . , f lu}, each corresponding either to a r1 ∈ R1 (denoted f l(r1)) or
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to a r2 ∈ R2 (denoted f l(r2)). The formula at one step[k] is defined as:

step[k],
∨

r1∈R1

(r1[k]∧ f l(r1)[k]) ∨

 ∨
r2∈R2

(r2[k]∧ f l(r2)[k])


Step formula step[k] essentially represents all possible configurations in HSTM design D from

the initial configuration (denoted by step[0]). We define a rule interl with bound bd as a restrict

to the execution of HSTM design D, due to the variables in counter-example does not filter out

the possibility of concurrent execution of cells.

interl ,
bd∧

k=1

 u∧
p=1

 f lp[k]⇒ ¬

 u∨
q=1,q,p

f lq[k]





At last, we use negation form, ¬ρ, to denote the LTL property to be checked. The BMC

problem on an HSTM design D with the properties ρ is defined as follows:

BMC(D, ρ, bd) ,

 bd∧
k=0

step[k]

 ∧ interl ∧ negation ρ

3.3 Formalization and Encoding for HSTM Designs Communicating by

Sharing Variables

In Section 3.2 the formalization and encoding methods for communicating HSTM by mes-

sage passing is proposed. In this section, the formalization and encoding approach for HSTMs

communicating by sharing variables are presented.

3.3.1 Formalization

The formalized Definition 1 to Definition 3 are the similar to the definition in Section 3.2.

Only Definition 4 and Definition 5 are redefined in this section.

Definition 4 (HSTM Configuration). Let HSTM = (STM0, STM1,. . ., STMm, R). Let
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VS(STMi) = VS(STMi) ∪ {c-flagi}, where 0≤ i ≤m and c-flagi is an additional boolean variable

introduced to each STMi. An HSTM configuration is defined as Chstm = {Cstm0 , . . . ,Cstmm}.

Definition 5 (An HSTM Design). Let N = {0, 1,. . . , n}. An HSTM design D is defined as a

tuple D = (HSTM0,. . . , HSTMn). Dynamic behaviors of D is captured by a transition system

of the form (CD, ID, →), where CD denotes all reachable configuration of D, and each CD ∈

CD is of the form {Chstm0 ,. . ., Chstmn}; ID = {Ihstm0 ,. . ., Ihstmn} is the initial configuration; and →

is the transition relation characterizing how D evolves from on configuration to another, i.e.,

CD → C
′
D.

Transition → is defined with two rules (external and internal) also. Same as before, r1

denotes internal rules and r2 denotes the external rules. The rule is redefined as follows.

The rule r1, which corresponds to the execution of a normal cell c in S T Mi ∈ HS T M j,

0≤ i≤m and 0≤ j≤n, is written as: CD
r
−→ C′D, where

r1.condition , v(c − f lag j
i ) ∧ v(event(c)) ∧ v(guards(c))

∧ v(actS tatus j
i ) = index(source(c))

r1.e f f ects , C′D = CD[C′hstm0
/Chstm0 ,. . . ,C

′
hstmn

/Chstmn]

The symbols in above formulas denote same function with the formulas in Chapter 3.2. De-

tailed definition are shown in Figure 3.3.

The second rule r2 corresponding to the dispatch of the external event eExt to a STMi ∈

HSTM j, is defined as:CD
r2
−→ C′D, where

r2.condition , v(xE) = false

r2.e f f ect , C′D = CD[C′hstm j
/Chstm j],where

C′hstm j
= {Cstm0 , . . . ,Cstmi[true/v(xE)], . . . ,Cstmm}
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(1) If actions(c) is a list of statements in the form of Case1:
C′hstm j

= {Cstm0 ,. . . ,Cstmi[v(rhs)/v(lhs), index(target(c))/v(actS tatus j
i )], . . . ,Cstmm , q}

For C′hstmw
, where 0 ≤ w ≤ m ∧ w , j, C′hstmw

= Chstmw

(2) If actions(c) is a list of statements in the form of Case2:
C′hstm j

= {Cstm0 , . . . , Cstmi[v(rhs)/v(lhs), false/v(c− f lag j
i )],. . . , Cstmz[true/v(c-flag j

z)],
. . . , Cstmm}

For C′hstmw
, where 0 ≤ w ≤ m ∧ w , j,
C′hstmw

= {Cw
stm0

[false/v(c − f lagw
0 )],Cw

stm1
, . . . ,Cw

stmm
}

(3) If actions(c) is a list of statements in the form of Case3:
C′hstm j

= {Cstm0 ,. . . , Cstmi[false/v(c − f lag j
i ), index(target(c))/v(actS tatus j

i )],
. . . , Cstmz[true/v(c − f lag j

z), v(rhs′)/v(lhs′), index(target(cz))/v(actS tatus j
z)],

. . . , Cstmm}

For C′hstmw
, where 0 ≤ w ≤ m ∧ w , j, C′hstmw

= {Cw
stm0

[true/v(c − f lagw
0 )],

Cw
stm1

, . . . ,Cw
stmm
}

Figure. 3.3: Definition of C′hstm j
with respect to transition rule r1.

3.3.2 Encoding Approach for HSTM

The idea for converting a transition system into a logical formula and using SAT/SMT

solving [62, 11], to conduct bounded model check has been proposed in [10], [70] etc. Our en-

coding partially follows the same techniques used in these works but tuned to HSTM designs.

Encoded formula for step 0, denoted step[0], that represents the initial configuration of D

is defined as:

step[0] ,
∧

x∈VS (D)

x[0] = v(x)

The formula simply expresses that all variables involved in D, given step number 0 (i.e.,

rename/substitute each variable x with a new variable name x[0]), have their initial (default)

values. For 0 ≤ i ≤ m and 0 ≤ j ≤ n: initial values for actS tatusi
j are 0; initial values for

c-flag0
j are true and other c-flag variables are false; other unmentioned variables have user-

specified initial values. The initial values for c-flag variables characterize that only root S T Ms
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are possible to execute initially.

To define encoded formulas for steps other than 0, we first encode rules r1 and r2. For r1,

we consider a normal cell c of a STMi ∈ HSTM j. The formula for condition of r1 is:

r1.condition[k] , c − f lag j
i [k−1] ∧ event(c)[k−1] ∧ guards(c)[k−1]

∧ actS tatus j
i [k−1] = index(source(c))

Expressions event(c)[k − 1] and guards(c)[k − 1] are generated by simply giving step number

k − 1 to all variables involved in them. Variable actS tatus j
i [k − 1] is generated by renaming.

The encoded formula for effects of r1 is defined as:

r1.e f f ects[k] , actions(c)[k] ∧

 ∧
x∈VS (D)/X

x[k] = x[k−1]


where X denotes the set of variables that have been changed in actions(c). We then directly

follow the case analysis shown in Figure 3.3 to define actions(c)[k].

If actions(c) is of the form Case1. We assume that the list of lhs = rhs assignments is

st1,...,stt. Then each stl[k], 1 ≤ l ≤ t, is defined as lhsl[k] = rhsl[k − 1|k], where rhsl[k − 1|k]

means (1) if variables lhs1,...,lhsl−1 occurs in rhsl, the occurrence of these variables in rhsl is

given step number k, and (2) for other variables, step number k − 1 is given. The formula for

actions(c) is defined as follows where change of active status is added.

actions(c)[k] ,

 t∧
l=1

stl[k]

 ∧ actS tatus j
i [k]= index(target(c))

If actions(c) is of the form Case2. We assume that the calling statement is �z and that the

list of lhs = rhs assignments before it is st1,...,stt. The formula for actions(c) is defined as
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follows, where each assignment stl is encoded in the same way as in Case1.

actions(c)[k] , ¬c − f lag j
i [k] ∧ c − f lag j

z[k] ∧

 t∧
l=1

stl[k]

 ∧
 w, j∧

0≤w≤n

¬c − f lagw
0 [k]


If actions(c) is of the form Case3. We assume that the remaining list of lhs′ = rhs′

assignments after the calling statement in the cell cz is st′1, . . . , st′t . The formula for actions(c)

is defined as follows similar to Case2.

actions(c)[k] , ¬c − f lag j
i [k]∧ c − f lag j

z[k] ∧

 t∧
l=1

st′l [k]

 ∧
 w, j∧

0≤w≤n

c − f lagw
0 [k]


∧actS tatus j

i [k]= index(target(c)) ∧ actS tatus j
z[k]= index(target(cz))

Encoded formula for r1 that corresponds to the execution of a normal cell is defined as

follows by combining r1′s encoded condition and effects formulas.

r1[k] , r1.condition[k] ∧ r1.e f f ects[k]

Encoded formula for r2 that corresponds to the dispatch of an external event is defined

similarly as follows.

r2[k] , ¬xE[k − 1] ∧ xE[k] ∧

 ∧
x∈VS (D)/{xE}

x[k] = x[k − 1]


We define the whole encoded formula executed at one step k. We use R1 = {c|c ∈

S T M j
i .Cnor} and R2 = {e|e ∈ S T M j

i .Eext} to denote the set of normal cells and external events

in D, respectively, where |R1|+ |R2| = u. We introduce a set of boolean variables { f l1, . . . , f lu},

each corresponding either to a r1 ∈ R1 (denoted f l(r1)) or to a r2 ∈ R2 (denoted f l(r2)). The
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formula at one step[k] is defined as:

step[k],

 ∨
r1∈R1

(r1[k]∧ f l(r1)[k])

 ∨  ∨
r2∈R2

(r2[k]∧ f l(r2)[k])


∨


 ∧

r∈R1∪R2

¬r.condition[k − 1]

 ∧
 ∧

x∈VS (D)

x[k] = x[k − 1]




Step formula step[k] essentially represents all possible Ds configurations (states) that could

be reached from the initial configuration (represented by step[0]) after applying (in any pos-

sible orders) k1 transition rules. The third or-disjunction predicate captures the case when no

rules could be enabled in depth k1. In this case, we let all variables have their values un-

changed. However, we could also set a variable to true which represents that a deadlock has

occurred. Note further that, formula step[k] does not filter out the possibility of concurrent

execution of multiple rules in step k (since multiple rules may be true if the whole formula is

true). We thus define the following formula to restrict the interleaving execution manner of D.

interl ,
bd∧

k=1

 u∧
p=1

 f lp[k]⇒ ¬

 u∨
q=1,q,p

f lq[k]





Finally, the BMC problem for an HSTM design D with respect to a LTL property ρ is

defined, in which negation ρ denotes encoded formula for negation of ρ. The LTL encoding

approach we used in this section is proposed in [71].

BMC(D, ρ, bd) ,

 bd∧
k=0

step[k]

 ∧ interl ∧ negation ρ

3.4 Summary

In this chapter, the formalization approaches for HSTM designs which utilize message-

passing and sharing variables as the means of communication are proposed, and following
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with the encoding approaches for both of them respectively. Preliminary experiments which

are mentioned in Chapter 7 show that counterexamples (design errors) could be discovered

effectively with our approach.
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Chapter 4

Symbolic Bounded Model Checking Combined

with Explicit Techniques

In this chapter, the first acceleration method for BMC is presented. The explicit model checking

technique is used in the symbolic BMC to reduce some unreachable states in the state space

of a system. The method proposed in this chapter is a stateless technique that is different from

previews stateful combined BMC techniques.

4.1 Introduction

HSTM [72] is a table based modeling language for developing designs of software sys-

tems. An HSTM design, namely a design developed with HSTM, consists of multiple STMs

organized in a hierarchical structure. In Chapter 3 and [69, 73], we have presented approaches

to encode the HSTM design together with the negation of an invariant property to be checked

against the design to logical formulas. With the proposed encoding approaches, the HSTM

design could be conducted by BMC. After the encoding phase, the SMT solver is used to solve

the problem by determining its satisfiability. If satisfied, a model of the formula (namely an

interpretation to all the variables involved in the formula) is a witness of some bad behaviors
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of the design that violate the property (namely a counterexample).

However, one problem of the proposed approach that we have observed is that, although

the state-explosion problem could be avoided, its verification speed is slow, especially for large

bounds, and such inefficiency has also been reported in [74]. In [63], the authors proposed

an efficient heuristics-based idea to improve verification efficiency by introducing additional

knowledge formulas into a BMC instance, but this idea relies heavily on human verifiers ex-

perience and expertise to come up with suitable/useful knowledge and thus could not be made

automatic and is not implemented.

In this chapter, the approaches to accelerating SMT-based BMC are proposed. The ap-

proaches center around an unrolled bounded reachability tree (BRT) of anf HSTM design

which is built with stateless explicit state exploration (that is, states are not saved during explo-

ration). Specifically, reachability of invalid cells (representing undesired states) of an HSTM

design, which occurs within the bound concerned, could be discovered during construction of

the BRT, and furthermore, if no such occurrence, the constructed BRT could be utilized to rule

out unnecessary subformulas of a BMC instance and thus make the instance easier to solve.

By such combination,we could enjoy the benefits of both explicit exploration and BMC with

respect to speed as well as memory. In addition, we observe that much BMC verification time

is consumed by iterative search (i.e., gradually increase the search depth till the concerned

bound), which is necessary for finding the shortest counterexamples. We propose a binary

search algorithm to avoid iteration but still guarantee to find the shortest counterexamples, if

any. We have implemented these approaches in Garakabu2. Our preliminary experiments show

that verification could be accelerated substantially. The simplified Money-Exchange Machine

(MEM) which is mostly the same as the example mentioned in chapter 2 is used as running ex-

ample in this chapter except mineral revisions: (1) the amount deposited to balance is changed

to 30000 to deepen the depth of counterexamples, and (2) a variable dealCount is added to

count conducted exchanges.
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This chapter is organized as follows. In contrast, the classic BMC algorithm is mentioned

in Section 4.2. Section 4.3 proposed the static explicit algorithm and Section 4.4 presents the

dynamic explicit algorithm. An iteration avoiding algorithm is proposed in Section 4.5 which

is used to find the shortest counterexample. In Section 4.6 series experiments are conducted to

evaluate the algorithms proposed above. The conclusion of the whole chapter is presented in

Section 4.7.

4.2 Review of Classic BMC

BMC [10] is a technique for reasoning counterexamples within the bounded execution

paths of a system that violate properties specified in LTL. The system under concern can be

generally represented by a Kripke structure of the form M = (S , I,T, L), where S is a set of

states, I ⊆ S in the set of initial states, T ⊆ S × S is the transition relation (which must be

total), and L is the labeling function.

Given a Kripke structure M, an LTL formula f , and a bound k, the basic idea of BMC is

to construct a propositional formula |[M, f , k]|, which is satisfiable iff there exists an execution

of M within k steps that violates f . Such satisfiability can be solved by modern efficient SAT

or SMT solvers such as Yices [75], CVC4 [59], and Z3 [23]. Formally, the high-level encoded

propositional formula can be presented as [|M, f , k]| , |[M]|k ∧ |[¬ f ]|k. For the encoding of

|[¬ f ]|k, a simple translation that is linear both in the size of the formula and the length of the

bound has been proposed in [71]. In this chapter, we focus on the encoding and optimization

of |[M]|k. The basic encoding described in the seminal paper [10] of BMC is as follows:

|[M]|k , I(S 0) ∧
k∧

i=1

Ti(S i−1, S i) (4.1)

where I(S 0) is a predicate over state variables defining the initial states S 0, and Ti(S i−1, S i) is

the transition relation of M as a propositional formula.
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4.3 Static Explicit Algorithm Aided Symbolic BMC

We could observe that step formula step[k], 1 ≤ k ≤ bd, described in Section 3.3.2 contains

transitions that correspond to all cells as well as all external events in an HSTM design, even

if some of them are impossible to execute in depth k. This seems to be inevitable since, during

encoding, we do not know which ones are executable and which ones are not in k, and thus

have to consider all possible transitions and let SMT solver compute its real execution.

A natural idea of accelerating BMC is to remove those unexecutable transitions (subfor-

mulas) from step[k] for each k within the bound concerned. The resulted BMC formula could

become smaller and thus easier to solve. We use a static explicit algorithm to denote this kind

of technique in this chapter.

The initial attempt to be described in this subsection is based on Bounded (control) Status

Tree (BST) of an HSTM design. Following the rules r1 and r2, which are used in Section

?? for defining transition relation, a BST could be constructed through expanding an HSTM

design D statically by assuming the condition of these rules are always enabled except the

predicates on restricting active status and active STM. That is, at each depth k, only those

transitions, whose corresponding cells status and affiliated STM are both active at k, could be

executed. We omit the detailed procedure of constructing BST.

For example, the BST of the MEM example is illustrated in Figure 4.1. Each node in the

BST contains the status-combination of all STMs in an HSTM design. For simplicity, we use

A and B to denote the status of STMs MainInterface and ReturnController, respectively, while

the status of STMs Exchanger and Returner are omitted since their values are always 0. Each

edge is labeled with transitions (correspond to cells or external events) whose execution on

the source node results in status revolution specified in the target node. Again, for simplicity,

we use S11-S22 to denote the four STMs, and S11.2.1.L, for example, to denote the transition

corresponding to the left-hand side part (with guard BillOutputAmount > 0) of cell (2,1)
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A=0, B=0

A=0, B=0

A=0, B=0 A=1, B=0 A=0, B=1

A=1, B=0 A=0, B=0A=0, B=0 A=0, B=1

A=1, B=1 A=0, B=0 A=1, B=0 A=1, B=0 A=2, B=0

Figure. 4.1: Bounded Status Tree (BST) of the MEM till bound 3.

of STM MainInterface, and S11.E1, for example, to denote dispatch of the external event

xUserOperation of S11. Note that a node with circled status-combination represents a status-

combination where an invalid cell is reached. The triangles denote parts of the BST that are

omitted.

The column titled BST in Table 4.1 shows all possible status-combination S tatusk and

all possible transitions Transitionk at each depth k till bound 3. Since Transitionk contains

all executable transitions (and more) at depth k, we could therefore remove from step[k] any

transitions that are not elements of Transitionk.

We implemented (temporarily) this attempt in Garakabu2 and the results are shown in the

column NH of BST-based in Tables 4.2 and 4.3. The example and properties are similar with

what we used in Chapter 3. The explanation for those properties is omitted here. Unfortu-

nately, the results are not exciting due to neglectable improvement. After a close observation,

we found that a BST easily got saturation at shallow depths, and it became quickly that no

transitions could be removed. As an experiment, we further introduced heuristical status con-
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Table. 4.1: States & Transitions of BRT and BST at Bound 3

BST BRT

S tatus0 {< 0, 0 >} {< 0, 0 >}
Transitions1 {S11.0.0, S11.E0, S11.E1, S21.0.0, {S11.E0, S11.E1}

S11.2.0, S11.3.0, S21.1.0}
S tatus1 {< 1, 0 >, < 0, 0 >, < 0, 1 >} {< 0, 0 >}
Transitions2 {S11.1.1, S11.E0, S11.E1, S11.2.1.L, {S11.0.0, S11.E0, S11.E1}

S11.2.1.R, S21.0.0, S11.0.0, S21.1.1}
S tatus2 {< 1, 0 >, < 2, 0 >, < 0, 0 >, < 1, 1 >, {< 1, 0 >, < 0, 0 >}

< 0, 1 >}
Transitions3 {S12.0.0.L, S12.0.R, S11.3.2, S21.0.0, {S11.0.0, S11.E0, S11.E}

S11.0.0, S11.1.1, S21.2.1.L, S21.2.1.R,
S22.0.0, S11.E0, S11.E1, S12.E0, S22.E0}

S tatus3 {< 1, 0 >, < 1, 1 >, < 0, 0 >, < 2, 1 >, {< 1, 0 >, < 0, 0 >}
< 0, 1 >}

Table. 4.2: Verification results of MEM (Accumulative Time in Sec.)

PROP BD VERDICT ORIG BST-NH BST-H BRT-CON BRT-NI BRT-BCS

UIC1 40 NO CX 86 84 - 1 1 1
UIC2 40 WHEN BD=30 19 19 - 1 1 1
SSC1 40 WHEN BD=26 12 12 - 3 13 1
SSC2 40 WHEN BD=28 17 16 - 4 13 1
FCF1 40 WHEN BD=28 22 22 - 18 19 17
FCF2 40 NO CX 16 15 - 15 15 7
SimG1 40 WHEN BD=32 26 26 - 21 15 1
SimG2 40 NO CX 126 121 - 106 47 1
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Table. 4.3: Verification Results of the Revised MEM
(Accumulative time in Sec.)

PROP BD VERDICT ORIG BST-NH BST-H BRT-CON BRT-NI BRT-BCS

UIC1 40 NO CX 74 71 65 1 1 1
UIC2 40 NO CX 72 71 72 1 1 1
SSC1 40 NO CX 74 73 - 6 27 1
SSC2 40 NO CX 83 78 - 5 27 1
FCF1 40 WHEN BD=28 23 22 22 19 19 18
FCF2 40 NO CX 16 16 15 14 14 6
SimG1 40 WHEN BD=32 26 26 26 20 14 1
SimG2 40 NO CX 101 95 95 76 32 1

straints, e.g., SSC1 and SS2, for verifying the revised MEM. The idea here is to further filter

out those transitions whose execution results in a status-combination that is out of the in-

troduced constraints. However, the results shown in the column H of Table 4.3 are still not

encouraging.

4.4 Dynamic Explicit Algorithm Aided Symbolic BMC

We keep on the direction of removing unnecessary transitions from step[k]. This time,

instead of statically expanding an HSTM design D, we use explicit state exploration technique

(Breadth First Search (BFS) is adopted in this chapter) to execute D and construct a Bounded

Reachability Tree (BRT). In Figure 3, the rectangles with grey background, together with their

associated edges, comprise the BRT of the MEM example. The column titled BRT in Table

4.1 shows the sets Statusk and Transitionk, 0 ≤ k ≤ 3, which could be computed during

BRT exploration. The algorithm of exploring BRT is shown in Algorithm 1. Note that we

further classify Transitionk into In Transk, denoting transitions leading to invalid cells, and

Nm Transk, denoting other normal transitions.

It should be noted that the key difference of this exploration with normal (bounded) BFS
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model checking algorithms [9, 48], is that states that have been explored are not saved in

memory (except those temporally saved in state queue). Saving explored states is necessary

for normal BFS to avoid exploring same states, e.g., without state saving, a normal BFS might

simply fall into a loop just continuously exploring two states in the loop. However, state saving

is not necessary for our purpose since we are only interested in knowing which transitions are

executable in the reachable states at depth k, and do not care whether those states have been

explored in earlier depth. It should be noted as well that such exploration will not cause the

state-explosion problem.For a normal BFS algorithm, however, even if only reachable states

within an execution bound are saved, this may still cause state-explosion problem if the target

system is large and the bound concerned is deep.

Algorithm 1. Exploring BRT

1. Input: An HSTM design D, a bound bd
2. Output: In Transk, Nm Transk, 1 ≤ k ≤ bd
3.
4. Add nodeQueue(Q, n0), where n0 is the initial node;
5. while (Empty nodeQueue(Q) == FALSE) do
6. n = Del nodeQueue(Q);
7. if (n.bound >= bd) then
8. break;
9. end if

10. for all t ∈ Enabled Transition(D, n) do
11. m = Compute ChildNode(n,t) where m.bound=n.bound+1;
12. if (Is InvalidCell(m)) then
13. Add Transition(t, In Transm.bound);
14. else
15. Add Transition(t, Nm Transm.bound);
16. end if
17. if (In Queue(Q, m) == FALSE) then
18. Add nodeQueue(Q, m);
19. end if
20. end for
21. end while
22. return In Transk, Nm Transk;
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In Algorithm 2, it shows a BMC algorithm that utilizes the Transitionk information ob-

tained through exploring BRT. Note that in line 16, only concrete executable transitions at

depth k are encoded (rather than all possible transitions in the original approach, and all stati-

cally executable transitions in the BST-based approach), and in line 19, we add constraints on

active STM to reduce the search burden of a SMT solver. The constraints are in the form of,

e.g., c − f lagExchanger ⇒ ¬c − f lagMainInter f ace, since execution of a child STM will prevent the

execution of all other STMs.

Algorithm 2. BMC with BRT

1. Input: An HSTM design D, a LTL property p, a bound bd
2. Output: TRUE/FALSE(CX)
3.
4. Exploring BRT, // generating In Transk, Nm Transk;
5. if (Is CheckInvalidCell(p)) == TRUE) do
6. if (Empty Set(∪bd

1 In Transk) == FALSE) do
7. Return FALSE(CX) // CX could be computed (discuss later);
8. end if
9. end if

10. step[0] = Encode Init(D, 0) // following the method in Section 3;
11. prop[0] = Encode Prop(¬p, 0) // following the approach in [71];
12. if (Check with Solver(step[0], prop[0]) == SAT)
13. return FALSE(CX);
14. end if
15. for 1 ≤ k ≤ bd do
16. for all t ∈ Nm Transk do
17. allTran = allTran∨Encode Tran(t, k) // allTran is empty initially;
18. end for
19. step[k] = allTran∧ Active STM Constraintsk;
20. prop[k] = Encode Prop(¬p, k);
21. if (Check with Solver(step[0]∧ . . .∧step[k], prop[k]) == SAT)
22. return FALSE(CX);
23. end if
24. end for
25. return TRUE;
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This BRT-based approach has been implemented in Garakabu2. The verification results

are shown in the subcolumn CON of Tables 4.2 and 4.3. We could observe that the verifi-

cation speed is generally accelerated, and particularly, verification of reachability as well as

unreachability of invalid cells is accelerated dramatically thanks to the fast speed of explicit

state exploration. It should be noted that, a counterexample reported for reachability of an

invalid cell is the shortest one since breadth first exploration is used. However, no detailed

counterexample information (e.g., variable values after each transition in the counterexample)

is directly available since no states are saved during exploration. We could circumvent this by

recording all paths (sequences of transition names) leading to the invalid cell during exploring

BRT, and then simulate one of the paths to generate detailed counterexample information. Note

also that, in Algorithm 2, during the explicit exploration of the BRT, only reachability of in-

valid cells were analyzed. However, we later realized that all reachability properties, including

SSC1, SSC2, SimG1, and SimG2, could be analyzed/checked during explicit exploration.

4.5 Iteration Avoiding in BMC

Our next acceleration attempt is to avoid iterative verification [10] in BMC. Iterative veri-

fication is generally used in BMC, which means a verification in which the searching depth is

gradually increased (usually by 1) until a counterexample is found or the bound concerned is

reached. This approach is also adopted in Algorithm 2. Iterative verification is necessary for

BMC to find the shortest counterexamples, which provide more accurate and useful violation

information to a property concerned than non-shortest counterexamples. However, a disad-

vantage of this approach is that much more verification time is needed. For example, the time

listed in columns other than the last column BRT-NI in Tables 4.2 and 4.3 is accumulative time

used to iteratively verify all depths till the bound (or till the depth where a counterexample is

found).
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Algorithm 3. BMC with BRT without Iteration for ReachabilityProperty

1. Input: An HSTM design D, a reachability property p, a bound bd
2. Output: TRUE/FALSE(CX)
3.

4-14. Same as those in Algorithm 2.
15. low = 0; high = bd; mid = 0; cxPosition=-1;
16. Set list: c result[0] = “nocx”; c result[1. . . bd] = “unknown”;
17. Generate: step[1]. . .step[bd], prop[1]. . .prop[bd] with the functions;

Encode Tran and Encode Prop, respectively, in Algorithm 2;
18. while (low < high) do
19. mid = (low + high)/2;
20. if (Check with Solver((step[0]∧ . . .∧ step[mid])∧

(prop[1]∨ . . .∨prop[mid])) == SAT) then
21. c result[mid]=“cx”; high = mid;
22. else
23. c result[mid] = “nocx”; low = mid + 1;
24. end if
25. end while
26. if (c result[mid]==“nocx” ∧ c result[mid+1]==“cx”) then
27. cxPosition = mid+1;
28. else if (c result[mid]==“cx” ∧ c result[mid-1]==“nocx”) then
29. cxPosition = mid;
30. end if
31. return (cxPosition>=0) ? FALSE(CX at cxPosition) : TRUE;

We show a BMC algorithm of HSTM designs for reachability properties (namely G proper-

ties) – Algorithm 3. The algorithm employs a binary search approach, and could avoid iterative

verification while guaranteeing to report only the shortest counterexamples, if any. The key

observation behind this algorithm is that: If BMCk is satisfiable (has counterexample), then

BMCk+1 is also satisfiable.

BMCk = (step[0] ∧ . . . ∧ step[k]) ∧ (¬p[0] ∨ . . . ∨ ¬p[k])

BMCk+1 = (step[0] ∧ . . . ∧ step[k] ∧ step[k+1]) ∧ (¬p[0] ∨ . . . ∨ ¬p[k] ∨ ¬p[k+1])
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This observation simply follows the definition of step[k+1] in Section 3.3 of Chapter 3,

in which an or-disjunction subformula is defined to capture the case when no transitions are

executable (called the “deadlock” case). In other words, subformula step[k+1] in BMCk+1 is

always satisfiable since either a transition in it or the “deadlock” case is satisfiable. Thus, the

algorithm tries to find two consecutive positions in which the latter is checked to have a coun-

terexample and the former has not. We have also implemented this approach in Garakabu2.

The verification results in the column NI of Tables 4.2 and 4.3 show that, for BMC of reach-

ability properties, this approach could further improve greatly the verification efficiency no

matter whether counterexamples exist or not.

4.6 Summary

We presented in this work several attempts for accelerating SMT-based BMC of HSTM

designs. Among proposed approaches, the BRT-based approaches, through making advantages

of stateless explicit state exploration, have shown their effectiveness in acceleration. Regarding

the BST-based approaches, although we failed to obtain exciting results from them, we hope

this experience could be shared and inspire further investigation. Furthermore, the BRT-based

approaches have been implemented in Garakabu2, a BMC tool for HSTM designs. Garakabu2

has been developed with special consideration for its usabilities for non-expert verifiers, e.g.,

graph-based counterexample simulation and graphic LTL editor [63]. We hope our this work,

together with its usability, could make Garakabu2 practically more usable for on-site software

development with HSTM.
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Chapter 5

An Incremental SESE Technique with BCS and a

Divide & Conquer Method

In this chapter, the second acceleration technique is proposed. Utilizing this technique, the

state space of a target system is decomposed into different parts which can be verified in

parallel. The efficiency and scalability of symbolic BMC are further increased.

5.1 Introduction

Bounded model checking (BMC) [10] is a restricted form of model checking technique,

which reasons bounded execution paths of a system design against a desired property. In

satisfiability modulo theory (SMT) [11] based BMC (simply called BMC below), a model

checking problem is converted into a formula-satisfiability problem and analyzed with SMT

solvers. SMT solving involves time-intensive computations and is often sensitive to the for-

mula size, and therefore, the performance of BMC is heavily influenced by the system size and

the checking bound.

The target of this chapter is to improve the performance of BMC for both safety and live-

ness properties expressed in linear temporal logic (LTL). An appealing idea for this is that
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simpler is better, namely a smaller-sized formula is usually easier to solve [71]. Obeying this

principle, we proposed in our prior work [46] the idea of integrating stateless explicit-state

exploration (simply called SESE hereafter) into the BMC procedure as a preprocess. The key

is to utilize SESE to prune transitions that are unexecutable at each depth till the user-specified

bound so as to decrease the encoded formula size. However, we observed that the saturation

problem occurs easily for deep depth, that is, all transitions become executable and none of

them could be removed.

In this chapter, the work in chapter 4 is extended and novel contributions are made in

several aspects as listed below. First, bounded context switch (BCS) [16, 17], an under-

approximation technique, is integrated into SESE. It has been found that only a few context

switches (i.e., execution-order changes) are suffice to reveal concurrency bugs [16, 18]. Such

integration thus allows SESE to explore a limited number of context switches of multiple par-

allel processes in the system so as to reduce the state space. Second, rather than encoding all

legal execution paths, which are memorized during SESE, into a single (usually large) formula

and inquiring its satisfiability of SMT solvers, we introduce heuristic predicates and use them

to classify the paths into path clusters. Each path cluster can be considered as an independent

BMC instance, which is usually smaller and easier to solve. Furthermore, multiple such BMC

instances can be solved concurrently with multiple SMT solvers running on multicores. Since

no information sharing is needed among these independent BMC instances, once a counterex-

ample is found, the computation on all other cores can be safely terminated. Third, rather than

directly applying SESE and BMC to a user-specified bound, we gradually deepen the checking

depth from 0 with a fixed incremental number. Such iteration finishes until a counterexample

is found or the bound is reached. In this way, counterexamples that are shorter than the user-

specified bound can be revealed while avoiding expensive computation between the depths

where the counterexample is found and the specified bound.
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5.2 Motivation of SESE with BCS

In this chapter, the formalization of target STMs is redefined. A new formalization is

presented in this section. BMC has become a complementary technique to symbolic model

checking methods based on binary decision diagrams (BDDS) [9]. Based on performance

comparison on industry benchmarks [28], BMC has been reported to be efficient, especially

for hardware systems verification. However, our experiences have shown that BMC does not

work well for asynchronous software designs.

Consider the sample design D (in Table 5.1) written in State Transition Matrix (STM) [72],

a popular modeling notations often used in embedded software industry. EVT0 . . . EVTn are

predicates denoting events that may be dispatched to the system D, and S T0 . . . S Tm are status

that D may be in (Initially D is in status S T0 by default). The informal meaning of the design is,

for example, if event EVTn happens when D is in status S Tm, then action actnm will be executed

and after that D switches its status to S T∗ (some status of {S T0 . . . S Tm}). Let Ci j = EVTi∧S T j

denote the enable condition, and Ei j = acti j ∧ S T∗ denote the effects of executing the cell

indexed with i ∈ {0 . . . n} and j ∈ {0 . . .m}. Note that one cell is nondeterministically executed

even if multiple cells are enabled, and that D is only in one status at a time. Following the

encoding method in [10], T1(S 0, S 1) for time step 1 is given in a high-level form as follows

(more detailed descriptions of encoding STM designs can be found in [63, 69]):

T1(S 0, S 1) ,
n∨

i=0

m∨
j=0

(
C1

i j ∧ E1
i j
)

︸                ︷︷                ︸
(a)

∨
( n∧

i=0

m∧
j=0

(¬C1
i j) ∧ (S 0 = S 1)

)
︸                              ︷︷                              ︸

(b)

(5.1)

where sub-formula (a) states that one of the enabled cells executes, sub-formula (b) states that

all state variables remain unchanged if no cells are enabled, and the superscript 1 denotes that

all state variables in those formulas are indexed with corresponding step numbers (either 0 or

1). Although the size of formula (5.1) would be very large in practice (representing m× n cells
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Table. 5.1: A Sample Design D Written in State Transition Matrix (STM)

S T0 S T1 · · · S Tm

EVT0
S T∗ S T∗

· · ·
S T∗

act00 act01 act0m

EVT1
S T∗ S T∗

· · ·
S T∗

act10 act11 act1m
...

...
...

...
...

EVTn
S T∗ S T∗

· · ·
S T∗

actn0 actn1 actnm

in D’s table), this encoding is reasonable in the sense that all cells might possibly be executable

at a given time step and we have to consider all the possibilities. Furthermore, a design D may

contain multiple such STMs organized in a hierarchical structure, which will make formula

(5.1) even larger.

However, recall that D is initially in status S T0, which means that Ci j = ⊥ for all j , 0.

Intuitively, this means that at time step 1 only cells in the column S T0 are executable. Thus,

formula (2) can be reduced by keeping only the case of j = 0:

T1(S 0, S 1) ,
n∨

i=0

(C1
i0 ∧ E1

i0)︸           ︷︷           ︸
(a)

∨
( n∧

i=0

(¬C1
i0) ∧ (S 0 = S 1)

)
︸                         ︷︷                         ︸

(b)

(5.2)

Clearly the size of formula (5.2) (representing n cells) is much smaller than that of formula

(5.1) (representing m × n cells), and is generally easier to solve by SAT/SMT solvers.

One problem of applying such simplification to other execution steps except the 1st step is

that it is impossible to statically determine the status that D is in at an arbitrary time. How-

ever, by applying stateless explicit-state exploration (SESE) as a preprocess before construct-

ing |[M]|k formula, we could circumvent this problem dynamically. Furthermore, rather than

merely the status information, the exact cells that are executable at each time step could also

be known, which could further help to reduce the formula size of |[M]|k.
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In the next sections, we will investigate the above idea for simplifying |[M]|k in more detail,

and demonstrate the experimental results. Note that although designs written in state transition

matrix is used in the discussions, our proposed techniques are applicable to BMC of general

systems.

5.3 Incremental SESE Equipped with BCS

In prior work in [46], which are presented in Chapter 4, we have tentatively investigated the

idea of integrating stateless explicit-state exploration (SESE) techniques into the basic BMC

encoding method. Given a software design D and a specified depth k, the general idea is

to utilize SESE to compute and memorize executable cells (transitions) at each depth till k,

and only these cells are encoded into propositional formulas composing |[M]|k while others

are omitted. However, such pure integration suffers from, among other efficiency problems,

the saturation problem for large bounds. That is, all cells become executable at deep bounds

(originated from possibly different execution paths), and thus, no cells could be removed.

In this chapter, the work in [46] is extended in several aspects. First, an interactive deep-

ening stateless explicit-state exploration techniques is utilized, which could guarantee to find

counterexamples shorter than k, and thus save unnecessary state exploration and BMC work-

load. Second, bounded context switching (BCS) techniques [16, 17] is incorporated into the

exploration procedure to limit the execution-order changes between parallel processes of D,

and thus to reduce the number of executable cells in each time step. Last, the execution paths

remembered during state exploration could be grouped into path clusters, each of which is then

encoded and solved in parallel with a multicore computing environment, and thus to accelerate

solving speed. The novel approach is elaborated gradually in the following parts.
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5.3.1 SESE technique with Bounded Context Switch

The basic stateful bounded breadth-first search (BFS) [9, 48] (slightly tuned for our demon-

stration purpose) is illustrated in Algorithm 1. BFS explores all successor states of a given state

s within a pre-specified bound bd. Successor states that have not been visited before will be

further explored. s0 is the initial system state of D; stack Q saves the states to be explored; set

SS et saves all visited states; both Q and SS et are initially empty. In addition to state variables,

a state s also contains the fields sbound and path, which holds the information about the depth

at which the state is visited, and respectively, the transition path (a list of transitions) through

which the state is reached.

Algorithm 1. Basic Stateful Bounded Breadth-First Search (BFS)
1. Input: Design D, Search bound s bd
2. Output: Set of reachable States SS et
3.
4. Add stateStack(Q, s0); // where s0 is the initial system state
5. Add stateSet(SS et, s0);
6. while (Empty stateStack(Q) == FALSE) do
7. s = Del stateStack(Q); // get and remove a state from Q
8. if (s.sbound >= s bd) then
9. break;

10. end if
11. for all t ∈ Enabled Tran(D, s) do
12. s′ = Compute SuccessorState(s, t);
13. if (In StateSet(SS et, s′) == FALSE) then
14. s′.sbound = s.sbound + 1; s′.path = s.path.append(t)
15. Add stateStack(Q, s′); Add stateSet(SS et, s′);
16. end if
17. end for
18. end while
19. return SS et;

In the basic BFS algorithm, maintaining the state set SS et is necessary to avoid exploring

already visited states, e.g., without state saving, BFS might simply fall into a loop just con-
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tinuously exploring two states in the loop. On the other hand, state saving may also cause

the notorious state-explosion problem if the system is large and the bound given is deep. In

the context of this work, however, state saving is not necessary since we are only interested

in knowing which transitions are executable in states at each depth within k, and do not care

whether the states have been explored in earlier depths or not.

Bounded context switching (BCS) techniques [16, 17] can be incorporated into the basic

(either stateful or stateless) BFS algorithm to reduce the state space. The key idea of BCS, an

under approximation approach, is to limit the context switches (execution-order changes, i.e.,

one active process stops and another is resumed) of multiple parallel processes of a system.

Since concurrency bugs can often be revealed with a small number of context switches, BCS

has been reported by the literature to be efficient for detecting bugs in concurrent systems

[76, 16, 17].

The sketch of an algorithm that combines stateless BFS with BCS is illustrated in Algo-

rithm 2. Each state is equipped with an additional field cbound for recording the number of

context switches seen when reaching the state, and each transition is equipped with a field pid

for recording its affiliated process.

Similar to the BCS method described in [17], we distinguish whether a context switch is

a f orced one or not. If the set of enabled transitions on state s contains no transitions of the

same process, by a transition of which s is reached (called currently active process blow), then

this process is said to be blocked (i.e., not executable) and expanding s by executing transi-

tions of other processes is said to be forced. Such evaluation is computed by the procedure

Forced ContextSwitching in the bottom of Algorithm 2. Lines 21-23 states that if an enabled

transition is of a different process as the currently active one, and if the expanding is not forced,

then this context switch is counted. The operator [] is used to access the transition at a given

position, here the last (tail) transition, of a transition path. Lines 24-27 states that any suc-

cessor state s′ whose context-switch number exceeds the pre-specified context-switch number
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c bd will be ignored and not further explored.

Algorithm 2. Stateless BFS with Bounded Context Switch (BFS BCS)
1. Input: Design D, Search bound s bd, BCS bound c bd, Prop f
2. Output: Set of reachable states SS et, or deadlock
3. or TRUE/FALSE(CX), when prop f is a safety property
4.
5. Add stateStack(Q, s0); // where s0 is the initial system state
6. Add stateSet(SS et, s0);
7. while (Empty stateStack(Q) == FALSE) do
8. s = Del stateStack(Q); // get and remove a state from Q
9. if (Is SafetyProp( f ) ∧ Violation(s, f ) == TRUE) then

10. return FALSE(CX); // if found violation of safety property
11. end if
12. if (s.sbound >= s bd) then
13. break;
14. end if
15. if (Enabled Tran(D, s) == EMPTY) then
16. return deadlock;
17. end if
18. f orced = Forced ContextSwitching(D, s);
19. for all t ∈ Enabled Tran(D, s) do
20. s′ = Compute SuccessorState(s, t);
21. if (t.pid != s.path[tail].pid ∧ f orced == FALSE) then
22. s′.cbound = s.cbound + 1;
23. end if
24. if (s′.cbound <= c bd) then
25. s′.sbound = s.sbound + 1; s′.path = s.path.append(t);
26. Add stateStack(Q, s′);
27. end if
28. end for
29. end while
30. return SS et;

1. Procedure Forced ContextSwitching(D, s)
2. if (∃t ∈ Enabled Tran(D, s): t.pid = s.path[tail].pid) then
3. return FALSE; // if the currently active process is not blocked
4. end if
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Note that, if the property f to be checked is a safety property, Algorithm 2 checks the

violation of f by a state s in lines 9-11, and a deadlock is reported when no transition is

enabled on a state s in lines 15-17. Note also that in our actual implementation of Algorithm

2, before adding a successor state s′ into stack Q (line 26), we make an additional check on

whether a state s′′, which has the same sbound and state-variable values as those of s′, exists

in Q. If it exists, the transition path of s′ is merged into the path (cluster) of s′′, and s′ is not

added into Q. This can help reduce the number of states to be explored by the algorithm. For

demonstration simplicity, we omit the details and simply equip each state with a transition path

rather than a path cluster.

We are now ready to describe the novel hybrid BMC method that integrates Algorithm

2 as a preprocess for decreasing the size of the encoded formula to be solved by SAT/SMT

solvers. The algorithm is illustrated in Algorithm 3. We start from explaining the lines inside

the outermost while loop. In line 9, the set f rontierS et of all reachable states at depth curbd

are computed and the transition paths leading to them are recorded through executing the

procedure BFS BCS of Algorithm 2. The image of computing f rontierS et in each iteration is

shown in (a) of Figure 5.1.

Deadlock is reported if any, and if f is a safety property, it is evaluated with BFS BCS only

(although we did not add a control flow for this in Algorithm 3). In lines 12-15, the transitions

executed at each depth i in between 1 and curbd of all states in f rontierS et are merged and

recorded into tranS et[i], and only these transitions are encoded into a propositional formula

representing Ti(S i−1, S i) (lines 16-19). The combination of the initial step formula I(S 0), and

the step formulas Ti(S i−1, S i) from 1 to curbd, together with the encoded formula for LTL

property f is checked for satisfiability in line 21. Again, we follow the encoding approach

for LTL properties proposed in [71] and omit the details. If the formula is satisfiable, then a

counterexample of depth curbd has been found and Algorithm 3 returns; otherwise, the current

bound is increased with inc and the above procedure repeats.
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Algorithm 3. BMC Guided by Incrementally Deepening BFS BCS
1. Input: Design D, Search bound s bd, BCS bound c bd,
2. Interaction deepening number inc, LTL prop f
3. Output: TRUE/FALSE(CX), or deadlock
4.
5. I(S 0) = Encode init(D, 0);
6. curbd = inc;
7. while (curbd <= s bd) do
8. // record reachable states at depth curbd; report deadlock if any
9. f rontierS et = BFS BCS(D, curbd, c bd, f )

10. propcurbd = Encode Prop(¬ f , curbd);//use the approach in [71]
11. for (1 <= i <= curbd) do
12. for all s ∈ f rontierS et do
13. // merge enabled trans at i; initially tranS et[i] is empty;
14. tranS et[i] = tranS et[i].insert(s.path[i]);
15. end for
16. for all t ∈ tranS et[i] do
17. // encode Ti(S i−1, S i), which is initially empty;
18. Ti(S i−1, S i) = Ti(S i−1, S i)∨ Encode Tran(t, i);
19. end for
20. end for
21. if (is SAT(I(S 0) ∧

∧curbd
i=1 Ti(S i−1, S i) ∧ propcurbd))

22. return FALSE(CX);
23. end if
24. curbd = curbd + inc;
25. end while
26. return TRUE;

The above method of incrementally deepening the search depth is inspired by a similar

approach proposed in [77] for stateful explicit depth-first search (DFS) model checking of

safety (invariant) properties. With such an incremental method, counterexamples shorter than

depth s bd could be revealed, and thus, unnecessary workload for explicit exploration (line 9),

symbolic encoding (line 18), and SMT solving (line 28) can be avoided.

Recall, for example, formula (5.2) mentioned in Section 5.2. Algorithm 3 can guarantee

that at each time step only cells (transitions) that are actually executable are encoded. Thus,

sub-formula (a) of formula (5.2) could be further shortened by removing those unexecutable

Graduate School of Information Science and Electrical Engineering, Kyushu University



Chapter 5 An Incremental SESE with BCS and Divide & Conquer Method 71

frontierSet: inc

lte1

lte2

lte3
frontierSet: inc2

frontierSet: inc3

(b)

Path Cluster 1 Path Cluster 2

(a)

frontierSet: inc

lte1

lte2

lte3
frontierSet: inc2

frontierSet: inc3

Figure. 5.1: (a): The image of computation of f rontierS et in each iteration; (b): The image
of path clusters to be solved with multicores.

cells. Furthermore, sub-formula (b), which is potentially used to capture the deadlock case, can

be totally removed since there must exist a cell that is executable (otherwise, a deadlock should

have already been reported in line 9). To summarize, the size of the formulas Ti(S i−1, S i), 0 ≤

i ≤ k can be decreased significantly by following Algorithm 3. Regarding the saturation

problem that we met in our prior work [46], we found through experiments that, with an

appropriate BCS number, saturation can be postponed to deeper bounds or resolved in many

cases.

5.3.2 Divide and Conquer

Next, we present Algorithm 4, which extends Algorithm 3 by employing a divide-and-

conquer approach to further improve efficiency. Given a set predS et of n predicates, the key

idea is to utilize these predicates to classify transition paths into clusters of paths, which are

then encoded into independent BMC instances and solved in parallel with multicores or dis-

tributed environments. In lines 12-25 of Algorithm 4, for each predicate predl (1 ≤ l ≤ n),
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Algorithm 4. A Divide-and-Conquer approach for BMC
1. Input: Design D, Search bound s bd, BCS bound c bd,
2. Interaction deepening number inc, LTL prop f ,
3. Set predS et of n predicates // for dividing transition paths
4. Output: TRUE/FALSE(CX), or deadlock
5.
6. I(S 0) = Encode init(D, 0);
7. curbd = inc;
8. while (curbd <= s bd) do
9. // record reachable states at depth curbd; report deadlock if any

10. f rontierS et = BFS BCS(D, curbd, c bd, f )
11. propcurbd = Encode Prop(¬ f , curbd);//use the approach in [71]
12. for each predl ∈ predS et, where 1 ≤ l ≤ n do
13. for (1 <= i <= curbd) do
14. for all s ∈ f rontierS et ∧ eval(predl, s) == TRUE do
15. // merge enabled trans at i; initially tranS et[i] is empty;
16. tranS et[i] = tranS et[i].insert(s.path[i]);
17. end for
18. for all t ∈ tranS et[i] do
19. // encode Ti(S i−1, S i), which is initially empty;
20. Ti(S i−1, S i) = Ti(S i−1, S i)∨ Encode Tran(t, i);
21. end for
22. end for
23. bmcInstancel = I(S 0) ∧

∧curbd
i=1 Ti(S i−1, S i) ∧ propcurbd;

24. bmcS et = bmcS et.insert(bmcInstancel);
25. end for
26. // compute the BMC instances in bmcS et in parallel
27. is SAT(bmcInstance1) ‖ . . . ‖ is SAT(bmcInstancen);
28. if ∃l ∈ n: is SAT(bmcInstancel) == FALSE then
29. return FALSE(CX); // and stop all other executing threads
30. else
31. curbd = curbd + inc;
32. end if
33. end while
34. return TRUE;

the transition paths of state s, which is of the current frontier state set and satisfies predl, are

extracted (lines 14-17). These transitions are then encoded to construct a propositional formula

(lines 18-21). A BMC instance is composed of the propositional formula together with the
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formula for the negation of the LTL property f (lines 23-24). Finally, multiple such BMC

instances are solved in parallel: if a counterexample is found for any of the instances, then

the counterexample is reported and all parallel processes are stopped; otherwise, the current

bound is increased (lines 27-32) and the algorithm starts to explore deeper state space.

Predicates predl are generated based on heuristics provided by human verifiers. In our ac-

tual implementation and experiments, we introduce a variable statusVar to denote the current

status that a STM is in, and correspondingly, predl are of the form statusVar = l. Heuristics

for predicates in other forms can also be used by Algorithm 4.

The image of such a divide-and-conquer approach is illustrated in (b) of Figure 5.1. Con-

sidering the frontier set at the bottom of the figure, the states in that frontier set are classified

into those with circle marks and those with diamond marks. Precedent states on the paths

leading to the corresponding states are equipped with the same marks. As an example, path

clusters 1 and 2 can be encoded into two independent BMC instances and solved in parallel. In

the case that two different path clusters contain common states (e.g., the states can be marked

with both circle or diamond), the transitions leading to those states are simply considered to

belong to both clusters and encoded. Through dividing the state space to a certain bound into

multiple smaller ones, which are then encoded and solved concurrently, the BMC efficiency

can be improved much. A feature of such a divide-and-conquer approach is that the BMC

instances are totally independent ones and no communication among them, which can affect

the overall efficiency much, is needed for solving them.

5.4 Summary

In this chapter, the work in [46] is extended and a novel hybrid approach that combines

stateless explicit-state and BMC model checking techniques for system design verification is

proposed. In particular, through explicit state space exploration, only paths leading to reach-
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able states are encoded into BMC formulas, which avoids encoding non-executable transitions

at each depth; bounded context switch techniques are integrated into the explicit exploration,

which avoids process interleavings that are unnecessary for revealing counterexamples; dead-

lock and safety properties are checked during explicit exploration, which, as shown in the

experiments in [28] and ours, is more faster than pure BMC techniques; execution paths are

classified into clusters and encoded into independent BMC instances, which are solved in par-

allel with multicore computation; the hybrid checking progresses in an incrementally deepen-

ing manner, which guarantees to find shorter examples and avoids unnecessary explicit explo-

ration and BMC workload. All of these techniques help accelerate the verification performance

of pure BMC method for both safety and liveness properties.
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Chapter 6

Distributed SMT Solving

In this chapter we describe the contribution on implementation of distributed SMT solving.

With this method, the scalability and efficiency of SMT-based BMC can be improved effectively.

6.1 Introduction

SMT-based BMC consists of two primary tasks: (1) encoding a bounded model checking

problem into a propositional formula that represents the problem, and (2) using a SMT solver

to solve the formula, that is, finding a set of variable assignments that makes the formula true.

Solving the formula (namely, SMT solving) involves computation-intensive processes and is

thus time-consuming. Furthermore, as the model-checking bound increases, the encoded for-

mulas become larger in size and harder to solve. The computational complexity of most SMT

problems is very high [78], [22]. For all that, it is difficult to accelerate the SMT solving pro-

cedure for the engineers engaged in model checking. We have conducted [79] an implementa-

tion of using distributed computation and utilizing the power of multi-cores Central Processing

Unit (CPU), multi-CPUs, and/or even cloud computing, to accelerate SMT solving. Although

a series of experiments has shown the effectiveness of our implementation on increasing the

solving efficiency, there still exist shortcomings which prevent the distributed solving to take
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advantage of CPU cores as much as possible. For example, the communication protocols could

be reformed in order to reduce the unnecessary usage of network communication. In this paper,

we describe our work on improving the distributed SMT solving by changing the file dispatch-

ing schemes that consider work load balance, and by reforming the communication protocols.

We change file dispatching from coarse-grained to fine-grained, which can help in increasing

the usage of CPU cores. Some unnecessary steps in the communication protocols are removed

or merged. We have discussed the effectiveness of our improvement theoretically. We repeat

the experiments conducted in our previous work [79] to make comparisons between these two

schemes. We also conduct an experiment by increasing the CPU cores used in parallel SMT

solving to investigate the influence in a microscopic view. The experimental results demon-

strate the feasibility and efficiency of our improved implementation. However, we have also

found, for a given target benchmark, that increasing CPU cores involved in computing will not

always increase the solving speed.

The rest of this chapter is structured as follows. Section II provides necessary preliminary

knowledge and a brief introduction of the tools and techniques that are used in our work.

Section III describes our previous work about distributed SMT solving. Section IV shows our

methods used to improve the distributed SMT solving. Section V presents the experiments

to evaluate the improvement and discusses the results. Finally, Section VI mentions possible

extension (application scenarios) of our work and concludes the paper.

6.2 Background

In our implementation, there are some techniques and tools which will be introduced in this

section. We use Message Passing Interface (MPI) and Open MPI to implement distributed and

parallel, respectively. Z3 is a high performance SMT solver that is used as a backend solving

core.
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6.2.1 MPI and MPICH

Message Passing Interface (MPI) [80] is a standardized and portable message-passing sys-

tem. The MPI standard defines the syntax and semantics of a core of library routines useful to

wide range of user writing portable message passing programs in different program languages.

It is a language-independent communications protocol used to program parallel computers.

We choose MPI 2.0 standard in our implementation.

There are several well-tested implementations of MPI, such as LAM/MPI [81], MPICH

and Open MPI [82] etc. They are designed for high performance on both massively parallel

machines and on workstation clusters. MPICH [83] is a high-performance and widely portable

implementation of the MPI standard. It provides an MPI implementation that supports dif-

ferent communication and computation platforms including commodity clusters, high-speed

networks and proprietary high-end computing systems. It also provides enable cutting-edge

research in MPI through an easy-to-extend modular framework for other derived implementa-

tions [83]. We use MPICH2 in our implementation to realize control signals and files trans-

mission among different PCs. In the remaining part of this paper, the MPI and MPICH are all

referred to MPICH2.

6.2.2 OpenMP

OpenMP (Open Multi-Processing) [84] is an API that supports multi-platform shared mem-

ory multiprocessing programming in C, C++, and FORTRAN, on most processor architectures

and operating systems, including Solaris, AIX, Mac OS X, and Windows platform [85][86][87][88].

It is developed in 1997 and promoted and supported by a nonprofit organization named OpenMP

Architecture Review Board (ARB). The members in ARB are AMD, Fujitsu, HP, IBM, Intel,

NEC, and Oracle etc.

OpenMP is different from MPI. MPI is a multi-process mechanism but OpenMP is a multi-

thread one. MPI supplies the communication ability to the processes even when the processes
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are in different PCs. The MPI task manager allocates independent memory to every MPI

process. OpenMP achieves parallel by creating multiple threads. The created threads exist in

one PC and sharing same memory space.

6.3 A Prototype of Distributed SMT Solving

6.3.1 Overview

We have implemented distributed SMT solving in C language, using a Z3 SMT solver for

satisfiability verification. The system has a Client/Server (C/S) architecture. The topology of

the network is shown in Fig. 6.1. All clients are connected to a center server, data is transmitted

between server and clients. The server responses the requirement of acquiring file from clients.

If there exist enough SMT files, then the files will be sent to the target client. The SMT solving

procedure happens on the clients after receiving SMT files from the server. OpenMP is used to

create multiple threads, each thread invokes a Z3 SMT solver to solve specific SMT files. The

solving process will be finished until the server has no file to send.

Server

Client 3

Client n

...

Client 2

Client 4

Client 1

Figure. 6.1: Network Topology.

In our implementation, both MPICH and OpenMP are used to gain the purpose of taking
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best advantage of clients’ computing capacity. The architecture of the implementation is shown

in Fig. 6.2. The MPI task managers which are running on different hosts, create server and

clients processes independently. They have the unique names in int type, which can be used

to distinguish these processes, numbered from 0 to n. The MPI task managers set up every

process on different hosts assigned by user deterministically from the server. One PC has only

one MPICH process running on it. The server and clients need to communicate with each

other when the server dispatches workloads to the clients. MPI supplies the message passing

mechanism which allows us to send control signals and files among hosts in a network. At this

point, we are ready to apply distributed computing. OpenMP is used to perform further parallel

SMT solving. In a MPICH process, OpenMP is utilized to create multiple threads which

communicate with each other using shared variables. It should be noted that, on each client,

the OpenMP threads are not created at the beginning of the process. They are created after the

file transmission finished, only for parallel SMT solving. The file receiving and dispatching are

completed by MPICH processes. One client creates 4 threads by default running in parallel.

Each thread invokes a Z3 SMT solver to solve specific SMT files dispatched to it. Generally

speaking, we use MPICH to achieve distributed computing and communication, and OpenMP

to achieve parallel SMT solving as well.

6.3.2 Design of Server

The server takes charge of responding the requirement from clients and dispatching the

SMT files to clients. If there exits enough files, they will be sent to the clients one by one.

Every time four files are sent to one client by default. The default value can be changed by

user as their wish. The server denoted by the MPI process 0 in our implementation. The

pseudocode of server is shown in Algorithm 6.1.

The server is running in a do while loop until there is no SMT file to be transferred to

the clients. It starts with checking and receiving messages from any clients in the entire MPI
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Figure. 6.2: Architecture of the Distributed Environment.

Algorithm 6.1 Pseudocode of the Server

1. Process 0 (nTasks) {
2. Initialization and definition of variables;
3. Timer(start);
4. Terminate == 0;
5. do {
6. MPI Recv(request type from any client);
7. if(require type is files request){
8. search result=seek file(process id);
9. if (search result == no file found)

10. MPI Send( no file funded to process id);
11. }

12. else
13. terminate++;
14. }while (terminate < (nTask-1));
15. Timer(stop);
16. Compute time consuming;
17. return 0;
18. }
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Figure. 6.3: Control Flow Graph of the Server.

communication domain using MPI function MPI Recv(). It is paired with a blocked mes-

sage sending function MPI Send() invoked by clients at the beginning. The request receiving

followed by determining the request type which represents the type the message. If it is

a message of requiring SMT files from a client, the function seek file(process id) is in-

voked. This function explores the local directory of the server, try to find whether there exits

SMT files that can be sent to the client. If so, they will be sent to the client which require files.

If not, the server will send a message to notify the client that the server does not have enough

files. If the received message is not a file request message, the variable terminate will plus

one. When the value of terminate is bigger than the number of the process, it means that all

clients are terminated, the server (process 0) will stop loop and terminate. A timer, which

is used to calculate the whole parallel solving procedure, is set at the beginning of the solving

process and will stop after all processes finished their solving. The control flow graph is shown

in Fig. 6.3. The file sending procedure takes place in the function seek file(). The function
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searches and sends files to the target process (denoted by process id). The pseudocode of

seek file() is shown in Algorithm 6.2. It starts from trying to find at least one file in the di-

rectory, if so, the function will inform the client that files are founded (Line 7). Then, it counts

how many files can be transferred to the client, send counter in Algorithm 6.2. Initially, we

give the default value 4 to the send counter threshold. It is the upper bound of the number

which

Algorithm 6.2 Pseudocode of the Function seek file(process id)

1. seek file (process id) {
2. Initialization and definition of variables;
3. Construct the path of files to be sent;;
4. if(no file is founded)
5. return 1;
6. else{
7. MPI Send(file founded, to Process id);
8. Acquire the files number: send counter;
9. MPI Send(send counter, to Process id);

10. do {
11. If (not reach the send counter threshold)
12. break;
13. Construct the path of file;
14. f open(path of file);
15. Acquire file size;
16. MPI Send(file name to Process id);
17. MPI Send(file size to Process id);
18. MPI Send(file to Process id);
19. Delete the file has been sent;
20. } while (exit another file to be sent);
21. }
22. return 0;
23. }

counts the number of files sent to the client every time. Since there are more than one clients
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in the system and we cannot decided the quantity of SMT files, it is necessary to determine the

number of files to be sent (sometimes it will be less than send counter threshold). If the

number is less than the send counter threshold, the do while loop (Line 19) will ensure that

the file sending procedure will finish within the threshold. Conversely, Line10-Line11 will

guarantee that only threshold files will be sent to the client. Secondly, the quantity of files is

sent to the client by MPI Send() function from the server (Line 9). At every sending round

(Line 10-Line 20), the file name, file size and the file itself are sent separately in sequence.

We use blocked MPI communication mechanism to send files. It means that after the server

invokes a MPI Send(), it suspends until the client receives the message.

6.3.3 Design of Client

The client is implemented by MPI process numbered from 1 to n depending on user require-

ments. The main process of the client is requiring and receiving SMT files to local machines,

then invoking an SMT solver to do the verification. After SMT solving, client will report to

the server if a counterexample is found. At the beginning, the client require and receive four

(or less than four) SMT files from server, if there exist such files on server. Then the client

verifies these files. We call this process as a solving round. After a solving round is finished,

the client will require new files until there is no file could be transferred. In a single solv-

ing run, we utilize OpenMP to accomplish parallel SMT solving on a PC to exploit the full

computation resources. We suppose that the client in our implementation is equipped a CPU

with four cores consequently we set 4 threads using OpenMP in each MPI process as default

setting. The pseudocode of client n is shown in Algorithm 6.3.

The flow of a client is as follows: (1) the client sends file requirement to the server (Line

4), and then waits for the response of the server. If the server has no files to send, this client

will receive a no file signal and terminate, otherwise, the client will receive the number of

files which will be sent later. (2) Line 10 to Line 17 are the file receiving procedure. The file
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name, size and the file itself are received respectively. The procedure is a while loop, and will

Algorithm 6.3 Pseudocode of the Client

1. Process n () {
2. Initialization and definition of variables;
3. do {
4. MPI Send (request files, to process 0);
5. MPI Recv (file existence condition from server);
6. if (no file is founded)
7. break;
8. MPI Recv(file num from server);
9. j = 0;

10. while (j < file num) {
11. MPI Recv(file name from server);
12. MPI Recv(file size from server);
13. MPI Recv(file from server);
14. fwrite (file to local HDD);
15. rename(file);
16. Clear receiving buffers;
17. j++;
18. }

19. invoke smt solving();
20. if (a counterexample is found)
21. report solving result to the server;
22. clean local files;
23. } while (there still exists files to be received);
24. MPI Send(finish signal to server);
25. return 0;
26. }

be executed many loops which equal to the number of the files. The buffers to receive the data

mentioned above will be cleared after a file is received successful. (3) After all the files are

received successful, the client invokes the function smt solving() to do the parallel verifica-

tion SMT solving procedure. We will describe the parallel solving procedure in the following
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paragraph. (4) After the SMT solving procedure is finished, the client will check the saved

solving results. If a counterexample is found, it will be sent to the server. (5) The client will

send a request to the server unless the server returns no file founded message to the client. (6)

The client sends the finish signal to the server in order to notice that it will be terminated

soon. The whole control flow of the client is shown in Fig. 6.4.

The parallel SMT solving is accomplished by the function smt solving() which utilize

OpenMP to achieve parallel. The pseudocode is shown in Algorithm 6.4. OpenMP can create

a specified number of threads which can communicate with each other by sharing variables

(the variable is named as signal in Algorithm 6.4). Line 2 sets the number of thread to be

created. In consideration of all our PCs have quad-core CPU, in our implementation, we set

the value to four to exploit all the compute resources of a client. The smt solving() function

will be invoked after the file receiving procedure. This function will create 4 threads, every

thread uses C function system() to execute an SMT solver to solve SMT files one by one. The
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verification results are written to four files separately on a local hard disk driver.

6.3.4 Design of Communication Protocol

We describe the communication protocol of the system in this section. In our implemen-

tation, there are two types of communication. The first type is controlling signal transmission

between the server and clients. It happens in the beginning and terminate stages. The other

type is SMT file transmission from the server to clients. There is no communication among

different clients.

1) Control S ignal Transmission : In our program the control signal is an int array

(denoted by power[n]) with two elements. The first element power[0] used to indicate the

signal’s meaning. The value and its corresponding meaning are shown in TABLE. 6.1. The

second element is power[1] whose value is the source of the signal. The MPICH process ID

is used to mark the source of the control signal. power[0] = 0 and power[0] = 1 can only be

generated by a client. Furthermore, power[0] = 2 can only be dispatched by the server.

The distributed SMT solving system starts from a client sends the file request to the server,

and the server searches its local directory to determine whether there exist enough files. Then

it sends the result as a control signal to the requesting client. It can be power[0]=0 (files exit)

or power[0]=2 (no file). It should be noted that the control signal has two int value so that

the file request from the client is power[]={0, process id} (value scope of process id is

1 to n) and the files exit signal is power[]={0,0}. If the client receives the power[]={0,0}, it

will turn to file receiving process. Otherwise it will send power[]={1,process id} to server.

The control signal protocol is shown in Fig. 6.5. The dashed line of step 2 and step 3 will

occur when the server has no files to send. The filled line denoted step 2 and the dashed line

denoted step 2 do not happen all at once. If the filled line step 2 happens, the client will turn

to file receiving process immediately. After a client finishes the SMT solving process, it will

request new files, if the server sends the signal in step 2 denoted by the dashed line, the client
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will execute the step 3 to inform the server its termination.

Algorithm 6.4. Pseudocode of the Function smt solving()

1. smt solving () {
2. omp set num threads(m);
3. omp init lock(&lock signal);
4. #pragma omp parallel
5. {
6. switch (omp get threadnum()) {
7. case 0:
8. {

9. Exploring all files belonging to thread 0 {
10. Construct command to invoke Z3;
11. system (command);
12. goto next file;
13. }

14. }

15. break;
16. case 1:
17. {

18. Exploring all files belonging to thread 1 {
19. ... // same as case 0
20. }

21. }

22. break;
23. ... // case 3 and case 4 are omitted
24. default: break;
25. }

26. }
27. return 0;
28. }

2) File Transmission The file transmission process is much easier. This process starts

from the client receives the file exists signal power[] = {0, 0} sending by the server. The
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Table. 6.1: Meanings of the Signal power[0]

power[0] Meaning

0 Request files from a client or server has files to be sent

1 This client will be terminated

2 No file in the server

Client

1. power[0] = 0, power[1] = process_id

2. power[0] = 0,  power[1] = 0

2. power[0] = 2, power[1] = 0

3. power[0] = 1, power[2] = process_id
Server

Figure. 6.5: Control Signal Transmission Protocol.

file transmission protocol is shown in Fig. 6.6. The MPI blocked communication mechanism

is used, so we simplify the file receiving process. The confirmation after message receiving

is eliminated. After step 2, the client knows that how many files will be sent. The sending

and receiving processes both run in a loop. Step 3 to step 5, which is boxed by a dashed

rectangle, will be repeated until all files have been sent. To make the 3 message sending and

receiving in sequence, we use different message tags so that the client can distinguish them

and receive them correctly. The file size is sent for establishing receiving buffer dynamically to

save memory. The dashed line represented step 6 is an optional step. If a counterexample was

found after the parallel SMT solving, the client will report the counterexample to the server.

If not, the client will require new file from the server with entering control signal transmission

process.
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Client

3. send the number of the files

Server

2. power[0] = 0,  power[1] = 0

4. send the file name

5. send the file size

6. send the file

7. couterexample

Repeat

1. Require Files

Figure. 6.6: File Transmission Protocol.

6.4 An Improved Implementation of Distributed SMT solving

The purpose of our distributed SMT solving is increasing the solving performance by lever-

aging computing resources of multiple computers as much as possible. In this section, we have

discussed two main shortcomings in our previous work firstly. These shortcomings prevent our

distributed implementation from further enhancing the performance of the distributed solving.

We try to improve the utilization of computing resources in the following two aspects: Fine-

grained Dispatching Scheme and Communication Reduction.

6.4.1 Shortcomings of the Prototype

Although our attempt gains significant improvement on solving performance, there are

still some shortcomings of our previous work. The first is load balance, which is the core

problems in the development of distributed model checker [89]. It means that our previous file

distribution strategy is inefficient for scenarios where the hard problems or the combination

of the easy and hard problems are considered. By hardproblems, we mean problems that

consume, e.g., 600 seconds or more per file in our experiment. The easy problems often take

less than 1 second per file. In our previous work, the files are sent to clients by group. That

means 4 files as a group are sent to a client after one file request. The server chooses files

randomly. In other words, a client may receive easy problems as well as hard problems. For
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instance, there are four tasks named Task1, Task2, Task3 and Task4. Task4 is a hard

problem and takes more time to solve. In a client, the 4 tasks are solved in parallel on different

CPU cores. After Task1 - Task3 are finished, Task4 is still being handled. In this case, 3

CPU cores are idle and no new tasks is assigned to them until Task4 is finished. The best case

is that all files have the same solving hardness. The more different the computing divergences

are, the longer the total solving time is. A primitive experiment has been done to demonstrate

this shortcoming. The result is shown in Figure 6.7. The two lines denote time-improvement

ratio of distributed solving to serial solving. The blue solid line denotes the results where the

workload is dispatched evenly to all clients (called proper case) while the red dash line denotes

uneven dispatching (called improper case). It is clear that the proper dispatching gains higher

improvement ratio than the improper case. It should be noted that this experiment is a trivial

one just for demonstrating the importance of task dispatch. To summarize, an improper task

dispatching can slow down the whole solving procedure.

The second shortcoming is that there are some unnecessary communication between the

server and clients during file transfer. In our previously proposed file transferring protocol,

which is shown in Figure 6.6, when we try to transfer one file to a client, a 3-time communi-

cation is needed (step 4 to step 6). Actually it is unnecessary to send two messages in step 3
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Table. 6.2: Measurements of Easy Problems (in Sec.)

Benchmarks Serial 1 Client 2 Clients 3 Clients

QF UFLRA 191.10 52.36 23.81 17.41

AUFNIRA 31.30 30.64 10.55 6.65

AUFLIA 105.80 88.87 41.90 50.48

QF UFLIA 114.52 72.58 31.65 25.84

and step 4. If we did so, we have to spend more time on establishing connections. In Table 6.2

(recall that all tasks in this table are easy ones that can be solved less than 1 second), when we

increase the number of clients, the improvement are limited. One of the reasons is that the de-

lays brought by establishing connections and the data transmission overwhelm the superiority

gained by distributed computing. In addition, not only the file transferring stage but also other

unnecessary communication between the server and clients could be reduced. In Figure 6.6,

the array power[] is used to send controlling signals. The first element power[0] stores the

signal’s type. The second element power[1] is used to indicate the source of a message. The

values and the meaning represented by the value are shown in Table 6.1.

6.4.2 A Fine-Grained Dispatching Scheme

The first considered aspect is changing file dispatching grain from coarse-grain to fine-

grain. Our previous file dispatching scheme is coarse-grained. That means the minimum unit

to assign workload is client which realized by one MPI process even 4 threads running in it.

The client (process) sends request to the server and receives returned files. After it receives

files from the server, the client dispatches files to different threads where the SMT solving is

done in a parallel way. This procedure is shown in Figure 6.8. In this figure, the part boxed

by a dashed rectangles denotes a client connected to the server. The whole procedure starts

from sending file requirement from a client to the server for the first time. If there exits at
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least one file on the server, they will be sent to the client. Then the control flow enters the

parallel solving stage. After the parallel solving, all four threads need to synchronize with

each other before a new require-receiving round. The synchronization shown in Figure 6.8

means that threads which have finished their tasks in the current round have to wait for other

threads which are still in solving to finish their tasks. After the synchronization, the client

will request new files again and the procedure will be repeated. The synchronization is needed

because the file is dispatched to a client not a single thread. From the macroscopic view, the

work load is dispatched to a client on process-level and the synchronization of threads will

cause the shortcoming we discussed in the above section.
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Figure. 6.8: Previous File Dispatching Scheme.

We change the dispatching scheme described above so that the synchronization between

threads is removed after finishing one solving round. The improved scheme is shown in Figure

6.9. In our new scheme, the client starts from sending initial request to the server and receiving
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Receive Files

( Thread 2 to Thread 4 do the same process 

as Thread 1 and are admitted here. )
Client

Figure. 6.9: New File Dispatching Scheme.

the first file set. It should be noted that this requesting-receiving round is executed only once.

Then the received files are solved by 4 threads respectively in parallel. After that, 4 threads

(in one client) will send file requests to the server separately when they need new files. The

following receiving procedure is conducted by these threads also. If new files were received,

threads will enter parallel SMT solving procedure again until a counterexample is founded

or no files in the server. All four threads conduct the same procedures so that we admitted

the detail of Thread 2 to Thread 3 in Figure 6.9. At this point, no synchronization is needed.

Threads in a client are more independent than the previous scheme. The function of requiring

and receiving files is implemented in thread level. Each thread can obtain new tasks from the

server by itself. It is no longer necessary to wait for other threads to finish their solving tasks.

In our implementation with the new designed fine-grained dispatching scheme, the archi-

tecture is still C/S. The server runs in a loop to receive the messages sent by the clients and

prepare files for them. So we only expand the length of the control message power[] with-

out any other changes. A major change comes up on the client side so we present it here in

Algorithm 6.5. The argument process id is an unique int number to distinguish a process
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Algorithm 6.5 Newly Designed Client Procedure

1. Process n (int process id) {
2. Initialization and definition of variables;
3. MPI Send (request files, to process 0);
4. MPI Recv (file existence condition from server);
5. if (no file is founded)
6. return 0;
7. j = 0;
8. while (j < file num) {
9. MPI Recv(file information from server);

10. MPI Recv(file from server);
11. fwrite (file to local HDD);
12. rename(file);
13. Clear receiving buffers;
14. j++;
15. }
16. invoke parallel solving(char *working path);
17. clean local files;
18. MPI Send(finish signal to server);
19. return 0;
20. }

which is running as a client. At the beginning, the client sends a request to the server (Line

3) and receives the file existence condition. The function MPI Send() is a message sending

function supplied by MPI [80]. It is a basic blocking message send operation. The routine

returns only after the application buffer in the sending task is free for reuse. The function

MPI Recv(), which is also a MPI supplied function, receives a message and block until the

requested data is available in the application buffer in the receiving task. The two functions

must be used in as a pair. Otherwise, a dead block will happen. If file exists, an initial receiving

and dispatching procedure will be done (Line 8 to Line 15). The initial dispatching is done

by a client in our design because at the beginning, all CPU cores are idle, there is no need to

consider the load balance problem at that time. The parallel SMT solving will take place by

invoking the function parallel solving() with the parameter char *working path which
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indicates the local path where the target files are saved in.

The parallel solving part is also changed. It is done inside each client. We use OpenMP

[84] to create 4 threads to leverage computing capacity of clients as much as possible. As we

mentioned above every thread in a client now has the ability to request files from the server if

necessary. Meanwhile, the files sent by the server will be transferred to the thread to achieve

our fine-grained dispatching. We show the procedure of function parallel solving() in

Algorithm 6.6. In each client, firstly, a thread resolves the files dispatched in the initial step

of the client. Then it enters a do {...} while() loop to request and receive files until there

is no file in the server. After one receiving round, which means that a thread has received a

set of files from the server, the received files are solved by an SMT solver. The number of

files in a set is a variable and its value is set to 2 by default. The argument working path t0

is generated from the argument working path to indicate its own working path. Thread 0

to Thread 3 are running in parallel and we omit the pseudo-code of thread 1 to thread 3 in

Algorithm 6.6. If a counterexample is found in a solving round, the thread will report to the

server. This activity of a counterexample finding and reporting is the same as our previous one

so that we omit it in this algorithm.

In practical implementation, the new scheme might be less effective for the case which

the solved problems are all easy problem or easy problem dominated (most of files are easy

problems). In such a case, the solving time of a single file is short enough. In our previous

scheme, the main time consuming is the synchronization of threads. Even if the previous

scheme is used, the synchronization time is a short duration. It will not effect the total solving

time using the synchronization or not. However, by using the new dispatching scheme, we

expect to get better performance for solving hard problems or combined problems under the

server’s random file dispatching strategy.
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Algorithm 6.6 Newly designed Function parallel solving()

1. parallel solving (char *working path) {
2. omp set num threads(m);
3. #pragma omp parallel
4. {
5. switch (omp get threadnum()) {
6. case 0:
7. {

8. Exploring all files in working path {
9. invoke Z3 to solve;

10. goto next file;
11. }

12. do{
13. Require and Receive files from the server;
14. if (no file is founded)
15. break;
16. receive all files in this round;
17. Exploring all files in working path t0 {
18. invoke Z3 to solve;
19. goto next file }
20. delete solved files in working path t0;
21. } while(server has files)
22. }

23. break;
24. ... // Case 1 to case 3 are mostly like case 0 and omitted
here
25. }

26. }
27. return 0;
28. }
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6.4.3 Communication Reduction

The second aspect to improve solving efficiency is by reducing unnecessary communica-

tions between the server and clients. In Figure 6.6, we can emerge step 2 with step 3 firstly.

We expand the control signal power[], which is an array with two elements, to 3 elements.

For instance, if the power[0] = 0 (means there exists files on the server), power[2] will be

the number of the files while power[1] denotes the source of the message. If not, power[2]

will set to 0 and power[0] = 2. In the file sending stage, before sending file data, the server

will inform the file names and sizes, which are used by the client to create a receiving buffer

dynamically. We use a struct, which consists of the name and size of the file to be sent in

the future, and the structure could be sent by using MPI send() function once. The step 4 and

step 5 in Figure 6.6 can be merged by using the new data structure.

Repeat
Client Server

2. power[0] = 0,  power[1] = 0, power[2] = File Number

3. send the file info structure

4. send the file

5. couterexample

1. Require Files

Figure. 6.10: New File Transferring Protocol.

The reformed protocol is shown in Figure 6.10. The new File transferring protocol needs

one communication to send the control information and two communications before sending

one single file, while the previous protocol needs two and three communications, respectively.

The first merging brings an expansion of the array size from 2 to 3. In C language, one int

element consumes 2 Byte memory. For a modern PC and Ethernet, 2 Byte is not an issue. In

the second merging we use a struct to store the file name and size. Comparing with sending

these information separately, it consumes more bandwidth for one time sending. Even so, the
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increased bandwidth overhead is nothing to a 100M/1000M Ethernet.

Tpre = n ∗ (s̄ + tname + tsize) + (tcontrol + tnumber) ∗ n/number (6.1)

Tnew = n ∗ (s̄ + tstructure) + tcontrol ∗ n/number (6.2)

However, not every case can gain positive effect on promoting solving performance. If the

target problems are all hard problems the communication overhead is not obvious comparing

with the solving time. But for easy problems, the situation is opposite. The solving time

of a easy problem is much more shorter than establishing communication and transfer control

messages. The constitution of previous distributed SMT solving time Tpre is shown in Formula

(6.1). n denotes the total number of files to be solved, s̄ is the average solving of a single file.

tname and tsize represent the time of establishing communication and sending file’s name and

size respectively. tcontrol + tnumber are consumption of sending control signal and the number of

files. number denotes files which will be sent by the server over one requirement of a client.

After the reduction, the time consumption constitution Tnew is shown in Formula (6.2). In some

cases, the average solving time s̄ is no match for establishing the connection between the server

and client. So reducing the time denoted by tx can increase the performance significantly. tx

presents the time consummation of tname, tcontrol and tnumber.

6.5 Discussion

The point of our work on parallel SMT solving is to make SMT solving distributed and

ultimately to accelerate SMT-based BMC. In general, two procedures are involved for this

purpose: (1) decomposing a whole BMC problem (formula) into sub-problems (sub-formulas),

each of which is relatively smaller in size, easier to solve, and can be solved in parallel. In our

previous work, we have done work in this aspect [46, 90]; (2) paralleling SMT-based BMC, as
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described above in this paper. The classic SMT-based BMC encodes the system and properties

into a single formula at specific bound. Restricted by the computation ability of a single PC,

the efficiency of SMT-based BMC will decrease sharply. On the basis of decomposition, we

can use the parallel SMT solving framework to solve the sub-problem parallel. Obviously, in

this way, not only the capacity/scalability, but also the solving speed of model checking can be

increased significantly. However, note that this is not to say our framework can increase BMC

in all circumstances. Consider a situation where the SMT files in the server are all of small size.

This means generally the files are easy to solve. Taking network latency into account, the time

consumption here can be much higher than the SMT solving time. The final solving time of

the parallel solving with multiple PCs may become longer than serial solving with a single PC.

Another issue we are going to discuss is about load balance. The server sends files to the

client, and the client will arrange the work to different threads. For instance, there are four

SMT files: { f1, f2, f3, f4} and two threads T1 and T2. The solving time of the files f1 to f4 are

1s, 2s, 4s and 5s separately. If f1 and f2 are assigned to T1 and the others are assigned to T2,

the solving time is 9s in total. But if f1 and f4 assigned to T1 and the others are assigned to

T2, the solving time is 6s in total. The situation will be worse when the clients have different

compute capacity. Considering the worst case that the most complex workload is dispatched to

the lowest client, the total solving time depends on the lowest client’s compute capacity. How

to arrange the workload for different clients impacts directly on the final solving time. In our

implementation, we dispatch the SMT files with a random strategy. We will investigate the load

balance problem in our future work.

6.6 Summary

In this section, first the prototype of distributed SMT solving, which include the designs

of server, client and the protocol, is described. Then after a discussion of its shortcomings,
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we present our work on accelerating SMT solving. To tackle those shortcomings, we pro-

posed the fine-grained dispatching scheme and communication reduction methods. A series of

experiments, which is presented in Chapter 7, has been carried out to demonstrate the feasi-

bility and efficiency of our improved techniques. Discussions and analysis are raised after the

experiments.
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Chapter 7

Implementation and Experiment

In this chapter, the implementation of distributed model checker is presented. A series of

experiments has been done to evaluate our proposed methods.

7.1 Evaluation of Encoding Approach for HSTM Communicating by

Message Passing

The encoding approach described in Chapter 3 has been implemented on a model checker

named Grakabu2. The core components included in Garakabu2 are: a HSTM parser, a LTL

formula parser, two encoders for both HSTM and LTL formulas, the SMT solver and a coun-

terexample extractor and a simulator. The SMT solver is CVC3 [47] and CVC4 is used in the

latest version of Garakabu2. The design with HSTM developed by ZIPC tool [60], can be read

by Garakabu2 directly. The LTL properties to be checked are translated to logical formulas

using CVC3’s C++ API.

We demonstrate our experiments with the running example – Money-Exchange Machine

(MEM), on a Windows PC with Intel Core i7 CPU and 24 GB memory. We present three

kinds of properties (among others that we have checked), which are particularly interesting

for HSTM designs. We use G and F to represent the LTL temporal operators globally and
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eventually, respectively.

The first kind of properties is called unreachability o f invalid cells (UIC). An invalid

cell, in STM is represented as ”×”, implies that a specific event should never be dispatched

at any given time. To justify such expectation, we express a UIC property with an invalid

cell c of S T Mi as a LTL property in the form G (¬ (actS tatusi=index(source(c))∧ event(c) =

event(HS T M j.q) )). In our implement, the unreachable cells are cell(0,2) and cell(0,3) of STM

MainInterface. The properties UIC1 and UIC2 we checked correspond to the invalid cells(0,2)

and cell(0,3) of STM MainInterface respectively.

The second kind of properties is called static status constraints (SSC), which demands cer-

tain correlation between status of different STMs. For example, the SSC between S T Mi and

S T M j, is in the form G (actS tatusi = sa⇒ actS tatus j = sb). In this section, we check proper-

ties SSC1 and SSC2. SSC1 demands STM MainInterface is in actStatus M Wait BILL T AKEN

while STM ReturnController is in actStatus R ACT IVE. SSC2 means that STM ReturnCon-

troller is in actStatus R IDLE and STM MainInterface is in M ACT IVE at the same time.

The third kind is named as f unctional correctness under weak f airness (FCF) constrains.

It states certain conditions are true infinitely often. We checked property FCF1, expressed as

GF(xUserBillTake)⇒ (GF (BillOutputAmount > 0)). GF(xUserBillTake) is the assumption

of weak fairness constraint. This property implies that if a user takes the output bills infinitely

often, and the user will obtain the bills eventually.

The last kind property is some simple safety properties (SimG). This is a property named

invariant, namely the property must hold true globally. SimG1 has the form like G(dealCount

6 2). SimG2 is G(Balance > 0).

The results of checking these seven properties are shown in Table 7.1, where time is total

solving time (in seconds). The default bound is basically set to 25, except for UIC2, to find

a counterexample of which, 30 is a needed search depth. Taking UIC2 as an example, we

explain the reason of the occurrence of counterexamples. According to the HSTM design in
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Table. 7.1: Experiments Results on the Original MEM

Property Bound Counterexample Time(s)
UIC1 25 not found 103
UIC2 30 when step=30 340
SSC1 24 when step=24 74
SSC2 25 not found 73
FCF1 11 when step=11 3
SimG1 25 not found 57
SimG2 25 not found 118

Figure 3.1, when a user operates the MEM, actually the MainInterface and request to Exchange

10K bill. If the exchanger does not have enough balance, the MainInterface send the message

BillReady to HSTM ReturnController by mistake (executes cell(1,2)). Due to this, Returner

sends a message UserBillObtained to MainInterface. Then the property UIC2 is violated (

reaching the invalid cell(0,3)). Garakabu2 catches the counterexample (execution sequence)

by observing the variables f lk , where 1 6 k 6 u, since in each time step only one of f lk has

the value true.

Table. 7.2: Experiment Results on the Revised MEM

Property Bound Counterexample Time(s)
UIC1 25 not found 100
UIC2 25 not found 109
SSC1 25 not found 75
SSC2 25 not found 92
FCF1 3 when step=3 1
SimG1 25 not found 57
SimG2 25 not found 129

We revise the HSTM design of MEM by removing the message sending operation when

BillOutputAmount 6 0. Then we checked the seven properties again. The results are shown in

Table 7.2. This time no counterexample is found except FCF1, which is essentially an incorrect

property for both original and revised MEMs.
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Table. 7.3: Verification Results (in Sec.)

Problems
SAL

Garakabu2
name prop bound verdict orig hrid

cruise
p1 (S) 50 CX=10 4 7 1
p2 (L) 50 NO CX 5 4 5
p3 (L) 50 NO CX 5 4 5

vend1
p1 (S) 50 NO CX 10 30 1
p2 (L) 50 CX=40 34 36 21
p3 (L) 50 CX=40 17 30 20

vend2
p1 (S) 50 NO CX 8 153 1
p2 (L) 50 NO CX 16 7 3
p3 (L) 50 CX=30 9 57 3

exch1
p1 (S) 50 CX=50 32 74 1
p2 (S) 50 NO CX 57 52 1
p3 (L) 50 NO CX TO 12 8
p4 (L) 50 CX=50 TO 131 28

exch2
p1( S) 50 CX=50 41 89 1
p2 (S) 50 NO CX 137 125 1
p3 (L) 50 NO CX TO 14 8
p4 (L) 50 CX=50 494 158 45

exch3
p1 (S) 100 CX=90 TO TO 1
p2 (S) 100 NO CX TO TO 1
p3 (L) 100 NO CX TO 64 39
p4 (L) 100 CX=90 TO TO 258

(S): Safety property; (L): Liveness property;
CX: Counterexample; CX=N: A CX found at depth N;
orig: G2 with the basic BMC algorithm
hrid: G2 with Algorithm 4; TO: TimeOut (>= 1000 sec.)
Accumulative time from depth 10 (each iteration adds 10)

7.2 Evaluation of Incremental SESE with BCS and Divide & Conquer

Method

The hybrid BMC approach proposed in Algorithm 4 (in Chapter 5) has been implemented

in a tool called Garakabu2 (G2 in short). G2 reads as input a software design developed using

STM [15] (mentioned in Chapter 3, multiple STMs of a design can be formed in a hierarchical
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structure) and an LTL property; encodes a model-checking problem into a propositional for-

mula in SMT-LIB2 format [52] by following Algorithm 4; and asks its backend SMT solver

CVC4 (version 1.2) [59] to solve the formula and extracts counterexamples if any. Message-

Passing Interface (MPI) [80] is used to implement the multicore computation procedure in

Algorithm 4.

We experimented with six HSTM designs, each with 3 to 4 safety or liveness properties,

where the designs contain generally 20-25 variables and 17-25 parameterized transitions. Note

that, during encoding, some additional variables and transitions (at each depth) are needed to

represent the call/return functions in the hierarchical structure, and to generate counterexam-

ples (refer to [63] for details). cruise is easy to solve with shallow counterexamples and

exch1-3 are relatively hard to solve with deeper counterexamples, where vender1-2 belong

to types in between. In all the six designs, STMs are affiliated with 2 parallel processes, and

we set the BCS number as 1 (i.e., c bd in Algorithm 4 is 1). The check starts from 10 and is

incrementally increased by 10 until 50/100 or a counterexample is found. (i.e., inc in Algo-

rithm 4 is 10). Totally, there are 210 BMC instances. The environment for the experiments is

a Windows PC with Intel Core i7 CPU (virtually 8 cores) and 24 GB memory.

In the experiments, we compare the performance of our proposed approach (called hybrid

G2 below) with those of the state-of-the-art SAL infinite bounded model checker (SAL-inf-

bmc) [91, 92], and the early version of G2 (called original G2 below) [63] that implements

the basic BMC method described in [10]. SAL-inf-bmc is chosen because, to our knowledge,

it is the only state-of-the-art BMC model checker that could directly read as input and check

models that use unbounded variables (or in other words, with infinite state space), and STM

designs are typically such models. We manually translate the STM designs as general state

transition machines into SAL’s specification language.

In Table 7.3, we show the verification results for all the six designs and properties when

bound is set to 50 or 100. The first column specifies the name of the problem, the second is
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Figure. 7.1: The Verification Results for Selected BMC Instances.
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Figure. 7.2: Scatter Plots of the Verification Results for All BMC Instances.

the property name and type, the third is the bound set, the fourth is the verdict of the problem,

and the next three columns show the checking time used. Note that since SAL-inf-bmc does

not support gradually increasing the depth with 10 (the -it parameter increases 1 at each iter-

ation), we manually record the accumulative time incrementally. From the results of cruise

and vend1-2, we found that the performance difference for SAL-inf-bmc and hybrid G2 is

not much for revealing shallow counterexample or easy-to-solve problems. However, from the

results of exch1-2, which contain medium-sized (50 depth) counterexamples, hybrid G2 out-

performs SAL-inf-bmc and original G2 by several orders of magnitude for safety properties.

This is consistent with the observation made in [28] that bounded explicit-state checking, when

it did finish, outperforms SAT-based BMC on safety properties. For liveness properties, hybrid

G2 performs best. Such performance difference is exaggerated in exch3, which contains deep

counterexamples and is hard-to-solve, for both safety and liveness properties. Furthermore,

to show the tendency for performance difference, we illustrate in Figure 7.1 the verification

results for some selected BMC instances. In Figure 7.2, the verification results for all the 210

BMC instances are illustrated.

Note that Yices [75] is used in SAL-inf-bmc as its backend SMT solver. Since Yices

cannot solve formulas in SMT-LIB2 language, the format that G2 utilizes, we did not conduct
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the experiments by changing G2’s backend solver from CVC4 to Yices, which may give a

more convincing and fair comparison between hybrid G2 and SAL-inf-bmc. However, Yices

is a commonly-acknowledged efficient SMT solver, and we thus believe our results are to

some extent reasonable. Or, at least, the comparison between the original and hybrid G2 can

demonstrate the effectiveness of our proposed approach in this paper.
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Figure. 7.3: Comparison of Speedup Effects by Different Core Numbers.

To further evaluate the speedup effects obtained from multicore computation, we show the

experimental results of a large STM design taskCopy for two liveness properties. The example

taskCopy used here is relatively hard to solve or with deeper (90 steps) counterexamples.

The verification results of Hybrid G2 with core numbers ranging from 1 to 8 are illustrated in

Figure 7.3.

7.3 Evaluation of Distributed SMT-Solving Architecture

To evaluate the efficiency of our improved distributed SMT solving implementation pro-

posed in Chapter 6.6, we conduct a serial experiments on six groups of benchmarks down-

loaded from the Satisfiability Modulo Theories Library (SMT-LIB) [93] that conform to ver-

sion 2.0 of the SMT-LIB format. The benchmarks are same as our previous work which are

AUFNIRA, QF UFLRA, AUFLIA, QF UFLIA, QF LRA-1, and QF LRA-2. We will not go into
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the details of those benchmarks, which are basically not relevant to the topic of this paper.

Please refer to [93] for the meaning of those benchmarks. We deploy the program of the above

described algorithms in four PCs running Windows 7 Enterprise Edition with MPICH 2.0 in-

stalled. One of the PCs is used as the server and the others are as clients. The hardware of the

PCs are as follows: PC1 has a quad-core Intel Xeon CPU (2.66GHz) with 8GB RAM; PC2

and PC3 have a quad-core Intel i7 CPU (2.7GHz) with 8GB RAM; PC4 has an Intel Core2

Duo dual-core CPU (1.8GHz) with 2GB RAM. All the four PCs are connected to 100MB

Ethernet. To evaluate the effective of our improvement, we use our prototype to solve those

benchmarks and compare the results of our previous work. As we mentioned in the previ-

ous section, the four benchmarks, which are AUFNIRA, QF UFLRA, AUFLIA and QF UFLIA,

are easy problems and the benchmarks QF LRA-1 and QF LRA-2 are hard problems. We de-

sign some new experiments beside the previous one. Combined-1 is a combination of easy

problems with hard problems and Combined-2 is a set of 3000 easy problems. We use our

previous algorithm and the new algorithms on solving these benchmarks respectively to prove

the effectiveness of the latter.

Firstly, we conduct same experiments using the improved implementation for benchmarks

which are used in our previous experiments [79]. We perform a serial solving experiment

for each benchmarks using PC1. The SMT files are solved one after another in a serial way.

Then the clients are connected to the server one by one and the same benchmarks are solved.

PC4 is used as the server. Secondly we perform the same procedure mentioned above on new

benchmarks Combined-1 and Combined-2. The results are shown in Figure 7.4. The verti-

cal rectangular marked as grey denotes the solving time of serial solving. The blue vertical

rectangular presents results using previous algorithm. The red vertical rectangular denotes the

solving time by using our new algorithm with two improvements. It is obvious that our im-

provements are useful on accelerating our previous distributed SMT solving implementation,

especially for combined benchmarks. In Figure 7.4(e) and 7.4(f) when we add clients to 2 and
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Figure. 7.4: The Distributed SMT solving Results.
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3, the improvement seems elusive. The reason is that these two benchmarks contain one or

more hard problems which take nearly 300 seconds to be solved. In other words, the limit of

distributed solving time is about 300 seconds no matter how many clients are connected.
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Figure. 7.5: Comparison of Speedup Effects by Different Core Numbers
in Distributed Environment.

Our new improved architecture gives us the ability to control the usage of CPU cores more

precisely. This means that we can add threads involved in parallel solving procedure one

by one, in an easier way than before. We conduct experiments with Easy Benchmarks and

Combined Benchmarks to investigate the influence by increasing of CPU cores. We use PC4

as the server and other PC as clients. At first one client is connected, but only one CPU core

is used, the second time the number of the CPU cores is increased to 2. Four cores will be

used on each PC, after one PC reached the max value of used CPU cores, new client will

be connected. We increase the CPU cores by one each time and repeat this procedure with

two benchmarks respectively. The results are shown in Figure 7.5(a) and Figure 7.5(b). The

results show that the curve of solving speed decreases sharply until the fourth CPU cores are

involved. After that, the curve becomes flat. We have mentioned the possible reason in the

paragraph above. For solving the Combined Benchmarks, the solving time of the hardest

single problem is a limit of distributed SMT solving. For Easy Benchmarks, due to the CPU

cores are on different PCs which are distributed in networks, the more CPU cores involved,
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the more communication will take place. Considering the time consumption resolving a single

easy problem and the overhead taken by network communication, the whole communication

time consumption will be the predominant factor. In other words, if the solving target is

determined, the whole solving time consumption could not be decreased always by simply

adding more clients.

7.4 Summary

In this Chapter, three groups of experiments are presented to evaluate the correctness of

the encoding approach for HSTMs which communicate by message passing, the effectiveness

of the acceleration techniques proposed in previous chapters, respectively. The experimental

results show that the efficiency of SMT-based BMC which implemented on Garakabu2 are

increased significantly. The encoding approach are working correctly.
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Chapter 8

Conclusion and Future Work

This chapter concludes this thesis and describes future directions.

8.1 Summary of the Thesis

This thesis focuses on the approaches of accelerating SMT-based bounded model checking.

We proposed one formalization method which is used to model an embedded software design

into SMT formulas. Then we proposed three algorithms to accelerate the SMT-based BMC and

find the shortest counterexample as soon as possible if the properties are not satisfied. Finally,

we present a distributed SMT solving framework with the purpose of accelerating SMT-based

BMC further more. In the following, we summarize the contributions of this thesis, which are

all implemented in Garakabu2, an SMT-based bounded model checker.

First of all, we provide formal verification support to HSTM designs. For this purpose, we

formalize structures and behaviors of HSTM designs. Consequentially, we propose a symbolic

encoding method, through which an HSTM design could be Bounded Model Checked using

SMT solver. Furthermore, we have implemented the formal verification of software designs

in HSTMs on a tool named Garakabu2. The results demonstrate that the encoding approach

is correct. This work reveals the low efficiency shortcoming of our previous solving methods
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which uses the classic BMC algorithm.

Second, the approaches to accelerating SMT-based bounded model checking are proposed.

The approaches center around an unrolled bounded reachability tree (BRT) of a HSTM design

which is built with stateless explicit state exploration (that is, states are not saved during ex-

ploration). Specifically, reachability of invalid cells (representing undesired states) of a HSTM

design, which occurs within the bound concerned, could be discovered during construction of

the BRT, and furthermore, if no such occurrence, the constructed BRT could be utilized to rule

out unnecessary subformulas of a BMC instance and thus make the instance easier to solve.

By such combination,we could enjoy the benefits of both explicit exploration and BMC with

respect to speed as well as memory. In addition, we observe that much BMC verification time

is consumed by iterative search (i.e., gradually increase the search depth till the concerned

bound), which is necessary for finding the shortest counterexamples. We propose a binary

search algorithm to avoid iteration but still guarantee to find the shortest counterexamples,

if any. We have implemented these approaches in Garakabu2. The preliminary experiments

show that verification could be accelerated substantially.

Third, bounded context switch (BCS) [16, 17], an under-approximation technique, is inte-

grated into stateless explicit-state exploration (SESE). Such integration thus allows SESE to

explore limited number of context switches of multiple parallel processes in the system so as

to reduce the state space. Further, rather than encoding all legal execution paths, which are

memorized during SESE, into a single (usually large) formula and inquiring its satisfiability

of SMT solvers, we introduce heuristic predicates and use them to classify the paths into path

clusters. Each path cluster can be considered as an independent BMC instance, which is usu-

ally smaller and easier to solve. Furthermore, multiple such BMC instances can be solved

concurrently with multiple SMT solvers running on multicores. Since no information sharing

is needed among these independent BMC instances, once a counterexample is found, the com-

putation on all other cores can be safely terminated. In addition, rather than directly applying
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SESE and BMC to a user-specified bound, we gradually deepen the checking depth from 0

with a fixed incremental number. Such iteration finishes until a counterexample is found or

the bound is reached. In this way, counterexamples that are shorter than the user-specified

bound can be revealed while avoiding expensive computation between the depths where the

counterexample is found and the specified bound.

Fourth, a distributed SMT solving architecture is presented. The second and third contri-

butions affect on the first stage of SMT-based BMC by reducing the reachable states of target

system. The distributed SMT solving architecture affects on the second stage of SMT-based

BMC. The whole BMC speed is enhanced further more by using this distributed solving archi-

tecture. The basic idea of this contribution is utilizing the computational capacity of multiple

PCs. If the state space of the target system could be decomposed into smaller sub-state spaces

which are encoded into formulas respectively, we may use solving these formulas distribu-

tively. The experiments shows that the solving efficiency can be increased substantially at the

most cases.

8.2 Future Work Directions

We are actively developing methods to accelerate SMT-based BMC. In this section, we

discuss some on-going and works in the future.

8.2.1 Tool Development

The first possible direction is that refine the formalization and encoding of message-passing

HSTM designs. As could be observed, verification with the approach proposed in Section 3.2

of Chapter 3 is still not fast enough. One of the main reasons might be that our encoding of

message queues and corresponding operations generate too many additional variables (espe-

cially for large queue size), and thus make the BMC problem hard to solve by SMT solvers.
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And a further improvement on the usabilities of Garakabu2 for on-site software engineers is

under consideration. One direction is to further ease the specification of LTL properties. We

have been developing an auxiliary tool call LTL Editor, through which LTL properties could

be draw based on graphs.

The second possible work in tool development is integrating the Distributed SMT solving

framework on our bounded model checker Garakabu2. Up to now, Garakabu2 has the ability

to perform bounded model checking parallel in one PC utilizing multi-CPU cores. With the

algorithm we proposed in Chapter 5, we can divide the state-space of the system to several

subspaces. These subspaces can be model checked in parallel even distributed. By imple-

menting distributed model checking, we expect that the solving efficiency and the scalability

of Garakabu2 could be increased significantly.

In addition to the techniques and methods proposed in Chapter 6, there are other meth-

ods that can be used for improving the efficiency of distributed SMT solving. The methods

proposed in this paper are only for the client side. However, we can actually further improve

the efficiency from the server side as well. In our current implementation, the number of re-

quests from clients is four times higher than before, which may make the server get stuck.

The server responds to the clients’ requests in a serial way while parallel I/O can be used to

give the server an ability to respond to various requests at the same time. Currently, the server

randomly chooses files to send to the clients without considering the computation ability of

different clients. Another possible idea is that the sever could use other optimized file choos-

ing strategy, e.g., by the size of files, so as to avoid dispatch hard problems to weak clients.

We will investigate those possibilities in the future.

8.2.2 Other Accelerating Techniques

The BRT-based approach may also suffer from saturation for large bounds. Thus, reduc-

ing the number of paths of BRT becomes one direct solution for this. We plan to combine
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techniques for reducing paths, e.g., representatively partial-order reduction [48]. In addition,

actually, the BRT built before carrying out BMC provides a platform for applying different ex-

plicit model checking techniques. We plan to follow some techniques from the most advanced

explicit model checkers like SPIN [48] and PAT3 [94, 95]. HSTM designs are essentially

concurrent systems with possibly exponential number of interleaving. The bounded context-

switch [96] has shown its effectiveness to discover counterexamples for large concurrent sys-

tems. We plan to investigate this technique as well. Last, as mentioned in Section V, we plan

to study [57] to further investigate other tight combination of explicit exploration and BMC

(symbolic) techniques.

We plan to follow the abstraction techniques implemented in the state-of-the-art explicit

model checkers like SPIN [48] and PAT3 [94] and integrate those techniques into our explicit

state exploration procedure to further reduce the state space to be solved with BMC. Rep-

resentatively, as an example, partial order reduction (POR) [9] is an effective technique for

decreasing the number of interleaving sequences, and its combination with BCS has been dis-

cussed in [17]. Our explicit exploration is stateless but path information is remained. How to

integrate POR into such a stateless exploration for verifying LTL properties is to be investi-

gated. For the engineering aspect, we have found that much time is used for encoding large

LTL properties at deeper depths. We are now optimizing our implementation of the encoding

approach proposed in [71] and investigating alternative encoding approaches.
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