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ABSTRACT 

Even though not always as spectacular as earthquakes and tsunami, landslide is of the 

serious natural hazards since rainfall-induced landslides frequently occur during the rainy 

season in Indonesia. There are 3307 fatalities caused by landslides from 1998 to 2013 with 

annual average of 207 fatalities per year. Indonesia is also listed as the top three countries 

with the highest percentage of landslide fatalities in 2003, 2007 and 2008. Therefore, 

landslide risk management is an important issue to mitigate disaster and there is an 

increasing awareness toward the need of landslide prediction and risk assessment tools due 

to the high number of annual fatalities in Indonesia. 

The shift from focusing on disaster response to enhancing risk reduction of disasters has 

been started for disaster mitigation paradigm since 2007 when a law called Undang-Undang 

24/2007 was enacted, which was driven by scientific society and government awareness after 

post-tsunami 2004 emergency response and subsequent rehabilitation and reconstruction 

phase. Risk analysis, as a basis for risk management, is an important issue in the Law. 

However, compared with developed countries, the developing country like Indonesia has no 

adequate landslide inventory available, which is essential for hazard and risk analysis. Also, 

the technology and know-how of quantitative landslide risk analysis are not well established 

in Indonesia. For this reason, this study aims at (1) proposing an approach for field 

investigation to obtain the landslide data and generating a landslide inventory database 

which is necessary in risk analysis; (2) developing a technique of landslide susceptibility 

zoning based on the inventory map; (3) proposing a technique to infer rockfall source from 

rockfall inventory (4) developing rockfall risk zoning based on the distribution of rock 

boulders from the past rockfall events and the landform classification.  

The thesis comprises the following chapters. 

Chapter 1 introduces (1) disaster in Indonesia, (2) the shifting disaster mitigation 

policy in Indonesia, (3) the problems in landslide risk zoning in Indonesia, (4) the scope and 

objectives of this study, and (5) the organization of the thesis. 

Chapter 2 reviews terminologies used in landslide risk analysis and risk management. 

Although some terminologies are often used interchangeably, the terminology misconception 

can generate confusion for the decision maker, urban planner, stakeholders and even young 

engineer. Thus, this chapter attempts to overview the difference between susceptibility, 

hazard and risk in landslide studies. 

Chapter 3 proposes an approach for landslide inventory mapping considering 

conditions in Indonesia. It includes (1) a plan of items and parameters to be investigated 

which are necessary in risk analysis; (2) a field investigation procedure which combines the 

traditional geomorphological field survey method involving active participation from 

communities with the use of an innovative technology; (3) inventory mapping methods for 

both landslide and rockfall, which provide information related to location, landslide typology, 

landslide extents and elements at risk information; (4) statistical analysis to obtain necessary 

relationships between factors. The so-called participatory landslide inventory mapping 

method is expected to solve the problem of insufficiency of landslide inventory in Indonesia.    

Chapter 4 develops a technique of data driven landslide susceptibility zoning based on 

the inventory map. The key issues in susceptibility zoning are (1) what susceptibility analysis 
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method should be used and (2) what landslide causative factors should be considered. This 

chapter, at first, makes a comparison between the three widely used methods: a bivariate 

method called weight of evidence, a multivariate method called logistic regression and a soft 

computing called artificial neural network by using landslide data obtained from the 

participatory landslide inventory mapping. The merits and demerits of each method are 

summarized, so that the most suitable method may be taken and necessary landslide 

causative factors may be considered in Indonesia, which is important in particular to the data 

availability and the characteristic of the study area. And then, a technique is proposed by 

combining the bivariate method of weight of evidence and the logistic regression based on 

the comparison analysis. Finally, landslide susceptibility maps are made using different 

method. It is shown that landslide susceptibility map using the proposed technique is of the 

highest accuracy by means of the success rate.  

Chapter 5 proposes a rockfall susceptibility analysis method based on rockfall 

boulder inventory. The rockfall susceptibility analysis is generally carried based on potential 

rockfall sources which is identified by field investigation. However, field investigation of 

rockfall source is not always possible for some areas in Indonesia. Thus, how to analyze 

rockfall susceptibility without the data of potential rockfall source is a great challenge. In 

this study, at first, a back analysis technique of GIS rockfall simulation is proposed for 

identifying potential rockfall source based on the distribution of boulders from the past 

rockfall events. Sensitivity analysis is conducted to discuss the effect of restitution 

coefficient, a major parameter related to the rebounding characteristic of a falling boulder in 

the simulation. And then, reliable trajectories, frequency and energy of rockfall are estimated 

once the potential rockfall sources are identified. Both frequency and energy map obtained 

from trajectory simulation represent the physical characteristic of rockfall movement and 

rockfall susceptibility degree. 

Chapter 6 develops a technique of quantitative rockfall risk analysis by combining 

statistical and physical models based on landform classification. Since the movement 

behaviors of a falling boulder such as flying, rolling, sliding and bouncing are related to 

landform, firstly, an automated landform classification is proposed by applying unsupervised 

fuzzy k means based on a modified 9-unit model. And then, a practical formula of rockfall 

risk is presented based on landform classes. The trajectories and dynamic behavior of 

boulder when travel along the slope, and its interaction where elements are at risk are 

calculated based on the landform classes and they are used to evaluate the occurrence 

probability with particular boulder size in space and time. Finally, the risk to building and the 

risk to person inside the building are calculated based on the chance of loss (in monetary 

term) during a specified time. The results show that landform class significantly influences 

the calculated risk and the chance of loss is the highest in the landform of transportational 

middle slope. Since the result from rockfall risk analysis indicates the chance of loss during a 

specified time, it is very useful and helpful in landuse planning and in cost-benefit analysis 

of disaster mitigation countermeasure.  

Chapter 7 summarizes and concludes the results and achievements of the study. 

Problems are also highlighted for future studies. 
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CHAPTER 1 
INTRODUCTION 

1.1  BACKGROUND 

1.1.1 DISASTER IN INDONESIA 

Indonesia has been laid by a sequence of plate movements over time. There is a 

place of outstanding geological process related to the active plate tectonic movement 

(Figure 1.1). The Australian Plate is converging at an average rate of 70 mm/year in 

the 3° direction (Hutchinson, 2003) along the Java trench. It produces Sunda Arc 

which extends westward from Sumba passing through Java, Sumatera and Andaman 

Islands. Along the Timor trench, The Australian Plate is converging at an average 80 

mm/year (Hamilton, 1979) which produces Sangihe and Halmahera arc and Sulawesi 

Arc. It is also the home of 127 active volcanoes located along Sumatra, Java, Bali, 

North Sulawesi, Sangihe and Halmahera islands as a part of the Pacific Ring of Fire. 

Those make Indonesian region, which is characterized by complicated seismological 

features causing several disasters, including the latest deadly disaster Aceh Tsunami 

in December 2004 affecting 173,741 deaths and Yogyakarta Earthquake affecting 

5737 fatalities and 8904 injuries.  

Indonesia is also prone to disaster due to climatic condition. The variation of 

rainfall is often linked with the monsoons because it lies between Asia in the 

northwest and Australia in the southeast. High pressure in the Asian continent during 

winter (December to February) forces the wind to blow to the southeast where there 

is low pressure during summer in Australia. This west monsoon causes rainy season 

in Indonesia during October to March because the wind crosses the South China Sea. 

In contrast, the monsoons reverse direction from Australia to Asia, called as 
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east-monsoons, which causes dry season during April to September. Indonesia 

receives on average 1755 mm of precipitation annually or 146 mm each month. 

Drought usually occurs during the dry season; and sediment related disaster and 

flood usually occur during the rainy season. 

 

Figure 1.1 Regional Tectonic Setting of Indonesia 

Indonesia’s island arc and mountain range lying in the complex tectonic setting 

and high variation of rainfall are subjected to natural disasters, including geophysical 

disaster and hydro-meteorological disaster, killing 182.783 people during 1996-2014. 

Most of which are killed by geophysical disaster such as tsunami (92%), earthquake 

(5%) and volcanic eruption (0.2%). But, the high percentage of fatalities on 

geophysical disaster is due to Aceh Tsunami 2004 and Yogyakarta Earthquake 2006. 

Intense rainfall and weathering process may cause hydro-meteorological disaster 

such as landslide and flood which affect 1.9% and 1.2% fatalities respectively. 

Floods and landslides periodically occur in Indonesia. Landslides is ranked as the 

highest average annual occurrences and fatalities in Indonesia. 
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Even though not always as spectacular as earthquakes and tsunami, 

rainfall-induced landslides frequently occur in Indonesia during rainy season. The 

annual frequency, calculated from DIBI (Indonesian Disaster Database) 1998-2013, 

is 158 events/year (Figure 1.2). However, this data may be underestimated since 

landslides occurrences reported by DIBI are based on provincial and regency report. 

Smaller scale landslide without fatalities may not be reported in DIBI. Landslides 

caused 3432 loss lives with annual frequency fatalities 214 people/year (Table 1.1). 

Indonesia is also listed as the top three countries with the highest percentage of 

landslide fatalities in 2003, 2007 and 2008 (Kirschbaum, 2010). 

 

Figure 1.2 Number of Landslides and Fatalities in Indonesia (DIBI, 2014) 

Along with the increasing number of material and fatalities due to the landslide 

occurrence, there is increasing awareness toward the need of landslide prediction and 

risk reduction tools. Prevention and remediation as hard countermeasure are not 

always possible, especially in the rural area where settlement/housing is spread out. 

Hard measures installation in each single building will cost too much and not feasible. 

Practical considerations for the establishment of countermeasures is an important 

issue for administrators and stakeholders in the landslide prone area. It is feasible to 

map major instable areas and to take measures for avoidance, prevention or 

remediation of landslide occurrences based on observation, analysis and research. An 

integrated strategy for observation, research, assessment and management includes 
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landslide hazard mitigation from a spatial zoning point of view. The decision for 

avoidance, prevention and remediation is well approached by landslide risk analysis. 

Table 1.1 Ranking of Major Natural Hazards by Fatalities and Injuries in Indonesia 

(DIBI, 2014)  

Rank Disaster Type Fatalities Injuries 

1 Tsunami 167,780 18,860 

2 Earthquake 8,950 58,993 

3 Landslide 3,432 42,875 

4 Flood 2,190 190,333 

5 Volcanic Eruption 429 3,472 

6  Drought 2 0 

Total  314,533 533,416 

Source: Indonesian Disaster Database (http://dibi.bnpb.go.id/DesInventar/dashboard.jsp) 

1.1.2 DISASTER MANAGEMENT POLICY IN INDONESIA 

The shift in disaster management paradigm from focusing on disaster response 

to enhancing disaster risk reduction has been started in 2007 by enactment of 

Undang-Undang (Law) 24/2007. It was driven by scientific society and government 

awareness after post-tsunami emergency response and subsequent rehabilitation and 

reconstruction phase. The momentum was also appeared by the experiences of 

Nabire Earthquake 2004, Nias Earthquake 2005, and Yogyakarta Earthquake 2006 

emergency response. However, the initiative to reform the Disaster Management 

Law has been started before the earthquake and tsunami of 26 December 2004. There 

were a discussion forum between BAKORNAS PB (National Disaster Management 

Coordination and Agency), NGO’s and MPBI (Indonesian Society for Disaster 

Management) to promote national disaster management. Before the enactment Law 

24/2007, the disaster management in Indonesia were focusing on crisis management 

and disaster response coordinated by BAKORNAS PB. 

The Disaster Management Law 24/2007 enforces a systematic approach in 

disaster risk reduction that contains three phases of the disaster management cycle as 

follows: 
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1. pre-disaster planning and preparedness, including disaster risk reduction, 

mitigation, preparedness, risk assessment and contingency planning 

2. emergency response, including evacuation, search and rescue, providing 

immediate assistance, assessing damage and disaster relief 

3. post disaster management, including rehabilitation and reconstruction. 

The law also mandates the creation of the “new BAKORNAS PB”, later called as 

BNPB (National Disaster Management Agency), as a national coordinating agency 

for disaster management that is responsible for pre disaster planning, emergency 

response and post disaster management. BNPB must coordinate all contingencies, 

preparedness, mitigation, prevention, disaster management training, risk assessment 

and risk zoning. In the emergency response phase, BNPB has a responsibility to 

coordinate government, NGO’s and international organization during the emergency 

response phase. BNPB must also coordinate damage and loss assessment and 

coordinate rehabilitation and reconstruction in the post disaster phase. 

However, with the high responsibility for conducting disaster management, 

BNPB needs partners to provide all the technical support, to train technical personnel, 

and to create preventive disaster risk reduction culture in Indonesia. One of the 

representative partners to provide technical expertise in the full spectrum of disaster 

related fields is the university partner. It is expected to be an intellectual capital, 

which is able to provide technical assistance in disaster risk reduction including the 

research and technology development of early warning systems, damage assessment 

and risk analysis.  

Risk analysis, as a basis for disaster risk reduction, is an important issue in the 

Law 24/2007. Disaster prevention planning should include disaster risk data 

documentation and risk analysis. Development activities which may have high risk 

must be equipped with risk analysis. The implementation of risk analysis is closely 

related to spatial planning or landuse planning. Two other laws were also enacted in 

2007 i.e. Law 26/2007 about spatial planning and Law 27/2007 about coastal zone 

management and small islands. Both have a strong attachment to disaster mitigation. 

Law 26/2007 dictates that spatial plan documents should be based on the 

consideration of disaster mitigation measures. Law 27/2007 states that disaster 

reduction strategy has to be included in the coastal zones and small islands spatial 
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plan. Spatial planning at national, provincial and regency level is developed for 20 

years and can be reviewed once in 5 years. If a disaster happens due to the 

development in a high risk area which is not equipped with disaster risk analysis, the 

responsible parties can be fined for up to US$ 26000 or jailed up to 3 years. 

Thus, spatial planning based on disaster risk reduction is one of the primary 

issues of the Indonesia’s national development agenda to promote sustainable 

development due to the increasing frequency of disasters and continuing 

environmental degradation. In terms of landslide disaster risk reduction, regional 

development and disaster mitigation are well approached by landslide susceptibility, 

hazard and risk zoning.   

1.1.3 LANDSLIDE RISK ANALYSIS: THE PROBLEMS IN AN INCOMPLETE-DATA 

ENVIRONMENT 

Landslide risk analysis involves several steps, i.e. scope definition, landslide 

hazard identification and risk estimation. Scope definition addresses several issues 

including delineating the study area, elements at risk identification, and methodology 

selection. Landslide hazard identification addresses several issues on understanding 

physical characteristic of study area regarding to landslide processes such as 

understanding geology, geomorphology, hydrogeology and climate. It also includes 

collecting landslide data, such as landslide classification, area, volume, travel 

distance, date occurrence, and elements at risk. Hazard identification activities are 

mostly related to landslide inventory. Risk estimation deals with consequence 

analysis and frequency analysis. 

Landslide inventory is very important in the landslide risk analysis because it 

gives information related to frequency of occurrences, landslide typology, landslide 

extents and damage of elements at risk. Estimation of spatial probability, temporal, 

probability and magnitude probability is not possible without landslide inventory 

containing sufficient data of past landslide events. In Indonesia, especially where this 

research was undertaken, adequate landslide inventory is not available. It is a central 

problem of quantitative landslide risk analysis in Indonesia. Thus, producing 

landslide inventory maps and developing approaches of using those maps for 

landslide risk zoning in Indonesia are challenging task that this research focuses on.  
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1.2 SCOPE AND OBJECTIVES 

Landslide is defined, as general terminology, to describe the movement of rock, 

debris or soil down a slope due to gravitational process (Fell et al., 2008). However, 

the terminology of landslide, in this research, is used interchangeably to define 

rotational and translational slide. For the movement of the rock, we used word 

“rockfall”. Landslide hazard and risk analysis, as a soft preventive countermeasure, 

is a vital tool for disaster risk reduction in Indonesia because of the shifting paradigm 

of its disaster management from focusing on disaster response to enhancing disaster 

risk reduction. However, the major drawback of generating landslide risk analysis is 

the unavailability of landslide inventory data, which makes difficulties in estimating 

spatial probability, temporal probability and magnitude probabilities. This research 

will distinguish its analysis based on typology i.e. landslide (focusing on rotational 

and translational slide) and rockfall. Thus, the objectives of this research are: 

 (1) to propose a method of landslide inventory mapping based on available 

information or archives in Indonesia. These inventory data should include landslide 

extents and date of occurrences that can be used to estimate spatial, temporal and 

magnitude probabilities; 

(2) to compare existing landslide susceptibility zoning method using the 

proposed landslide inventory technique, to analyze the spatial association between 

landslide and a set of controlling factor, and to propose a technique how to improve 

the accuracy of the model based on the evaluation of existing landslide susceptibility 

zoning; 

(3) to propose a back analysis technique to infer rockfall source from rockfall 

inventory; 

(4) to develop rockfall risk zoning based on the distribution of rock boulders 

from the past rockfall events and the landform classification. 

1.3 THESIS ORGANIZATION 

The thesis comprises the following chapters. 

Chapter 1 introduces (1) disaster in Indonesia, (2) the shifting disaster 

mitigation policy in Indonesia, (3) the problems in landslide risk zoning in Indonesia, 

(4) the scope and objectives of this study, and (5) the organization of the thesis. 
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Chapter 2 reviews terminologies used in landslide risk analysis and risk 

management. Although some terminologies are often used interchangeably, the 

terminology misconception can generate confusion for the decision maker, urban 

planner, stakeholders and even young engineer. Thus, this chapter attempts to 

overview the difference between susceptibility, hazard and risk in landslide studies. 

Chapter 3 proposes an approach for landslide inventory mapping considering 

conditions in Indonesia. It includes (1) a plan of items and parameters to be 

investigated which are necessary in risk analysis; (2) a field investigation procedure 

which combines the traditional geomorphological field survey method involving 

active participation from communities with the use of an innovative technology; (3) 

inventory mapping methods for both landslide and rockfall, which provide 

information related to location, landslide typology, landslide extents and elements at 

risk information; (4) statistical analysis to obtain necessary relationships between 

factors. The so-called participatory landslide inventory mapping method is expected 

to solve the problem of insufficiency of landslide inventory in Indonesia.    

Chapter 4 develops a technique of data driven landslide susceptibility zoning 

based on the inventory map. The key issues in susceptibility zoning are (1) what 

susceptibility analysis method should be used and (2) what landslide causative 

factors should be considered. This chapter, at first, makes a comparison between the 

three widely used methods: a bivariate method called weight of evidence, a 

multivariate method called logistic regression and a soft computing called artificial 

neural network by using landslide data obtained from the participatory landslide 

inventory mapping. The merits and demerits of each method are summarized, so that 

the most suitable method may be taken and necessary landslide causative factors may 

be considered in Indonesia, which is important in particular to the data availability 

and the characteristic of the study area. And then, a technique is proposed by 

combining the bivariate method of weight of evidence and the logistic regression 

based on the comparison analysis. Finally, landslide susceptibility maps are made 

using different method. It is shown that landslide susceptibility map using the 

proposed technique is of the highest accuracy by means of the success rate.  

Chapter 5 proposes a rockfall susceptibility analysis method based on rockfall 

boulder inventory. The rockfall susceptibility analysis is generally carried based on 
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potential rockfall sources which is identified by field investigation. However, field 

investigation of rockfall source is not always possible for some areas in Indonesia. 

Thus, how to analyze rockfall susceptibility without the data of potential rockfall 

source is a great challenge. In this study, at first, a back analysis technique of GIS 

rockfall simulation is proposed for identifying potential rockfall source based on the 

distribution of boulders from the past rockfall events. Sensitivity analysis is 

conducted to discuss the effect of restitution coefficient, a major parameter related to 

the rebounding characteristic of a falling boulder in the simulation. And then, reliable 

trajectories, frequency and energy of rockfall are estimated once the potential 

rockfall sources are identified. Both frequency and energy map obtained from 

trajectory simulation represent the physical characteristic of rockfall movement and 

rockfall susceptibility degree. 

Chapter 6 develops a technique of quantitative rockfall risk analysis by 

combining statistical and physical models based on landform classification. Since the 

movement behaviors of a falling boulder such as flying, rolling, sliding and bouncing 

are related to landform, firstly, an automated landform classification is proposed by 

applying unsupervised fuzzy k means based on a modified 9-unit model. And then, a 

practical formula of rockfall risk is presented based on landform classes. The 

trajectories and dynamic behavior of boulder when travel along the slope, and its 

interaction where elements are at risk are calculated based on the landform classes 

and they are used to evaluate the occurrence probability with particular boulder size 

in space and time. Finally, the risk to building and the risk to person inside the 

building are calculated based on the chance of loss (in monetary term) during a 

specified time. The results show that landform class significantly influences the 

calculated risk and the chance of loss is the highest in the landform of transportational 

middle slope. Since the result from rockfall risk analysis indicates the chance of loss 

during a specified time, it is very useful and helpful in landuse planning and in 

cost-benefit analysis of disaster mitigation countermeasure.  

Chapter 7 summarizes and concludes the results and achievements of the study. 

Problems are also highlighted for future studies.
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Figure 1.3 The Thesis Organization
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CHAPTER 2  
REVIEW OF STUDIES ON LANDSLIDE RISK ZONING 

2.1 INTRODUCTION 

Risk is defined, in the Oxford dictionary of English, as possibility of future 

harms viewed from the present (Soanes and Steventon, 2005). The concept of risk is 

also used by various disciplines resulting many definitions and paradigms on how it 

is calculated either qualitative, semi-quantitative or quantitative. For example, in 

Economics and finance, risk is defined as the probability of financial asset return or 

the probability that an actual return on a financial investment will be lower than the 

expected return (Andersen, et al., 2013). In natural hazard, risk is defined as the 

probability and severity of a future harm to health, property or the environment 

(IUGS, 1997; Fell et al., 2008). More specific to the effect of natural disaster, risk is 

defined as the expected number of lives lost, injured persons, damage to property, or 

disruption of economic activity due to a natural phenomenon (Varnes, 1984; Cardona, 

2003). In application of risk analysis, they generally involve more mathematical term 

dealing with term “probability” which depend on hazard, vulnerability and elements 

at risk. Assuming their independency, it is described by the product of elements at 

risk (E), vulnerability (V) and hazard (H), expressed by the following formula 

(Varnes, 1984; Ebert et al., 2009): 

                                             (2.1.)  

Risk can be qualitative, semi-quantitative and quantitative. Qualitative risk uses a 

descriptive or word form to describe the degree of risk or the likelihood that potential 
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consequences will occur. Semi-quantitative risk is rather similar with qualitative risk, 

but it uses a numeric rating scale.  

Nowadays, geographical data related to disasters can be handled in a GIS 

(Geographic Information System) environment, even by users who are not experts in 

GIS or natural hazard field due to the advanced development and more user friendly 

GIS software. However, the terminology and methodology in landslide risk studies 

may be diverse significantly from country to country and even within the same 

country such as Indonesia. The interchangeably terminology used of susceptibility 

and hazard in the scientific literature is one of the examples. Some literatures on 

landslide hazard zoning often discuss methods and techniques on landslide 

susceptibility zoning. Landslide susceptibility and landslide hazard are also often 

used as synonymous, even though those are rooted from different concept. The 

terminology misconception between susceptibility and hazard often generates 

confusion for the decision maker, urban planner, stakeholders and even young 

engineer. 

Thus, this chapter attempts to overview the difference between landslide 

susceptibility, landslide hazard and landslide risk. The information on susceptibility 

involves mainly the spatial probability, whereas the information in hazard involves 

the spatial probability, temporal probability and landslide size (area or volume) 

probability. Some issues on landslide risk zoning are also highlighted. 

2.2 LANDSLIDE RISK 

In landslides studies, quantitative risk assessment has been applied and 

developed since long time ago by geotechnical engineer on a site investigation scale, 

such as pipeline, road, dam, oil platform, and housing. The analysis will be more 

focused on the hazard analysis of a specific slope. It uses deterministic (factor of 

safety, numerical analyses) and/or probabilistic methods, e.g. first order, 

second-moment (FOSM), first order reliability method (FORM), point estimate 

methods, and Monte Carlo Simulation (MCS). However, quantitative risk zoning in 

large areas for landuse planning in which this research focuses on seems still need 

improvement.   
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Similar to equation 2.1, landslide risk also involves hazard, vulnerability and 

elements at risk. It should comprise probability of landslide, run out behavior, 

vulnerability of property and people to landslide (Dai et al., 2002). IUGS Working 

Group on Landslides (1997) also proposed the overall framework for quantitative 

risk analysis of landslide as follows: (1) hazard analysis – analysis of the probability 

and the characteristics of the potential landslide (2) identification of elements at risk 

(3) analysis of the vulnerability of the elements at risk and (4) calculation of the risk 

from the hazard. Thus, landslide risk zoning assesses the loss of life or property or 

environmental features accounting for temporal probability, spatial probability, 

magnitude probability and vulnerability. In practice, it would not be simple to 

achieve and need detailed investigation on each risk element, i.e. hazard, 

vulnerability and element at risk.  

2.2.1 LANDSLIDE HAZARD 

Hazard can be defined as a potential condition as an effect of an occurrence to 

have an undesirable consequences or damage (IUGS, 1997). Furthermore, landslide 

hazard defined as the probability of occurrence within a specified period of time and 

within a given area of a potentially damaging phenomenon (Varnes, 1984) includes 

spatial, temporal and magnitude probability of landslide events. It is characterized by 

statements of ‘what’, ‘where’, ‘when’, ‘how strong’ and ‘how often’, demanding 

knowledge of variation in both spatial conditions, temporal and magnitude behavior 

(Glade et al., 2005). The information should include the location, size (area and or 

volume) classification and velocity of the potential landslides and any resultant 

detached material and the probability of their occurrence within a given period of 

time. It provides potential capability to describe landslide distribution spatially and 

temporally. The landslide hazard map is a tool used to portray the location of 

landslide, the predicted location of landslide, and can be used to divide the different 

level of risk areas (Guzzetti et al., 2000).  

Landslide hazard is expected to answer temporal and magnitude probability 

which are not taken into account in landslide susceptibility zoning. Generating 

landslide hazard from landslide susceptibility requires estimation of spatial, temporal 
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and magnitude probabilities (Guzzetti et al., 1999; Glade et al., 2005; Fell et al., 

2008; van Westen et al., 2008). Thus, landslide hazard analysis needs information 

about landslide susceptibility and landslide inventory containing the date of 

landslides events and area/volume of landslides. However, the date of the landslide 

events and area/volume of landslides are difficult to be included in most of landslide 

hazard maps because several factors, i.e. 1) absence of multi-temporal data of 

landslide events, 2) heterogeneity of the subsurface conditions, 3) scarcity of input 

data and 4) absence or insufficient length of historical records of triggering events 

(van Westen et al., 2006). Thus, generating landslide inventory is essential for 

landslide hazard analysis. 

2.2.1.1 LANDSLIDE INVENTORY 

A landslide inventory, called also as landslide map or just “inventory” (Guzetti 

et al. 2012), is the simplest form of landslide map (Hansen, 1984; Wieczorek, 1984; 

Guzetti et al., 1999). It is a data set that represents single or multiple events as well 

as shows the locations and outlines of landslides (Chacon 2006). Location, type of 

landslide, the volume, activity, date of occurrence and other characteristic of 

landslides in the area (Fell et al., 2008) as well as information on triggering factors 

(Godt et al., 2008) should be available in landslide inventory.  

Landslide inventory is the basis for landslide susceptibility, hazard and risk 

zoning (Carrara and Merenda, 1976; Guzzetti et al., 2000; Brardinoni et al., 2003). It 

provides spatial distribution of landslide which is useful for landslide susceptibility; 

date of occurrences for generating landslide temporal probability and information of 

area or volume for generating magnitude probabilities. Without complete temporal 

archives, it is difficult to generate temporal probability by relative times. But some 

historical inventories obtained from well archived data will give information related 

to date of occurrences. There are several methods for preparing a landslide inventory 

such as traditional methods (field survey, interpretation of aerial photograph) and 

modern techniques (interpretation of very detailed DTMs and interpretation and 

analysis of satellite imagery) (Guzetti, 2006; van Westen et al., 2008).  

Many attempts have been made to prepare landslide hazard maps based on 

traditional inventory method (Guzzetti et al., 2005; Pradhan, 2010; van Westen et al., 
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2003). Traditional method based landslide inventory is produced by interpretation of 

aerial photographs coupled with field surveys. It can be defined as geomorphological 

inventories and can also be combined with collecting historical information on 

individual landslide events called as archive inventory (Guzetti et al., 2000; 

Malamud et al., 2004). According to the availability of temporal database, traditional 

method can be classified further as historical, event, seasonal or multi-temporal 

inventories. Temporal information is usually given in relative terms, i.e., recent, old 

or very old.  

An event inventory informs landslide occurrences that caused by a single 

trigger, such as earthquake, a rainfall or snowmelt event showing the date of the 

landslides which corresponds to the date (or period) of the trigger event. Seasonal 

and multi-temporal inventories are obtained by interpretation multiple sets of aerial 

or satellite images of different dates. The main difference both of those inventories is 

the period (short/season or long period) of the triggering event. A seasonal inventory 

shows landslide triggered by single or multiple events during a single season or a few 

seasons, while multi-temporal inventory indicates landslide occurrences triggered by 

multiple events over longer periods. Similar to the event inventory, the seasonal and 

multi-temporal inventories inform the date of the landslides which corresponds to the 

period of the trigger event. Preparation of landslide inventories by traditional 

methods is a substantial challenge because it requires time and a team of experienced 

people. Galli et al. (2008) estimated that preparation of an inventory took an average 

one month per interpreter to cover 100 km
2
 area in the Umbria region of Italy. 

In some cases, it is difficult to obtain all the landslides by field survey and 

interpretation of aerial photograph, especially in a vastly inaccessible mountainous 

area. It is also often subjective, prone to error (Malamud et al., 2004), time 

consuming and difficult to carry out in forested terrain (Brardinoni et al., 2003; Van 

den Eeckhaut et al., 2005). Recent techniques of landslide inventory are 

comparatively fast, unbiased and data driven, and the outputs are also visually 

consistent. It involves interpretation of very detailed DTMs (Digital Terrain Models) 

and interpretation and analysis of satellite imagery which have been widely used to 

resolve this problem (Nichol and Wong, 2005; Mondini et al., 2011, Barlow et al., 

2006; Martha et al., 2010b; Moine et al., 2009). Automatic identification was also 
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applied to identify landslides using satellite imagery data (Barlow et al., 2006; 

Borghuis et al., 2007; Martha et al., 2010b; Nichol and Wong, 2005b; Rosin and 

Hervas, 2005). However, it is data driven, cloud problem image in tropical country 

and still expensive in developing countries. 

2.2.1.2 LANDSLIDE SUSCEPTIBILITY 

Landslide susceptibility is an estimate of spatial distribution in which landslide 

potentially may occur in an area. It shows the likelihood of occurrence of landslide in 

a given location (Corominas and Moya, 2008) and takes the output of the landslide 

inventory mapping or by computing probability of failure of the slopes. 

Susceptibility poses the spatial probability in which the landslide may occur or an 

estimation “where” landslides are likely to occur. Landslide susceptibility does not 

consider “when”, “how frequent” and “how large” landslides are likely to occur.  

 

Figure 2.1 Methods for Landslide Susceptibility Assessment 

Lanslide susceptibility zoning is usually carried out in GIS-based system. GIS 

(Geographic Information Systems) and remote sensing technology offer more 

effective and efficient data handling for modeling of the real world. It can support 

efficient and effective data capture, storage, management, retrieval, analysis, 

integration and display, and have shown great advantages to the study and mapping 

of landslide distributions and potential (Carrara et al., 1995). Recently, GIS 

technology has influenced the development of landslide susceptibility zoning and 
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given more benefits to model it (Atkinson and Massari, 1998; Westen et al., 2003; 

Huabin et al., 2005). Several methods of landslide susceptibility include knowledge 

driven, data driven, and physically based methods (Figure 2.1).  

Knowledge-driven method is classified into qualitative, whereas data driven and 

physically based methods are classified as quantitative. The assessment of landslide 

susceptibility can also be classified based on the area extents i.e. in site-specific 

location and in wide areas. In the site-specific location, landslide susceptibility 

zoning is usually emphasized on the safety factor of the slope. In the other hand, the 

assessment of the wide area is usually represented by landslide susceptibility zoning 

either in qualitative, semi-quantitative or quantitative.  

Knowledge-driven or heuristic method can be direct (i.e. 

geomorphology-landslide mapping) and indirect (i.e. index based, AHP, fuzzy logic 

and spatial multi criteria evaluation). Direct Geomorphological susceptibility zoning 

is a traditional method in landslide susceptibility zoning. It includes the identification 

of landforms related to landslide. Long experiments, fieldwork and laboratory 

analysis were done in order to provide a landslide hazard assessment. Some 

geomorphology features were analyzed, including soil properties related to the 

landslide. This work was especially done in specific geomorphology features 

presumed as the main factor of landslide such as in micrograben (Moeyersons et al., 

2003). In Indonesia, direct geomorphological hazard zoning is usually combined 

with heuristic or index-based method (Priyono et al., 2006; Kumajas, 2006; 

Mardiatno, 2001; Sutikno et al., 2002).  

Geomorphology features were analyzed through terrain mapping unit. Soil 

properties were analyzed based on terrain mapping unit in order to index the 

potential landslide hazard. This method usually did not analyze the past landslide 

occurrences or without landslide inventory mapping. It is very subjective and 

depends on the experience and the judgment of the researcher (Atkinson and Massari, 

1998; Nagarajan et al., 2000; Huabin et al., 2005). However, it sometimes can be 

used to control mathematic or statistic procedure used in landslide susceptibility 

zoning or modeling (Westen et al., 2003; Guzzetti, 2005). 

The more objective methods and quantitatively sound are geotechnical or 

physically based models and statistically based models. Geotechnical or physically 
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based models are usually based on the slope analysis, determining safety factor in the 

slope. It is usually applied in site-specific location (large scale mapping) and detail 

measurement of slope failure. The limitation of geotechnical models are that the 

model can only be applied in the homogeneous geological region (Dahal, et al., 

2007), similar landslide mechanism, and cannot be analyzed easily (Huabin et al., 

2005). It is not possible to be applied in the wide area because of the mechanical 

parameter of the slope cannot be extrapolated in the regional scale (Ruff and Czurda, 

2007)  

The statistical (data-driven) based model was widely used due to the 

development of GIS technology. The model is usually applied either based on 

bivariate, multivariate or soft computing. Bivariate involves weight of evidence (van 

Westen, 1993; Bonham-Carter, 1994; Suzen and Doyuran, 2004), likelihood ratio 

model (Lee, 2005), and favourability functions (Chung and Fabbri, 1993; Luzi, 1995). 

Multivariate model involves discriminant analysis (Carrara, 1983; Gorsevski et al., 

2000) and logistic regression (Ohlmacher and Davis, 2003; Gorsevski et al., 2006). 

Soft computing involves ANN (Lee et al., 2004; Ermini et al., 2005; Kanungo et al., 

2006) and SVM (Yao et al., 2008) 

Landslide susceptibility is an initial step towards landslide hazard and risk, but 

it can also be an an end product that can be used in land use planning (Corominas et 

al., 2013). In Indonesia, geomorphological mapping combined with heuristic 

weighting is one of the most common methods of landslide susceptibility zoning due 

to unavailability of spatial past landslide inventory data. Geomorphology approach, 

focusing on landform, material, and geomorphic processes were used in order to 

construct a landslide susceptibility map (Sutikno, 1994). Either data driven method 

and physically based method are rarely applied in Indonesia. Comparison of 

quantitative method is essential to generate the most suitable method in landslide 

susceptibility zoning. 

2.2.1.3 TEMPORAL PROBABILITY 

It is difficult, up to now, to predict exactly when landslide will occur due to the 

limitations to human knowledge of nature. Temporal probability is used as an 

approach to estimate the occurrence of landslides during a specified time in a 
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particular area (Crovelli, 2000). It can be expressed in terms of frequency, return 

period or exceedance probability. Frequency, as annual frequency, represents the 

number of landslide event in a year in an area (i.e. number/km
2
/year). The return 

period represents the average time interval of a landslide event expected to occur. It 

is an inverse of the annual probability. The exceedance probability expresses the 

probability that one or more events will occur in a certain period. Exceedance 

probability usually includes the magnitude of landslides which means the probability 

of landslides with magnitude equal or larger than a certain value in a certain period. 

Temporal probability estimation is mainly based on the availability of past 

landslide data. Temporal probability or cumulative occurrence of landslide is 

estimated based on known intervals (Hungr et al., 1999; Guthrie and Evans, 2004; 

Jaiswal and Westen, 2009). Temporal probability can also be derived by establishing 

an empirical relation between landslides event and its triggering factor, i.e. intensity 

of rainfall or or earthquake, which later called as magnitude-frequency analysis 

(Crozier, 1999; van Westen, et al., 2006). Ghosh (2011) estimated temporal 

probability, by using landslide event-days and associated daily and antecedent 

rainfall to model the temporal relationship between landslide events and the amount 

of triggering rainfall. Keefer (2002) estimated landslide occurrences by using the 

intensity of the landslide and earthquake. 

2.2.1.4 MAGNITUDE PROBABILITY 

In natural hazard studies, the magnitude-frequency relationship has been 

observed based on complete past events data i.e. earthquake and floods. It describes 

the specific relationship between the frequency of events falling in different 

magnitude classes. The well-known magnitude-frequency relationship is a relation 

between earthquake magnitude and cumulative frequency expressed by Gutenberg 

equation as follows: 

logN(m) = a – bM  (2.2) 

where N(m) is the cumulative number of earthquake events with magnitudes equal or 

greater than M, a and b are constant. 

The magnitude of landslides refers to the volume of material which may fail, 

the velocity of movement during failure, and the land area which may be affected 
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(Fell, 1994; Crozier, 1995 and Hutchinson, 1995). It is usually represented by the 

statistics of landslide sizes (area or volume) either using the cumulative or the 

non-cumulative distribution. Both indicate landslides area or landslides volume, 

above threshold, is generally well approximated by negative power law (Brunetti, 

2009). It is formally equivalent to the Gutenberg-Richter equation. The cumulative 

number of landslide is described by the equation as follows: 

NL = rVL
-α

 (2.3) 

where NL is the cumulative number of landslides, VL is the landslide volume, α is the 

cumulative power-law scaling exponent, and r is a constant. In the other hand, 

non-cumulative number-volume distribution also follows a power law: 

  
  

   

   
      

      
    

  
 

(2.4) 

Where dNL is the number of landslides in the volume interval [VL; VL+dVL] (i.e. in a 

“bin” size dVL), β is the non-cumulative scaling exponent and s is a constant. 

Non-cumulative power law distribution with exponent β>1 has exponent α= β-1 

(Guzzetti et al., 2002). Without the estimation of the expected annual frequency of 

landslide events of a given magnitude or exceeding magnitude threshold, quantitative 

hazard assessment is not feasible. 

2.2.2 LANDSLIDE VULNERABILITY 

The ability to measuring vulnerability has been increasing significantly through 

the increasing frequency of disasters and environmental degradation (Arakida, 2006; 

Wisner, 2006; Villagran de Leon, 2006). It has been increasing due to the undesirable 

for defining landslide primarily as a physical process. For example, factor safety is 

not always being able to perform the capabilities on inhibiting undesirable behavior 

(Morgenstern, 1997). It is traditionally that landslide was viewed as an isolated 

physical event and few linkages were made to link the landslide event with the 

people affected by the disaster (Bollin and Hidajat, 2006). As a kind of disaster, 

landslide is better viewed as a result of complex interaction among physical 

processes and social process. Vulnerability is an important thing to formulate social 

aspect as a result of interaction between landslide occurrence and potentially 
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damaging event. 

The vulnerability in rural area more tends to have such a tendency rather 

randomly. Since the nature of people, social structure and culture were less 

influenced by the development of technology and modernization, the natural feature 

and condition would more dominantly influence the way of life. It is related to the 

preference of the people to build settlements in the hilly and rural area. According to 

Whynne-Hammond (1979) the growing of settlement (village) is based on the 

combination of four factors i.e. topographical, economic, historical, and cultural.  

The conceptual framework of vulnerability has been proposed by several 

authors in order to systematize the definition and to make relevant indicators to 

measure it. (Birkmann, 2006) explains several conceptual framework of vulnerability, 

i.e. the double structure of vulnerability as defined by Bohle, vulnerability within the 

framework of hazard and risk, and vulnerability based on the UN/ISDR framework 

for disaster risk reduction.  

The double structure of vulnerability indicates two major sides of vulnerability, 

i.e. internal and external side. Internal side relates to the capacity to anticipate, cope 

with, resist and recover from the impact of hazards; whereas external side relates to 

the exposure to risks as an impact of hazards. It seems that exposure, coping capacity, 

and response capacity should be analyzed simultaneously. In contrast, vulnerability 

within the framework of hazard and risk defines that vulnerability is defined 

separately with coping capacity and exposure. It results in the formulation of risk as 

the sum of hazard, exposure, vulnerability, and capacity measures. Therefore, 

vulnerability is defined as one component of disaster risk. Moreover, (UN/ISDR, 

2004) defines vulnerability as a key factor, a tool, and a preconditioning to determine 

risk. It is divided into physical, environmental, social, and economic components.   

Vulnerability can be defined as the condition increased the susceptibility of the 

community as the impact of hazard, which is determined by physical, social, 

economic and environmental factors or process (UN/ISDR, 2004). Similar with 

UN/ISDR, ADPC (2004) divides the factors of vulnerability into four types: 

1. Physical vulnerability (building age, construction, material, infrastructures, 

lifeline facilities) 



 

24 

 

2. Social vulnerability (risk perception and way of life related to culture, religion, 

ethnicity, social interaction, age, gender, attitude of population property) 

3. Economic vulnerability (income, investments, potential loss of stock) 

4. Environmental vulnerability (water, air, land, flora and fauna) 

Varnes, (1984) defines a vulnerability definition subjected to landslide as the 

degree of loss to a given element at risk resulted from the impact of the natural 

phenomenon of a given magnitude. The vulnerability degree is expressed on a scale 

from 0 (no damage) to 1 (total loss). Elements at risk of landslides can be settlement 

building, properties, population, and public services in a given area. Thus, landslide 

vulnerability can be viewed as intrinsic feature that determines the degree of loss to a 

given element at risk as an impact of landslide which can be measured through the 

proxies of physical, social, economic, and environmental dimension. 

The landslide hazard map will be more valuable with the analysis of landslide 

vulnerability in order to develop landslide risk. Vulnerability is related to the 

consequences of the impact of disaster which is generally measured by damage or 

loss (Glade, 2003). Therefore, it is important to define the degree of vulnerability in 

each type of landslide. The degree of vulnerability will also be different related to the 

ability of individual, community, or society to cope and to anticipate the impact of 

disaster. When the disaster happens, more complex systems are usually involved to 

tackle down the problem (Bell and Glade, 2004). It includes the physical, social, 

economic, and environmental dimension. Both landslide vulnerability and landslide 

risk assessment will be more informative to be represented as a map processed by 

GIS.    

2.3 CURRENT ISSUES IN LANDSLIDE RISK ANALYSIS 

Several issues in quantitative landslide risk analysis include developing 

technique in inventory mapping, particularly in a data scarce environment, selecting 

methods for landslide susceptibility assessment, and developing approaches for 

landslide risk analysis. It varies depending on the availability of secondary data, 

geomorphological characteristic, and landslide typology. The availability of data 

input is very important prior to landslide risk analysis. It can affect the overall  

methodology or approaches applied in the  landslide risk analysis. Despite the 
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availability of landslide inventory, geomorphological characteristic of the study area 

should also be considered prior to selecting suitable landslide susceptibility and risk 

analysis. Some approaches in landslide susceptibility and risk analysis can also not 

be applied in rockfall susceptibility and risk analysis. For example, landslide 

susceptibility assessment based on GIS and statistics uses landslide area represented 

by polygon to estimate susceptibility. Whereas, it is not suitable for rockfall 

susceptibility analysis because the dangerous zone in rockfall is represented by 

trajectory line.  

2.3.1 INSUFFICIENT LANDSLIDES INVENTORY MAPPING 

Generating landslide analysis is difficult in some areas because the 

unavailability of the landslide inventory map. However, the recent technology 

developments such as the availability of the modern field instrument, high resolution 

DTMs, high resolution satellite imagery, recent development on GIS and remote 

sensing technology have made generating landslide map easier. But, the selection of 

this technique should be carefully reviewed based on the purpose, the extent of the 

study area, the scale of base maps and analysis, resolution and characteristics of the 

available imagery, and the skill and experience of the interpreter (Guzetti et al., 2000; 

van Westen et al., 2006). Mapping landslide through field survey is the oldest 

technique for landslide inventory mapping and considered as the most accurate 

technique for mapping fresh landslide events. But it is difficult, by using field survey, 

to recognize old landslides in the field where the natural process (e.g. erosion, 

vegetation) and the anthropogenic activities (e.g. urbanization, road construction, 

ploughing) are exist. The use of aerial photograph interpretation is also difficult in 

Indonesia due to unavailability of multiple sets of aerial photograph in the same area 

and different time. In the other hand the use of recent technology such as very high 

resolution of DTMs and remote sensing imagery faces problems related to budget 

limitation and cloud problem in remote sensing images. Thus, combination 

techniques are needed to map landslide events either old or recent landslide events. 
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2.3.2 SELECTING METHOD IN LANDSLIDE SUSCEPTIBILITY 

Quantitative statistical analysis has been widely applied as a standard method for 

landslide susceptibility zoning in wide areas (regional scale mapping). It includes 

bivariate statistic, multivariate statistic and soft computing. Bivariate analysis 

assumes that the presumed controlling factors of landslide are not interrelated each 

other (Suzen and Doyuran, 2004). It is a robust and flexible method, but has several 

limitations, including over simplification of input thematic data related to landslides 

and loss of data sensitivity of controlling factors (Thiery et al., 2007). Bivariate 

statistical methods can also be used to determine which factors or combination of 

factors play a role in the initiation of landslides.  

 In the other hand, multivariate analysis assumes that the presumed controlling 

factors of landslide are interrelated each other. It determines the relative contribution 

of each landslide causal factor in the presence or absence of past landslide events 

(Dai et al., 2001; Süzen and Doyuran, 2004; Ayalewand Yamagishi, 2005; Nandi and 

Shakoor, 2009). Multivariate statistical analysis can be used to predict a result 

measured by a binary variable such as the absence or presence of landslides based on 

a set of one or more landslide causal factors as independent variables. The 

independent variables can be nonlinear, continuous, categorical or a combination of 

both continuous and categorical; and does not to be normally distributed. 

Soft computing techniques were used in the assessment of the landslide 

susceptibility because of a limitation such as insufficient knowledge about the area of 

interest. Its computing procedure has the ability to handle imprecise and fuzzy data 

with continuous, categorical and binary data without violating assumptions and also 

independent of the statistical distribution of the data. The purpose of soft computing 

technique, i.e. ANN, is to build a model of the data-generating process so that the 

network can generalize and predict outputs from inputs that it has not previously seen 

(Lee et al., 2001). 

One of the main advantages of data driven landslide susceptibility is the easily 

updating of the landslide susceptibility assessment procedure and also relatively easy 

to apply for land-use planning. However, it can be affected by shortcomings such as 

the assumption that landslides occur due to the same combination of factors 
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throughout a study area, spatial factors can vary widely in areas with complex 

geomorphological settings, and the lack of suitable expert opinion on landslide 

processes and causal factors (Corominas et al., 2013). Selecting method, i.e. either 

bivariate, multivariate or soft computing is essential to apply for landuse planning 

based on complete landslide inventory. 

2.3.3 ROCKFALL SUSCEPTIBILITY ZONING METHOD 

Several attempts of rockfall susceptibility zoning have been carried out through 

several ways, relatively similar to landslide susceptibility zoning, i.e. heuristic, 

statistic and trajectory-energy/velocity approaches. Heuristic methods involve 

geomorphological analysis and rating based approaches. Field work and photo 

interpretation are the main sources of the geomorphological analysis for determining 

the trajectories of rockfall. Geomorphologic elements connected to rockfall are taken 

into account to delineate landscape that is susceptible to rockfall. It is subjective and 

need well experienced geomorphologist. Weight of each element is also added to 

determine the rockfall susceptibility based on rating approach (Romana, 1993; 

Pierson et al., 1990; Hoek, 2007). The mapping unit used in geomorphological 

approach is usually geomorphological unit or landform. For example, Sasaki et al., 

(2000) generated land condition map showing geomorphologic element which is 

susceptible to rockfall. 

Statistic approaches such as logistic regression using pixel/mesh unit was also 

applied in rockfall susceptibility zoning (Shirzadi et al., 2012). But, it is not widely 

applied, as in landslide susceptibility zoning, due to difficulties in delineating 

rockfall affected area. Single rockfall may only affect a narrow area as a trajectory of 

rockfall movement. The most common method in rockfall susceptibility zoning is a 

trajectory-energy/velocity modeling (Guzzetti et al., 2002; Lan et al., 2007; Chen, 

2003; Agliardi and Crosta, 2003). It is a quantitative approach employing computer 

simulation to calculate probability of reach, velocity and the kinetic energy 

distribution at each point of the slope. The propagation is dependent on slope 

topography, lithology, mass block shape and mass. Some GIS rockfall models do not 

include the shape and size of the rockfall. In a scarce data environments, problems 
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may arise because the mass and volume of rockfall are unknown and exact rockfall 

sources are difficult to be identified. Zoning area is sometimes not fixed due to many 

scenarios involved when running the simulation. Many uncertainties and 

assumptions (i.e. source area, input parameter, the number of runs) may affect the 

result.  

2.4 CONCLUSIONS 

Landslide risk analysis comprises several terminologies which are used 

interchangeably and often generates confusion. It includes risk, hazard, inventory, 

susceptibility, temporal probability, magnitude probability and vulnerability. 

Understanding terminologies in the landslide risk analysis is important in which 

allows scientists and engineer quantify landslide risk in an objective way, 

reproducible and the result can be compared from one region to another region. The 

confusion may also arise when there are available methodologies applied for 

different landslide mechanism and typology. Generating landslide inventory, 

distinguishing landslide typology for different method on risk analysis, and selecting 

an appropriate method for susceptibility are among the current issues which should 

be taken into account in the quantitative landslide risk analysis.  
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CHAPTER 3 
GENERATING SPATIAL LANDSLIDE DATABASE BY USING 

PARTICIPATORY INVENTORY MAPPING: AN EXAMPLE IN PURWOSARI 

AREA, YOGYAKARTA, JAVA 

3.1 INTRODUCTION 

One of the recent progress of Indonesia’s disaster management after the 

enactment of Undang-Undang (Law) 24/2007 is the availability of online Indonesian 

Disaster Data and Information Database (DIBI) in http://dibi.bnpb.go.id. DIBI was 

launched on 29 July 2008 and is housed within the newly established National 

Disaster Management Agency (BNPB). It is expected that, by utilizing DIBI, all 

relevant stakeholders can successfully implement disaster management planning at 

every stage of the disaster management cycle and support disaster reporting and 

monitoring at national and sub-national level. There is historical disaster information 

provided by DIBI, including the occurrence, magnitude and the impact of disaster for 

both natural and man made disaster. 

The landslide database provided by DIBI includes date of occurrence, location, 

and impact. The impact information is more detail than others, including the number 

of deaths, missing, injured, affected, evacuated and elements at risk 

damaged/destroyed. Even though DIBI was intended to enhance disaster 

management planning at every stage of the management cycle, it still seems a step 

too far. Landslide database in DIBI is still focusing on disaster response rather than 

preparing data for pre-disaster planning and preparedness. The database is also 

limited to disaster with 1 or more people reported killed, 100 people reported 

affected, a call for international assistance and declaration of a state of emergency. 

Upgrading the landslide database in DIBI is needed to support pre-disaster planning 
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and preparedness, including disaster risk reduction, mitigation, preparedness, risk 

assessment and contingency planning. 

For landslides database, the upgrading should include the information about 

location (coordinate), type of landslide, landslide volume, state of activity, date of 

occurrence and other characteristic of landslides in the area as well as information on 

triggering factors for all landslides, called as landslide inventory (Guzzetti, 2000; 

Fell et al., 2008). Landslide inventory is a pre-requisite for landslide susceptibility, 

hazard, and risk zoning. The spatial relationship between landslide area and the 

environmental causative factors is a key to investigate the landslide susceptibility, 

which later can be used to investigate landslide hazard by incorporating with 

recurrence or frequencies of landslides. Landslide inventory can also be utilized to 

investigate the statistics of landslides and the evolution of the landscape. There are 

several methods to prepare a landslide inventory such as geomorphological field 

mapping, visual interpretation of aerial photographs, interpretation of satellite 

imagery, and analysis of surface morphology (Guzzetti, 2014). However, these 

methods are sometimes not possible to be applied in Indonesia. 

Landslide is an important geomorphological feature and must be included in 

geomorphological map. Thus, geomorphological field mapping is the oldest method 

of landslide inventory. It is the most possible method to be applied in Indonesia. 

However, previous report and landslide historical data should be available prior to 

geomorphological field mapping. It is sometimes difficult even costly and time 

consuming to find landslide location, especially for old landslide without initial data, 

such as previous reports, internal database or tentative landslide map obtained from 

the interpretation of ancillary data. Identifying the boundary of landslides through 

field investigation is also difficult where landslides are covered by vegetation or 

dismantled by erosion and human activities (Guzzetti, 20014). 

Aerial photograph interpretation is the most popular method and has been used 

extensively to investigate landslide. The investigation is usually based on visual 

interpretation using a stereoscope. Simultaneous consideration and synthesis of 

multiple different criteria such as shape, pattern of objects, color/tone, shadow, 

texture and association/site of landslides are used to recognize landslides in the aerial 

photograph. The interpretation may vary among interpreter and prone to subjectivity 
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of interpreters because the unavailability of standard criteria. Generating temporal 

landslide inventory in Indonesia by aerial photograph interpretation seems also 

difficult due to unavailability of multi-temporal aerial photographs especially in hilly 

and mountainous area. The aerial photograph is often only available in a single year 

and is not regularly updated.  

The unavailability of the temporal aerial photograph could be substituted by 

satellite imagery. Very high resolution (VHR) panchromatic may represent an 

alternative to conventional aerial photographs (Weirich and Blesius, 2007). Fused 

higher resolution panchromatic image with the lower resolution multispectral image 

to obtain a single high resolution color image is also possible in order to improve the 

visual interpretation capacity of satellite imagery. However, some problems may 

arise where most of the imagery covered by cloud since Indonesia is a tropical 

country. It is possible to remove cloud by some techniques with another scene of 

satellite imagery, but it can also remove landslide features. For example, if satellite 

imagery is not recorded after landslide happened, the old landslides are often 

partially or totally covered by vegetation. Mixed landuse in Indonesia can also affect 

misinterpretation of landslides feature using satellite imagery. 

Analysis of surface morphology is the most  recent trend in landslide 

inventory mapping due to the availability of very high resolution of DEMs (Digital 

Elevation Models) derived from airborne laser profiler or Light Detection and 

Ranging (LiDAR). After a landslide occurs, the surface topography changes and 

leaves a distinct signature (Pike, 1988). Digital representations of the topographic 

surface were employed to characterize and different landslide morphology and to 

investigate the location and distribution of landslide activity (Schulz, 2004; Chen et 

al., 2006; Schulz, 2007; Booth et al., 2009; Kasai et al., 2009; Derron and 

Jaboyedoff, 2010; Razak et al., 2011). It can be employed by visual interpretation 

(Haugerud et al., 2003; Chigira et al., 2004; Schulz, 2004; Chen et al., 2006; 

Haneberg et al., 2009) or automatic or semi-automatic (Sato et al., 2007; Booth et al., 

2009; Kasai et al., 2009). Also, some authors integrated DEM with satellite imagery 

to obtain a 3D view of the terrain, which can be visually interpreted to identify 

landslides (e.g. Nichol et al., 2006). However, analysis of surface morphology by 

very high resolution of DEM is still expensive and not common in Indonesia. 
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In this paper, the author adapts several methods of landslide inventory and 

proposes a landslide inventory method, so called participatory landslide inventory 

mapping, in order to provide a nearly complete landslide inventory data over a 33 

year period (1979 to 2013) in the Purwosari Area, Java, (Indonesia). The nearly 

complete landslide database is employed to generate statistics of landslides, 

including area, volume, slope, runout, and exceedance probability. It is also used as a 

basis for landslide susceptibility zoning (Chapter 4) 

3.2 PARTICIPATORY LANDSLIDE INVENTORY MAPPING 

Landslide inventory map is the simplest landslide map. This can be easily 

understood by earth scientist, city planners, and decision makers. Landslide 

inventory map shows the location and the type of landslide occurrences. Finally, it 

can be used as information to construct hazard map (Galli et al., 2007). The landslide 

inventory map can also record landslide occurrences for several years by compiling 

with historical landslide data. Conventional approaches to obtain landslide inventory 

maps are usually conducted by interpreter who interpret remote sensing data without 

profound knowledge of local resource conditions. Limited field experience possibly 

results in inaccurate delineation and misinterpretation of landslide polygon. The 

objective of participatory landslide inventory mapping is to enable villagers/local 

people to carry out the interpretation of aspects of their experience. In this process 

local people show the exact boundary of past landslide events. The information will 

later be digitized and geo-referenced. Involving local people as eyewitnesses are 

expected to improve the accuracy and precision of data measurement. 

3.2.1 DATA SOURCE 

An official landslide database provided by DIBI is adopted from DesInventar 

which is expected to collect disaster information at a local level (sub-district). The 

data are limited to the time, location, death toll, material/immaterial losses, and the 

number of affected people. In practical application, the landslide data is usually used 

to propose an aid which is distributed by the local government once landslide occur. 

The landslide database provided by DIBI also lacks a proper georeference and 

dimension (size and volume) that is essential for landslide hazard and risk 



 

43 

 

assessment. The problem also involves the difficult decision on what extend of 

landslide or people should be affected to be counted in the database. Thus, the 

landslide database provided by DIBI are also often different with the disaster register 

in the sub-district level or village level (some regions are not available).  

The author employed a disaster register obtained from Purwosari Area local 

government as a basis of participatory landslide inventory mapping. The disaster 

register is a database generated by Purwosari local government based on the report 

from local people once a disaster occurs. It involves all disaster types. This data is 

used to distribute emergency response supplies such as medicine, blanket, instant 

noodle, rice, etc. Since the data focus on the emergency response phase, the 

information also mainly focuses on the time, location (name of the village), the 

number of people affected, and estimated loss. It provides a valid information on the 

occurrences, time, location, and estimated loss, but it lacks a proper georeference and 

dimension.  

 

Figure 3.1 Number and Estimated Losses based on Purwosari Area Disaster Register 

For landslide events, there were 472 landslides reported by local people from 

1978-2011 with total loss 1,796,794,32 IDR. It means that there were 14 landslide 
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events/year with average loss 54,448,300 IDR/year and one landslide event can cause 

4,057,350 IDR losses (Figure 3.1). It involves all of the reported landslide events by 

local people and without the verification on what extend of the size, area, landslide 

type, triggering factor, and accurate coordinate location. 

Due to the lack of proper georeference and dimension, it is critical to conduct 

the ground check in order to provide the more complete accurate data inventory of 

landslide. In depth interview method and participatory mapping were employed to 

identify the dimension of landslides which are not documented by local government. 

Thus, the memory of key person and local people were used to improve the 

delineation of past landslide events by using GPS plotting and participatory mapping 

technique. 

3.2.2 PARTICIPATORY FIELD MAPPING 

Participatory landslide inventory mapping is a process, which can be used to 

generate a series of landslide inventory outputs to be transferred into a Geographic 

Information System (GIS). Landslide events catalogue obtained from disaster 

register needs to be checked through field mapping. Past landslides which are 

covered by vegetation or dismantled by erosion and human activities are not easily 

identified in the field. Boundary of past landslide sometimes can not be clearly 

defined. A help from eyewitnesses or landslide disaster victims is needed to 

reconstruct the boundary of past landslides. A combination between field survey 

method involving active participation from communities and the use of an innovative 

technology, i.e. laser range finder and GPS are employed to identify and measure the 

extents of past landslide.   

There were three teams (two persons each) of well trained surveyor involved in 

landslide participatory landslide inventory mapping in Purwosari area. Semi closed 

questionnaire (Appendix A) was prepared to obtain information related landslide 

hazard and risk in particular landslide events. The unclear boundary of past landslide 

is able to be identified by using participatory landslide inventory mapping. Local 

people kindly showed the dimension of past landslide failure, including length, width, 

depth, and run out to the surveyor. Figure 2 shows the activities of participatory 

landslide inventory mapping in Purwosari Area. It shows that the dimension of 
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landslides can be measured directly in the recent landslide events and collaboration 

between surveyor and local people is needed to measure past landslide dimension. 

 

Figure 3.2 Activities during Participatory Landslide Field Mapping 

All of 472 landslide events reported by local people should be verified and the 

dimension of landslides should be mapped in order to be able to quantify both 

landslide susceptibility and hazard. The participatory landslide inventory mapping 

successfully verified 182 landslide events from 1978-2011. There are 267 misreport 

landslides and 23 unsuccessfully verified landslides. Misreport landslide means that 

the surveyor and local people could not find and recognize the name reported in the 

register; or reported landslides which have no dimension. Some people reported 

landslides when they found cracking on their house and the evidence of landslides 

was difficult to be recognized. Since there is no landslide failure on it, the author 

considers that it should not be included in the landslide inventory mapping. 

Unsuccessfully verified landslides mean that the evidence of past landslide could not 

be recognized anymore in the field and the eyewitnesses of landslides have already 

moved to another place. Thus, the author considers that the participatory landslide 

inventory mapping in Purwosari area is nearly complete. 
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Table 3.1 Descriptive Statistics of Landslide Inventory Mapping in Purwosari Area 

Information Number 

Number of surveyor  6 

Survey rate (#/2 men/day)  6-10  

Database (man)  1 

Database rate (days)  7 

Number of landslides  182 

Area total landslides (m
2

) 44496.43 

Landslide density #/km
2 

 13  

Smallest  area (m
2

) 12.1 

Largest area (m
2

)  3036 

Average area (m
2

)  244.5 

Participatory landslide inventory mapping in Purwosari Area required 21 days 

with 6 people surveyors. The average speed of survey is 6-10 landslides/team/day 

and the total area of landslide is 44496.43 m
2
 (Table 3.1). Landslides length, width, 

depth and run out reconstruction took a long time because the evidence of past 

landslides in the field should be reconstructed based on visual observation both 

surveyor and local people. Errors may occur during this process, especially when 

measuring landslides in which the evidences are totally disappear. Geomorphological 

experience and knowledge and the memory of local people were combined to 

minimize errors during landslides boundary measurement.     

3.2.3 GENERATION OF LANDSLIDES DATABASE 

Some techniques applied during measuring the dimension of landslides were 

also employed to support the generation of landslide databases. It included 

coordinate plotting on the landslide crown or toe, sketching landslide area, placing 

landslide on the topographic map, taking pictures of landslides, recording the 

direction/orientation of landslides (dip and strike if possible). The generation of 

landslide database will be easier if these data are available. Landslide data from field 

mapping were transferred into GIS. On-screen digitizing was carried out on the basis 

of all information in the field mapping, topographic map and SPOT 5 imagery. This 

process used all information on the map, including the position of drainage line, 
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roads, building, landuse, etc. The author manually drew the boundaries on-screen by 

following the lines, shapes, pattern of the topographic map and SPOT 5 imagery on 

the screen. 

Drawing landslide polygon on-screen was a time consuming process in 

landslide inventory mapping. Transferring information from field mapping onto GIS 

data file (e.g. shapefile) needs to be carefully checked. Topographic map and SPOT 

5 imagery were the basis of placing the landslide in the right position. Coordinate 

record, landslide pictures, landslide orientation and landslide sketch were essential in 

order to accurately digitize landslide polygon in GIS layer. The average speed 

database generation was 26 landslides/day. Spatial data attribute of the landslide 

inventory map in Purwosari Area includes date of occurrence (some including time), 

coordinate, element at risk, estimated loss, number of pictures, orientation, lithology, 

landslide type, and landslide dimension. Once landslides are transferred to GIS, 

computation landslide susceptibility, hazard and risk is possible.  

 

Figure 3.3 Landslide Inventory Map of Purwosari Area 

3.3 ANALYSIS OF THE LANDSLIDE INVENTORY 

There are many purposes of preparing a landslide inventory map such as (i) 
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documenting the landslide phenomena (ii) preparing  preliminary step for 

susceptibility, hazard and risk (iii) investigating the distribution, types, and pattern of 

landslides and (iv) studying the evolution of landform dominated by mass wasting 

process (Guzzetti et al., 2012). Several empirical relationships can also be computed 

when the complete information on the landslide inventory map is available. It 

includes the height of the slope and run out,  run out and volume, area and volume, 

and the probability distributions of landslide area and volume. Landslide inventory 

by using perticipatory mapping have been analyzed to describe possible correlation 

and empirical relationships.  

The landslide typology in Purwosari area can be classified into translational 

and rotational slide. There were 10, 23, 1, and 148 landslides occurred in the public 

infrastructure area, dry cultivated area, paddy field, and settlement area respectively. 

An empirical relationship between height and run out might be useful to consider a 

safer place for the settlement area. Height of slope represents the difference between 

the highest altitude of the source area and the lowest part of the landslide deposit.  

Figure 3.4 shows that run out distance is proportional to the height of landslides. It 

also indicates that the run out around 20 m could be a threshold for building or 

infrastructure development with minimum structural measures. The empirical 

relationship can be a recommendation to improve landslide susceptibility or hazard 

zoning. 

The correlation between height of the slope and run out shows a linear trend for 

both translational and rotational slide. The best interpolation obtained with the 

standard least square regression method gives the empirical relationship 

L=1.65H+1.09, where L and H are in meters. Figure 3.4 shows that Purwosari area is 

mostly dominated by short distance run out and height. Those were produced by 

landslides which mostly occurred in the populated area as an effect of a cut in the 

slope during development of a house. Landslides in Purwosari area can also be 

categorized as shallow landslide. Geomorphological processes influence the typology 

of landslide. Purwosari area is dominated by steep topography with strong dissection 

and V-shape valley caused by intensively valley deepening. Rill and gully erosion are 

dominant features identified in this area. Thus, soils are not well developed in the 

steep topography with high erosion process.  
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Figure 3.4 Relationship between Height and Run out Distance 

Geomorphological processes and soil depth will contribute to landslide area and 

volume, which play a major role in landscape denudation and evolution. Determining 

landslide volumetrically may be difficult for past landslide which is usually 

identified by aerial photograph. Investigating landslide by aerial photograph can only 

delineate areas of landslide. Investigating the correlation between area and volume is 

an approach to find the empirical relationship between them.  

The correlation between area and volume in Purwosari area may be reasonably 

calculated using the formula VL=0.053AL
1.6 

with 12.1 ≤AL≤ 3036 m
2 

(Figure 3.5). 

The average depth of landslide is 2.75 m. The similar trend can also be found in 

several places in the world (see Guzzetti, et al. 2009). This correlation could be used 

to infer the landslide volume in the area where landslide depth is unknown. But, this 

correlation should be used with care in order to avoid over exaggeration. 

Consideration about the similarity of the characteristics of an area such as 

geomorphological condition, lithology, landslide typology and landslide character 

should also be employed. 
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Figure 3.5 Relationship between Landslide Area and Volume 

Historical data of landslide volume is also important to estimate mobilization 

rate or denudation rate in an area. It represents the moving failure of landslides in an 

area and specified time. Mobilization rate φL is measured by dividing total landslide 

volume in an a period (m
3
) by the length of the period and by the extent of the study 

area, given in mm yr
-1

. The extent of Purwosari area is 1.37 x 10
7
 m

2
 and the total 

landslide volume in 34 years is 95.723, 07 m
3
. It indicates that mobilization rate φL 

in Purwosari area is φL=0.2 mm yr
-1

. Mobilization rate is useful for many 

applications such as land evaluation, land suitability, and land degradation analysis. 

In landslide field, area and volume are usually analyzed by frequency-magnitude.  

Landslide area and volume statistics were used as an approach to investigate 

landslide magnitude. Frquency-magnitude analysis is often used to analyze the 

distribution of landslide magnitude or size distribution. It indicates the frequency and 

what extents landslide occurred in an area. There are some evidences that the 

frequency area of landslides is similar to frequency-magnitude statistics of 

earthquake which satisfy the Gutenberg-Richter (Gutenberg and Richter, 1954) 
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relation: 

                                   (3.1) 

where NCE is the cumulative number of earthquakes in specified area and time with 

magnitude greater than and equal to m, a and b are constants. It is valid to be applied 

in small region or the entire world. Equation (3.1) is equivalent to the power-law 

relation (Guzzetti, et al., 2002): 

           
  

                       (3.2) 

where C is constant, AE  is the earthquake rupture area and α = b from Equation 3.1. 

Some authors (Sugai et al., 1994; Yokoi et al., 1995) proposed that 

frequency-area/volume statistics of landslide is similar to frequency-magnitude 

statistics of earthquake which also satisfy the power law. 

The frequency distribution of landslide area was calculated by using non 

cumulative distribution. There are some evidences that frequency area empirically 

exhibits a power law (fractal statistic). Probability density decreases with the 

increasing area of landslides. However, rollover can also be found in the Purwosari 

landslide database. Rollover phenomenon is the truncation trend of landslide extent 

towards probability density function. It happens in most landslide inventory data 

(Guzzetti, et al., 2002; Malamud et al., 2004; Van Den Eeckhaut et al., 2007). 

Rollover can be the result of the incompleteness of landslide data (censoring effect) 

especially small landslides (Stark and Hovius, 2001). The incompleteness is because 

the difficulties of interpreter to recognize small landslide area by using aerial 

photograph. Rollover can also be the result of the specific characteristic of landslides 

itself (Guzzetti et al., 2008). 
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Figure 3.6 Non-cumulative Frequency-area Distribution of Purwosari Landslides  

 

Figure 3.7 Non-cumulative Frequency-volume Distribution of Purwosari Landslides 
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Landslide inventory dataset in Purwosari area also exhibits power-law (fractal 

statistic) for area >90 m
2
 based on (Guzzetti, 2002): 

 
    

   
     

 β
                      (3.3) 

with -dNCL/dAL is the negative of the derivative of the cumulative distribution, AL is 

landslide area, C` and β are constant. Power-law regression line of equation (3.3) 

with R-square 0.96 shows that landslide frequency-area has value of β=2.01 and 

C`=70 with the landslide area in m
2
. Rollover phenomenon (with landslide area = 

90m
2
) can also be found in the dataset. This phenomenon cannot be the result of the 

censoring effect or incompleteness of the data because the landslide inventory dataset 

can be classified as complete data or nearly complete data. Thus, the author realizes 

that rollover phenomenon is real and exist in each of landslide datasets. 

Frequency-volume statistic can be obtained by modifying Equation (3.3) with 

landslide volume. Small rollover can also be found in the volume <30m
3
. 

Frequency-volume exhibits a power law with β=0.95 and C`=0.047. Figure 3.7 

shows that landslide volume variation is distributed on landslides with the volume 

≤600 m
3
. It occurs with the landslide volume 20 m

3
≤VL≤600 m

3
. This may be the 

result of different mechanism of failure and different causative factor of landslide 

such as lithology, geomorphology and landuse. Further investigation with complete 

landslide inventory from different area characteristic is still needed to confirm this 

issue.  

3.4 ROCKFALL INVENTORY 

The rockfall inventory was produced by the extensive geomorphological field 

survey based on the transect walk perpendicular to fall face. The main focus of the 

field survey were to record the coordinate location and to measure the dimension of 

the boulder deposits. The location was recorded by GPS plotting and the dimension 

of the boulder was measured by laser distance meter or measuring tape. The 521 

rockfall deposits in our geomorphological inventory range in size from 18x10
-4

 to 

3.6x10
3
 m

3
 (Figure 3.8). All the rockfall data were generated as point data with an 

attribute of coordinate location and the volume of the boulder. The detail rockfall 

distribution is discussed in chapter 5 and 6. 
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Figure 3.8 Rockfall Boulders Distribution in the Southern part of Gunung Kelir 

identified from Field Work 

3.5 SUMMARY AND CONCLUSION 

Landslide inventory mapping is aimed to provide information related to 

location, landslide typology, landslide extents and damage of elements at risk in. The 

author has combined the traditional geomorphological field survey method involving 

active participation from communities with the use of an innovative technology, i.e. 

laser range finder and GPS to identify and measure the extents of past landslide. It is 

later called as participatory landslide inventory mapping. Participatory landslide 

inventory mapping is a precise, cost-effective and less time consuming. Participants 

or local people in mapping activities typically showed high level of participation and 

engagement.  

Data input into a GIS program enables post-processing, permits enhanced 

cadastral activities, better landslide statistics. The method is expected to solve the 

problem of insufficiency of landslide inventory in Indonesia. The landslide 

distribution will be used to generate landslide susceptibility analysis discussed in 

chapter 4. It is expected to support soft countermeasures tool to protect persons, 
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building, facilities, and infrastructures from being exposed to landslide hazard by 

appropriate landuse planning.      
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CHAPTER 4  
COMPARING DATA-DRIVEN LANDSLIDE SUSCEPTIBILITY MODELS 

GENERATED FROM PARTICIPATORY LANDSLIDE INVENTORY 

MAPPING 

4.1 INTRODUCTION 

Landslide susceptibility zoning represents a division of land which has 

homogeneous areas or domains and their ranking according to degrees of actual or 

potential landslide susceptibility (Fell et al., 2008; Couture, 2011). It is an important 

step in landslide hazard and risk analysis. There are three main approaches for 

landslide susceptibility zoning, i.e. knowledge driven (heuristic) approach, physically 

based approach, and data driven approach (statistical analysis). 

Knowledge driven approach is a qualitative approach by evaluating actual 

landslides compared with characteristics of geology or geomorphology. Each 

geomorphology or geology zone is given by susceptibility ranking by the extent of 

actual landslide and specific geomorphological process working in an area. The 

susceptibility ranking is usually based on the judgement and experience of surveyor. 

This approach is strongly dependent on the experiences of the surveyors (Atkinson 

and Massari, 1998; Nagarajan et al., 2000; Huabin et al., 2005).  

Physically based approach is based on the slope stability analysis by calculating 

safety factor in a slope. It is usually applied for a specific purpose in a small area 

with detail mapping scale. The detail mapping needs detail geotechnical parameters 

measurement and many samples because it is difficult to extrapolate geotechnical 

parameters in the regional scale analysis with limited data sample. The process is 
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laborious and time consuming because of the time and effort required for the manual 

handling and processing of the data. Since the detail geotechnical parameters are 

usually not available in the hilly and mountainous area, especially in Indonesia, it is 

still difficult to apply the physically based approach for  regional analysis in the 

study area. Nowadays, data driven approach is the most feasible approach for 

landslide susceptibility analysis applied in the regional scale mapping, especially in 

Indonesia. 

Recent progress and development in landslide susceptibility zoning also focus 

on data driven approach (statistical analysis) using GIS technology. Data driven 

approach is more popular, in recent decade, than knowledge driven (heuristic) 

approach and physically based approach because it is more objective, requires less 

soil parameter (less expensive), less time consuming, suitable for wide area and gives 

reproducible results. Data driven approach can be applied based on bivariate 

statistical analysis, multivariate statistical analysis and soft computing.  

The bivariate statistical analysis compares each data layer of controlling factor 

to landslide inventory separately and assumes that the presumed controlling factors 

of landslide are not interrelated each other (Suzen and Doyuran, 2004). It deals with 

one dependent variable, i.e. landslide inventory showing polygon or area of landslide 

events and one independent variable, i.e. a layer indicating controlling factor of 

landslide. Bivariate statistic calculates the density of landslides in each class of data 

layer and defines the importance of each parameter. The weights for individual 

parameter is added by calculating landslide density per parameter class in relation to 

the landslide density over the whole area. Various data layers, indicating the weight 

of homogenous units, are then overlaid to have a final score of landslide 

susceptibility. The bivariate statistical analysis does not take into account the 

interdependence of variables, and it has to serve as a guide when exploring the data 

set before multivariate statistical methods are used. The weight of evidence (WoE) is 

one of bivariate statistical analysis, which is widely applied in landslide 

susceptibility zoning (Westen et al., 2003; Dahal et al., 2007; Neuhaeuser and 

Terhorst, 2007). 

WoE was formerly applied to predict disease (Lusted, 1968) and to map mineral 

potential (Bonham-Carter et al., 1989) in geoscience application. It calculates the 



 

63 

 

weight of predictive factors (controlling factors) based on the absence or presence of 

landslide in the study area and assumes that the presumed controlling factors of 

landslide are not interrelated each other. Landslide factor would be analyzed 

separately with landslide events. This model is simple and less time-consuming. It 

needs spatial landslide inventory data and the controlling factors data related to 

landslides. The controlling factors are spatial data presumed as the causal factor of 

the occurrence of landslides and can be utilized as a spatial landslide predictor in the 

future. 

In the other hand, multivariate statistical models evaluate the combined 

relationship between a dependent variable (landslide occurrence) and a series of 

independent variables (landslide controlling factors) simultaneously. Multivariate 

analysis assumes that the presumed controlling factors of landslide are interrelated 

each other. It means that the analysis is not only related to landslide controlling 

factors and landslide inventory, but also the interrelationship among landslide 

controlling factors. In this type of analysis, all relevant factors are sampled either on 

a grid basis or in slope morphometric units. For each of the sampling units, the 

presence or absence of landslides is determined. The resulting matrix is then 

analyzed using multiple regression, logistic regression, discriminant analysis, random 

forest or active learning. The results can be expressed in terms of probability. The 

logistic regression model is one of the most popular multivariate analyses in 

landslide susceptibility zoning. 

Logistic Regression (LR) was formerly invented as a description of 

population growth and autocatalytic chemical reaction (Cramer, 2002). It is applied 

to describe the relationship between several independent variables and a 

dichotomous dependent variable (Hosmer and Lemeshow, 2000). Dependent variable, 

i.e. landslide inventory must be input as binary either 0 (no landslide) and 1 

(landslides) to model landslide possibility. The variables can be either continuous and 

discrete or a combination of both types. It also does not necessarily have normal 

distributions. The result of LR ranges from 0 to 1 which is analogue to a probability 

value. LR was applied successfully in landslide susceptibility zoning in many regions 

(Olmacher and Davis, 2003; Yesilnacar and Topal, 2005; Ayalew and Yamagishi, 

2005; Can et al., 2005; Nefeslioglu et al., 2008; Schicker and Moon, 2012; Das et al., 
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2012). 

 Formerly, soft computing is applied as a technique in computer science 

whose the solution is uncertain and between 0 and 1 (Zadeh, 1994). It was applied in 

landslide susceptibility because soft computing techniques such as fuzzy-logic, 

artificial neural network (ANN), neuro-fuzzy and support vector machine can deal 

with several problems such as insufficient knowledge of an area of interest and 

incomplete data. The interrelationship between landslide events and triggering 

factors are also nonlinear in nature (Ercanglu, 2005). Soft computing technique such 

as ANN is independent of the statistical distribution of the data and does not need 

statistical variables (Lee et al., 2007).  

ANN is a soft computing technique based on the capability to imitate a 

human being in learning a particular phenomenon. There are three layers of neurons, 

which are connected by weights as a network. It can generalize and predict outputs 

from a set of inputs that it has not previously seen. The weights of the relative 

importance of different factors for landslide occurrence are generated by that 

network. Each weight will be used to calculate a landslide susceptibility index. There 

were landslide susceptibility maps generated by ANN (Catani et al. 2005; Gomez 

and Kavzoglu, 2005; Ercanglu 2005; Ermini et al. 2005; Nefesilioglu et al. 2008; 

Pradhan and Lee 2009). 

Several attempts to compare several techniques of data driven landslide 

susceptibility zoning were applied in many countries such as Turkey, New Zealand, 

Korea, Italy, India and Malaysia. Yilmaz (2009) compared conditional probability, 

logistic regression, ANN and support vector machine in structural mountainous area 

Sivas Turkey. He used 10 landslide factors, i.e. slope, distance from fault, distance 

from drainage, elevation, distance from road, distance from settlements, aspect, TWI, 

SPI and NDVI. The landslide inventory map was derived from Landsat TM satellite 

images 2006, aerial photographs and fieldwork. He found that ANN was more 

realistic with area under curve 84.6 %. 

Choi et al., (2012) compared frequency ratio, logistic regression and artificial 

neural network in a hilly area underlain by biotite granite and alluvium Korea. Sixth 

landslide related factors, i.e. slope, aspect, curvature, proximity to lineament, land 
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cover and NDVI were derived from ASTER data. The landslide inventory map was 

derived from 1:5000 scale photographs and ASTER data. It showed that logistic 

regression is more realistic with area under curve 85.4% compared to frequency ratio 

and ANN with area under curve 84.34% and 74.29% respectively. 

 Pradhan and Lee (2010) also compared frequency ratio, logistic regression and 

artificial neural network for landslide susceptibility zoning. The area was in 

structural landform Klang Valley Malaysia. Eleven landslides related factors, i.e. 

slope, aspect, curvature, altitude, distance to rivers, distance to roads, soil, lithology, 

distance to fault, land cover and NDVI were used in the analysis. 398 landslides were 

derived from 1:5,000–1:50,000 aerial photographs 1981-2004, SPOT 5 panchromatic 

satellite image and landslide reports over the past 23 years using visual interpretation. 

The most realistic result was by using ANN with seven landslides related factors 

instead of 11 factors.  

Garcia-Rodriguez and Malpica (2010) tried to compare logistic regression and 

ANN to analyze earthquake-triggered landslide susceptibility in El Salvador Central 

America. The study area is an earthquake prone area with hard rock including 

pyroclastic deposits and associated volcaniclastic; and consolidated soil. Seven 

factors, i.e. elevation, slope, lithology, rainfall, landuse, terrain roughness and aspect 

were included in the analysis. Landslide inventory consisting of 112 landslides was 

derived from secondary data compiled in 2001. The authors did not mention clearly 

the most realistic result, even though the area under the curve of logistic regression 

showed better results than ANN. 

Schicker and Moon (2012) compared weight of evidence and logistic regression 

in volcanic landform Waikato region, New Zealand consisting of andesitic 

stratovolcanoes and rhyolitic caldera. The controlling factors considered were slope, 

elevation, aspect, geology, landcover, maximum monthly rainfall, mean monthly 

rainfall, soil, distance from fault, river and road. There were 156 past landslides 

obtained from secondary data represented as geomorphological map and 123 

landslides obtained from 13 years (1996-2003) landslide catalogue. The authors 

showed that logistic regression is more realistic than weight of evidence with an area 

under the curve 71% and 62% respectively. 

The examples above show that there were different approaches and techniques 
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for evaluating landslide susceptibility and no agreement has been reached both in the 

procedure and the use of specific controlling factors employed in the lanslide 

susceptibility zoning. Each approach has its own assumption and the result may 

differ from place to place. The different result may also be affected by different 

landslides controlling factors employed in the analysis, including lithology and 

geomorphology condition, and the completeness of landslide inventory. 

 Thus, bivariate, multivariate and soft computing approaches need to be 

compared in order to identify the most realistic landslide susceptibility approach 

applied in tropical region Indonesia by using complete landslide inventory. The 

evaluation of controlling factors will also be evaluated based on the Cramer’s V 

value and multicollinearity analysis. The discussion of merit and demerit of each data 

driven method will be evaluated to propose a combination of the methods applied in 

Purwosari area with a complete landslide inventory mapping. 

4.2 STUDY AREA 

Purwosari area is located in the southern part of Central Java and covers an area 

of 14 km
2 

(Figure 4.1). It is dominated by hilly area with large open valley striking 

mostly NW-SE. The lithology consists of Tertiary Oligocene-Miocene Old Andesite 

Formation of van Bemmelen breccia coming from Gadjah Old-Volcano in which the 

magma is composed by basaltic piroxene andesites. It consists of andesitic breccia, 

tuff, lapilli tuff, agglomerate and intercalated andesite lava flows (Rahardjo, et al., 

2005). The thickness is approximately 660 meters. There is also calcareous 

sandstone, limestone and coralline limestone in the small western part of Purwosari 

area. Old Andesite Formation is a dominant lithology in Kayangan Catchment. It 

can be differentiated in the field by the degree of weathering. Most of landslides 

can be found in the Old Andesite Formation with the very intense weathering 

process.  

The denudational landform in Purwosari is influenced by the strong gravitational 

movement after the geanticline of Java in the south was pushed up. It is dominated 

by steep topography with strong dissection and V-shape valley caused by intensively 

valley deepening. Rill and gully erosion are dominant features identified in this area. 

The soils are well developed with highly weathering and leaching process in the 
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gentle area.  

 

Figure 4.1 Study Area (a) geographical position of Indonesia: red rectangle shows 

geographical position of Java Island (b) DTM of Java Island: red rectangle shows the 

location of Menoreh Dome (c) DTM of Menoreh Dome: red rectangle shows 

Purwosari area (d) DTM of Purwosari area with landslide inventory 

The average annual rainfall in Kayangan Catchment is 2478 mm and the highest 

rainfall intensity usually occurs from February to March with average monthly 

rainfall 426 mm. The high intensity of precipitation produces very intense weathering 
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processes and landslides. A settlement built by excavating the slope may lead to the 

reduction of the instability of natural slopes and can cause landslides. Settlement in 

the hilly area is located mostly alongside the road network.  

4.3 MATERIAL AND METHODS  

The evaluation of landslide susceptibility analysis includes the data driven 

analysis based on the weight of evidence (WoE), logistic regression (LR) and 

artificial neural network (ANN). It requires several data layers of controlling factors 

related to landslide and landslide inventory layer. Those data layers were processed 

in GIS environment software, i.e. ILWIS and ArcGIS. 

4.3.1 DATA PREPARATION 

The occurrence of most landslides is linked to controlling factors related to 

landslide, which reflects natural settings in the study area. Thematic maps 

representing various factors of landslide were generated by GIS techniques. Each 

controlling factor of landslide was mapped and converted to raster map with 5 meter 

cell size. The spatial landslide controlling factors and attribute were collected from 

Topography Map (Rupabumi Indonesia-RBI) Sendangagung and Wates at the scale 

of 1:25.000 sheet 1408-232 and 1408-214. It includes topographic related factors, 

water related factor, landuse and anthropogenic factors (Table 4.1). 

Table 4.1 Sources and significance of the landslide controlling factors 

Data Type Factors Source Significance 

Topographic 1. Elevation  Topographic Map 

(DEM) 

Climate, potential energy 

 2. Slope  Topographic Map 

(DEM) 

Gravity, flow velocity 

 3. Aspect  Topographic Map 

(DEM) 

Solar insolation, 

evapotranspiration  

 4. Plan Curvature Topographic Map 

(DEM) 

Converging, diverging 

flow 
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 5. Prof. Curvature Topographic Map 

(DEM) 

Flow acceleration, 

erosion/deposition 

Water related 6. SPI (Stream Power 

Index) 

Topographic Map 

(DEM) 

Potential erosive power 

 7. TWI Topographic 

Wetness Index) 

Topographic Map 

(DEM) 

Soil water content 

 8. Distance to river Topographic Map 

(DEM) 

River undercutting 

Landuse 9. Landuse  Topographic Map Landslide triggering by 

slope cutting, trees effect 

on landslide 

Anthropogenic 

 

10. Distance to road 

 

Topographic Map 

 

Landslide triggering by 

road cutting, vibration of 

vehicles 

Landslides 11. Landslides inventory Participatory landslide 

inventory mapping 

Landslide distribution 

Acronyms: Prof.: Profile, SPI: Stream Power Index, TWI:Topographic Wetness Index 

4.3.1.1 TOPOGRAPHIC FACTORS 

Topographic factors include elevation, slope, aspect, plan curvature and profile 

curvature. Those were generated from 5 meter resolution of DTM produced by 

interpolation, using ILWIS linear interpolation method, from a 1:25.000 

Topographical Map 1999 with contour interval 12.5 m. All of the data were initially 

continuous and then were sliced into different categories. The significances of 

topographic factors such as elevation, slope, aspect, plan curvature, and profile 

curvature are mainly on the gravitational related processes such as potential energy, 

flow direction and erosion.   

Elevation is the first subdivision of the terrain related to the overall topographic 

setting. It represents the local relief and locates points of maximum and minimum 

heights within terrains. The elevation map was divided into 7 classes on a 100 m 

basis (Figure 4.2). The extent of classified elevation represents the steepness of the 

terrain. The narrow area is steeper than wide area. Elevation class 700-800 m 

represents high altitude of Purwosaria area and has the widest area. This area is 
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gentler than other elevation range classification. The density of landslide may be 

lower in the wide area of the elevation range class. 

 

Figure 4.2 Elevation of the Study Area (in meters) 

Slope gradient might be the most substantial cause of a landslide. It is expected 

that landslides will occur on the steepest slope as a consequence of the increasing of 

shear stress. It might also affect the level of pore pressure and the concentration of 

moisture. The slope map was divided into 5 classes. Beside represents a classification 

of the slope quantitatively (in degree), the division also represents the slope 

qualitatively (Figure 4.3). It was divided into flat-undulating (0-8), rolling (>8-15), 

moderately steep (>15-25), steep (>15-45), and very steep (>45). 

Aspect represents the direction of the slope. It might reflect differences in soil 

moisture and vegetation which are related to solar insolation and evapotranspiration. 

Aspect was divided into 8 classes such as north, northeast, east, southeast, south, 

southwest, west, northwest, west and northwest (Figure 4.4). 

Plan curvature represents the curvature of the corresponding normal section, 

which is tangential to contour. Whereas profile curvature represents the curvature of 

the corresponding normal section, which is tangential to flow line. Negative value 

represents that the normal section concavity is directed up, whereas positive 
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represents the opposite case.  

 

Figure 4.3 Slope of the Study Area 

 

Figure 4.4 Aspect of the Study Area 
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Both plan curvature and profile curvature were divided into 5 classes (Figure 

4.5 and 4.6). The curvature of the slope will affect the morphology or the shape of 

the slope. Then, it will affect the direction and acceleration of surface water flow in 

the terrain; and the erosion process. 

 

Figure 4.5 Plan Curvature of the Study Area 

 

Figure 4.6 Profile Curvature of the Study Area 
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4.3.1.2 WATER RELATED FACTORS 

Water related factors, including SPI, TWI and distance to river were also 

derived from DTM as a measure of surface water and sub-surface water. Surface 

water may cause landslide by undercutting and erosion. Subsurface water may 

change the water pore water pressure in the soil and cause slope instability.  

SPI (Stream Power Index) was used to describe the potential flow erosion. It 

represents the strength of stream power and potential erosion with the idea that if a 

specific catchment area and steepness of the slope increase, the amount of water 

produced by upslope area and the velocity of water flow increase. SPI can be defined 

as (Hengl, et al., 2009): 

SPI = Af . tanβ                       (4.1) 

where Af is the specific catchment area draining through the point and β is the slope 

angle. SPI was classified into 6 classes representing that higher a value is the 

stronger stream power (Figure 4.7).  

 

 Figure 4.7 Stream Power Index of the Study Area 

TWI (Topographic Wetness Index) was used as a proxy of soil water content or 

soil moisture (Moore et al., 1991; Quinn et al., 1991). It describes the tendency of the 

slope to accumulate water (Figure 4.8). A pixel with low slope angle tend to 



 

74 

 

accumulate water compare to a pixel which has a steep slope.  

 

Figure 4.8 Terrain Wetness Index of the Study Area 

 

Figure 4.9 Distance to River of the Study Area 

A pixel draining into many adjacent cells has also lower tendency to gather 
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water than a pixel draining into few adjacent cells. TWI is defined as a ratio between 

the slope and the catchment area: 

TWI = ln (Af . tanβ)                     (4.2) 

where Af is the specific catchment area draining through the point, β is the slope 

angle, and ln was used to re-scale the value in order to produce a normalized 

histogram. The higher the index of TWI indicates the higher soil water content. 

The distance to the river was related to erosion, which may affect landslides 

occurrences. It assumes that the shorter part of the river will produce more landslides. 

Figure 4.9 shows that the distance to the river was classified into 5 classes as follows 

<10 meters, 10-25 meters, >25-50 meters, > 50-100 meters, and >100 meters.    

4.3.1.3 LANDUSE 

Landuse is important as controlling factor responsible for landslides in the 

study area. The development of the settlement area by excavating the slope without 

measures may increase instability of the slope. Devegetation may also cause 

landslides because vegetation prevents erosion through the canopy and natural 

anchorage provided by the roots. Landuse in Purwosari can be classified as bushes, 

people forest, settlement, rainfed paddy field, and dry cultivated land (Figure 4.10).  

 

Figure 4.10 Landuse of the Study Area 
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4.3.1.4 DISTANCE TO ROAD 

Distance to roads was included as a measure for landslide controlling factor. 

Excavating slope for road construction and frequent vibration generated by vehicles 

may cause slope failure. It may also act as a corridor of water flow during rain. Road 

in the study area is usually also related to housing development. House development 

surrounding the road is also usually built by excavating the road. The distance of 

excavation of a single building from the road is approximately 25 meters on average. 

This area may be the highest frequency of landslide events. Thus, the buffer distance 

of 25 meters was used to classify distance to road factor. It was classified into 5 

categories such as <25 meters, 25-50 meters, >50-100 meters, >100-200 meters, and 

>200 meters (Figure 4.11).  

 

Figure 4.11 Distance to road of the Study Area 

Landslide controlling factor layers and landslide inventory layer were 

employed to produce a landslide susceptibility map in GIS environment. Landslide 

inventory layer was obtained from participatory landslide inventory mapping 

(Chapter 3). In addition, field surveys were also carried out for verification of 

topographic maps and a collection of additional data.  
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4.3.2 LANDSLIDE SUSCEPTIBILITY METHODS 

4.3.2.1 BIVARIATE - WEIGHT OF EVIDENCE 

WoE compares the existing landslide distribution and various landslide 

controlling factors separately. It is applied to evaluate the relationship of each 

predictable variable controlling factor of landslide towards landslide events by using 

prior (unconditional) probability and posterior (conditional) probability. The prior 

probability is the probability of an event derived from the same events in the past for 

a given period of time. It is similar in geomorphological concept, widely applied for 

landslide analysis, “the past is the key to the future”. The spatial probability of 

landslide in the future can be estimated based on the past landslide events. This can 

be evaluated by calculating the ratio of landslide events (number or area) to the total 

area of the study area.  

New evidence or other information can be added to revise the prior probability. 

For example, if a landslide controlling factor is added to estimate the probability, the 

probability of occurrence of landslides based on this factor may change (Figure 4.12). 

The change probability due to additional information is called posterior probability. 

The conditional probability of the presence of landslide given the presence of the 

factor can be written as:   
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Whereas, the conditional probability of the presence of landslide given the absence 

of the factor can be written as: 
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Figure 4.12 Ilustration of Weight of Evidence Method 

where P : probabilitas, jiF : presence of factor j class i, jiF : absence of factor j class 

i, L : absence of landslide, L : presence of landslide, 


jiW : the likelihood ratio 

expressing the ratio that in case of present factor Fji a landslide L occur or does not 

occur, 


jiW : the likelihood ratio expressing the ratio that in case of absence factor Fji 

a landslide L occur or does not occur (Bonham-Carter, 2002). Positive correlation is 

shown by 


jiW = positive and  


jiW = negative, conversely negative correlation is 

shown by 


jiW = negative and  


jiW = positive. Landslides are not affected by the 

presence or absence of the factor if 


jiW = 


jiW = 0. It shows uncorrelation between 

landslides and controlling factor. The measure of correlation can also be measured by 

weight contrast as follows: 

           
    

     
  (4.5) 

where weight contrast is positive showing positive spatial association and weight 

contrast is negative showing negative association. The total value of pixel k in weight 

of evidence map is determined by the total of weight contrast of landslide controlling 

factor j in each class i as follows:   
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In GIS environment software (ILWIS), the analysis can be written in a formula 

base on equation as follows: 

   
    

     

            
     

            

 

(4.7) 

 

   
    

     

            
     

            

 

 

(4.8) 

 

Npix1 = nlsclass (4.9) 

Npix1 = nslide - nlsclass (4.10) 

Npix1 = nclass - nlsclass (4.11) 

Npix1 = nmap – nslide – nclass + nlsclass (4.12) 

where nslide is the number of pixels with landslide in the map, nlsclass is the number 

of pixels with landslide in the class, nclass is the number of pixels in the class, and 

nmap is the total number of pixels in the map.  

Table 4.2 Computed Weights for Classes of Controlling Factors Layers based on 

Landslide Inventory 

Factor Class Class 

pixels 

Landslide 

pixels 

% 

Class 

% 

Landslide 

W
+
 W

-
 W

+
-W

-
 

Elevation 200-300 14209 90 2.6 2.4 -0.05 0.00 -0.05 

 300-400 87518 627 15.7 16.9 0.07 -0.01 0.09 

 400-500 114821 890 20.6 24.0 0.15 -0.04 0.20 

 500-600 80041 919 14.4 24.8 0.55 -0.13 0.68 

 600-700 84530 227 15.2 6.1 -0.91 0.10 -1.01 

 700-800 174536 940 31.3 25.3 -0.21 0.08 -0.30 

 >800 1407 18 0.3 0.5 0.66 0.00 0.66 

Slope 0-8 73453 483 13.2 13.0 -0.01 0.00 -0.02 

 >8-15 98685 527 17.7 14.2 -0.22 0.04 -0.26 

 >15-25 169556 1536 30.4 41.4 0.31 -0.17 0.48 

 >25-45 208652 1145 37.5 30.9 -0.20 0.10 -0.30 

 >45 6716 20 1.2 0.5 -0.81 0.01 -0.82 

Aspect North 34361 209 6.2 5.6 -0.09 0.01 -0.10 

 North East 95117 522 17.1 14.1 -0.20 0.04 -0.23 

 East 73257 447 13.2 12.0 -0.09 0.01 -0.10 

 South East 81865 841 14.7 22.7 0.44 -0.10 0.54 
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 South 78667 620 14.1 16.7 0.17 -0.03 0.20 

 South 

West 

88579 524 15.9 14.1 -0.12 0.02 -0.14 

 West 42632 315 7.7 8.5 0.10 -0.01 0.11 

 Flat 62584 233 11.2 6.3 -0.58 0.05 -0.64 

Plan  -50 to -2.7 55104 157 9.9 4.2 -0.85 0.06 -0.91 

curvature >-2.7 to 

-0.3 

174196 1061 31.3 28.6 -0.09 0.04 -0.13 

 >-0.3 to 

0.8 

137827 1051 24.7 28.3 0.14 -0.05 0.19 

 >0.8 to 2.5 116071 928 20.8 25.0 0.18 -0.05 0.24 

 > 2.5 73864 514 13.3 13.9 0.04 -0.01 0.05 

Prof  < -2.7 6601 5 1.2 0.1 -2.18 0.01 -2.19 

curvature -2.7 to 

-0.3 

122779 592 22.0 16.0 -0.33 0.08 -0.40 

 -0.3 to 0.8 375644 2718 67.4 73.2 0.08 -0.20 0.28 

 0.8 to 2.5 47110 377 8.5 10.2 0.18 -0.02 0.20 

 > 2.5 4928 19 0.9 0.5 -0.55 0.00 -0.55 

SPI 0-3 70561 476 12.7 12.8 0.01 0.00 0.01 

 3-12 151785 1171 27.2 31.6 0.15 -0.06 0.21 

 12-50 240593 1658 43.2 44.7 0.03 -0.03 0.06 

 50-400 86679 350 15.6 9.4 -0.50 0.07 -0.57 

 400-5000 7426 56 1.3 1.5 0.12 0.00 0.13 

 5000-7751 18 0 0.0 0.0 2.11 0.00 2.11 

TWI 0-2 171 1 0.0 0.0 -0.13 0.00 -0.13 

 2-4 131925 905 23.7 24.4 0.03 -0.01 0.04 

 4-6 318209 2302 57.1 62.0 0.08 -0.12 0.21 

 6-8 83502 403 15.0 10.9 -0.32 0.05 -0.37 

 8-10 19158 90 3.4 2.4 -0.35 0.01 -0.36 

 10-12 3817 10 0.7 0.3 -0.94 0.00 -0.94 

 12-17 280 0 0.1 0.0 -0.63 0.00 -0.63 

Distance 

to  

< 10 meter 30118 14 5.4 0.4 -2.67 0.05 -2.72 

river > 10 - 25 

meter 

37268 122 6.7 3.3 -0.71 0.04 -0.75 

 > 25 - 50 

meter 

64041 324 11.5 8.7 -0.28 0.03 -0.31 

 > 50 - 100 

meter 

115451 1005 20.7 27.1 0.27 -0.08 0.35 

 > 100 

meter 

310184 2246 55.7 60.5 0.08 -0.12 0.20 

Distance 

to  

< 25 meter 98755 1330 17.7 35.8 0.71 -0.25 0.96 

road > 25 - 50 

meter 

86678 1042 15.6 28.1 0.60 -0.16 0.76 

 > 50 - 100 

meter 

132936 682 23.9 18.4 -0.26 0.07 -0.33 

 > 100 - 

200 meter 

139505 456 25.0 12.3 -0.72 0.16 -0.87 
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 > 200 

meter 

99188 201 17.8 5.4 -1.19 0.14 -1.34 

Landuse Bushes 933 0 0.2 0.0 -1.84 0.00 -1.84 

 People 

forest 

337305 1851 60.6 49.9 -0.20 0.25 -0.44 

 Settlement 59805 1178 10.7 31.7 1.09 -0.27 1.36 

 Rainfed 

paddy 

field 

24510 14 4.4 0.4 -2.47 0.04 -2.51 

 Dry 

cultivated 

land 

132925 668 23.9 18.0 -0.29 0.08 -0.36 

 

The result of computed weight, as shown in Table 4.2, indicates the importance 

of each class factor. If 


jiW = positive and  


jiW = negative, the factor is favorable 

for the occurrence of landslides, and if 


jiW = negative and  


jiW = positive, it is not 

favorable. If  


jiW = 


jiW = 0, the factor is not correlated with landslide. Elevation 

200-300, 300-400, slope 0-8, SPI 0-3, and TWI  0.04 are examples that this factor 

classes is not very good for predicting landslides in the study area. The presence of 

profile curvature <-2.7, distance to river <10 m and distance to road >200 m is a 

clear indicator for the absence of landslides, as this factor had the highest negative 

weight -2.18, -2.67, and -1.19 respectively.  Contrary, SPI 5000-7751, distance to 

road <25m, and settlement is a good indicator for the presence landslides. Distance to 

road, distance to river, curvature and middle to high class elevation are more 

pronounced weights than the other factors due to its higher positive and negative 

weights. 

4.3.2.2 MULTIVARIATE – LOGISTIC REGRESSION 

Logistic regression (LR) is a multivariate regression forming relation between 

the existing landslide distribution as a dependent variable and various landslide 

controlling factors as several independent variables. The variables can be either 

continuous or discrete, or any combination of both types, and they do not necessarily 

have normal distributions. The algorithm of logistic regression, estimating the 

probability of a certain event occurring, applies maximum likelihood estimation after 

transforming the dependent variable into a logit variable (Atkinson and Massari, 
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1998; Dai and Lee, 2002). Thus, the presence of landslide was input as 1 and the 

absence of landslide was input as 0. 

 

Figure 4.13 Illustration of Logistic Regression Method 

Multivariate-logistic regression method compared the existing landslide 

distribution with various controlling factors of landslide simultaneously (Figure 4.13). 

The relationship of controlling factors of landslide with the existing landslides is 

evaluated by logistic regression equation. The logistic regression analysis can be 

written as follows: 
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where π(S=1|X1,X2,…Xn) is a pixel affected by slope failure, which is given the 

presence of independent variable from X1 to Xn, β0 is the constant of the equation, 

and β1, β2,… βn are the coefficient of variables X1,X2…Xn. β0,… βn are the unknown 
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coefficients which have to be estimated based on the data of independent variables of 

landslides by using maximum likelihood. The result represents the probability that an 

event will occur divided by the probability that it fails to do so, called as the odds 

ratio. Positive coefficient means that the event is more likely to occur and negative 

coefficient means that the odds of the event occurring decreases. 

 

Figure 4.14 Transformation of an Exponential Curve by using the Logistic Function 

Equation 4.13., as an exponential function representing non linear s curve 

relationship between the predictor and outcome, can be transformed into a simple 

linear relationship by using the logistic function (Figure 4.14). Because the logic 

function transforms probability to the log scale, the linearity assumption between y 

and x is also on the log scale. It is usually referred as the linearity of the logic 

assumption in the logistic regression. The natural logarithm of the odds (logit) is 

linearly related to the independent variables as: 
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The intercept, β0, is represented by the distance from the X-axis to the point 

where the red line crosses the Y-axis. The slope is represented by blue distance, 

indicating the change in the height of the red line for each one unit change in the 

value of X. For the landslide susceptibility model, the slope represents the change in 

the logit π, meaning the change in the logit of the probability of being low or high 
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susceptibility for each one unit change of landslide controlling factors. Thus, 

determining the weight of each controlling factor class is important in landslide 

susceptibility zoning. 

Without a prior evaluation of the importance of each controlling factor to the 

landslides, the weighting procedure was evaluated by a priori knowledge of 

investigator. For example, the steeper slopes, the higher value of weight will be given 

to the steeper slope class. It is simple but may lead a misleading coefficient result. 

Sampling scenario is one issue in logistic regression analysis. The consideration 

is usually based on the number of landslide occurrences. Many studies on landslide 

susceptibility (Ohlmacher and Davis, 2003; Ayalew and Yamagishi, 2005; 

Domínguez-Cuesta et al, 2007) considered that landslide is a rare event because of 

fewer landslide presence than their absence. They applied unequal proportion of 

samples, e.g. Van Den Eeckhaut et al. (2006) who applied 1 to 5 times more 

absences of landslides sampling.  But, some researches, e.g. Süzen and Doyuran 

(2004) Nefeslioglu et al. (2008) and Bai (2010) applied equal samples on their study.  

The author has applied equal sample to estimate the regression coefficients for 

each independents variable to avoid the effect of unequal proportion. Logistic 

regression analysis was carried on by SPSS software resulting coefficients of the 

independent variables and intercept (Table 4.3). The independent variable which is 

close to 0 indicates a little impact on the occurrences of landslides.  

Table 4.3 The Regression Coefficients obtained for the Ten Independent Variables 

Independent variables Coefficient 

Elevation -0.726 

Slope -0.532 

Aspect 0.250 

Plan Curvature 0.057 

Prof Curvature 0.384 

SPI (Stream Power Index) 0.539 

TWI Topographic Wetness Index) 0.397 

Distance to river 1.246 

Landuse 0.073 

Distance to road -0.873 

Intercept -2.231 

Logistic regression provides information about the quality of datasets and how 
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the model fits the dataset. The statistical parameters resulted on the LR is written as 

total number of samples, -2ln L (L=likelihood), model chi-square, Cox & Snell R 

Square, and Nagelkerke R Square (Table 4.4). It shows that the goodness of fit in the 

equation can be accepted. The value of Cox and snell R
2
 and Nagelkerle R

2
 indicates 

that the independent variables can explain the dependent variables.  

Table 4.4 The overall Statistic of the Logistic Regression Model 

Hosmer and Lemeshow test  -2 Log 

likelihood 

Cox and 

Snell R
2
 

Nagelkerle 

R
2
 X

2 
 df  Sig.  

40.18 8.00 0.000 3189.12 0.42 0.56 

The landslide susceptibility map was computed using the logistic coefficients 

in ILWIS open source software by inputting controlling factor layer maps. The 

problem may occur if the independent variables from X1 to Xn representing the value 

of pixel of class layer were nominal data. This value very much affects the result of 

susceptibility map.  

4.3.2.3 SOFT COMPUTING – ARTIFICIAL NEURAL NETWORK 

Soft computing mimic the human mind as a role model to solve problems 

employing modes of reasoning that is approximate rather than exact (Zadeh, 1994). 

Artificial neural network, applied as generic non-linear function approximators that 

were developed by (McCulloch and Pitts, 1943) and extensively used for pattern 

recognition and classification,  is a soft computing technique to build a model 

which can generalize and predict outputs from inputs that it has not previously seen. 

The terminology of artificial neural network is used to describe a computational 

network that attempts to simulate, the networks of nerve cell (neurons) of the 

biological central nervous system. It consists of a connected network of processing 

units that are modeled on the most basic properties of the neurons in the human brain. 

ANN is independent from the statistical distribution and does not need specific 

statistical variables (Lee et al., 2004) 

The multi-layer perceptron using a back-propagation learning algorithm is one 

of neural network models. It contains an input layer, output layer and hidden layers 

(Figure 4.14). In landslide susceptibility analysis, landslide controlling factors are 

considered as input layers. ANN can then be applied in the prediction of areas that 
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landslide is likely to occur in the future. The connection of ANN is simulated by 

weight connecting each layer which contains nodes or neurons (Figure 4.15). In the 

network, each layer has a weight matrix w and an output vector ko . Each element of 

the input vector io  is connected to each neuron input through the weight matrix w. 

The ith neuron has a summation that gathers its weighted inputs to form its own 

output. Finally, the neuron layer outputs form a column vector ko . 

 

Figure 4.15 Architecture of neural network for landslide susceptibility analysis 

This architectural ANN model is defined as multi-layer perceptron (MLP) using 

a back-propagation (BP) learning algorithm. The hidden layers nodes are important 

for learning and making use of interaction effects to solve complex regression and 

classification problems. Each node is a simple processing that responds to the 

weighted input according to: 

           

 

 
(4.15) 

where ijw represents the weight between node i and node j and io is the output from 

node i. The output from given node j is then computed from : 

           
(4.16) 

There are several function f such as threshold/heaviside, piecewise-linear, and 

sigmoid function used to the weighted sum of inputs before the signal passes to the 
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next layer. The value of jo is the activation function f evaluated at the sum produced 

within node j, jnet . Sigmoidal function is applied to the weighted sum of inputs by 

using its derivative as follows: 

                            (4.17) 

After a forward pass is finished, the result of the output nodes is compared with their 

expected result. The difference between the output nodes and the expected result is 

called error. Then this error is propagated backward through the neural network and 

the error is minimized by changing weight via the delta rule as follows: 

                       (4.18) 

where  is the learning rate parameter, j is an index of the rate of change of the 

error and  is the momentum parameter. The forward and backward passes continue 

or repeated iteratively until the error of the network reaches an acceptable value.  

Table 4.5 Best obtained Parameters after Multiple Trials ANN 

Parameters in the model Value 

Output layer node 1 

hidden layer 1 

hidden layer node 20 

learning rate 0.1 

Momentum factor 0.5 

sigmoid function constant  1 

RMS 0.1 

number of iteration 5000 

Training RMS 0.1118 

Testing RMS  0.0913 

The ANN model was computed using Idrisi software. After multiple trials with 

different parameters, the best an ANN model was produced by using the parameters 

in Table 4.5. Determining these parameters can limit the development, performance 

and accuracy of the model (Baheer and Hajmeer, 2000). Number of hidden layers 
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affects the complexity of the model, period of training and the likelihood of 

overfitting. Learning rate affects the stability of the model, prediction of the weight 

(fluctuate widely) and may also decelerate the rate of training and learning. 

Momentum factor can affect risk of exceed the solution while training and risk of 

entrapment in a local minimum in the error surface. High number umber of iteration 

may cause overfitting. 

4.4 COMPARISON OF WOE, LR AND ANN IN LANDSLIDE SUSCEPTIBILITY  

4.4.1 ACCURACY EVALUATION 

The best validation of landslide susceptibility zoning is comparing the landslide 

susceptibility model with landslide occurrences after the model finished (Neuhauser and 

Terhorst, 2006). It is sometimes not possible to conduct the analysis using the method 

due to the lack information about the accurate time of landslide occurrences. It is only 

possible if there is availability of landslide events in different time. However, landslide 

performance evaluation must be inserted when landslide model had been finished. 

Landslide samples (60%) were selected randomly to test the performance of landslide 

susceptibility maps. There are several performance evaluation in landslide 

susceptibility analysis, such as ROC (Receiver Operating Characteristic) curve, 

success rate curve and prediction rate curve.  

ROC curve shows the global accuracy statistic for the model. It is usually used 

to measure the performance of a predictive rule and widely applied in the 

multivariate statistic model. The curve is obtained by plotting the sensitivities and 

false negatives (1-specificity). It is calculated from the analysis of the classification 

of the statistical unit. ROC curve only describes the statistical model to differentiate 

presence and absence of landslide, thus it does not consider the spatial accuracy of 

susceptibility map.  

Success rate offers the analysis of spatial accuracy between landslide 

susceptibility and actual landslides (landslide inventory). It is obtained by overlaying 

landslide susceptibility and landslide inventory. Then, based on the frequency 

information from the histogram, the susceptibility value is ordered from high to low 

values. Joint frequency is calculated to obtain the percentage of predicted landslide 

and percentage of the study area. The success rate indicates how much percentage of 



 

89 

 

all landslides occur in the pixels with the highest values in the different combination 

maps. For example, 80 percent of all landslides are predicted by 40 percent of the 

pixels with the highest value in the map. Prediction rate is similar with success rate, 

but the susceptibility map is compared to different landslide inventory used in the 

model. In the present study, the success rate curve is employed to compare the 

mapping accuracy among three susceptibility. 

 

Figure 4.16 Success Rate Curve of WoE, LR, and ANN 

AUC (Area Under Curve) of success rate (Figure 4.16) shows that the most 

realistic data driven model for Purwosari area is WoE with 79 % area (red curve). It 

means that 20 % or 50% of area classified into high probabilities of future landslide, 

there is 55% or 85% of independent landslide can be correctly predicted respectively. 

Whereas, ANN was less realistic with accuracy 71% and Logistic Regression indicated 

slight improvement in success rate at high susceptibilities. Those accuracies were 

obtained with the assumption that there are no a priori knowledge considered in the 

model.  
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4.4.2 LANDSLIDE SUSCEPTIBILITY MAP PERFORMANCE 

The results of data driven methods were calculated probabilities which can be 

represented as a landslide susceptibility map. It is common that landslide 

susceptibility maps show the degree of susceptibility by qualitative way by dividing 

calculated probabilities in some classes. In this research, the calculated probabilities 

were split as very low, low, medium and high. Low and very low indicate that this 

classified area is a stable zone. Whereas, high indicates the unstable zone. Medium 

classification might be classified as grey zone where stable or unstable can not be 

clearly defined.  

There is no strict rule to classify calculated probability into some classes and 

usually determined based on expert opinion. Several trials based on associated 

histogram using automated classification methods available in ArcGIS (ESRI, 2009) 

were applied to find the classification that suits the scale of the calculated probability. 

Both calculated probabilities obtained from WoE and ANN were split by natural 

breaks and Logistic Regression was split by geometrical interval. Natural break suit 

the data which have big difference in the data values and geometrical interval suits 

for the data which has positive or negative skewness in the data values. 

The weight of WoE method has a value ranging from -12.1 to 4.87 with the 

normal curve distribution. Using natural breaks, the very low, low, medium, and high 

susceptibility zone has a value ranging from -12.09 to -4.00, -4.00 to 0.00, 0.00 to 

1.00, and 1.00 to 4.87 respectively (Figure 4.17). On the susceptibility map, 6.9%, 

28.3%, 40.6%, and 24.2% area are shown as very low, low, medium and high 

susceptibility respectively.  

Table 4.6 Validation Matrix of WoE based on the Number of Pixels 

  

Predicted (model) 

  

Stable(-12.09-0.00) Unstable (1.00 - 4.87) 

Landslide 

inventory 

No Slide (0) 374593 (80%) 91068 (20%) 

Slide (1) 955 (35%) 1811 (65%) 

Table 4.6 shows that 80% stable and 65% unstable pixels are correctly 

classified. Whereas, 35% stable and 25% unstable pixels are incorrectly classified. 

WoE has better capability to classify stable zone (80%) than unstable zone (65%). 
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Misclassification in the unstable zone also shows small proportion (20%). 

The calculated probabilities of logistic regression method were splitted by a 

geometrical interval because the data value indicated negative skewness. It was 

classified into 0-0.75, 0.75-0.94, 0.94-0.98, and 0.98-0.99 for the very low, low, 

medium and high susceptibility zone respectively (Figure 4.18). The very low, low, 

medium and high susceptibility zone covers 12.8%, 31.9%, 27.8%, and 27.4% area 

respectively.   

Table 4.7 Validation Matrix of LR based on the Number of Pixels 

  

Predicted (model) 

  

Stable (0 - 0.94) Unstable (0.98-0.99) 

Landslide 

inventory 

No Slide (0) 247757 (62%) 151085 (38%) 

Slide (1) 836 (38%) 1361 (62%) 

Table 4.7 shows that 62% stable and 62% unstable pixels are correctly 

classified. Whereas, 38% stable and 38% unstable pixels are incorrectly classified. 

LR has the same capability to classify stable zone (62%) than unstable zone (62%), 

even though the accuracy was not so high. Misclassification in the unstable zone also 

shows the same proportion (38%). It has lower accuracy than WoE. This problem 

might be affected by the ignorance of inputting the weight of class variables during 

susceptibility calculation and mapping. 

Table 4.8 Validation Matrix of ANN based on the Number of Pixels 

  

Predicted (model) 

  

Stable (0-0.44) Unstable (0.57-0.99) 

Landslide 

inventory 

No Slide (0) 292260 (76%) 91179 (24%) 

Slide (1) 1281 (64%) 719 (36%) 

Similar to WoE method which has a normal curve histogram and some big 

difference in data value, the calculated probabilities of ANN method were split by 

natural breaks. The very low, low, medium, and the high susceptibility zone has a 

value ranging from 0 to 0.31, 0.31 to 0.44, 0.44 to 0.57, and 0.57 to 0.99 respectively 

(Figure 4.19). On the susceptibility map, 17.9%, 34.8%, 30.8%, and 16.5% area are 

shown as very low, low, medium and high susceptibility respectively. 

Table 4.8 shows that 76% stable and 36% unstable pixels are correctly 



 

92 

 

classified. Whereas, 64% stable and 24% unstable pixels are incorrectly classified. 

Similar to WoE, ANN has better capability to classify stable zone (76%) than 

unstable zone (36%), even though overall the accuracy was the lowest. 

Misclassification in the unstable zone also shows the same proportion (24%). It has 

better accuracy than LR but misclassification in stable zone is very high. This 

problem might be affected by the difficulties in preparing the parameters in ANN 

model. Learning rate and iteration may cause overfitting which sometimes gives 

better result of RMS but not in the final susceptibility map. 

 
Figure 4.17 Landslide Susceptibility Map based on WoE Method 

ANN has the largest very low susceptibility area, but some exaggeration may 

occur because ANN classify all of the area of adjacent to the valley as the very low 

susceptibility area. Logistic regression landslide susceptibility map can differentiate 

susceptibility based on the geomorphological zone, i.e. the eastern zone and the 

western zone. The eastern zone is more susceptible than the western zone because it 

has steeper relief than the western zone. It is dominated by denudation process in 

which weathering, erosion, and mass wasting occurred very intensive. Landslide 

events in the eastern zone were also larger than in the western zone. 
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Figure 4.18 Landslide Susceptibility Map based on LR Method 

 
Figure 4.19 Landslide Susceptibility Map based on ANN Method 

For all susceptibility maps, it generally shows that the area adjacent to valley 

falls to the very low susceptibility and area in the ridges and adjacent to road fall to 
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the high susceptibility. It showed that landuse, especially settlement area and road 

play very important role as landslide controlling factors. 

Based on the results, there are pros-and-cons of each method in predicting 

landslide susceptibility zones. The WoE method has advantages as follows: 1) WoE 

indicates the linear relationship between landslides and its controlling factor 

individually; 2) sampling is not necessary; 3) WoE provides a technique to detect 

intercorrelation of landslide controlling factors. The disadvantages are 1) weight 

value may underestimates or overestimates if  landslides are very small and not 

evenly distributed 2) the weight cannot be compared for different area.  

Some advantages of logistic regression are: 1) LR has ability to explicitly 

identify the relationship between landslides and its controlling factors 

simultaneously; 2) value represents meaningful probability and can be compared for 

different area; 3) LR also provides a technique to detect a linear relationship of 

landslide controlling factors. Whereas, the disadvantages are 1) LR requires formal 

statistical training; 2) undersampled may significantly impact the result; 3. the final 

susceptibility map may be over or underestimated.  

ANN has advantages as follows: 1) It requires less formal statistical training; 2) 

ANN can implicitly identify the complex nonlinear relationship between landslides 

and its controlling factors. However, the disadvantages are 1) ANN has limited 

ability to explicitly identify possible causal relationship; 2) ANN requires greater 

computational resources; 3) ANN is prone to overfitting. 

4.5 INCREASING SUSCEPTIBILITY PERFORMANCE BY COMBINING WOE AND LR 

Based on the comparison of the three methods, the author tried to combine 

WoE and logistic regression method. The author proposed to exchange the value of 

the independent variables from X1 to Xn representing the value of pixel of class layer 

with the Wcontrast obtained from WoE method. Final map was obtained by calculating 

equation 4.12 with X1 to Xn represented by landslide controlling maps with Wcontrast 

and β0,… βn value represented by the logistic regression coefficient (Table 4.10). 

This modification gives advantages that the final result can be compared for different 

area and the problem related to X1 to Xn values when producing susceptibility map 

can be solved. 
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Two tests for conditional independence, i.e. Cramer's V and Multicollinearity 

diagnostic statistics were also carried out. Cramer's V coefficient (Kendall and Stuart, 

1979) ranged between 0 and 1 was used to test the spatial association between 

parameters. It was derived from a chi-square (χ2) test using contingency tables in 

order to identify any interrelationships within the landslide controlling factors that 

may affect on statistical analysis as follows: 

   
  

             
 

(4.19) 

where N is the sample size, R is the number of rows in the contingency table, and C 

is the number of the columns. Cramer's V coefficient is undertaken just on areas with 

landslides (Bonham-Carter, 1994).  

Table 4.9 Cramer’s V Values for Comparison of Multi-class Chi-square Contingency 

Tables 

 Elevation Slope Aspect Plan 

Curv 

Prof 

curv 

SPI TWI Dist 

to 

river 

Landuse 

Slope 0.26 

        Aspect 0.24 0.20 

       Plan Curv 0.10 0.13 0.09 

      Prof curv 0.08 0.08 0.09 0.29 

     SPI 0.25 0.40 0.22 0.30 0.18 

    TWI 0.13 0.21 0.15 0.23 0.17 0.38 

   Dist to river 0.21 0.10 0.11 0.13 0.21 0.18 0.18 

  Landuse 0.19 0.19 0.15 0.06 0.09 0.15 0.16 0.20 

 Dist to road 0.26 0.10 0.15 0.10 0.09 0.18 0.17 0.17 0.19 

 

The result of the chi-squares tests in terms of the calculated Cramer's V value 

for each variable is presented in Table 4.2. The value ranges from 0 to 1 indicating 

that higher values reflect a stronger association. Cramer's V value >0.5 indicates a 

high association, 0.3 to 0.5 indicates a moderate association, 0.1 and 0.3 indicates a 

low association and 0 to 0.1 indicates little if any association. Table 4.2 shows that 

the association of slope and SPI; SPI and TWI can be categorized as moderate 

association, meanwhile the rest can be categorized as low to little association.  

Multicollinearity diagnostic statistics, i.e. Tolerance and Variation Inflation 

Factors were calculated to test the multicollinearity among the landslide controlling 
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factors. Variable with VIF of >2 and Tolerance of <0.4 is considered as highly 

correlated dependent variables. Table 4.5 shows that slope, SPI, and TWI are highly 

correlated.  

Table 4.10 Multicollinearity diagnosis indexes for independent variables. 

Independent variables Tolerance VIF 

Elevation 0.824 1.214 

Slope 0.341 2.936 

Aspect 0.963 1.039 

Plan Curvature 0.616 1.622 

Prof Curvature 0.739 1.353 

SPI (Stream Power Index) 0.307 3.254 

TWI Topographic Wetness Index) 0.375 2.670 

Distance to river 0.811 1.233 

Landuse 0.858 1.165 

Distance to road 0.743 1.346 

Two landslide susceptibility maps by using combination WoE and LR were 

produced by two scenarios. The first by using all controlling factors (case 1) and the 

second by excluding SPI and TWI (case 2). There were three controlling factors 

indicating high correlation, i.e. slope, SPI and TWI. Thus, two of which should be 

excluded from the analysis. The author excluded SPI and TWI as one of the 

scenarios because the slope is an important controlling factor to landslides. Besides, 

both SPI and TWI were mapped as a derivation from the slope. 

Table 4.11 The Overall Statistic of the Logistic Regression Model (WoE-LR) 

Cases 
Hosmer and Lemeshow test  -2 Log 

likelihood 

Cox and 

Snell R
2
 

Nagelkerle 

R
2
 X

2 
 df  Sig.  

Case 1 90.58 8 0.000 2649.37 0.499 0.665 

Case 2 169.29 8 0.000 2761.59 0.484 0.645 

 

Two cases of combined WoE-LR produce two new statistical results, i.e. statistic 

of datasets quality and regression coefficient. The first provides information about the 

quality of datasets and how the model fits the dataset. The statistical parameters resulted 

on the LR is written as total number of samples, -2ln L (L=likelihood), model 

chi-square, Cox & Snell R Square, and Nagelkerke R Square (Table 4.11). It shows 

that the goodness of fit in the equation can be accepted because the significance of 
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X
2 

is larger than 0.05. The value of Cox and snell R
2
 and Nagelkerle R

2
 (>0.2) 

indicates that the independent variables can explain the dependent variables. 

Interpretation of the coefficients should take the coefficients as a power to the 

natural log (e). It represents the probability that an event will occur divided by the 

probability that an event fails to occur. If the coefficient is positive, the transformed 

log value will be greater than 1, meaning that the landslide is more likely to occur. If 

a coefficient is negative, the odds of the landslide event decrease.  

Table 4.12 The Regression Coefficients obtained for the Ten Independent Variables. 

 
Coefficient 

Independent variables Case 1 Case 2 

Elevation -1.667 -1.526 

Slope -0.049 -0.147 

Aspect 0.250 2.535 

Plan Curvature 0.555 0.021 

Prof Curvature 0.572 0.499 

SPI (Stream Power Index) -1.354 - 

TWI Topographic Wetness Index) -1.748 - 

Distance to river 0.969 0.925 

Landuse 3.141 3.219 

Distance to road 0.982 0.782 

Intercept 2.034 1.881 

The result of regression coefficients, as shown in Table 4.12, indicates the 

importance of the independent variables. Elevation, slope, SPI, and TWI  are 

examples that the factors are not favorable for predicting landslide events in the 

study area. Landuse and aspect are more pronounced coefficients than the other 

factors due to its higher positive value. Distance to river, distance to road, and 

curvature is also a good indicator for the presence landslides even though the value is 

not as high as landuse and aspect. Landuse strongly departs from 0 and can be 

inferred as a controlling factor that has a higher effect on the landslide events than 

any other parameter. It is reasonable that landuse change, especially housing 

development may pose serious slope stability problems in the study area because its 

construction practices. The development of the housing area by excavating slope 

without measures may increase instability of the slope. Devegetation may also cause 

landslides because vegetation prevents erosion through the canopy and natural 
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anchorage provided by the roots. The study of the effect of landuse change to 

landslides and the evaluation of devegetation to landslides will be great challenges 

for the future research. 

 

Figure 4.20 Success Rate Curves of Landslide Susceptibility (All Methods) 

The result shows that by excluding SPI and TWI, the performance of landslide 

susceptibility map is a little bit increasing. The AUC of the first scenario is 84% and 

second scenario is 85% (Figure 4.20). Thus, it can be concluded that including or 

excluding controlling factors that has highly correlation influence the accuracy of the 

result. However, it does not very much influence the accuracy of the result of 

landslide susceptibility map in Purwosari area.  

The calculated probabilities of WoE-LR method was also split as very low 

(0-0.2), low (0.2-0.5), medium (0.5-0.8) and high (0.8-0.99). Low and very low 
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indicate that this classified area is a stable zone. Whereas, high indicates unstable 

zone. The medium classification might be classified as grey zone where stable or 

unstable can not be clearly defined. 

According to the above classification, most parts of Purwosari area were found 

in very low and low susceptible zones. The proportion of the high susceptible zones 

increased significantly in the settlement area and surrounding road corridor (Figure 

4.21). It indicates that excavation of slope for road and building development are the 

major environmental factor controlling slope failures. 

 

Figure 4.21 Landslide Susceptibility Map based on WoE-LR 1 (with all factors) 

The distribution pattern of landslide susceptibility map using WoE-LR with all 

factors and minus TWI and SPI seems not so different. There were 7.36%, 26.24%, 

46.05%, and 20.35% area are shown as very low, low, medium and high 

susceptibility respectively for the first scenario landslide susceptibility map. And for 

the second scenario, there were 7.46%, 27.61%, 47.96%, and 16.97% area are shown 

as very low, low, medium and high susceptibility respectively (Figure 4.22). The 

difference is on landslide susceptibility classified into high. This may affect the 

accuracy of mapping, the high susceptibility of scenario 2 covers a smaller area than 

scenario 1 and both coincide with the same area of the observed landslide area.   
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Table 4.13 shows that 67% stable and 98% unstable pixels are correctly 

classified; whereas 2% stable and 33% unstable pixels are incorrectly classified. 

Table 4.14 shows that 68% stable and 98% unstable pixels are correctly classified; 

whereas 2% stable and 32% unstable pixels are incorrectly classified. 

 

Figure 4.22 Landslide Susceptibility Map based on WoE-LR 2 (without SPI and 

TWI) 

Table 4.13 Validation Matrix of WoE-LR based on the Number of Pixels 

  

Predicted (model) 

  

Stable (0-0.5) Unstable (0.8-0.99) 

Landslide 

inventory 

No Slide (0) 186649 (67%) 27379 (33%) 

Slide (1) 36 (2%) 1583 (98%) 

 

Scenario 2 has better capability to classify stable zone (68%) than scenario 1 

and has lower percentage of the misclassified unstable zone. It can be concluded that 

scenario 2 is better than scenario1 even though the difference is very small (1%). 

Misclassification in the unstable zone also shows same proportion (24%). It has 

better accuracy than LR but misclassification in stable zone is very high. It shows 

that the choice of selecting the landslide controlling factor is important and can give 
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an effect on the overall accuracy. 

Table 4.14 Validation Matrix of WoE-LR without TWI and SPI based on the Number 

of Pixels 

  

Predicted (model) 

  

Stable (0-0.5) Unstable (0.8-0.99) 

Landslide 

inventory 

No Slide (0) 194814 (68%) 92730 (32%) 

Slide (1) 36 (2%) 1547 (98%) 

Table 4.15 shows the summary of the accuracy of the three methods and the 

improvement method by using combined WoE-LR method. The average of true 

positive and true positive and true negative is better than the other methods. The 

average is 82.74%, 82.27%, 70.35%, 56.09%, and 52.07% for WoE-LR (case 2), 

WoE-LR (case 1),  WoE, ANN, and LR. The average of false positive and false 

negative is also less than the other methods. The average is 17.26%, 17.73%, 29.65%, 

43.92%, and 47.93% for WoE-LR (case 2), WoE-LR (case 1),  WoE, ANN, and LR 

respectively. 

Table 4.15 Summary of Contingency Table for All Methods in Susceptibility Zoning 

Test outcome 
Percentage (%) 

WoE LR ANN WoE-LR 1 WoE-LR 2 

True positive 90.94 4.20 76.22 66.81 67.75 

True negative 49.76 99.94 35.95 97.73 97.73 

False positive 9.06 95.80 23.78 33.19 32.25 

False negative 50.24 0.06 64.05 2.27 2.27 

In addition, the ratio of landslide events in the grey zone for WoE-LR were 

also lower than the other methods except LR (Table 4.16). The number of landslides 

classified in the grey zone for both WoE-LR cases were also lower than the other 

methods, except LR. Both success rate curve and contingency table indicate that 

WoE-LR produce better accuracy than the other data driven methods. Since the value 

of WoE-LR shows the probability, it may be compared to another place with the 

same method employing both the same controlling factors and different controlling 

factors. The susceptibility map produced by either comparison of data driven 

methods or WoE-LR may lead to an agreement how to produce a more realistic 
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landslide susceptibility map in the future. Besides, landslide inventory should also be 

updated periodically. The fully documented landslide database will enable scientists 

to more accurately establish the relationship between landslides and its controlling 

factor which will be very useful for landslide susceptibility analysis. 

Table 4.16 The ratio of Landslide Events in the Grey Zone 

Mapping methods Landslide Grey zone Ratio 

WoE 1810 141732 0.013 

LR 100 72998 0.001 

ANN 1654 172346 0.010 

WoE-LR 1 1599 255823 0.006 

WoE-LR 2 1475 266436 0.006 

4.6 CONCLUSIONS 

There are different approaches and techniques for evaluating landslide 

susceptibility and no agreement has been reached both in the procedure and the use 

of specific controlling factors employed in the lanslide susceptibility mapping. Each 

approach has its own assumption and the result may differ from place to place. The 

different result may also be affected by different landslides controlling factors and 

the completeness of landslide inventory. Landslide susceptibility approaches need to 

be compared in order to identify the most realistic landslide susceptibility approach 

applied typically in the tropical region Indonesia by using complete landslide 

inventory. 

 The participatory landslide inventory map has been employed to generate 

landslide susceptibility maps based on data driven models, i.e. WoE, LR, and ANN. 

The merit and demerit of each data driven method have been evaluated to propose a 

combination of the methods applied in Purwosari area. The evaluation of controlling 

factors has also been discussed based on the multicollinearity analysis and Cramer’s 

V values. Considering the accuracy and the precision evaluations, the WoE 

represents considerably the most realistic prediction capacities when comparing with 

the logistic regression and ANN. The merits and demerits of the three models were 

also highlighted.  
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The advantages and disadvantages of the models have been used to evaluate the 

models and to propose a technique how to improve the accuracy of the model. The 

author proposes landslide susceptibility zoning based on the combination of WoE 

and LR. Those have been produced by two scenarios based on the evaluation of 

controlling factors. The first by using all controlling factors and the second by 

excluding SPI and TWI. The result shows that WoE-LR by excluding SPI and TWI 

can increase the accuracy up to 5%. It also shows that the choice of selecting the 

landslide controlling factor is important and can give an effect on the overall 

accuracy. 

Landuse can be inferred as a controlling factor that has a higher effect on the 

landslide events than any other parameter in the study area. It is reasonable that 

landuse change, especially housing development may pose serious slope stability 

problems in the study area because its construction practices. The development of the 

housing area by excavating slope without measures may increase instability of the 

slope. Devegetation may also cause landslides because vegetation prevents erosion 

through the canopy and natural anchorage provided by the roots. The study of the 

effect of landuse change to landslides and the evaluation of devegetation to 

landslides will be great challenges for the future research. 
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CHAPTER 5  
ROCKFALL SUSCEPTIBILITY BASED ON ROCKFALL SOURCE 

IDENTIFICATION BY USING BACK ANALYSIS OF ROCKFALL 

DEPOSITS INVENTORY 

5.1 INTRODUCTION 

4 Risk can be defined as ”the expected number of lives lost, persons injured, 

damage to property and disruption of economic activity due to a particular damaging 

phenomenon for a given area and reference period” (Varnes, 1984). The definition 

was originally used to describe landslide risk. Later, the terminology was used for all 

types of mass movement including rockfall.  

5 The word “rockfall” is often distinguished from more general landslide 

phenomena due its typical material, size and failure mechanism. It is defined as rock 

fragments (Hungr and Evans, 1988) with size from a few dm
3
 to 10

4 
m (Levy et al., 

2011) started by the detachment of blocks from their original position (Crosta and 

Agliardi, 2003) and followed by free falling, bouncing, rolling or sliding (Peila et al., 

2007). Rockfall risk can be expressed by the simple product of hazard (temporal 

probability, spatial probability, reach probability), vulnerability and value of the 

element at risk (Fell etal., 2005; Westen et al., 2005; Agliardi et al., 2009) as follows: 

6   ))(( VCHR  
7 (5.1) 

where H is hazard expressed as a function of spatial probability, temporal probability 

and magnitude probability; V is vulnerability of particular elements at risk; and C is 

amount of loss of the particular elements at risk. Based on the equation 5.1, the 

temporal and spatial probability of rockfall are diverse in time and places. The 
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diverse in places is usually presented by rockfall susceptibility zoning. 

There are many rockfall susceptibility zoning methodologies proposed by 

government agencies and or scientific society worldwide such as Switzerland 

(Raetzo et al., 2002), Hong Kong (GEO, 1998), Australia (AGS, 2007), Andorra 

(Copons et al., 2004). It includes geomorphological analysis/ rating system and 

trajectory-energy/velocity modeling. These provide different approaches to quantify 

rockfall susceptibility, hazard and risk.  

Geomorphological analysis is the simplest approach and powerful to identify 

rockfall susceptibility. The zoning is usually based on the geomorphological unit or 

landform analysis. For example, Sasaki et al., (2000) generated land condition map 

showing geomorphologic element which is susceptible to rockfall. The division of 

the susceptible rockfall area was clearly defined by the geomorphological unit. 

However, susceptibility zoning is described in qualitative ways, subjective and needs 

well experienced geomorphologist as an interpreter to delimit the susceptible zone. 

The detail of geomorphology analysis is discussed in chapter 6. 

Trajectory-energy/velocity modeling is a quantitative method which can 

accommodate the terminology of susceptibility quantitatively. It employs computer 

simulation to calculate probability of reach, velocity and the kinetic energy 

distribution at each point of the slope. The propagation is dependent on slope 

topography, lithology, mass block shape and mass. The trajectories are calculated 

from the input parameter that sometimes inaccurate due to unavailability of rockfall 

database. The susceptibility zoning is defined based on the reach probability or an 

energy profile to the distance. It does not represent the natural feature of the slope 

and the result depends on the input of the model. 

Rockfall susceptibility and hazard assessment is beneficial to provide guidance 

on the design of structural measures and nonstructural measures as a protection 

system (Fell et al., 2008). Rockfall susceptibility assessment employed GIS 

susceptibility mapping, numerical simulations and full scale experiment (Volkwein et 

al., 2011). The application of rockfall susceptibility assessment usually depends on 

the scale of area. GIS susceptibility mapping is usually applied in regional scale, 

whereas numerical simulations and full scale experiment are applied in a limited area 
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or large scale. 

A GIS rockfall model (Lan et al., 2007) is employed to infer the rockfall source 

by using back analysis method in this chapter. It is based on the rockfall boulder 

inventory and the input parameter of the characteristics of GunungKelir area. 

Coefficients of restitution are used to control boulder movement during impact at the 

end of rock movement. Sensitivity analysis is conducted to demonstrate the effect of 

different coefficient restitution. Once the potential of rockfall sources is identified; 

trajectories, frequency and energy of rockfall can be mapped.  

The information of the trajectory simulation, including frequency and energy is 

useful to expose the spatial distribution of potentially high damage of elements at 

risk affected by rockfall. Thus, it is expected to provide spatial information needed 

for susceptibility zoning analysis when the rockfall source data is unavailable.  

5.2 STUDY AREA 

Gunung Kelir is located in Yogyakarta Province, Indonesia. It lies in the upper 

part of Menoreh Dome that is located in the central part of Java Island (Figure 5.1). 

The area is dominated by Tertiary Miocene Jonggrangan Formation that consists of 

calcareous sandstone and limestone. Bedded limestone and coralline limestone 

which form isolated conical hills may also be found in the highest area 

surrounding the study area. 

Landforms in Gunung Kelir are a product of final uplifting of the Complex 

West Progo Dome in the Pleistocene. The evolution or chronology of Kulon Progo 

Dome has been well explained by van Bemmelen (1949). It was started with the 

rising up of geosyncline of South-Java in Eocene Period. It made the magma of 

Gadjah Volcano consisting of basaltic piroxene andesites reached up to the surface. 

Then, it was followed by the activity of Idjo Volcano in the south with more acid 

magma consisting of hornblende-augite andesites and dacite intrusions. After the 

strong denudation process, exposing the chamber of Gadjah Volcano, the Menoreh 

Volcano in the north began to be active. The material consists of hornblende-augite 

andesites without lava flow ended by dacitic intrusion and hornblende andesite with 
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doming up process. Then, in the lower Miocene, Kulon Progo dome subsided below 

sea level and the Jonggrangan Formation was formed by coral reef sedimentation. 

Finally, the complex of The Progo Dome was uplifted during Pleistocene. The 

uplifting caused jointing and large cracks and caused abundant rockfall and slide to 

the foot of Kulon Progo Dome, especially in the eastern flank of Kulon Progo Dome.  

 

Figure 5.1 Study Area (a) geographical position of Indonesia: red rectangle shows 

geographical position of Java Island (b) DTM of Java Island: red rectangle shows the 

location of Menoreh Dome (c) DTM of Menoreh Dome: red rectangle shows 

Purwosari area (d) Gunung Kelir Area viewed from east: red rectangle shows 

building distributions and red line shows road 

Gunung (Mountain) Kelir, of Javanese origin, literally means a curtain that is 

used to perform wayang (Javanese traditional shadow puppet). Its toponym 

describes a 100-200 meter high escarpment that has a maximum slope nearly 80°. 

The complex of Gunung Kelir consists several generic landforms which are prone 

to rockfall. Its mean slope gradient is 23.14° with the standard deviation 13.05°. 
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Altitude ranges from 297.75 to 837.5 m. There are 152 buildings exposed as 

elements at risk on the lower slope of the escarpment (Fig. 5.1.d).  

5.3 DATA AND METHODS 

Rockfall risk analysis requires assessment of susceptibility and identification of 

an element at risk as well as the characteristic of rockfall deposition in a particular 

area. Rockfall trajectory modelling is employed to portray the susceptible area. This 

chapter is aimed to identify potential rockfall sources obtained from the back 

analysis of rockfall deposits inventory. The potential rockfall source is essential for 

susceptibility zoning. To achieve the primary objective, several works were 

conducted: 1) fieldwork, 2) DTM preprocessing, 3) rockfall modelling based on back 

analysis of rockfall source, and 4) sensitivity analysis. 

5.3.1 FIELD WORK AND DTM PREPROCESSING 

Fieldwork was intended to identify rockfall boulders and elements at risk used 

in the proposed back analysis method. A field inventory of fallen rockfall boulders of 

different size has been done to obtain the spatial distribution and dimension of 

rockfall deposition (see Figure 3.8). The rockfall boulder location was recorded by 

GPS and plotted in GIS layer. The size or volume of the boulder was measured in the 

field by laser distance meter or meter distance measurement tool. An interview using 

closed questionnaire was conducted to obtain the information of an element at risk. 

The dimension and potential rockfall source were determined to simulate rockfall 

trajectory, velocity, and energy. The buildings on the lower slope of the escarpment 

were also plotted in order to obtain the spatial distribution of elements at risk. Finally, 

DGPS profiling was conducted to improve the performance of DTM. DTM 

preprocessing was also employed to improve the quality of DTM-derived products. 
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The objective of DTM preprocessing was to improve the quality of 

DTM-derived products. The author applied DTM preprocessing proposed by Hengl 

et al. (2004) including reduction of padi terraces, reduction of outliers, incorporation 

of water bodies, and reduction of errors by error propagation (Figure 5.2). Padi 

terraces are usually caused by interpolation method and located in closed contour 

where all the surrounding pixels were assigned the same elevation value. Five meter 

resolution of DTM was produced by interpolation, using ILWIS linear interpolation 

method, from a 1:25.000 Topographical Map 1999 with contour interval 12.5 m and 

elevation data from DGPS profiling. 

 

Figure 5.2 The Illustration of DTM Preprocessing 

5.3.2 ROCKFALL MODELING 

5.3.2.1 ROCKFALL ANALYST 

GIS (Geographic Information System) is useful to determine rockfall trajectory 

and energy applied in regional scale. It is based on Digital Terrain Model (DTM) 

representing topography in raster format. The model is powerful to simulate the 

physical characteristics of the surface rather than the physical characteristic of the 
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boulder itself. The additional attribute related to geology, land use or vegetation type 

and rock type represented in spatial data can also be included in the model.  

GIS model (Rockfall Analyst) based on lumped mass (Lan et al., 2007) was 

applied to model the trajectory and velocity of rockfall along the escarpment of 

Gunung Kelir area, Indonesia. It considers the dynamic process of rockfall based on 

the cell plane obtained from raster based Digital Elevation Model (DEM). DEM 

represents the earth surface or topography containing actual height points. GIS can 

produce various topographic parameters (derivative of DEM) such as slope, aspect, 

curvature easily. In GIS Rockfall analyst, the DEM derivatives, i.e. slope angle and 

aspect angle are used to construct the normal vector of each cell plane (Lan et al., 

2007). It is expressed in the global Cartesian system (Figure 5.3) as: 

un = (sin θ sin φ, sin θ cos φ, cos θ)                (5.2) 

where un unit normal vector, θ is the slope angle and φ is the aspect angle.  

 

Figure 5.3 Cell Plane and Coordinate System employed in the Model (Adopted from 

Lan et al., 2007) 

Rockfall analyst employs lumped mass approach to assess the trajectory and 

velocity of rockfall to reduce the excessive computational requirements in a GIS 

environment. It means that the rockfall simulation will not consider the size and 
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shape of the boulder. The rockfall process, including the modeling of free falling, 

bouncing and rolling or sliding  is performed by discrete time steps. It is 

automatically determined by both cell size and particle velocity. Physical quantity of 

boulder such as rock position, displacement, velocity, acceleration, force and 

momentum is represented in 3D vector space. For instance, the flying path of boulder 

computed by parabolic equation which is defined as: 
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where g is the acceleration due to gravity (9.8 m/s
2
), X0,Y0,Z0 is the initial 

position and Vx0, Vy0,Vz0 is the initial velocity of the rock in x, y, z direction. 

Whereas, the velocity vector of the rockfall is defined as 
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In addition, coefficient restitution is also included to calculate the bouncing 

velocity in the intersection location between a flight path parabola and the grid cell 

surface. For example, rolling/sliding will occur if the velocity has decreased to some 

value, i.e. 0.5 m/s, after impact. It involves coefficient of normal restitution RN and 

coefficient of tangential restitution RT. Normal restitution acts in a direction 

perpendicular to the slope surface and tangential restitution acts in a direction 

parallel to the surface during each impact of the incoming velocity of the rocks. 

Velocities change because of the energy loss defined by both of which.  

The author determined normal restitution and tangential restitution by a 

geological map representing elasticity of the surface material and landuse map 

representing vegetation cover and surface roughness respectively. The bouncing 

velocity vector in a local coordinate system is defined as 

V’Dip  = VDipRT                        (5.5) 

V’Trend  = VTrend RT                      (5.6) 

V’N = VNRN                         (5.7) 

where VDip is the velocity components of rock in the dip direction, VTrend is the 

velocity components of rock in the trend direction, VN is the velocity components in 



 

117 

 

the normal direction of slope cell. Beside projectile algorithm for falling, the rolling 

or sliding algorithm is also determined by the interaction between rock velocity 

vector and the normal vector of cell plane (Lan et al., 2007). The calculation of GIS 

rockfall modeling is represented by vector format. It shows trajectories along the 

escarpment. The starting point of bolder is treated as a seeder location in the upper 

slope. 

5.3.2.2 ROCKFALL SOURCE IDENTIFICATION 

The trajectory modelling approach needs spatial distribution of the rockfall 

sources. However, there is no historical rockfall history recording the sources of 

rockfall in the study area. A field survey is also difficult to be conducted because the 

unavailability of track to reach the potential source location and the slope is very 

steep (Figure 5.4). Thus the potential source of rockfall was identified by back 

analysis of rockfall boulder deposits obtained from field survey. 

Potential source, initially, was identified by field survey and thematic map 

analysis. The GIS-overlay between slope map and landuse was employed to infer the 

potential source area. Potential major sources were identified in landuse shrub and 

outcrop with slope >55. It results polygon representing a major potential area of 

rockfall source (Figure 5.5.a). Total 2993 point sampling were randomly generated in 

the potential major source area (Figure 5.5. b). It represents the potential source point 

which later employed as a presumed potential seeder processed in the model. The 

starting point of blocks was determined as a potential source of blocks and was 

treated as a seeder location. 

Bouncing, falling, rolling/sliding including the velocity are also able to be 

investigated in each trajectory. Coefficient of surface parameters was also used to 

control boulder movement during impact at the end of rock flight. The simulation of 

rock fall trajectory predicts how far a boulder passes through slope. Many 

simulations were carried out in order to achieve best trajectories which are in good 
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agreement with boulder deposits. The simulation of rock fall trajectory predicts how 

far a boulder passes through slope. Coefficient of surface parameters, i.e. normal 

restitution, tangential restitution (Table 5.1) were used to control boulder movement 

during impact at the end of rock flight. Properties of surface material play important 

role to control boulder movement, i.e. bouncing velocity during impact with surface 

material at the end of rock flight. 

 

Figure 5.4 Escarpment of Gunung Kelir showing potential rockfall source (a) Crack 

on boulder deposits (b), potential trajectory of boulder deposits (c) and boulder 

deposits around 150 m from the escarpment (d) (Credit Photo: Danang Sri Hadmoko)   

Table 5.1 Properties of Surface Material (Adopted from Rocscience website, 2014) 

Surface Types RN RT 

Sandstone face 0.53 0.9 

Vegetated soil slope 0.28 0.78 

Soft soil, some vegetation 0.30 0.3 

Limestone face 0.31 0.71 

Talus cover with vegetation 0.32 0.8 
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Figure 5.5 Polygon of Potential rockfall area obtained from Overlay Analysis (a) 

Point Random Sampling of Presumed Potential Rockfall Source (b) 
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However, GIS-lumped mass model is dimensionless, meaning that it does not 

consider the size, shape and fragmentation of the boulder. The more mechanically 

numerical rockfall simulation is needed as a complementary tool to analyze the 

trajectory which has a potency of high risk, e.g. trajectory passing a building. It 

should be able to model the dynamic displacement and deformation of an elastic 

body in any shape and consider the rigid body displacement, rotation and 

deformation of a block. Thus, 2D DDA was employed to confirm the reliable 

trajectory and dynamic behavior of boulder when travel along the slope having high 

risk possibility. 

5.3.2.3 2D DDA 

Extended 2D DDA (Chen, 2003) was employed to assess the motion behavior of 

the most dangerous rockfall trajectory obtained from GIS modeling. DDA is one of 

numerical simulation that can be applied to simulate the motion behavior of rock. It 

deals with the problem of rigid body movement and large deformation of a rock 

block system under general loading and boundary (Shi, 1988). Even though DDA is 

parallel to finite element, the advantage of 2D DDA is that every single block can be 

convex or concave in two dimensional polygon. In addition, Coulomb’s law is 

applied to the contact interface and the simultaneous equilibrium equations are 

solved for each loading or time increment (Shi and Goodman, 1989). Each block can 

interact and deform independently. 

There are six displacement variables working in DDA when a block experiences 

constant stresses and constant strains throughout(Shi and Goodman, 1989). The 

displacement (u,v) of any point (x,y) of a block can be defined as six variables as 

follows: 

(u0 v0 r0 εx εy γxy)                          (5.8) 

where u0,v0 are the parallel translation (u,v) of a specific point (x0,y0) on the block; r0 

is the rotation angle (in radians) of the block with the rotation center at (x0,y0). εx εy 
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γxy are the normal and shear strains of the block at (x0,y0). Displacements (u,v) of the 

point (x,y) containing several mechanisms such as parallel translation, rotation, 

normal strain and shear strains are formulated separately. Thus, the total 

displacement (u,v) of the same point (x,y) is the accumulation of displacements 

induced by six variables (Shi, 1988) . It can be defined as: 
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2D DDA model will take an advantage of a GIS model to simulate the motion 

behavior of the boulder. 2D slope profile from DEM was imported to the 2D DDA to 

draw rock block system and to simulate the contact force of multiple falling rock. 

The displacement behavior of each block in the dynamic simulation can be traced 

and can be seen at the end of each calculation step. 

5.4 RESULTS AND DISCUSSION 

5.4.1 ROCKFALL TRAJECTORIES BASED ON BACK ANALYSIS OF ROCKFALL 

SOURCE 

There are some difficulties to investigate the rockfall source in Gunung Kelir 

area because of high slope gradient and no access to reach the top of the mountain. In 

this research, the unknown source of rockfall was inferred from back analysis of 

rockfall boulder. Once the surface rasters are created and the parameters are input, 

the rockfall trajectory can be determined as the interaction between rock and slope. It 

produces line trajectory. The boulder inventory can be traced back using the 

trajectory to a point where the point of potential source exists. This point can be 

determined as the source of the rockfall. The author employed geomorphological 

concept, widely applied for landslide analysis, “the past is the key to the future”. It 

means that the past rockfall source may be the rockfall source in the future. 
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Figure 5.6 Reliable Trajectories which are in good agreement with Boulder Deposits 

The simulation of rock fall trajectory predicts how far a boulder passes through 

slope (Figure 5.6). Many simulations with many random points of potential rockfall 

sources were carried out in order to achieve best trajectories which are in good 

agreement with boulder deposits. The simulation of rock fall trajectory predicts how 

far a boulder passes through slope. The distance of boulder passing through slope 

might be affected by the coefficient of restitution (Equation 5.5-5.7). It describes the 

kinematic behavior of a falling rock during an impact against the slope surface. The 

trajectory simulation may demonstrate significant error due to the incorrect value 

assigned to the Coefficient of Restitution (COR). Rockfall boulder inventory and 

potential rockfall source provide an opportunity to verify the result and to know what 

extent COR can affect the result.   

5.4.2 SENSITIVITY ANALYSIS 

The final trajectories and the effect of COR was verified with a sensitivity 
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analysis. Lower and higher input of COR were employed to determine the sensitivity. 

Reducing and increasing both the normal and tangential restitution provides a 

baseline. Reducing and increasing only the  normal or tangential restitution 

respectively gives the individual sensitivity. The selected values can be seen in Table 

5.2. Six tests were employed in sensitivity analysis by changing the value of 

coefficient restitution i.e. RN (+)RT (+), RN (-)RT (-), RN (+)RT, RN (-)RT, RN RT (+), 

and RN RT (-). There were 15 rockfall sources were employed as a sample to determine 

the sensitivity of COR. 

Table 5.2 Adjusted value of COR for Sensitivity Analysis 

Surface type RN RT RN (+) RT (+) RN (-) RT (-) 

Sandstone face 0.53 0.90 0.69 0.93 0.37 0.63 

Vegetated soil slope 0.28 0.78 0.37 0.81 0.20 0.55 

Soft soil, some vegetation 0.30 0.80 0.39 0.83 0.21 0.56 

Limestone face 0.31 0.71 0.40 0.74 0.22 0.50 

Talus cover with vegetation 0.32 0.80 0.42 0.83 0.22 0.56 

RN (+) = RN +30%; RT (+) = RT + 0.03; RN (-) = RN -30%; RT (-) = RT -30%  

 

Figure 5.7 Simulation Trajectory with COR RN (+)RT(+) 
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Figure 5.8 Simulation Trajectory with COR RN (-)RT (-) 

 

Figure 5.9 Simulation Trajectory with COR RN (+)RT 
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Figure 5.10 Simulation Trajectory with COR RN (-)RT 

 

Figure 5.11 Simulation Trajectory with COR RN RT (+) 
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Figure 5.12 Simulation Trajectory with COR RN RT (-) 

Table 5.3 The difference (in meter) between Predicted Trajectory 

 and Trajectory with Adjusted COR tests 

Sample no. RN+ RT+ RN- RT- RN+ RT RN- RT RN RT+ RN RT- 

1 5.5 34.9 35.7 11.1 0 4.9 

2 19.6 9.9 39.1 36.4 6.2 5.2 

3 9.8 0.9 7.4 2.6 0.2 11.2 

4 29.3 23.1 30.4 26.3 23.9 10.6 

5 30.1 24.6 32.2 1.2 29 17.4 

6 9.1 14.7 27.8 14.1 5.8 19.3 

7 1.9 9.4 14.7 17.4 0.02 0.3 

8 1.02 15.9 14.6 10.2 0.04 0.4 

9 3.6 0.3 1 5.3 2.5 12.5 

10 12.3 0.2 2.8 0.4 11.7 37.4 

11 7.6 27.9 5.4 0.6 0.3 9.2 

12 9.3 17.8 31.1 17 8.3 42.9 

13 58.4 19.2 63.3 49.7 28.6 50.1 

14 15.8 16.4 21.8 20.4 17.8 32.2 

15 12.4 41.1 10.9 38.2 0.03 93 

Average 15.05 17.09 22.55 16.73 8.96 23.11 
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The simulation is sensitive to change in the COR value if a slight increase or 

decrease COR result higher difference in rockfall travel distance. The change in 

normal COR affects more that the change in tangential COR. Table 5.3 shows that 

the maximum difference is 63.3 meters and the minimum is 0 meters. The maximum 

average difference is 23.11 and the minimum is 8.96. With 5 meter cell size, the 

difference is approximately 13, 5, and 2 pixels. It may suggest that the changing 

COR value may effect slightly, but it does not significantly affect the travel distance 

of rockfall in Gunung Kelir area. It suggests that the COR values have little effect on 

the travel distance and the travel distance is more affected by the source location and 

topography. 

5.4.3 FREQUENCY AND KINETIC ENERGY  

Once the rockfall sources and rockfall trajectories are determined, a rockfall 

susceptibility map can be directly computed based on the frequency and the kinetic 

energy. Frequency was computed based on the distance of trajectory lines per cell 

size and the kinetic energy can be computed based on the general equation relating 

energy to velocity: 

  
 

 
                            (5.10) 

or 

   
  

 
                           (5.11) 

where E is energy, m is mass and V is velocity. 

Rockfall frequency (Figure 5.13) was classified into 4 classes, i.e. 0-2, >2-4, 

>4-8, and >8. The southern part of Gunung Kelir mostly dominated by 0-2 

meter/pixel. It means that 25 meter
2 

can have maximum 2 lines of trajectories. 

Frequency >2-4 was mostly located on the middle slope of the escarpment. A few 

pixels were attributed as frequency >8. It occurs when the slope has the possibility to 

have more than one source of rockfall. The rockfall frequency can be used as 

susceptibility map. However, it is still difficult to apply rockfall frequency as a single 
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information for landuse planning. It is still difficult to divide an area into 

homogeneous domains only based on the frequency. 

 

Figure 5.13 Rockfall Susceptibility Map shown as the Density of Trajectory Lines  

The kinetic energy of rockfall (Figure 5.14) can also be computed and mapped 

based on the rockfall trajectory. Rockfall energy was classified into 4 i.e. 0-30, 

30-300, 300- 600, and >600. The classification was based on the assumption of the 

response of a building during the impact with rockfall. It can be classified as slight 

damage (0-30), moderate damage (30-300), severe damage (300- 600), and totally 

destroyed (>600). It is easier to divide an energy map as an area which has 

homogeneous domains. The pattern seems that higher slope can be classified as low 

energy, middle slope as the highest energy and back to the lower energy in the lower 

part. This information can be used as susceptibility map even though both frequency 

and energy map still show the vague (“fuzzy”) character of natural boundaries. 
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Figure 5.14 Rockfall Susceptibility Map shown as the Kinetic Energy of Rockfall 

Movement 

The rockfall susceptibility shows that the northern part and middle part have 

higher susceptibility than the southern part (Figure 5.14). There are four buildings 

potentially obstructed by rockfall. The location of the building is 163 meters from the 

source of material.  

More attention should be prioritized in northern and middle part that can 

potentially cause building damage. However, the detail of preventive measures 

development needs more analysis on the mechanic of rockfall process. Thus, 2D 

DDA was applied to explore the motion behavior of rockfall in the highest potency 

of high risk. There are 5 materials involved to model the motion behavior of a 

boulder which has the potential to damage the building in the northern part. The 

material properties are shown in table 3 and control parameter is shown in Table 4. 
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Table 5.4 Material properties of Gunung Kelir Rockfall. 

 M1 M2 M3 M4 M5 

Density (ρ):  g/cm
3
 50000 2500 2450 2500 2450 

Unit weight of rock (γ): kN/m
3
 0 25 24.5 25 24.5 

Elastic modulus (E) : GPa 20 20 20 20 20 

Poisson’s ratio (v) 0.2 0.2 0.2 0.2 0.2 

Friction angle of discontinuities (φ) : ° 20 20 30 19 18 

Cohesion of discontinuities (c) : MPa 0 0 0 0 0 

Tensile strength of discontinuities (σt) : kPA 0 0 0 0 0 

Table 5.5 Control Parameters of DDA. 

Items Data 

Assumed maximum displacement ratio (g2) 0.001 

Total number of time steps 6000 

Time steps (g1) 0.01 

Contact spring stiffness (g0) 1.0x10
7
kN/s 

 

Figure 5.15 Rockfall Impact Force. 

The result shows that the boulder in the northern part can potentially cause the 

building damage. The contact between boulder and building was introduced by small 

boulders with impact force 0.4 MPa at 30.95 seconds. The maximum impact force 

between boulders and building was 11.9 MPa (32.74 seconds after failure) (Figure 

5.15 and Figure 5.16). It happened before the contact between the big boulder and 

the building. It was almost 80 times higher compared with the first contact between 

small boulders and the building. After the maximum impact force, it was followed by 

contact between medium boulder and the building with the maximum impact force 

2.3 MPa in 33.4 seconds. Then, finally the small boulders stoped moving in 43.04 
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seconds with the impact force around 0.91. The velocity of the boulders is less than 

15 m/s. Rolling and sliding are the most common of boulders motion.  

 

Figure 5.16 Rockfall Behavior for Potential High Risk. 

5.5 CONCLUSIONS 

The unavailability of rockfall source data and the difficulties to investigate the 

rockfall source directly are the problems to identify rockfall susceptibility in the study 

area. Trajectory simulation based on the rockfall deposits inventory have been 

investigated in this chapter. Initially, the GIS-overlay between slope map and landuse 

was employed to infer the potential source area. It showed that potential major 

sources were identified in the upper slope landuse shrub and outcrop with slope >55. 

Then, 2993 point sampling were randomly selected in the potential major source 

area. 

The unknown source of rockfall was inferred from back analysis of rockfall 

deposits inventory. Once the surface rasters were created and the parameters were 

input, the rockfall trajectory has been determined as the interaction between rock and 

slope. It produced line trajectory. The boulder inventory was traced back using the 

trajectory to a point where the point of potential source existed. This point was 

determined as the reliable source of the rockfall. 

The reliable final trajectories and the effect of COR were verified with a 

sensitivity analysis. The result suggested that the changing COR value may effect 
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slightly, but it did not significantly affect the travel distance of rockfall in Gunung 

Kelir area. COR values have little effect on the travel distance and the travel distance 

is more affected by the source location and topography. 

Once the potential of rockfall sources is identified; reliable trajectories, 

frequency and energy of rockfall can be mapped. The rockfall susceptibility map is 

represented by rockfall frequency and energy. Both frequency and energy map 

obtained from a trajectory simulation based on the identified potential rockfall 

sources can represent the physical characteristic of rockfall movement and 

susceptibility degree. 2D DDA was applied to explore the motion behavior of 

rockfall in the highest potency of high risk. The result shows that the boulder in the 

northern part can potentially cause the building damage. More attention should be 

prioritized in northern and middle part that can potentially cause building damage. 
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CHAPTER 6 
INTEGRATING STATISTICAL AND PHYSICAL MODEL FOR 

QUANTITATIVE ROCKFALL RISK ZONING BASED ON LANDFORM 

ANALYSIS 

6.1 INTRODUCTION 

Risk analysis is one of the mandatory procedure in disaster risk reduction program. 

A Rockfall risk reduction program may vary depend on the degree of hazard and the 

availability of budget and resources. Several rockfall reduction programs in practice 

include structural and nonstructural preventive measures, i.e. structural protection, land 

use planning and evacuation management. Practical considerations for the establishment 

of rockfall protection is an important issue for administrators and stakeholders in the 

rockfall prone area (Corominas et al., 2005; Jaboyedoff, et al., 2005; Fell et al, 2008). In 

a rockfall prone area, structural protection measures are considered, but identifying the 

situation and processes that may cause harm to persons, buildings, infrastructure and 

facilities by appropriate landuse planning is also essential. It needs spatial zoning which 

ranks the degree of potential rockfall susceptibility and risk.  

Spatial zoning is intended to divide an area into homogeneous domains or 

characteristics and give a ranking based on the degree of actual or potential rockfall 

susceptibility, hazard or risk or capability of certain hazard-related regulations (JTC-1, 

2008). Rockfall spatial zoning based on quantitative risk analysis will not be simple to 

achieve in practice (Crosta and Agliardi, 2003) due to the complex nature of rockfall 

process, the unavailability of the complete rockfall data base and insufficiency of 

damage data. These limitations make the quantitative rockfall risk analysis rather 
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difficult. Frequency, the probability of rockfall across an area, the probability of impact 

on elements at risk and vulnerability should be taken into account in quantitative risk 

analysis.  

Frequency analysis requires detailed rockfall inventory which contains at least the 

location and the dimension of the blocks. However, complete inventory data are not 

available in many developing countries. Complete inventory data are mostly available in 

developed country, e.g. Grenoble French Alps, French (Dussauge et al., 2003), Yosemite 

California, USA (Wieczorek et al., 1992 and Guzzetti et al., 2003), British Columbia, 

Canada (Hungr et al., 1999) and Hong Kong (Chau et al., 2003). Several laws for the 

frequency-magnitude of rockfall have been proposed by (Hungr et al., 1999) and 

(Dussauge et al., 2002) based on those complete historical data. They proposed that the 

magnitude-frequency distribution of rockfall events follows a power law distribution. 

Then, it is some possibilities to relate incomplete rockfall data (e.g. missing on the event 

date) with the magnitude-frequency of complete historical data (Agliardi et al., 2009). 

Probability across an area also defined as onset susceptibility employed several 

approaches based on: a) the objective of the assessment i.e. the design and evaluation of 

protection measures (Corominas et al., 2005, Volkwein et al., 2011), landuse planning 

(JTC-1, 2008; AGS, 2007); b) the method of calculation i.e. GIS techniques (Guzzetti et 

al., 2002; Lan et al., 2007), numerical model (Chen, 2003; Agliardi and Crosta, 2003); 

and c) the scale of the study area i.e. site specific/large scale (Jacopo et al., 2013), 

medium scale (Loye et al., 2009), small scale (Guzzetti et al., 2004; Michoud et al., 

2012).   

Vulnerability or degree of loss of an element at risk affected by hazard can be 

analyzed quantitatively by vulnerability curves derived from element at risk damage data 

and estimated impact energy of rockfall. However, vulnerability curves derived from 

historical damage data is difficult to be obtained due to unavailability of data. Thus, the 

empirical approach is often used to calculate rockfall vulnerability. 

A landuse planning practice usually needs rockfall zoning map which can divide 

land into homogeneous areas or domains and can represent both physical characteristics 
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of rockfall movement and the characteristic of local topography. The author proposes 

automated landform classification to address this issue. Geomorphometry approach is 

employed to generate generic landform unit which is relevant to rockfall process. 

The 9-unit slope model (Dalrymple et al., 1968 i.e. interfluves, seepage slope, 

convex creep slope, fall face, transportational midslope, colluvial footslope, alluvial 

footslope, channel wall and channel bed) are employed as geomorphological unit. 

Unsupervised fuzzy k-means is applied to classify the generic landforms class 

automatically and to minimize the subjectivity of the interpreter. Landform classes can 

pose important zones of rockfall process where energy and velocity are diverse in places.  

In this chapter, the author proposes a comprehensive risk approach integrating 

relevant stage of quantitative rockfall risk analysis and geomorphological analysis in a 

scarce data environment area. Landform class is used as a mapping unit to evaluate the 

occurrence probability, the colliding probability and the physical vulnerability with 

particular boulder size in space and time. The risk to building and the risk to person 

inside the building are calculated based on the chance of loss (in monetary term) during 

a specified time. 

6.2 WHAT IS LANDFORM? 

Geomorphology is a study of landform (Lobeck, 1939). Furthermore, Verstappen 

(1983) explained that geomorphology is a science that studies landform forming earth 

surface, whether in the land or in the submarine that focuses on the forming process and 

the development in the future, and its relationship with the environment. Land surface is 

defined as continuous form which covers the whole globe (both subaerial and 

subaqueous) on the earth, moons, asteroids and other planets (Evans, 2011). Landform 

(or geomorphometric object) is a division of the land surface which may be 

discontinuous/discrete, bounded by topographic discontinuities.  

A landform may have (relatively) uniform morphometry such as peak, valley, 

plateau, canyon, cliff, etc. It involves information about slope morphology, 

geomorphological processes, and topological characteristics. The classification or the 

name of landform, i.e. peak, valley, plateau, cliff, etc., may diverse from place to place 
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depends on the detail of the investigation (mapping scale concept) and the complexity of 

natural feature. It differs in terms of different characteristics of each landform such as 

shape, size, orientation, relief and contextual position. 

Nowadays, land surface is usually presented as contour lines or DTMs (Digital 

Terrain Models). Landform classification is usually based on contour map reading, 

interpretation of stereoscopic aerial photograph, and DTMs analysis. Each method has 

pros and cons. The delineation or delimitation of land surface into a meaningful element 

of land surface, which has information of slope morphology, relief, geomorphological 

processes and topological characteristic, is called landform classification or 

geomorphological mapping. 

Landform analysis (delineation and classification procedure) based on the 

stereoscopic technique of aerial photo and field investigation is very common in 

Indonesia. It has been applied for soil mapping, land evaluation analysis, land suitability 

analysis, spatial planning, and so on. There is also mentioned in Indonesia’s National 

Standard document of Geomorphological Mapping that the technical requirement for 

geomorphological mapping is an interpretation of remote sensing data combined with 

field measurement (SNI, 2002). The standard landform classification in Indonesia is 

based on the ITC Classification System (Zuidam, 1983).  

However, the traditional method of landform classification requires simultaneous 

consideration and synthesis of multiple different criteria (MacMillan and Shary, 2009) 

and the quality depends on the skill of interpreter. The development of landform 

classification has been applied mostly in soil landscape studies. Thus, the author try to 

automatically classify landform based on the 9-unit slope model which is appropriate to 

rockfall analysis. Even though, the 9-unit slope model is significant for pedogeomorphic 

process response (Conacher and Dalrymple, 1977), it is also relevant for preliminary 

rockfall risk zoning.       

The detailed geomorphological information is very useful in many fields of study 

and application. It offers a comprehensive discussion related to another aspect. For 

instance, the study of hazard analysis will be very beneficial if it is analyzed in the 
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context of geomorphology (Panizza, 1996). Here, geomorphometric analysis can be used 

as a tool for incorporating disaster risk reduction and transfer measures into 

development planning. This provides basic ideas for planning priorities in promoting the 

risk management plan and strategy, and evaluating spatial planning policies. Thus, by 

using geomorphometry as a preliminary tool for risk assessment, the spatial planning 

manager can make a balance between minimizing risk and promoting some development 

priorities.  

6.3 STUDY AREA 

Gunung Kelir is located in the western part of Yogyakarta Province, Indonesia (see 

Figure 5.1). It lies in the upper part of Menorah Dome that is located in the central part 

of Java Island. The area is dominated by Tertiary Miocene Jonggrangan Formation that 

consists of calcareous sandstone and limestone. Bedded limestone and coralline 

limestone, which form isolated conical hills may also be found in the highest area 

surrounding the study area. Weathering, erosion, and mass movement commonly occur 

in the study area.  

The average annual rainfall in Gunung Kelir is 2478 mm The highest rainfall 

intensity usually occurs from February to March Rainfall intensity fluctuation influences 

the geomorphology process. The degree of weathering, erosion, and landslide are mostly 

caused by high intensity of precipitation. Therefore, it will influence the development of 

landform and actually the prolonged rainfall can trigger the abundant of landslide. 

Landforms in Gunung Kelir are a product of the final uplifting of the Complex 

West Progo Dome in the Pleistocene. The slope gradient of escarpment varies 

between 50° and 80°, meanwhile mean of slope gradient is 23.14°. The elevation 

ranges from 600 to 837.5 m. There are 152 buildings exposed as elements at risk in 

the lower slope of the escarpment.  

There were 130 respondents that have been interviewed in order to observe 

socioeconomic characteristic of elements at risk in Gunung Kelir area. Most respondents 

(66.6%) work in agricultural sector. Cassava, ginger, corn, coffee, clove, lengkuas 
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(galangale), kunyit (turmeric), and groundnut are the predominant agricultural 

plantation in Gunung Kelir area. There are 87.7% of respondents have low income less 

than 1,000,000 IDR. The low-level income may affect the level of education which is 

relatively low with 56.9% did not graduate primary school (junior high school) and only 

17.7% and 7.7% graduated from junior high school and senior high school.  

The socioeconomic characteristic of the residents can affect the degree of 

vulnerability. There were also increasing trends in landuse change as shown by the 

increasing of the number of housing development. Based on the interview, there were 1, 

13, 10, 30 and 73 houses that were constructed during <1931, 1931-1950, 1951-1970, 

1971-1990, and 1991-2010 respectively. The increased number of housing development 

can increase rockfall risk in Gunung Kelir area. 

6.4 AUTOMATED LANDFORM CLASSIFICATION 

6.4.1 MODIFIED 9-UNIT SLOPE MODEL 

Geomorphological opinion by the investigator is commonly used to classify 

landform through interpretation of aerial photos and field survey. However, subjectivity 

of investigator hinders application of this method. Therefore, unsupervised landform 

classification based on the 9-unit slope model is proposed in the present study. The main 

objective is to provide an automated landform classification, particularly for rockfall 

analysis. Several variables should be prepared before automated landform classification 

analysis. It includes morphometric and hydrological variables which can represent slope 

morphology, relief, geomorphological processes, and topological characteristics.  

The 9-unit slope model is originally applied to pedogeomorphic process response 

(Conacher and Dalrymple, 1977). The original classification of 9-unit slope model 

should be modified if it is applied in different places. It should consider the genetic 

working on the specific landforms. 
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Figure 6.1 Modified 9-unit Slope Model for Preliminary Rockfall Risk Analysis 

Table 6.1 Definition of Landforms modified from 9-unit Slope Model  

No. Landform Class Definition 

1 Interfluve Divide area  

2 Convex creep slope Upper convex zone characterized by creep if 

soil development exists. The area adjacent to 

fall face is a potential rockfall source 

3 Fall face Steep slope, potential rockfall source with high 

weathering and cracking, dominated by falling 

process. 

4 Transportational middle 

slope 

A transportation zone of rockfall, characterized 

by concave slope, and high velocity of rockfall 

movement. 

5 Colluvial foot sope Convex slope, starting point of velocity 

decrease, and depositional region of rockfall. 

6 Lower slope Undulating to near flat zone, rockfall boulder 

may be found, but in small number 

7 Channel bed Stream channel 
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The author proposed a modified 9-unit slope model which is relevant for 

preliminary rockfall risk zoning (Figure 6.1). The final classification of landform 

elements i.e. interfluves, convex creep slope, fall face, transportational middle slope, 

colluvial footslope, slope and channel bed is different with the original classification of 

the 9-unit slope model. The definition of modified 9-unit model is described in Table 

6.1. 

6.4.2 MORPHOMETRIC AND HYDROLOGICAL VARIABLES 

Automated landform classification needs several variables related to morphometry 

and hydrology. Several morphometric and hydrological variables such as slope, plan 

curvature, SPI (Stream Power Index) and SCI (Shape Complexity Index) (Figure 

6.2-6.5) were generated based on DTM processing. Morphometric variable describe the 

morphology of the surface. Whereas, hydrological variable describe potential flows of 

material. DTM-derived products were processed in ILWIS software with several 

available scripts in Hengl et al. (2009). 

 

Figure 6.2 Morphometric Variable: Slope 
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Figure 6.3 Morphometric Variable: Plan Curvature 

 

Figure 6.4 Hydrological Variables: Stream Power Index 

Slope gradient might be the most substantial parameter to define landform. It 

represents the general morphology of landform and is used as a key variable to compute 
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another variables. In rockfall process, slope plays important in determining the 

movement of boulder and may represent the location source and deposition area of 

rockfall.  

Plan curvature represents the curvature of the corresponding normal section, 

which is tangential to contour. Negative value represents that the normal section 

concavity is directed up, whereas positive represents the opposite case. The curvature of 

the slope will affect the morphology or the shape of the slope. Then, it will affect the 

direction and acceleration of boulder in the terrain. 

SPI (Stream Power Index) was used to describe the potential flow erosion. It 

represents the strength of stream power and potential erosion with the idea that if a 

specific catchment area and steepness of the slope increase, the amount of water 

produced by upslope area and the velocity of water flow increase. SPI can be defined as 

(Hengl, et al., 2003): 

SPI = Af . tanβ                         (6.1) 

where Af is the specific catchment area draining through the point and β is the slope 

angle. 

 

Figure 6.5 Morphometric Variables: Shape Complexity Index 
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Shape complexity index, sliced using an equal interval 25 m, was measured as the 

complexity of outline of 2-D object (Figure 6.5). It was calculated using perimeter to the 

boundary ratio of sliced feature: 

r

P
SCI

2
        



A
r                    (6.2) 

where P is the perimeter of the polygon, A is the area of polygon and r is the radius of 

circle with the same surface area. SCI indicates how oval feature is. Low value of SCI 

represents how simple and compact a feature is. It also represents the local topological 

characteristics of landform. 

The other morphometric variables were rockfall velocity and kinetic energy (Figure 

6.6 and 6.7). There were processed by RockFall Analyst as an extension of ArcGIS (Lan 

et al., 2007) and discussed in chapter 5. It included modeling of rockfall trajectory by a 

kinematic algorithm and raster neighbourhood analysis to determine velocity and energy 

of rockfall. Rockfall velocity and energy analysis needed information about slope 

geometry and other parameters such as coefficient of restitution .  

 

Figure 6.6 Morphometric Variable: Velocity 
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Figure 6.7 Morphometric Variable: Kinetic Energy 

6.4.3 CLASSIFICATION ALGORITHM 

Fuzzy k-means classification was employed to automatically delineate landform 

in Gunung Kelir area. It is also called as a continuous classification because of the 

continuity of the classes in attribute space. The method provides for class overlap  

which is so often found in the natural phenomenon. The degree of each an individual 

belongs to a given class is not expressed in binary term Yes or No. It belongs to a given 

class expressed by a continuous membership value that ranges in 0-1 or in 0-100. Thus, 

it is suitable for the situation where there is an affinity between a landform class. 

The algorithm was discussed by (Irvin, et al., 1997) as an iterative procedure  

which start with an initial random allocation of the objects to be classified to k cluster. 

The center of each cluster, e.g. Table 6.2 is calculated as weighted average. Pixel values 

are reallocated among the classes based on the relative similarity between pixels value 

and clusters. This was calculated based on the Euclidian distance metrics. It will stop 

until a stable solution is reached, meaning similar pixel value are grouped together in a 

cluster. The membership value gives the degree of affinity which is related to the class 

center. 
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Table 6.2 Class Centres for each Morphometric Variable 

Landforms  Slope (%)  PlanC  SPI  SCI  Energy (kJ) Velocity (m/s) 

Interfluve  0  0  1.0  0  0  0  

Convex creep slope  6.0  5.0  3.0  5.0  0.5  0.2  

Fall face  40.0  -2.0  50.0  5.5  800.0  20.0  

Transportational 

middle slope  

10.0  -1.0  30.0  7.2  1800.0  30.0  

Colluvial foot slope 4.0  2.0  15.0  5.0  400.0  10.0  

Lower Slope 5.0  2.0  75.0  5.0  0  0  

Channel bed 5.0  -5.0  400.0  3.0  0  0  

Std/variation 5.79  4.30  158.1  1.4  138.9  3.0  

 

The landform elements were derived, as the 9-unit slope model, by using the 

unsupervised fuzzy k-means algorithm (Burrough et al., 2000) as 

    
      

  
  

      

         
  

       
    

 

 (6.3) 

where µ is the membership of ith object to the cth cluster, d is the distance function 

which is used to measure the similarity or dissimilarity between two individual 

observations, q is the amount of fuzziness or overlap (q=1.5). Supervised k-means 

classification was written and applied in ILWIS 3.3 script with an additional class center 

for each morphometric variable (Table 6.2). 

Fuzzy k-means classification is illustrated in Figure 6.8. The 9-unit slope model 

was modified by excluding alluvial toe slope and seepage slope for the final landform 

classification. Channel wall was also modified as lower slope. Since the study area is 

located in the upper part of Kulon Progo Dome, the depositional process of alluvium 

does not work in such an area. Seepage slope was merged with interfluves because both 

are more related to pedogeomorphic process rather than gravitational process. 
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Figure 6.8 Illustration of Automated Landform Classification in Gunung Kelir area 

6.4.4 PRELIMINARY RISK ZONING BASED ON LANDFORM CLASSIFICATION 

Both frequency and energy map obtained from trajectory modelling represents the 

physical characteristic of rockfall movement. Rockfall trajectory simulation also needs 

many parameters and extensive field work, especially to investigate the boulder deposits 

along the escarpment. The problem may arise when there are no adequate data to employ 

trajectory modelling. Additionally, for landuse planning practice, it needs susceptibility 

map which can represent both physical characteristics of rockfall movement and the 

characteristic of local topography. The author proposed automated landform 

classification to address this problem. Geomorphometry approach was employed to 

generate generic landform unit which is relevant to rockfall process. 

Geomorphometry defined as quantitative landform analysis (Pike et al., 2008) was 

initially applied for the assessment and mitigation of natural hazard (Pike, 1988). Dijke 

and Westen (1990), for example, introduced rockfall hazard assessment based on 

geomorphological analysis. Later, Iwahashi et al. (2001) analyzed slope movements 

based on landform analysis. Both utilized DTMs derived from interpolation of 1:25.000 

scale contour maps to analyze geomorphological hazard. Nowadays, the interpolation of 
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contour map is still powerful to create medium scale mapping when better resolution 

DTMs are not available. However, reduction of error in interpolation of contour map is 

needed to obtain plausible geomorphological feature.  

The result of DTM pre-procesing shows that padi terraces still exist where the 

sampling point of elevation data are unavailable. In addition, “flattening” topography 

can also be found on slopes less than 2%. Remaining padi terraces mostly occur in the 

transportational middle slope and flattening phenomenon mostly occurs in the 

interfluves. Both errors influence the plausibility of slope (Figure 6.3), but do not much 

influence the final classification of landform elements (Figure 6.9). 

Figure 6.9 Generic Landforms in Gunung Kelir 

Prior to data analysis, fundamental decision should be made in relation to the 

number of landform class and the selection of morphometric variables to be used. Final 

classification of landform elements should represent appropriate semantic description 

related to rockfall processes.  

Modified 9-slope model was used to represent conceptual entities of rockfall 

deposition in each slope segment. Convex creep slopes represents a potential rockfall 

source. Considering that its position is adjacent to fall face, convex creep slopes and the 

upper part of fall face are the most potential for rockfall sources. A big boulder, which 

potentially fall, could be a part of convex creep slope and a part of fall face. Fall face 

represents Gunung Kelir escarpment which is dominated by slope >60° and falling 
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process. Velocity increases significantly in fall face and reaches a maximum in the 

transportational middle slope. In the transportational middle slope, velocity starts to 

decrease during the contact between boulder and surface. Bouncing, rolling and sliding 

are dominant in transportational middle slope. Some high velocity and high energy 

boulders may continue their movement to a colluvial foot slope. This depends on the 

local surface and the presence of an obstacle that can stop the movement of boulders.  

Selecting morphometric variables should also consider rockfall processes, besides 

morphology shapes of the landscape. It should reflect the movement and deposition of 

rockfall boulders. Prior to morphometric variables selection, knowledge of rockfall 

process in relation to generic landforms should be utilized. Experience and former 

knowledge are involved during the selection of morphometric variables. 

Morphometric variables derivation through DTM processing was divided into two 

parts, i.e. morphometric variables derived from RockFall analyst (velocity, energy) and 

from ILWIS script (slope, plan curvature, shape complexity index, stream power index). 

Rockfall velocity and energy are secondary derivative of DTM (Lan et al., 2007). The 

first derivatives (i.e. slope angle and aspect angle) were employed to compute the 

rockfall trajectory. Then, rockfall trajectory was used to model the rockfall velocity and 

rockfall energy by using neighborhood and geostatistical analysis. Velocity and energy 

of rockfall, as a result of gravitational slope phenomena, may be spatially correlated. 

Those which are closer tend to be more alike than those that are farther apart. The spatial 

autocorrelation can be performed with geostatistical techniques.    

The highest velocity occurs in the transportational middle slope. Velocity gradually 

increases in the fall face and decreases in the colluvial footslope. Since the energy is also 

calculated from rockfall velocity, the spatial distribution pattern of energy is very similar 

to rockfall velocity. Both velocity and energy of rockfall are mostly influenced by slope 

geometry, coefficient of restitution, and friction angle. The first change of a pixel into 

zero velocity and energy of its neighborhood operation is determined as the end of 

boulder movements meaning that the rockfall boulders are deposited on this site.  

Plan curvature and stream power index influence the pattern of the convex creep 
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slope and the channel bed. Shape complexity index, sliced using an equal interval 25 m, 

was measured as the complexity of outline of 2-D object. It was calculated using 

perimeter to boundary ratio of sliced feature. SCI indicates how oval feature is. Low 

value of SCI represents how simple and compact a feature is. SCI predominantly 

influences the spatial distribution of the interfluves, which has low value around 1, 

meaning that interfluves are more oval while convex creep slope and fall face are more 

longitudinal. Its effect on the other landforms is not apparent because the value of the 

shape complexity index in the lower slope is relatively homogeneous i.e. 4-5. 

The generic landform result will depend on how well morphometric variables are 

selected to perform automated landform classification. It represents how well 

morphometric variable can describe the specific process working on a landform element. 

Its spatial dependency influences the application of automated landform mapping in 

different places and different geomorphological process.  

The final classification result (Figure 6.10) was draped over DTM. The volume 

statistic rockfall deposit was employed to evaluate the coincidence between landform 

classification and rockfall frequency-magnitude. Since landform classification considers 

surface form and process, we argue that landform classification in a rockfall prone area 

exhibits scale-specifity (Evans, 2003). The magnitude (volume) and frequency of 

boulder deposits may have a specific scale related to each generic landform.  

6.4.5 IMPLICATION FOR PRELIMINARY ROCKFALL RISK ANALYSIS  

In the past, many people used to consider that natural hazards should be approached 

from the domain of engineering. However, both structural and nonstructural mitigation 

should be included in natural hazard mitigation comprising geomorphological, 

geographical, and geological approaches (Oya, 2001). Specific geomorphology features 

may pose a specific hazard. The most susceptible places, in order, for rockfall hazard in 

Gunung Kelir area are fall face, transportational middle slope, colluvial footslope and 

lower slope respectively each exhibits scale specifity.   

Automated landform analysis and rockfall statistics can estimate the likelihood of 

rockfall magnitude in a specific landform. Each generic landform indicates the 
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susceptibility degree to rockfall events. The magnitude-frequency relation of rockfall can 

be  calculated to estimate the annual frequency of rockfall events in each generic 

landform. It can be defined with reference to specific event magnitude class in a specific 

generic landform 

Preliminary rockfall analysis can be delivered by evaluating elements at risk 

located in the susceptible place for rockfall hazard. There are 3 buildings located on the 

transportational middle slope and 10 buildings located on the colluvial footslope. This is 

useful information on which to base prioritization action for countermeasures policy and 

design. Geomorphologic analysis should be taken into account to locate structural 

measures (e.g. barriers, embankments, rock sheds) in suitable location. It will improve 

cost efficiency by optimizing budget and design. The information of building located on 

landforms classified as high susceptibility can also be an input to the prioritization of an 

evacuation procedure. Therefore, the prioritization of mitigation action based on 

geomorphometric analysis can meet the technical suitability and the effectiveness of 

selected mitigation options. 

6.5 QUANTITATIVE RISK ANALYSIS 

Risk can be defined as ”the expected number of lives lost, persons injured, damage 

to property and disruption of economic activity due to a particular damaging 

phenomenon for a given area and reference period” (Varnes, 1984). The definition is 

originally used to describe landslide risk. Later, the terminology is used for both 

landslides and rockfall. It can be expressed by the simple product of temporal probability, 

spatial probability, reach probability, vulnerability and value of the element at risk (Fell 

et al., 2005; Westen et al., 2005; Agliardi et al., 2009). The author improved the risk 

equation based on the expected volume or magnitude crossing particular landform as 

follows: 
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where ijn is the number of boulders with class volume j in landform i, 
)(ij
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temporal probability of rockfall in the magnitude scenario (i.e. boulder volume) class j 

and crossing landform i; )(ij

kP  is the probability of the rockfall colliding element at risk 

k in the landform i, ijV is the vulnerability of element at risk k collided by rockfall 

volume j in the landform i and ikE  is the economic value of the element at risk k in the 

landform i.  

 

Figure 6.10 Illustration for Specific Rockfall Risk to Building based on Landform 

Analysis 

The first two aspects of the equation 6.1 are often defined as hazard analysis (Lee 

and Jones, 2004). It is an estimation of spatial distribution, temporal distribution and 

size- frequency of rockfall which may occur in the future. The information should 

include the location, size (volume) or energy of the potential rockfall and any resultant 

detached material and the probability of their occurrence within a given period of time 

(JTC-1, 2008). Rockfall hazard assessment is expected to answer “when”, “how frequent” 

and “how large” rockfall is likely to occur. Figure 6.10 illustrates the risk calculation 
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(equation 6.1) based on landform classes, i.e. interfluve (A), convex creep slope (B), fall 

face (C), transportational middle slope (D), colluvial foot slope (E), lower slope (F) and 

channel bed (F). 

The modified 9-unit slope model (Dalrymple et al., 1968 i.e. interfluves, seepage 

slope, convex creep slope, fall face, transportational midslope, colluvial footslope, 

alluvial footslope, channel wall and channel bed) can pose important zones of rockfall 

process where energy and velocity are diverse in places. It can be delineated into key 

information for prioritization of mitigation actions. The information is useful to expose 

the spatial distribution of potentially high damage of elements at risk affected by rockfall. 

Thus, selection of preventive mitigation measure type, structural protection location, and 

structural protection dimension should be supported by rockfall risk assessment based on 

landform analysis. 

6.5.1 TEMPORAL PROBABILITY 

6.5.1.1 MAGNITUDE-FREQUENCY RELATION 

Rockfall inventory is a key issue for hazard analysis. Research on rockfall risk is 

more challenging in developing country such as Indonesia, where no available rockfall 

catalogue is present. Inventory of rockfall boulder/blocks must be carried on by 

intensive fieldwork to infer the probability distribution of rockfall size. Therefore, the 

temporal probability of rockfall can be inferred from the magnitude-frequency 

distribution. It was derived from magnitude-cumulative frequency (MCF) curves 

constructed from rockfall inventory using graphical method (Gutenberg and Richter, 

1954; Hungr et al., 1999; Dussauge-Peisser et al., 2002).  

There were 16 rockfall events reported by eyewitnesses during 1970-2009 (16 

events during period of 39 years) in the lower slope where the total number observed by 

geomorphological mapping are 58. Thus, it can be inferred that the length in years of the 

total 58 boulders in lower slope and in the entire area is 141 years. 
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Figure 6.11 Magnitude-cumulative Frequency Curve based on Landform Class 

 

Figure 6.12 Simplified MCF Curve based on Landform and Volume Class 
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Magnitude-cumulative frequency curve was generated by sorting the volume of 

rockfall crossing each landform and accumulating the incremental frequencies from 

largest to smallest. The resulting magnitude-cumulative frequency (MCF) plot is shown 

in Figure 6.11. There were a few boulders deposited on the rockfall face, which made 

fall face and transportational middle slope curves is rather similar. The small difference 

is seen on the small volume of rockfall <1m
3
. It indicates that the boulders stopped in the 

fall face are small boulders. 

Tabel 6.3 Number of Boulders passing Landforms in Gunung Kelir Area 

Landform Vol. class (j) Nb. Per class j Incremental freq. 

Fall Face <10 352 2.50 

 
10-100 137 0.97 

 
100-1000 29 0.21 

 
>1000 3 0.02 

Transp. Middle Slope <10 312 2.21 

 
10-100 125 0.89 

 
100-1000 28 0.20 

 
>1000 3 0.02 

Colluvial Foot Slope <10 165 1.17 

 
10-100 73 0.52 

 
100-1000 18 0.13 

 
>1000 1 0.01 

Lower Slope <10 36 0.26 

 
10-100 18 0.13 

 
100-1000 3 0.02 

 
>1000 1 0.01 

Incremental frequency (number/year) in the magnitude scenario (i.e. boulder 

volume) class j and crossing landform i (Fig. 6.11) can be evaluated by simplified MCF 

curve (Figure 6.12). For example, an incremental frequency of boulder 10-100 m
3
 in the 

colluvial foot slope is 0.52/year. The incremental frequency of rockfall with the volume j 
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and passed landform i will decrease when the volume increase and decrease in the lower 

part of the landform arrangement (Table 6.3). However, the incremental frequency is 

difficult to be employed directly as temporal probability in the risk equation. Some very 

dangerous area with small volume boulder can have incremental frequency more than 1. 

It means that rockfall may occur once or more in each year. It does not represent a 

probability value ranging from 0 to 1. Thus, Poisson probability was employed to 

calculate the temporal probability of rockfall with the volume j and passed landform i. 

6.5.1.2 POISSON PROBABILITY 

The temporal probability of rockfall was calculated from the observation of the 

frequency of the past event and MCF relation. It is defined as a percent chance of one or 

more rockfall can reach a landform during specified time. It is similar to the hydrology 

analysis. In this case, rockfalls were treated as recurrent events that occur randomly and 

independently. Actually, this assumption does not fully accepted because once the 

rockfall occurs, it may change the slope morphometry which can affect the 

independency of future events. However, given a certain lack of understanding the 

physical process on the changing morphometry that control rockfall, Poisson model is 

one of feasible method to estimate the temporal probability of rockfall events. 

The rockfall inventory data were collected and documented from field survey 

which is calculated in the 141-year period (521 rockfall events). The main assumption of 

temporal probability of rockfall is that rockfall can be considered as independent random 

point-events in time (Crovelli, 2000). The probability of rockfall occurrence during time 

t is: 

 1)(  tNPPN                         (6.5) 

where N(t) is the number of rockfalls that occur during time t in the investigated area. 

Probability model is commonly used to investigate the occurrence of independent 

random point-events in time i.e. Poisson model (Crovelli, 2000). The Poisson model 

considers naturally continuous rockfall data which is shown in Eq. 6.6. 
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where P[N(t) = n] is the probability of experiencing n landslides during time t,  is 

the estimated average rate of occurrence of rockfalls which corresponds to 1/, with  is 

the estimated mean recurrence interval between successive failure events. The variable  

and  can be obtained from a historical catalogue of landslide events or from a 

multi-temporal landslide inventory map. The probability of experiencing one or more 

rockfalls during time t (exceedance probability) as follows: 

    ttNPtNP  exp10)(11)(                (6.7) 
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 exp11)(                       (6.8) 

The mean recurrence interval () of various predicted rockfall events can be 

determined by dividing the period of analysis (141 years) with the number of predicted 

rockfall events in each volume class j and crossing landform i. The estimated  was used 

to estimated exccedance probability of having one or more rockfall in each landform 

(Table 6.4) by adopting a Poisson model (Eq. 6.7 and 6.8). The complete calculation of 

the Poisson model with n ranged from 1 to 352 is shown in Appendix C. 

Therefore, the table of exceedance probability in different period for each 

landform and volume class (Table 6.4) can be used as an indication of the temporal 

probability of rockfall events over 100 years. For example within a 5-year period, the 

exceedance probability of rockfall in the volume <10, 10-100, 100-1000, and >1000 

passing the lower slope are very low (0.72, 0.47, 0.10, and 0.03 respectively) compare to 

exceedance probability of rockfall in the volume <10, 10-100, 100-1000, and >1000 

passing the transportational middle slope (1, 0.99, 0.63, and 0.1 respectively). It means 

that rockfall is more likely to occur on the transportational middle slope than the lower 

slope. The small volume of rockfall is also more likely to occur than the large one.    
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Table 6.4 Poisson Model for Percent Chance One or more Rockfall on each Landform, during Specified Time  

Landform Area Number  Volume Number (n) Chance of one or more rockfall during specified time  

  
of boulders Class (j) per class j 1 yr. 5 yr. 

 10 

yr. 

25 

yr. 
50 yr. 

100 

yr. 
141 yr. 

Fall Face 105750 53 <10 352 0.92 1.00 1.00 1.00 1.00 1.00 1.00 

   
10-100 137 0.62 0.99 1.00 1.00 1.00 1.00 1.00 

   
100-1000 29 0.19 0.64 0.87 0.99 1.00 1.00 1.00 

   
>1000 3 0.02 0.10 0.19 0.41 0.65 0.88 0.95 

Transportational 63550 211 <10 312 0.89 1.00 1.00 1.00 1.00 1.00 1.00 

Middle Slope 
  

10-100 125 0.59 0.99 1.00 1.00 1.00 1.00 1.00 

   
100-1000 28 0.18 0.63 0.86 0.99 1.00 1.00 1.00 

   
>1000 3 0.02 0.10 0.19 0.41 0.65 0.88 0.95 

Colluvial Foot  104275 199 <10 165 0.69 1.00 1.00 1.00 1.00 1.00 1.00 

Slope 
  

10-100 73 0.40 0.92 0.99 1.00 1.00 1.00 1.00 

   
100-1000 18 0.12 0.47 0.72 0.96 1.00 1.00 1.00 

   
>1000 1 0.01 0.03 0.07 0.16 0.30 0.51 0.63 

Lower Slope 285375 58 <10 36 0.23 0.72 0.92 1.00 1.00 1.00 1.00 

   
10-100 18 0.12 0.47 0.72 0.96 1.00 1.00 1.00 

   
100-1000 3 0.02 0.10 0.19 0.41 0.65 0.88 0.95 

   
>1000 1 0.01 0.03 0.07 0.16 0.30 0.51 0.63 
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6.5.2 SPATIAL PROBABILITY 

The probability of colliding will differ spatially based on particular landform and 

the length of a building (Figure 6.13). It can also be defined as the probability of 

intersection of the potential rockfall trajectories from the trajectory analysis with the 

existing building. It needs a detailed map of building location and the length of the 

building. In this case, the calculation assumes that all paths have the same probability of 

hitting all buildings. Thus, the calculation was solely for 38 buildings that are possible to 

be hit by rockfall based on the trajectory analysis (Figure 6.14). 

 

Figure 6.13 Geometrical relationship of )(ij

kP  

)(ij

kP  was calculated using a formula based on the geometrical relationship of 

rockfall path, length of the building in landform i and the total length of landform i: 

i

skij

k
L

bb
P


)(

                           (6.9) 

where )(ij

kP is the probability of the rockfall colliding element at risk k in the landform i, 

bk is the length of building, bs is the path of rockfall, and Li is the length of the possible 

landform corridor passed by the identified rockfall source. The path of rockfall, bs, was 

estimated relative to the volume class of the rockfall given in Table 6.5. 
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Table 6.5 Calculated Probability of Colliding in Gunung Kelir area (One ID shows One Building) 

ID landform Li bk 

Path of rockfall (bs) Calculated probability of colliding 

<10 

m
3
 

10-100 

m
3
 

100-1000 

m
3
 

>1000 

m
3
 

<10 

m
3
 

10-100 

m
3
 

100-1000 

m
3
 

>1000 

m
3
 

1 Lower Slope 267.75 15.4901 1.30 3.2 6.52 1.87 0.063 0.070 0.082 0.065 

2 Lower Slope 267.75 15.3193 1.30 3.2 6.52 1.87 0.062 0.069 0.082 0.064 

3 Colluvial Foot Slope 244.85 14.1508 1.30 3.2 6.52 1.87 0.063 0.071 0.084 0.065 

4 Lower Slope 244.85 9.9404 1.30 3.2 6.52 1.87 0.046 0.054 0.067 0.048 

5 Lower Slope 244.85 8.7749 1.30 3.2 6.52 1.87 0.041 0.049 0.062 0.043 

6 Lower Slope 244.85 6.9371 1.30 3.2 6.52 1.87 0.034 0.041 0.055 0.036 

7 Lower Slope 308.00 12.5587 1.30 3.2 6.52 1.87 0.045 0.051 0.062 0.047 

8 Lower Slope 308.00 8.9677 1.30 3.2 6.52 1.87 0.033 0.039 0.050 0.035 

9 Lower Slope 308.00 12.5935 1.30 3.2 6.52 1.87 0.045 0.051 0.062 0.047 

10 Lower Slope 308.00 15.3069 1.30 3.2 6.52 1.87 0.054 0.060 0.071 0.056 

11 Lower Slope 308.00 10.3906 1.30 3.2 6.52 1.87 0.038 0.044 0.055 0.040 

12 Lower Slope 241.00 9.3985 1.30 3.2 6.52 1.87 0.044 0.052 0.066 0.047 

13 Colluvial Foot Slope 308.00 9.0079 1.30 3.2 6.52 1.87 0.033 0.040 0.050 0.035 

14 Lower Slope 267.75 26.0413 1.30 3.2 6.52 1.87 0.102 0.109 0.122 0.104 

15 Lower Slope 267.75 24.0551 1.30 3.2 6.52 1.87 0.095 0.102 0.114 0.097 

16 Lower Slope 241.00 8.3935 1.30 3.2 6.52 1.87 0.040 0.048 0.062 0.043 

17 Lower Slope 241.00 11.4321 1.30 3.2 6.52 1.87 0.053 0.061 0.074 0.055 

18 Lower Slope 308.00 9.4335 1.30 3.2 6.52 1.87 0.035 0.041 0.052 0.037 

19 Lower Slope 241.00 9.0115 1.30 3.2 6.52 1.87 0.043 0.051 0.064 0.045 
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ID landform Li bk 

Path of rockfall (bs) Calculated probability of colliding 

<10 

m
3
 

10-100 

m
3
 

100-1000 

m
3
 

>1000 

m
3
 

<10 

m
3
 

10-100 

m
3
 

100-1000 

m
3
 

>1000 

m
3
 

20 Lower Slope 241.00 12.5213 1.30 3.2 6.52 1.87 0.057 0.065 0.079 0.060 

21 Transp. Middle Slope 244.85 15.9961 1.30 3.2 6.52 1.87 0.071 0.078 0.092 0.073 

22 Lower Slope 267.75 10.4239 1.30 3.2 6.52 1.87 0.044 0.051 0.063 0.046 

23 Colluvial Foot Slope 244.85 13.1284 1.30 3.2 6.52 1.87 0.059 0.067 0.080 0.061 

24 Colluvial Foot Slope 267.75 10.6488 1.30 3.2 6.52 1.87 0.045 0.052 0.064 0.047 

25 Lower Slope 244.85 12.2034 1.30 3.2 6.52 1.87 0.055 0.063 0.076 0.057 

25 Colluvial Foot Slope 308.00 13.6575 1.30 3.2 6.52 1.87 0.049 0.055 0.066 0.050 

27 Lower Slope 308.00 4.1581 1.30 3.2 6.52 1.87 0.018 0.024 0.035 0.020 

28 Colluvial Foot Slope 308.00 17.2770 1.30 3.2 6.52 1.87 0.060 0.066 0.077 0.062 

29 Colluvial Foot Slope 308.00 10.5516 1.30 3.2 6.52 1.87 0.038 0.045 0.055 0.040 

30 Colluvial Foot Slope 308.00 15.0470 1.30 3.2 6.52 1.87 0.053 0.059 0.070 0.055 

31 Colluvial Foot Slope 308.00 24.9650 1.30 3.2 6.52 1.87 0.085 0.091 0.102 0.087 

32 Transp. Middle Slope 308.00 15.5897 1.30 3.2 6.52 1.87 0.055 0.061 0.072 0.057 

33 Lower Slope 308.00 18.6041 1.30 3.2 6.52 1.87 0.065 0.071 0.082 0.066 

34 Lower Slope 308.00 15.8775 1.30 3.2 6.52 1.87 0.056 0.062 0.073 0.058 

35 Transp. Middle Slope 308.00 24.9336 1.30 3.2 6.52 1.87 0.085 0.091 0.102 0.087 

36 Colluvial Foot Slope 241.00 11.9446 1.30 3.2 6.52 1.87 0.055 0.063 0.077 0.057 

37 Lower Slope 308.00 15.3967 1.30 3.2 6.52 1.87 0.054 0.060 0.071 0.056 

38 Lower Slope 244.85 12.1212 1.30 3.2 6.52 1.87 0.055 0.062 0.076 0.057 
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Figure 6.14 Calculated Probability of the Rockfall Colliding, an Element at Risk with 

Scenario Class Volume 10-100 m
3
 

6.5.3 VULNERABILITY AND VALUE OF ELEMENTS AT RISK 

One of the important issues in risk analysis is vulnerability assessment. Recent 

development and debate of vulnerability analysis related to terminology (Costa and 

Cropp, 2012), concept (Wolf, 2012), methodological, robustness and legitimacy (Kaynia, 

et al., 2008; Fekete, 2011) are documented well. However, empirical quantitative 

vulnerability assessment of rockfall is difficult to calculate due to lack of accurate 

damage data.  

The vulnerability of elements at risk c collided by rockfall volume j in the landform 

i, ijV , was investigated by GIS (Geographic Information System) simulation. It 

considers the expected energy and the strength of a material when an element at risk / 

building is hit by rockfall. GIS rockfall modeling based on lumped mass (Lan, et al., 
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2007) was applied to model the trajectory and energy of rockfall along the escarpment 

(Chapter 5).  

6.5.3.1 PHYSICAL VULNERABILITY OF ROCKFALL 

Ebert, et al. (2008) defines physical vulnerability as the potential damage 

determined by the physical structure (material and construction building) when disaster 

happened. Physical vulnerability was employed in this research because it directly 

describes the interaction between rockfall and element at risk.  It is a conditional 

probability, given the rockfall occurs and the element at risk is on the path of rockfall 

movement. The classification of the physical vulnerability degree was classified based 

on the potential damage of building structure once hit by rockfall in a particular volume. 

It is expressed on a scale of 0 (no damage) to 1 (total loss of damage.  

Table 6.6 The Definition of Vulnerability Index 

Intensity Type of damage Vulnerability 

I Slight non-structural damage, stability of building structure 

not affected 

0.01-1 

II Cracks in the wall/roof tile, stability of building structure not 

affected, reparation not urgent 

0.2-0.3 

III Strong deformation of building structure, holes in wall, 

cracks in supporting structure, evacuation necessary 

0.4-0.6 

IV Building structure breaks, partly destructed, evacuation 

necessary, reconstruction is needed partly 

0.7-0.8 

V Totally destructed, evacuation necessary, complete 

reconstruction 

0.9-1 

 

Several factors that most affect physical vulnerability are the position of the 

element at risk, e.g. upper slope or down slope, the volume of the rockfall, and the 

velocity/energy of rockfall. Rockfall which moves slowly and/or with small volume may 

cause little damage to the building located on the downslope. Thus, it is important to 
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incorporate the volume of rockfall and the location of the element at risk in the 

vulnerability index. In this chapter, the author propose vulnerability index, which 

incorporate the volume and the location of the element at risk (with landform). Energy 

or velocity can be explained implicitly based on the landform analysis (Chapter 5). 

Buildings in Gunung Kelir area are mostly constructed from traditional brick. The 

vulnerability of rockfall is often shown by the energy of rockfall impacts against loss of 

damage. Due to limitation on damage data, an empirical vulnerability function obtained 

by fitting damage and impact energy (Agliardi et al., 2009; Glade, 2003) was adapted to 

estimate the vulnerability degree based on landform analysis in Gunung Kelir area 

(Figure 6.15). The explanation of each index is shown in Table 6.6. 

 

Figure 6.15 Adopted Empirical Vulnerability in Gunung Kelir Area 

Vulnerability in Gunung Kelir ranges from 0.01 (slightly damage) to 1 (fully 

damage). It was calculated by evaluating the estimated rockfall energy and landform in 

each element of risk (Figure 6.16). A total loss is expected in the building impacted by 
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rockfall energy larger than 600 kJ which is mostly located in the transportational middle 

slope. Thus transportational middle slope and colluvial foot slope are expected to be high 

vulnerability area.  

 

Figure 6.16 Calculated Vulnerabilty of an Element at Risk for Volume Scenario 10-100 

m
3
 

6.5.3.2 VALUE OF ELEMENT AT RISK 

There were two types of elements at risk considered in the analysis, i.e. building 

and population. The building represents the value of a physical assets that can be 

determined by the value of land and the building. The population represents the people 

living in the building. Both were expressed in monetary terms. The monetary term has 

advantages for management strategies to reduce risk based on cost benefit analysis. It is 

used to measure economic cost effectiveness. For example, once the risk is analyzed, 
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cost benefit analysis is often employed to ensure that the level of residual risk is 

acceptable for specific proposed land use. 

 

Figure 6.17 Calculated Value of Element at risk (Statistical Value of Building) 

Estimating the economic losses of an element at risk is sometimes complex and 

problematic. Some complex analysis may include physical damage, costs of 

reparation/recovery process, costs of transport disruption, social costs, psychological 

costs, etc. To simplify the estimation, the author employed the value of building to 

estimate the value of element at risk. The value of building was obtained from 

interviews of 130 respondents living in Gunung Kelir area. It was estimated by 

multiplying the price of the land and building for each element at risk (Figure 6.17).  

The result of vulnerability analysis shows that there is a possibility of total damage. 
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It may also be any of human loss of life or physical injury in Gunung Kelir area even 

though there was no experience of loss of life due to rockfall. The identification of 

human loss or physical injury is the main priorities of any risk assessment. Estimating 

the value of loss of life is more problematic than estimating the value of a building. It 

may be controversial and raise ethical and moral issues. Thus, estimating value of 

human life was based on the terminology of the value of statistical life-VOSL (Mooney, 

1977; Jones-Lee, 1989; Marin, 1992) meaning the value of change in the risk of death, 

not human life itself. It is not a value of an individual is willing to pay to avoid certain 

death,  but a value of an individual is willing to pay to reduce the risk of death.  

There were methods to estimate the value of statistical life, e.g. the human capital 

approach and the willingness to pay (Pearce et al., 1995). The result may vary from 

country to country. VOSL for developed countries is in the range $1.8-$9 million, for 

Russia is $300,000, and for China, India and Africa are $150,000 (Pearce et al., 1995). 

In this research, the author used VOSL $150,000 which is equal to IDR1,650,000,000 

($1=IDR11,000). Figure 6.18 shows that the VOSL in Gunung Kelir varies from <IDR 1 

billion to >7.5 billion. It depends on the number of occupants living in the building. The 

maximum number of occupants in each building is 10 people (Table 6.7). 

 The value of people was estimated based on the value of one or more persons 

could be killed by rockfall inside the building. It was calculated by multiplying the 

number of people inside the building, the average temporal-spatial probability people 

spending their time in the building and the VOSL. The temporal probability was divided 

into two groups based on the age, i.e. <16 years old and >16 years old. It was assumed 

that <16 years old (school year) spending 14 hours a day inside the building and >16 

years spending 16 hours a day.    

24
):(

h
P TS                              (6.10) 

where ):( TSP  is the spatio-temporal of a person inside the building and h is the daily 

average time spent inside the building. For quantification of risk to people, it can be 

defined as:  
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where ijn is the number of boulders with class volume j in landform i, 
)(ij

rP is the 

temporal probability of rockfall in the magnitude scenario (i.e. boulder volume) class j 

and crossing landform i; )(ij

kP  is the probability of the rockfall colliding element at risk 

k in the landform i, ijV is the vulnerability of element at risk k collided by rockfall 

volume j in the landform i and ikE  is the economic value of the element at risk of 

people inside building k in the landform i.  

 

Figure 6.18 Calculated Value of Element at Risk - People inside Building 

 (Value of Statistical Life) 
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Table 6.7 Estimated Value of Element at Risk (Building) and Statistical Value of Life (people inside a building) 

ID Number of 

Occupant 

Age <16 Age>16 Av. Spatio temp. 

prob. 

Value of element 

at risk (building) 

Estimated Statistical 

value of life (US$) 

Estimated Statistical 

value of life (IDR) 

1 3 1 2 0.61 IDR 4,965,700 $275,000 IDR 3,025,000,000 

2 3 0 3 0.58 IDR 6,776,160 $262,500 IDR 2,887,500,000 

3 5 2 3 0.62 IDR 5,616,360 $462,500 IDR 5,087,500,000 

4 5 3 3 0.75 IDR 1,958,100 $562,500 IDR 6,187,500,000 

5 1 0 1 0.58 IDR 2,004,300 $87,500 IDR 962,500,000 

6 5 1 4 0.60 IDR 1,062,900 $450,000 IDR 4,950,000,000 

7 5 2 3 0.62 IDR 9,073,500 $462,500 IDR 5,087,500,000 

8 6 1 4 0.50 IDR 1,521,250 $450,000 IDR 4,950,000,000 

9 4 2 2 0.63 IDR 1,655,800 $375,000 IDR 4,125,000,000 

10 5 2 3 0.62 IDR 23,752,801 $462,500 IDR 5,087,500,000 

11 10 3 7 0.61 IDR 2,109,900 $912,500 IDR 10,037,500,000 

12 4 2 2 0.63 IDR 2,442,240 $375,000 IDR 4,125,000,000 

13 5 2 3 0.62 IDR 2,663,800 $462,500 IDR 5,087,500,000 

14 3 1 2 0.61 IDR 10,691,400 $275,000 IDR 3,025,000,000 

15 4 2 2 0.63 IDR 32,673,999 $375,000 IDR 4,125,000,000 

16 5 2 3 0.62 IDR 2,493,600 $462,500 IDR 5,087,500,000 

17 4 1 3 0.60 IDR 5,688,600 $362,500 IDR 3,987,500,000 

18 3 0 3 0.58 IDR 1,772,120 $262,500 IDR 2,887,500,000 

19 5 1 4 0.60 IDR 2,141,200 $450,000 IDR 4,950,000,000 
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ID Number of 

Occupant 

Age <16 Age>16 Av. Spatio temp. 

prob. 

Value of element 

at risk (building) 

Estimated Statistical 

value of life 

Estimated Statistical 

value of life 

20 4 1 3 0.60 IDR 6,450,000 $362,500 IDR 3,987,500,000 

21 3 0 3 0.58 IDR 9,441,850 $262,500 IDR 2,887,500,000 

22 0 0 0 0 IDR 3,968,910 $0 IDR0 

23 4 2 2 0.63 IDR 4,091,100 $375,000 IDR 4,125,000,000 

24 4 1 3 0.60 IDR 3,012,000 $362,500 IDR 3,987,500,000 

25 3 0 3 0.58 IDR 3,028,200 $262,500 IDR 2,887,500,000 

26 4 2 2 0.63 IDR 4,776,980 $375,000 IDR 4,125,000,000 

27 0 0 0 0 IDR 324,900 $0 IDR0 

28 3 0 3 0.58 IDR 6,558,040 $262,500 IDR 2,887,500,000 

29 0 0 0 0 IDR 3,245,200 $0 IDR0 

30 2 0 2 0.58 IDR 7,080,480 $175,000 IDR 1,925,000,000 

31 3 0 3 0.58 IDR 9,832,000 $262,500 IDR 2,887,500,000 

32 4 2 2 0.63 IDR 7,852,000 $375,000 IDR 4,125,000,000 

33 4 2 2 0.63 IDR 9,118,500 $375,000 IDR 4,125,000,000 

34 6 0 6 0.58 IDR 2,934,400 $525,000 IDR 5,775,000,000 

35 5 5 0 0.67 IDR 5,688,000 $500,000 IDR 5,500,000,000 

36 1 0 1 0.58 IDR 4,702,080 $87,500 IDR 962,500,000 

37 4 0 4 0.58 IDR 27,324,001 $350,000 IDR 3,850,000,000 

38 0 0 0 0 IDR 5,473,050 $0 IDR0 
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6.6 DISCUSSION 

This study tried to estimate rockfall risk in a quantitative manner by incorporating 

statistical analysis of rockfall frequency and volume, landform mapping, and physical 

model of rockfall trajectories and energy. Risk was defined as a chance of potential 

economic loss during a specified time for individual building and persons inside the 

building. 

The integration of statistical and physical model based on geomorphological 

analysis can evaluate both the occurrence probability in space and time, modelling 

trajectories of falling and the interaction between rockfall and elements at risk. In 

addition, landform can reflect the unique feature of landscape; thus the objective of 

zoning “to divide land into homogeneous areas or domains” can be achieved 

successfully. Each landform will represent a homogeneous area of rockfall risk ranking 

with the information of the occurrence probability with particular size in space and time, 

simplified trajectories and dynamic behavior of boulder when travel along the slope, and 

its interaction where elements at risk exist.  

Table 6.8 and 6.9 show that landform significantly influence the rockfall risk. 

Higher frequency of greater events is more dominant in transportational middle slope 

and colluvial foot slope. It shows that landform significantly influences rockfall risk in 

Gunung Kelir area. For example, calculated risk building for class volume 10-100 m
3 
in 

5 years was estimated in average IDR 91,225; IDR 156,500 and IDR 400,400 for lower 

slope, colluvial foot slope and transportational middle slope respectively. Transportational 

middle is the landform where the chance of loss is the highest. The temporal probability of 

transportational middle slope is high for the middle class volume rockfall. Thus, it not 

only increases the temporal probability of rockfall, but also the physical vulnerability of 

the building. 

 The magnitude or the volume class of rockfall also affects the rockfall risk. 

Rockfall volume 10-100 m
3
 may result the highest risk because both the temporal 

probability and the vulnerability can be categorized as medium to high class.  
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Table 6.8 Calculation of the Rockfall Risk to Building for 5 Years Scenario with Volume Class <10 m
3
 and 10-100 m

3
 

ID Landform location 

Pr Pk Vulnerability 
Value of 

elements at risk 

Risk to building 

<10 

m
3
 

10-100 

m
3
 

<10 

m
3
 

10-100 

m
3
 

<10 

m
3
 

10-100 

m
3
 <10 m

3
 10-100 m

3
 

1 Lower Slope 0.72 0.47 0.063 0.070 0.01 0.4 IDR 4,965,700 IDR 2,245 IDR 65,326 

2 Lower Slope 0.72 0.47 0.062 0.069 0.01 0.4 IDR 6,776,160 IDR 3,032 IDR 88,328 

3 Colluvial Foot Slope 1.00 0.92 0.063 0.071 0.1 0.5 IDR 5,616,360 IDR 35,337 IDR 183,773 

4 Lower Slope 0.72 0.47 0.046 0.054 0.01 0.4 IDR 1,958,100 IDR 648 IDR 19,793 

5 Lower Slope 0.72 0.47 0.041 0.049 0.01 0.4 IDR 2,004,300 IDR 595 IDR 18,460 

6 Lower Slope 0.72 0.47 0.034 0.041 0.01 0.4 IDR 1,062,900 IDR 258 IDR 8,284 

7 Lower Slope 0.72 0.47 0.045 0.051 0.01 0.4 IDR 9,073,500 IDR 2,943 IDR 87,470 

8 Lower Slope 0.72 0.47 0.033 0.039 0.01 0.4 IDR 1,521,250 IDR 366 IDR 11,318 

9 Lower Slope 0.72 0.47 0.045 0.051 0.01 0.4 IDR 1,655,800 IDR 538 IDR 15,997 

10 Lower Slope 0.72 0.47 0.054 0.060 0.01 0.4 IDR 23,752,801 IDR 9,234 IDR 268,978 

11 Lower Slope 0.72 0.47 0.038 0.044 0.01 0.4 IDR 2,109,900 IDR 577 IDR 17,537 

12 Lower Slope 0.72 0.47 0.044 0.052 0.01 0.4 IDR 2,442,240 IDR 782 IDR 24,045 

13 Colluvial Foot Slope 1.00 0.92 0.033 0.040 0.1 0.5 IDR 2,663,800 IDR 8,888 IDR 48,722 

14 Lower Slope 0.72 0.47 0.102 0.109 0.01 0.4 IDR 10,691,400 IDR 7,871 IDR 220,163 

15 Lower Slope 0.72 0.47 0.095 0.102 0.01 0.4 IDR 32,673,999 IDR 22,308 IDR 627,098 

16 Lower Slope 0.72 0.47 0.040 0.048 0.01 0.4 IDR 2,493,600 IDR 723 IDR 22,588 

17 Lower Slope 0.72 0.47 0.053 0.061 0.01 0.4 IDR 5,688,600 IDR 2,167 IDR 65,066 

18 Lower Slope 0.72 0.47 0.035 0.041 0.01 0.4 IDR 1,772,120 IDR 445 IDR 13,690 

19 Lower Slope 0.72 0.47 0.043 0.051 0.01 0.4 IDR 2,141,200 IDR 660 IDR 20,432 
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ID Landforms location 

Pr Pk Vulnerability 
Value of 

elements at risk 

Risk to building 

<10 

m
3
 

10-100 

m
3
 

<10 

m
3
 

10-100 

m
3
 

<10 

m
3
 

10-100 

m
3
 <10 m

3
 10-100 m

3
 

20 Lower Slope 0.72 0.47 0.057 0.065 0.01 0.4 IDR 6,450,000 IDR 2,667 IDR 79,276 

21 Transp. Middle Slope 1.00 0.99 0.071 0.078 0.2 0.7 IDR 9,441,850 IDR 133,384 IDR 511,318 

22 Lower Slope 0.72 0.47 0.044 0.051 0.01 0.4 IDR 3,968,910 IDR 1,253 IDR 38,040 

23 Colluvial Foot Slope 1.00 0.92 0.059 0.067 0.1 0.5 IDR 4,091,100 IDR 24,037 IDR 125,965 

24 Colluvial Foot Slope 1.00 0.92 0.045 0.052 0.1 0.5 IDR 3,012,000 IDR 13,402 IDR 71,909 

25 Lower Slope 0.72 0.47 0.055 0.063 0.01 0.4 IDR 3,028,200 IDR 1,204 IDR 35,892 

26 Colluvial Foot Slope 1.00 0.92 0.049 0.055 0.1 0.5 IDR 4,776,980 IDR 23,130 IDR 120,721 

27 Lower Slope 0.72 0.47 0.018 0.024 0.01 0.4 IDR 324,900 IDR 42 IDR 1,460 

28 Colluvial Foot Slope 1.00 0.92 0.060 0.066 0.1 0.5 IDR 6,558,040 IDR 39,439 IDR 201,371 

29 Colluvial Foot Slope 1.00 0.92 0.038 0.045 0.1 0.5 IDR 3,245,200 IDR 12,450 IDR 66,878 

30 Colluvial Foot Slope 1.00 0.92 0.053 0.059 0.1 0.5 IDR 7,080,480 IDR 37,469 IDR 193,706 

31 Colluvial Foot Slope 1.00 0.92 0.085 0.091 0.1 0.5 IDR 9,832,000 IDR 83,599 IDR 415,391 

32 Transp. Middle Slope 1.00 0.99 0.055 0.061 0.2 0.7 IDR 7,852,000 IDR 86,109 IDR 330,871 

33 Lower Slope 0.72 0.47 0.065 0.071 0.01 0.4 IDR 9,118,500 IDR 4,249 IDR 121,681 

34 Lower Slope 0.72 0.47 0.056 0.062 0.01 0.4 IDR 2,934,400 IDR 1,180 IDR 34,255 

35 Transp. Middle Slope 1.00 0.99 0.085 0.091 0.2 0.7 IDR 5,688,000 IDR 96,889 IDR 359,039 

36 Colluvial Foot Slope 1.00 0.92 0.055 0.063 0.1 0.5 IDR 4,702,080 IDR 25,765 IDR 136,409 

37 Lower Slope 0.72 0.47 0.054 0.060 0.01 0.4 IDR 27,324,001 IDR 10,679 IDR 310,922 

38 Lower Slope 0.72 0.47 0.055 0.062 0.01 0.4 IDR 5,473,050 IDR 2,163 IDR 64,523 
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Table 6.9 Calculation of the Rockfall Risk to Building for 5 Years Scenario with Volume Class 100-1000 m
3
and >1000 m

3 

ID Landforms location 

Pr Pk Vulnerability 

Value of 

elements at risk 

Risk to building 

100- 

1000 

m
3
 

>1000 

m
3
 

100- 

1000 

m
3
 

>1000 

m
3
 

100- 

1000 

m
3
 

>1000 

m
3
 

100-1000 m
3
 >1000 m

3
 

1 Lower Slope 0.10 0.03 0.082 0.065 0.6 0.8 IDR 4,965,700 IDR 24,716 IDR 8,973 

2 Lower Slope 0.10 0.03 0.082 0.064 0.6 0.8 IDR 6,776,160 IDR 33,466 IDR 12,123 

3 Colluvial Foot Slope 0.47 0.03 0.084 0.065 0.7 0.9 IDR 5,616,360 IDR 156,588 IDR 11,521 

4 Lower Slope 0.10 0.03 0.067 0.048 0.6 0.8 IDR 1,958,100 IDR 7,970 IDR 2,632 

5 Lower Slope 0.10 0.03 0.062 0.043 0.6 0.8 IDR 2,004,300 IDR 7,581 IDR 2,428 

6 Lower Slope 0.10 0.03 0.055 0.036 0.6 0.8 IDR 1,062,900 IDR 3,537 IDR 1,065 

7 Lower Slope 0.10 0.03 0.062 0.047 0.6 0.8 IDR 9,073,500 IDR 34,031 IDR 11,846 

8 Lower Slope 0.10 0.03 0.050 0.035 0.6 0.8 IDR 1,521,250 IDR 4,632 IDR 1,492 

9 Lower Slope 0.10 0.03 0.062 0.047 0.6 0.8 IDR 1,655,800 IDR 6,222 IDR 2,167 

10 Lower Slope 0.10 0.03 0.071 0.056 0.6 0.8 IDR 23,752,801 IDR 101,922 IDR 36,917 

11 Lower Slope 0.10 0.03 0.055 0.040 0.6 0.8 IDR 2,109,900 IDR 7,014 IDR 2,341 

12 Lower Slope 0.10 0.03 0.066 0.047 0.6 0.8 IDR 2,442,240 IDR 9,767 IDR 3,182 

13 Colluvial Foot Slope 0.47 0.03 0.050 0.035 0.7 0.9 IDR 2,663,800 IDR 44,351 IDR 2,949 

14 Lower Slope 0.10 0.03 0.122 0.104 0.6 0.8 IDR 10,691,400 IDR 78,727 IDR 31,061 

15 Lower Slope 0.10 0.03 0.114 0.097 0.6 0.8 IDR 32,673,999 IDR 225,921 IDR 88,171 

16 Lower Slope 0.10 0.03 0.062 0.043 0.6 0.8 IDR 2,493,600 IDR 9,343 IDR 2,959 

17 Lower Slope 0.10 0.03 0.074 0.055 0.6 0.8 IDR 5,688,600 IDR 25,657 IDR 8,750 

18 Lower Slope 0.10 0.03 0.052 0.037 0.6 0.8 IDR 1,772,120 IDR 5,558 IDR 1,812 



 

176 

 

ID Landforms location 

Pr Pk Vulnerability 

Value of 

elements at risk 

Risk to building 

100- 

1000 

m
3
 

>1000 

m
3
 

100- 

1000 

m
3
 

>1000 

m
3
 

100- 

1000 

m
3
 

>1000 

m
3
 

100-100

0 m
3
 

>1000 

m
3
 

19 Lower Slope 0.10 0.03 0.064 0.045 0.6 0.8 IDR 2,141,200 IDR 8,355 IDR 2,694 

20 Lower Slope 0.10 0.03 0.079 0.060 0.6 0.8 IDR 6,450,000 IDR 30,857 IDR 10,734 

21 Transp. Middle Slope 0.63 0.10 0.092 0.073 0.8 1 IDR 9,441,850 IDR 437,241 IDR 69,521 

22 Lower Slope 0.10 0.03 0.063 0.046 0.6 0.8 IDR 3,968,910 IDR 15,208 IDR 5,078 

23 Colluvial Foot Slope 0.47 0.03 0.080 0.061 0.7 0.9 IDR 4,091,100 IDR 108,421 IDR 7,857 

24 Colluvial Foot Slope 0.47 0.03 0.064 0.047 0.7 0.9 IDR 3,012,000 IDR 63,783 IDR 4,415 

25 Lower Slope 0.10 0.03 0.076 0.057 0.6 0.8 IDR 3,028,200 IDR 14,021 IDR 4,851 

26 Colluvial Foot Slope 0.47 0.03 0.066 0.050 0.7 0.9 IDR 4,776,980 IDR 103,351 IDR 7,550 

27 Lower Slope 0.10 0.03 0.035 0.020 0.6 0.8 IDR 324,900 IDR 682 IDR 177 

28 Colluvial Foot Slope 0.47 0.03 0.077 0.062 0.7 0.9 IDR 6,558,040 IDR 167,338 IDR 12,782 

29 Colluvial Foot Slope 0.47 0.03 0.055 0.040 0.7 0.9 IDR 3,245,200 IDR 59,403 IDR 4,103 

30 Colluvial Foot Slope 0.47 0.03 0.070 0.055 0.7 0.9 IDR 7,080,480 IDR 163,738 IDR 12,193 

31 Colluvial Foot Slope 0.47 0.03 0.102 0.087 0.7 0.9 IDR 9,832,000 IDR 331,931 IDR 26,858 

32 Transp. Middle Slope 0.63 0.10 0.072 0.057 0.8 1 IDR 7,852,000 IDR 283,846 IDR 44,915 

33 Lower Slope 0.10 0.03 0.082 0.066 0.6 0.8 IDR 9,118,500 IDR 45,038 IDR 16,893 

34 Lower Slope 0.10 0.03 0.073 0.058 0.6 0.8 IDR 2,934,400 IDR 12,920 IDR 4,712 

35 Transp. Middle Slope 0.63 0.10 0.102 0.087 0.8 0.8 IDR 5,688,000 IDR 292,519 IDR 39,961 

36 Colluvial Foot Slope 0.47 0.03 0.077 0.057 0.7 0.9 IDR 4,702,080 IDR 118,975 IDR 8,450 

37 Lower Slope 0.10 0.03 0.071 0.056 0.6 0.8 IDR 27,324,001 IDR 117,728 IDR 42,689 

38 Lower Slope 0.10 0.03 0.076 0.057 0.6 0.8 IDR 5,473,050 IDR 25,230 IDR 8,715 



 

177 

 

The risk to persons were also affected by the position of a building. A building 

located in transportational middle slope tend to have higher risk than colluvial foot slope 

and lower slope. Calculated risk to persons for class volume 10-100 m
3 

in 5 years 

scenario was estimated in average IDR 41,880,000; IDR 87,721,000 and IDR 

225,787,000 for lower slope, colluvial foot slope and transportational middle slope 

respectively (Table 6.10). It shows the high number of risk to persons, even though the 

number of occupants was only 4 (less than the maximum occupants (10) exist in the lower 

slope). The calculated risk may differ both spatially (Figure 6.19 and Figure 6.20). It 

means that the transportational middle slope should be paid more attention in terms of 

land use planning based on disaster risk reduction. 

 

Figure 6.19 Calculated Rockfall Risk for Building for Class Volume 10-100 m
3
 in 5 

Years Scenario 
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The chance of loss is useful information for administrators to consider disaster risk 

reduction tool in practice. For example, if traditional structural prevention to reduce 

vulnerability to economic damage is not suitable (too expensive); financial risk 

strategies, i.e. risk transfer instrument, government disaster assistance can be further 

evaluated based on the existing risk analysis. Thus, the selected technical performance of 

the disaster risk reduction tool can be further evaluated by computing a cost-benefit ratio 

of applied mitigation technique. The presented quantitative risk analysis provide a 

general framework for reliable and reproducible results. The risk zoning based on 

landforms may be direcly used for land use planning and risk management in a rockfall 

prone area throughout the country.   

 

Figure 6.20 Calculated Rockfall Risk for People inside Building for Class Volume 

10-100 m
3
 in 5 Years Scenario 
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Table 6.10 Calculation of the Rockfall Risk to Persons for 5 Years Scenario with Volume Class <10 m
3
and 10-100 m

3
 

ID 
Landforms 

location 

Pr Pk Vulnerability 
Value of elements at 

risk 

Risk to persons 

<10 

m
3
 

10-100 

m
3
 

<10 

m
3
 

10-100 

m
3
 

<10 

m
3
 

10-100 

m
3
 

<10 m
3
 10-100 m

3
 

1 Lower Slope 0.72 0.47 0.063 0.070 0.01 0.4 IDR 3,025,000,000 IDR 1,367,627 IDR 39,795,431 

2 Lower Slope 0.72 0.47 0.062 0.069 0.01 0.4 IDR 2,887,500,000 IDR 1,292,181 IDR 37,638,926 

3 Col. Foot Slope 1.00 0.92 0.063 0.071 0.1 0.5 IDR 5,087,500,000 IDR 32,009,317 IDR 166,468,288 

4 Lower Slope 0.72 0.47 0.046 0.054 0.01 0.4 IDR 6,187,500,000 IDR 2,047,872 IDR 62,545,407 

5 Lower Slope 0.72 0.47 0.041 0.049 0.01 0.4 IDR 962,500,000 IDR 285,524 IDR 8,864,638 

6 Lower Slope 0.72 0.47 0.034 0.041 0.01 0.4 IDR 4,950,000,000 IDR 1,200,526 IDR 38,577,762 

7 Lower Slope 0.72 0.47 0.045 0.051 0.01 0.4 IDR 5,087,500,000 IDR 1,650,400 IDR 49,044,233 

8 Lower Slope 0.72 0.47 0.033 0.039 0.01 0.4 IDR 4,950,000,000 IDR 1,189,679 IDR 36,826,998 

9 Lower Slope 0.72 0.47 0.045 0.051 0.01 0.4 IDR 4,125,000,000 IDR 1,341,523 IDR 39,853,553 

10 Lower Slope 0.72 0.47 0.054 0.060 0.01 0.4 IDR 5,087,500,000 IDR 1,977,700 IDR 57,611,226 

11 Lower Slope 0.72 0.47 0.038 0.044 0.01 0.4 IDR 10,037,500,000 IDR 2,746,749 IDR 83,428,329 

12 Lower Slope 0.72 0.47 0.044 0.052 0.01 0.4 IDR 4,125,000,000 IDR 1,320,182 IDR 40,612,590 

13 Col. Foot Slope 1.00 0.92 0.033 0.040 0.1 0.5 IDR 5,087,500,000 IDR 16,975,838 IDR 93,052,804 

14 Lower Slope 0.72 0.47 0.102 0.109 0.01 0.4 IDR 3,025,000,000 IDR 2,227,119 IDR 62,292,407 

15 Lower Slope 0.72 0.47 0.095 0.102 0.01 0.4 IDR 4,125,000,000 IDR 2,816,352 IDR 79,169,299 

16 Lower Slope 0.72 0.47 0.040 0.048 0.01 0.4 IDR 5,087,500,000 IDR 1,475,258 IDR 46,084,992 

17 Lower Slope 0.72 0.47 0.053 0.061 0.01 0.4 IDR 3,987,500,000 IDR 1,518,777 IDR 45,608,864 

18 Lower Slope 0.72 0.47 0.035 0.041 0.01 0.4 IDR 2,887,500,000 IDR 725,466 IDR 22,306,548 
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ID Landforms location 

Pr Pk Vulnerability 
Value of elements 

at risk 

Risk to persons 

<10 

m
3
 

10-100 

m
3
 

<10 

m
3
 

10-100 

m
3
 

<10 

m
3
 

10-100 

m
3
 

<10 m
3
 10-100 m

3
 

19 Lower Slope 0.72 0.47 0.043 0.051 0.01 0.4 IDR 4,950,000,000 IDR 1,526,907 IDR 47,234,990 

20 Lower Slope 0.72 0.47 0.057 0.065 0.01 0.4 IDR 3,987,500,000 IDR 1,648,715 IDR 49,009,950 

21 Transp. Middle Slope 1.00 0.99 0.071 0.078 0.2 0.7 IDR 2,887,500,000 IDR 40,791,393 IDR 156,371,038 

22 Lower Slope 0.72 0.47 0.044 0.051 0.01 0.4 IDR 0 IDR 0 IDR 0 

23 Col. Foot Slope 1.00 0.92 0.059 0.067 0.1 0.5 IDR 4,125,000,000 IDR 24,236,013 IDR 127,009,037 

24 Col. Foot Slope 1.00 0.92 0.045 0.052 0.1 0.5 IDR 3,987,500,000 IDR 17,742,243 IDR 95,197,878 

25 Lower Slope 0.72 0.47 0.055 0.063 0.01 0.4 IDR 2,887,500,000 IDR 1,148,094 IDR 34,224,403 

26 Col. Foot Slope 1.00 0.92 0.049 0.055 0.1 0.5 IDR 4,125,000,000 IDR 19,973,421 IDR 104,244,980 

27 Lower Slope 0.72 0.47 0.018 0.024 0.01 0.4 IDR 0 IDR 0 IDR 0 

28 Col. Foot Slope 1.00 0.92 0.060 0.066 0.1 0.5 IDR 2,887,500,000 IDR 17,364,914 IDR 88,663,355 

29 Col. Foot Slope 1.00 0.92 0.038 0.045 0.1 0.5 IDR 0 IDR 0 IDR 0 

30 Col. Foot Slope 1.00 0.92 0.053 0.059 0.1 0.5 IDR 1,925,000,000 IDR 10,186,869 IDR 52,663,654 

31 Col. Foot Slope 1.00 0.92 0.085 0.091 0.1 0.5 IDR 2,887,500,000 IDR 24,551,679 IDR 121,993,672 

32 Transp. Middle Slope 1.00 0.99 0.055 0.061 0.2 0.7 IDR 4,125,000,000 IDR 45,236,921 IDR 173,820,844 

33 Lower Slope 0.72 0.47 0.065 0.071 0.01 0.4 IDR 4,125,000,000 IDR 1,921,933 IDR 55,045,640 

34 Lower Slope 0.72 0.47 0.056 0.062 0.01 0.4 IDR 5,775,000,000 IDR 2,322,097 IDR 67,415,634 

35 Transp. Middle Slope 1.00 0.99 0.085 0.091 0.2 0.7 IDR 5,500,000,000 IDR 93,686,443 IDR 347,171,923 

36 Col. Foot Slope 1.00 0.92 0.055 0.063 0.1 0.5 IDR 962,500,000 IDR 5,273,987 IDR 27,922,535 

37 Lower Slope 0.72 0.47 0.054 0.060 0.01 0.4 IDR 3,850,000,000 IDR 1,504,732 IDR 43,809,527 

38 Lower Slope 0.72 0.47 0.055 0.062 0.01 0.4 IDR 0 IDR 0 IDR 0 
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Table 6.11 Calculation of the Rockfall Risk to Persons for 5 Years Scenario with Volume Class 100-1000 m
3
and >1000 m

3
 

ID 
Landforms 

location 

Pr Pk Vulnerability 

Value of elements at 

risk 

Risk to persons 

100- 

1000 

m
3
 

>1000 

m
3
 

100- 

1000 

m
3
 

>100

0 m
3
 

100- 

1000 

m
3
 

>1000 

m
3
 

100-1000 m
3
 >1000 m

3
 

1 Lower Slope 0.10 0.03 0.082 0.065 0.6 0.8 IDR 3,025,000,000 IDR 15,056,648 IDR 5,465,923 

2 Lower Slope 0.10 0.03 0.082 0.064 0.6 0.8 IDR 2,887,500,000 IDR 14,260,720 IDR 5,166,133 

3 Col. Foot Slope 0.47 0.03 0.084 0.065 0.7 0.9 IDR 5,087,500,000 IDR 141,843,041 IDR 10,436,440 

4 Lower Slope 0.10 0.03 0.067 0.048 0.6 0.8 IDR 6,187,500,000 IDR 25,186,056 IDR 8,317,112 

5 Lower Slope 0.10 0.03 0.062 0.043 0.6 0.8 IDR 962,500,000 IDR 3,640,409 IDR 1,166,077 

6 Lower Slope 0.10 0.03 0.055 0.036 0.6 0.8 IDR 4,950,000,000 IDR 16,472,374 IDR 4,961,430 

7 Lower Slope 0.10 0.03 0.062 0.047 0.6 0.8 IDR 5,087,500,000 IDR 19,081,401 IDR 6,641,811 

8 Lower Slope 0.10 0.03 0.050 0.035 0.6 0.8 IDR 4,950,000,000 IDR 15,071,090 IDR 4,853,758 

9 Lower Slope 0.10 0.03 0.062 0.047 0.6 0.8 IDR 4,125,000,000 IDR 15,499,628 IDR 5,398,243 

10 Lower Slope 0.10 0.03 0.071 0.056 0.6 0.8 IDR 5,087,500,000 IDR 21,830,113 IDR 7,907,029 

11 Lower Slope 
0.10 0.03 

0.055 0.040 0.6 0.8 

IDR 

10,037,500,000 IDR 33,368,688 IDR 11,134,789 

12 Lower Slope 0.10 0.03 0.066 0.047 0.6 0.8 IDR 4,125,000,000 IDR 16,497,303 IDR 5,374,802 

13 Col. Foot Slope 0.47 0.03 0.050 0.035 0.7 0.9 IDR 5,087,500,000 IDR 84,704,582 IDR 5,632,979 

14 Lower Slope 0.10 0.03 0.122 0.104 0.6 0.8 IDR 3,025,000,000 IDR 22,274,783 IDR 8,788,392 

15 Lower Slope 0.10 0.03 0.114 0.097 0.6 0.8 IDR 4,125,000,000 IDR 28,521,835 IDR 11,131,305 

16 Lower Slope 0.10 0.03 0.062 0.043 0.6 0.8 IDR 5,087,500,000 IDR 19,062,036 IDR 6,037,611 

17 Lower Slope 0.10 0.03 0.074 0.055 0.6 0.8 IDR 3,987,500,000 IDR 17,984,794 IDR 6,133,447 

18 Lower Slope 0.10 0.03 0.052 0.037 0.6 0.8 IDR 2,887,500,000 IDR 9,055,891 IDR 2,953,071 
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ID Landforms location 

Pr Pk Vulnerability 

Value of elements 

at risk 

Risk to persons 

100- 

1000 

m
3
 

>1000 

m
3
 

100- 

1000 

m
3
 

>1000 

m
3
 

100- 

1000 

m
3
 

>1000 

m
3
 

100-1000 m
3
 >1000 m

3
 

19 Lower Slope 0.10 0.03 0.064 0.045 0.6 0.8 IDR 4,950,000,000 IDR 19,315,452 IDR 6,228,217 

20 Lower Slope 0.10 0.03 0.079 0.060 0.6 0.8 IDR 3,987,500,000 IDR 19,076,029 IDR 6,635,737 

21 Transp. Middle Slope 0.63 0.10 0.092 0.073 0.8 1 IDR 2,887,500,000 IDR 133,716,715 IDR 21,260,875 

22 Lower Slope 0.10 0.03 0.063 0.046 0.6 0.8 IDR 0 IDR 0 IDR 0 

23 Col. Foot Slope 0.47 0.03 0.080 0.061 0.7 0.9 IDR 4,125,000,000 IDR 109,319,222 IDR 7,921,896 

24 Col. Foot Slope 0.47 0.03 0.064 0.047 0.7 0.9 IDR 3,987,500,000 IDR 84,441,108 IDR 5,844,983 

25 Lower Slope 0.10 0.03 0.076 0.057 0.6 0.8 IDR 2,887,500,000 IDR 13,369,464 IDR 4,625,142 

26 Col. Foot Slope 0.47 0.03 0.066 0.050 0.7 0.9 IDR 4,125,000,000 IDR 89,245,554 IDR 6,519,841 

27 Lower Slope 0.10 0.03 0.035 0.020 0.6 0.8 IDR 0 IDR 0 IDR 0 

28 Col. Foot Slope 0.47 0.03 0.077 0.062 0.7 0.9 IDR 2,887,500,000 IDR 73,678,756 IDR 5,627,874 

29 Col. Foot Slope 0.47 0.03 0.055 0.040 0.7 0.9 IDR 0 IDR 0 IDR 0 

30 Col. Foot Slope 0.47 0.03 0.070 0.055 0.7 0.9 IDR 1,925,000,000 IDR 44,516,083 IDR 3,314,897 

31 Col. Foot Slope 0.47 0.03 0.102 0.087 0.7 0.9 IDR 2,887,500,000 IDR 97,482,710 IDR 7,887,832 

32 Transp. Middle Slope 0.63 0.10 0.072 0.057 0.8 1 IDR 4,125,000,000 IDR 149,116,749 IDR 23,596,002 

33 Lower Slope 0.10 0.03 0.082 0.066 0.6 0.8 IDR 4,125,000,000 IDR 20,373,996 IDR 7,641,889 

34 Lower Slope 0.10 0.03 0.073 0.058 0.6 0.8 IDR 5,775,000,000 IDR 25,427,958 IDR 9,273,739 

35 Transp. Middle Slope 0.63 0.10 0.102 0.087 0.8 0.8 IDR 5,500,000,000 IDR 282,850,970 IDR 38,640,265 

36 Col. Foot Slope 0.47 0.03 0.077 0.057 0.7 0.9 IDR 962,500,000 IDR 24,353,864 IDR 1,729,727 

37 Lower Slope 0.10 0.03 0.071 0.056 0.6 0.8 IDR 3,850,000,000 IDR 16,588,055 IDR 6,014,984 

38 Lower Slope 0.10 0.03 0.076 0.057 0.6 0.8 0 IDR 0 IDR 0 
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A rockfall risk zoning should include a recommendation of each zoning for 

different purposes. It should provide information on rockfall intensity and frequency of 

occurrence over a given area. Each zoning should represent the impact of the natural 

process in a delineated zone in order to account for conflict interest between the 

potential damage of a spatial extent and the future organization of the territory. The 

author tried to translate the rockfall risk zoning in a zoning regulating land use (Table 

6.12) 

Table 6.12 Proposed Landuse Planning Strategies based on Risk and Landforms  

No Landforms Risk Description 

1. Convex creep slope High Feasibility of protection is too 

high/difficult, development of building 

is forbidden 

2. Fall face High Feasibility of protection is too 

high/difficult, development of building 

is forbidden 

3. Tranportational 

Middle slope 

High Feasibility of protection is too 

high/difficult, development of building 

is forbidden 

4. Colluvial foot slope Moderate Protection can be afforded by group or 

society or government, development 

of building is not recommended 

5. Lower slope Low Protection can be afforded if 

necessary, development of building is 

allowed with conditional requirement 

 

The proposed method allows a decision maker to have an advanced consideration 

to achieve specified risk measures and evaluation of their cost efficiency to optimize 

budget and design. The decision of the planning should account the results of the risk 

analysis processes. However, there is a wide range of other factors will usually need to 
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be considered such as financial constraints and the broader of socio-economic and 

political context. Disseminating the risk result into communities is a major task in the 

future. It can also be followed by public participation which is an essential part of the 

decision-making process. Involving broad ranges of groups and interest that may be 

affected by rockfall is important to the successful implementation of rockfall risk 

management strategies. Thus, involving all stakeholders in risk assessment processes i.e. 

collecting the rockfall data, formulation a problem and formulation the likelihood of 

hazard is key of successfully risk analysis. 

6.7 CONCLUSIONS 

This chapter shows the possibility of evaluating quantitative risk analysis based on 

geomorphology and rockfall blocks inventory mapping. It incorporated relevant stage of 

quantitative rockfall risk analysis and geomorphological analysis in a scarce data 

environment area. Temporal probability, probability of colliding, vulnerability and value 

of elements at risk were taken into account to quantitatively analyze rockfall risk. 

Temporal probability was initially derived from MCF curve. However, the 

incremental frequency obtained from MCF curve.  Rockfall that may occur once or 

more in each year was represented by an incremental frequency more than 1. It does not 

represent a probability value ranging from 0 to 1. Poisson probability was employed to 

solve this problem. Thus, temporal probability is defined as a percent chance of one or 

more rockfall can reach a landform during specified time. 

Probability of colliding is defined as the probability of intersection of the potential 

rockfall trajectories from the trajectories analysis with the existing building. It was 

calculated based on the length of building, the path of rockfall, and the length of the 

possible landform corridor passed by identified rockfalll source. The identified rockfall 

source was obtained from trajectory modelling. 

Vulnerability index is shown by the energy of rockfall impacts against loss of 

damage. An empirical vulnerability function obtained by fitting damage and impact 

energy was adapted to estimate the vulnerability degree based on landform analysis in 

Gunung Kelir area. An estimated energy was depicted from trajectory model. Building 
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record was plotted into energy and landform map. Then vulnerability index was 

estimated based on the landform and potential energy resulted from each class of 

rockfall volume. 

Two value of elements at risk, i.e building and person are employed in this research. 

The value of building represents the the value of the land and the building obtained from 

interviews of 130 respondents living in Gunung Kelir area. The value of a person was 

estimated by using value of statistical life (VOSL) adapted from developing countries. 

The author used VOSL $150,000 which is equal to IDR1,650,000,000 ($1=IDR11,000).  

The risk zoning represents a homogeneous area of rockfall risk ranking with the 

information of the occurrence probability with particular size in space and time, 

simplified trajectories and dynamic behavior of boulder when travel along the slope, and 

its interaction where elements at risk exist. It can be represented by landform zoning. 

Landform zoning can effectively represent rockfall risk zoning that can be used directly 

for landuse planning. Land use planning strategies based on quantitative risk analysis of 

landform was proposed to help policy maker to formulate a decision in a rockfall prone 

area. Risk analysis can give direction for policy maker to assist prioritization of 

evacuation; establishment of structural and or nonstructural preventive measures 

including spatial planning.  
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CHAPTER 7 
CONCLUSIONS AND FUTURE STUDIES 

7.1 CONCLUSIONS 

Spatial planning based on disaster risk reduction is one of the primary issues of the 

Indonesia national development agenda to promote sustainable development due to the 

increasing frequency of disasters and continuing environmental degradation. In terms of 

landslide disaster risk reduction, regional development and disaster mitigation are well 

approached by landslide susceptibility, hazard and risk zoning.  

However, an adequate landslide inventory which is essential for hazard and risk 

analysis is not available in Indonesia. It is a central problem of quantitative landslide risk 

analysis and makes the landslide studies, especially in the risk analysis is not well 

developed in Indonesia. Thus, participatory landslide inventory mapping, landslide 

susceptibility zoning comparison and improvement, back analysis of rockfall source 

identification, automated landform classification in a rockfall prone area,  and 

quantitative rockfall risk zoning based on statistical and physical model have been 

proposed to tackle down those issues. The research has been divided into two landslide 

typology i.e. landslides and rockfall. 

The following major conclusions can be drawn: 

1) The author has proposed participatory landslide inventory mapping by employing 

the traditional geomorphological field survey method involving active participation 

from communities with the use of an innovative technology, i.e. laser range finder 
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and GPS to identify and measure the extents of past landslide. It is a precise, 

cost-effective and less time consuming.  

2) Data input of landslide inventory into a GIS program enables post-processing, 

permits enhanced cadastral activities, better landslide statistics. In the future, 

participatory landslide inventory mapping is expected to solve the problem of 

insufficiency of landslide inventory in Indonesia.  

3) The existing data driven landslide susceptibility zoning methods i.e. WoE, LR, and 

ANN have been compared in order to identify the most realistic landslide 

susceptibility method applied typically in the tropical region Indonesia by using 

complete landslide inventory. Considering the accuracy and the precision 

evaluations, the WoE represents considerably the most realistic prediction capacities 

when comparing with the LR and ANN. The merits and demerits of the three 

models were also highlighted. 

4) Based on the merits and demerits of the three methods, the author has proposed the 

combination of WoE-LR to improve the accuracy of the model. The result shows 

that WoE-LR by excluding SPI and TWI can increase the accuracy up to 5%. It also 

shows that the choice of selecting the landslide controlling factor is important and 

can give an effect on the overall accuracy. 

5) Landuse can be inferred as a controlling factor that has a higher effect on the 

landslide events than any other parameter in the study area. It is reasonable that 

landuse change, especially housing development and devegetation may pose serious 

slope stability problems in the study area. 

6) Back analysis of trajectory has been proposed to infer the potential location of 

rockfall sources. Rockfall sources are important to compute trajectory frequency 

and kinetic energy of rockfall. Sensitivity analysis of coefficients of restitution has 

also been employed to control the result of trajectory model. It suggests that the 

coefficients of restitution values have little effect on the computed trajectory. 

7) The author has proposed automated landform classification to address the problems 

of the vagueness of rockfall frequency and energy to be used in practical landuse 
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planning. The modified 9-unit slope model can represent both physical 

characteristic of rockfall movement and the characteristic of local topography. It 

poses a reasonable result for preliminary rockfall risk assessment. 

8) Combination of statistical and physical model has been proposed to compute 

rockfall risk quantitatively. Unsupervised fuzzy k means based on the modified 

9-unit model was applied to classify the landform class automatically and to 

minimize the subjectivity of interpreter. Landform class was used as a mapping unit 

to evaluate the occurrence probability, the colliding probability and the physical 

vulnerability with particular boulder size in space and time. The risk to building and 

the risk to person inside the building were calculated based on the chance of loss (in 

monetary term) during specified time. Landform class significantly influences the 

calculated risk. Transportational middle slope is a landform where the chance of loss 

is the highest. 

7.2 FUTURE STUDIES 

(1) An effort of continuous landslide inventory mapping should be encouraged in the 

future study both in the same place and different places. The fully documented 

landslide database will enable scientists to more accurately establish the relationship 

between landslides events and both its triggering factor and controlling factor which 

will be very useful to understand the physical behavior of landslides. 

(2) The study of the effect of landuse change to landslides and the evaluation of 

devegetation to landslides will be great challenges for the future research. GIS 

techniques and remote sensing analysis should be employed to infer the landuse 

change and the relation between landuse change and landslide events. 

(3) Back analysis of rockfall source should be tested in different areas which have a 

similar genesis in order to confirm the sensitivity analysis regarding to the different 

landform genesis. 

(4) Robust, less time consuming, less computational cost trajectory model which 

employs shape of boulder and the contact between boulder and surface morphology 
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is encouraged in order to produce “more physically sound” rockfall movement.  

(5) Further studies should also employ the high accuracy of DTM, i.e. LIDAR data to 

obtain better accuracy of simulation and zoning.  
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APPENDIX A 

Questionnaire and checklist for participatory landslide inventory mapping 
 

No. Site………. 

    

 

 

FAKULTAS GEOGRAFI  

UNIVERSITAS GADJAH MADA 

LANDSLIDE INVENTORY MAPPING 

LANDSLIDE INVENTORY 

 KULON PROGO REGENCY  

2013 

This is a research about landslide inventory mapping in Kulon Progo Regency. You will be 

asked to complete a short questionnaire.This questionnaire aims to collect spatial and temporal 

data of landslide occurred in Kulon Progo Regency. The information you provide will be used to 

enhance and improve landslide inventory data, susceptibility assessment, hazard assessment and 

risk assessment. Your answers will not be released to anyone and will remain anonymous.. All 

responses you provide for this study will remain confidential. When the results of the study are 

reported, you will not be identified by name or any other information that could be used to infer 

your identity. Only researchers will have access to view any data collected during this research. 

Your participation is voluntary and you may withdraw from this research any time you wish or 

skip any question you don’t feel like answering. 

Your refusal to participate will not result in any penalty or loss of benefits to which you are 

otherwise entitled to.The research intends to abide by all commonly acknowledged ethical codes. 

You agree to  participate in this research project by filling the following questionnaire. If you 

have any questions, please ask the research team listed at the beginning of this questionnaire. 

Thank you for your time. 

 

Guruh Samodra 

NIP: 198511012010121006 

Address: Mlati Jati RT 16 RW 06 Sendangadi Mlati Sleman 
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  HP: 081227281137  

 

CONFIDENTIAL 

No. Respondent Identity :  

 

DESCRIPTION OF INTERVIEW 

RESUL OF VISITS                        

 FIRST VISIT SECOND VISIT THIRD VISIT 

Date      /    /2013        /    /2013    /     /2013 

Time Start   :    :    : 

Time Finish   :    :    : 

Result 1. Completed 1.Completed 1.Completed 

 2.Partially Completed 2.Partially Completed 2.Partially Completed 

 3.Respondent refuses 

interview/ not in place/ 

absent 

3.Respondent refuses 

interview/ not in 

place/ absent 

3.Respondent refuses 

interview/ not in place/ 

absent 

 

 

 ENUMERATOR AND EDITOR 

 

 Enumerator Editor 

Name   

 

 

HASIL PEMERIKSAAN 

 

Site No Editor Note 
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1. LOCATION 

Name of victim  : ……………………… 

Address  : ……………………… 

Hamlet  : ……………………… 

Village  : ……………………… 

Sub District  : Girimulyo 

District/Regency  : Kulon Progo 

Coordinate 

X  : ……………………… 

Y  : ……………………… 

Elevation  : ……………………… 

Place where coordinate is plotted  :………………………  e.g. in landslide 

crown 

Photo number  : ……………………… 

Direction of photoshoot  : ……………………… 

Photograph note  : ……………………… 

 

2. DATE WHEN LANDSLIDE OCCURED 

Date/month/year  : ……………………… 

Date (Javanese Calendar)  : ……………………… 

Time (hh:mm:ss)  : ……………………… 

 

3. LANDSLIDE TYPOLOGY 

(Please circle the choices below) 

Landslide Material 

1. Rock   2. earth 3. debris 4………….. 

Process 

1. fall    2. topple  3. slide (rotational)  4. slide (translational)  

5. lateral spread   6.flow 

Landslide velocity (qualitative judgement) 

1. fast     2. slow   

nb: (engineering soil)  fine material consist of at least 50% sand particle, 

loam and clay 

 

Another characteristic: 

 

Slope  : …………… 

 

 

 



 

 

198 

 

Landuse where landslide occured (please circle the choice below based on field 

investigation) 

1. bushes  2. forest  3. settlement  4. paddy field       

5. rainfed 6. field  7. others …….  

Types of plants …………………  

The cause of landslide:………………………………………………… 

 

 

4. LANDSLIDE GEOMETRY 

Length  Lr  : ………. m  Ld : ………. m   L  : ………. m 

Width  Wr : ………. m   Wd  : ………. m 

Depth  Dr : ………. m   Dd  : ………. m 

 

Volume  : 
 

 
 LdWdDd    Volume : ………. m

3
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure A.1. Ideal scheme of landslide geometry rotational slide (slump) 
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5. LOSSES 

death    : …………….. 

property   : …………….. lost estimation (IDR) : ………………… 

plantation  : …………….. lost estimation (IDR) : ………………… 

livestock  : …………….. lost estimation (IDR) : ………………… 

others   : …………….. lost estimation (IDR) : ………………… 

   

FIELD OBSERVATION CHECKLIST 

Location Description 

1. Village          : 

2. Sub District        : 

3. Regency          : 

4. Coordinate         :X= 

:Y= 

5. Picture/Photograph number  : 

6. Slope           : 

7. Landslide prone area    : Yes/No 

Physical Building Condition 

1. Building Age      : 

2. Wall Material      : 

3. Construction Type    : 

4. Building Structure    : 

5. Floor Material     : 

6. Roof Material     : 

7. Building Condition   : 

8. Distance to Major Road : 

9. Additional Information :
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APPENDIX B 

Coefficients of restitution table (adapted from: https://www.rocscience.com/help/rocfall/webhelp/baggage/rn_rt_table.htm) 

RN (Normal) RT (Tangential) Type Verification Location Reference 

Min Max Mean Standard 

Deviation 

Min Max Mean Standard 

Deviation 

        

0.370 0.420     0.870 0.920     Hard surface 

paving 

Tested using 

simulated 

rockfalls of similar 

size and shape of a 

previous rockfall. 

Glenwood 

Canyon, 

Colorado, 

USA 

Pfeiffer, T.J., and 

Bowen, T.D., 

"Computer 

Simulation of 

Rockfalls." Bulletin 

of Association of 

Engineering 

Geologists. Vol. 26, 

No. 1. 1989. 

pp135-146 

0.330 0.370     0.830 0.870     Bedrock or 

boulders with 

little soil 

or vegetation 

0.300 0.330     0.830 0.870     Talus with 

little 

vegetation 

0.300 0.330     0.800 0.830     Talus with 

some 

vegetation 

0.280 0.320     0.800 0.830     Soft soil 

slope with 

little 

vegetation 

0.280 0.320     0.780 0.820     Vegetated 

soil slope 

    0.315 0.064     0.712 0.116 Limestone 

face 

Tested on 

restoration-blasting 

slopes made of four 

types of materials; 

blast-generated 

rock fragments, 

Limestone 

quarry in 

England 

Robotham, M.E., 

and Wang, H., and 

Walton, G., 

"Assessment of risk 

from rockfall from 

active and 

    0.303 0.080     0.615 0.170 Partially 

vegetated 

limestone 

scree 
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    0.315 0.064     0.712 0.116 Uncovered 

limestone 

blast pile 

partially vegetated 

scree on berms, 

uncovered blast 

piles, and 

vegetated quarry 

waste. 

abandoned quarry 

slopes." Institution 

of mining and 

Metallurgy, Section 

A. 

1995.104(Jan-April), 

pp A25-A33 

    0.251 0.029     0.489 0.141 Vegetated 

covered 

limestone 

pile 

    0.276 0.079     0.835 0.087 Chalk face Chalk 

quarry in 

England 
    0.271 0.018     0.596 0.085 Vegetated 

chalk scree 

    0.530       0.990   Clean hard 

bedrock 

    Hoek, Evert. 

"Unpublished notes" 

NSERC Industrial 

Research Professor 

of Rock 

Engineering, 

Department of Civil 

Engineering, 

University of 

Toronto, St George 

Street, Toronto, 

Ontario, Canada 

M5S 1A4 

    0.400       0.900   Asphalt 

roadway 

    0.350       0.850   Bedrock 

outcrops with 

hard surface, 

large 

boulders 

    0.320       0.820   Talus cover 

    0.320       0.800   Talus cover 

with 

vegetation 

    0.300       0.800   Soft soil, 

some 

vegetation 

0.370 0.420             Smooth hard 

surfaces and 

paving 

Developed by 

observation and 

literature review 

Colordado, 

USA 

Pfeiffer, T.J., and 

Higgens, 

J.D.,  "Rockfall 
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0.330 0.370             Most bedrock 

and boulder 

fields 

Hazard Analysis 

Using the Colorado 

Rockfall 

Simulation." 

Transportation 

Research Record 

1288, TRB, National 

Research Council, 

Washington, D.C., 

1990, pp117-126. 

0.300 0.330             Talus and 

firm soil 

slopes 

0.280 0.300             Soft soil 

slopes 

        0.830 0.870     Most bedrock 

surfaces and 

talus with no 

vegetation 

        0.820 0.850     Most talus 

slopes with 

some low 

vegetation 

        0.800 0.830     Vegetated 

talus slopes 

and soil 

slopes with 

spares 

vegetation 
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APPENDIX C 

Poisso model for percent chance of one or more rockfall in Gunung Kelir, during a 

specified time 

Past years (t*)=141 Time-years (t) 

Number 

of rockfall 

(n) 

Mean 

recurrence 

interval 

(years) μ 

1 5 10 25 50 100 141 

1 141.000 0.7% 3.5% 6.8% 16.2% 29.9% 50.8% 63.2% 

2 70.500 1.4% 6.8% 13.2% 29.9% 50.8% 75.8% 86.5% 

3 47.000 2.1% 10.1% 19.2% 41.3% 65.5% 88.1% 95.0% 

4 35.250 2.8% 13.2% 24.7% 50.8% 75.8% 94.1% 98.2% 

5 28.200 3.5% 16.2% 29.9% 58.8% 83.0% 97.1% 99.3% 

6 23.500 4.2% 19.2% 34.7% 65.5% 88.1% 98.6% 99.8% 

7 20.143 4.8% 22.0% 39.1% 71.1% 91.6% 99.3% 99.9% 

8 17.625 5.5% 24.7% 43.3% 75.8% 94.1% 99.7% 100.0% 

9 15.667 6.2% 27.3% 47.2% 79.7% 95.9% 99.8% 100.0% 

10 14.100 6.8% 29.9% 50.8% 83.0% 97.1% 99.9% 100.0% 

11 12.818 7.5% 32.3% 54.2% 85.8% 98.0% 100.0% 100.0% 

12 11.750 8.2% 34.7% 57.3% 88.1% 98.6% 100.0% 100.0% 

13 10.846 8.8% 36.9% 60.2% 90.0% 99.0% 100.0% 100.0% 

14 10.071 9.5% 39.1% 63.0% 91.6% 99.3% 100.0% 100.0% 

15 9.400 10.1% 41.3% 65.5% 93.0% 99.5% 100.0% 100.0% 

16 8.813 10.7% 43.3% 67.8% 94.1% 99.7% 100.0% 100.0% 

17 8.294 11.4% 45.3% 70.1% 95.1% 99.8% 100.0% 100.0% 

18 7.833 12.0% 47.2% 72.1% 95.9% 99.8% 100.0% 100.0% 

19 7.421 12.6% 49.0% 74.0% 96.6% 99.9% 100.0% 100.0% 

20 7.050 13.2% 50.8% 75.8% 97.1% 99.9% 100.0% 100.0% 

21 6.714 13.8% 52.5% 77.4% 97.6% 99.9% 100.0% 100.0% 

22 6.409 14.4% 54.2% 79.0% 98.0% 100.0% 100.0% 100.0% 

23 6.130 15.1% 55.8% 80.4% 98.3% 100.0% 100.0% 100.0% 

24 5.875 15.7% 57.3% 81.8% 98.6% 100.0% 100.0% 100.0% 

25 5.640 16.2% 58.8% 83.0% 98.8% 100.0% 100.0% 100.0% 

26 5.423 16.8% 60.2% 84.2% 99.0% 100.0% 100.0% 100.0% 

27 5.222 17.4% 61.6% 85.3% 99.2% 100.0% 100.0% 100.0% 

28 5.036 18.0% 63.0% 86.3% 99.3% 100.0% 100.0% 100.0% 

29 4.862 18.6% 64.2% 87.2% 99.4% 100.0% 100.0% 100.0% 

30 4.700 19.2% 65.5% 88.1% 99.5% 100.0% 100.0% 100.0% 

31 4.548 19.7% 66.7% 88.9% 99.6% 100.0% 100.0% 100.0% 

32 4.406 20.3% 67.8% 89.7% 99.7% 100.0% 100.0% 100.0% 
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33 4.273 20.9% 69.0% 90.4% 99.7% 100.0% 100.0% 100.0% 

34 4.147 21.4% 70.1% 91.0% 99.8% 100.0% 100.0% 100.0% 

35 4.029 22.0% 71.1% 91.6% 99.8% 100.0% 100.0% 100.0% 

36 3.917 22.5% 72.1% 92.2% 99.8% 100.0% 100.0% 100.0% 

37 3.811 23.1% 73.1% 92.7% 99.9% 100.0% 100.0% 100.0% 

38 3.711 23.6% 74.0% 93.2% 99.9% 100.0% 100.0% 100.0% 

39 3.615 24.2% 74.9% 93.7% 99.9% 100.0% 100.0% 100.0% 

40 3.525 24.7% 75.8% 94.1% 99.9% 100.0% 100.0% 100.0% 

41 3.439 25.2% 76.6% 94.5% 99.9% 100.0% 100.0% 100.0% 

42 3.357 25.8% 77.4% 94.9% 99.9% 100.0% 100.0% 100.0% 

43 3.279 26.3% 78.2% 95.3% 100.0% 100.0% 100.0% 100.0% 

44 3.205 26.8% 79.0% 95.6% 100.0% 100.0% 100.0% 100.0% 

45 3.133 27.3% 79.7% 95.9% 100.0% 100.0% 100.0% 100.0% 

46 3.065 27.8% 80.4% 96.2% 100.0% 100.0% 100.0% 100.0% 

47 3.000 28.3% 81.1% 96.4% 100.0% 100.0% 100.0% 100.0% 

48 2.938 28.9% 81.8% 96.7% 100.0% 100.0% 100.0% 100.0% 

49 2.878 29.4% 82.4% 96.9% 100.0% 100.0% 100.0% 100.0% 

50 2.820 29.9% 83.0% 97.1% 100.0% 100.0% 100.0% 100.0% 

51 2.765 30.4% 83.6% 97.3% 100.0% 100.0% 100.0% 100.0% 

52 2.712 30.8% 84.2% 97.5% 100.0% 100.0% 100.0% 100.0% 

53 2.660 31.3% 84.7% 97.7% 100.0% 100.0% 100.0% 100.0% 

54 2.611 31.8% 85.3% 97.8% 100.0% 100.0% 100.0% 100.0% 

55 2.564 32.3% 85.8% 98.0% 100.0% 100.0% 100.0% 100.0% 

56 2.518 32.8% 86.3% 98.1% 100.0% 100.0% 100.0% 100.0% 

57 2.474 33.3% 86.8% 98.2% 100.0% 100.0% 100.0% 100.0% 

58 2.431 33.7% 87.2% 98.4% 100.0% 100.0% 100.0% 100.0% 

59 2.390 34.2% 87.7% 98.5% 100.0% 100.0% 100.0% 100.0% 

60 2.350 34.7% 88.1% 98.6% 100.0% 100.0% 100.0% 100.0% 

61 2.311 35.1% 88.5% 98.7% 100.0% 100.0% 100.0% 100.0% 

62 2.274 35.6% 88.9% 98.8% 100.0% 100.0% 100.0% 100.0% 

63 2.238 36.0% 89.3% 98.9% 100.0% 100.0% 100.0% 100.0% 

64 2.203 36.5% 89.7% 98.9% 100.0% 100.0% 100.0% 100.0% 

65 2.169 36.9% 90.0% 99.0% 100.0% 100.0% 100.0% 100.0% 

66 2.136 37.4% 90.4% 99.1% 100.0% 100.0% 100.0% 100.0% 

67 2.104 37.8% 90.7% 99.1% 100.0% 100.0% 100.0% 100.0% 

68 2.074 38.3% 91.0% 99.2% 100.0% 100.0% 100.0% 100.0% 

69 2.043 38.7% 91.3% 99.3% 100.0% 100.0% 100.0% 100.0% 

70 2.014 39.1% 91.6% 99.3% 100.0% 100.0% 100.0% 100.0% 

71 1.986 39.6% 91.9% 99.3% 100.0% 100.0% 100.0% 100.0% 

72 1.958 40.0% 92.2% 99.4% 100.0% 100.0% 100.0% 100.0% 
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73 1.932 40.4% 92.5% 99.4% 100.0% 100.0% 100.0% 100.0% 

74 1.905 40.8% 92.7% 99.5% 100.0% 100.0% 100.0% 100.0% 

75 1.880 41.3% 93.0% 99.5% 100.0% 100.0% 100.0% 100.0% 

76 1.855 41.7% 93.2% 99.5% 100.0% 100.0% 100.0% 100.0% 

77 1.831 42.1% 93.5% 99.6% 100.0% 100.0% 100.0% 100.0% 

78 1.808 42.5% 93.7% 99.6% 100.0% 100.0% 100.0% 100.0% 

79 1.785 42.9% 93.9% 99.6% 100.0% 100.0% 100.0% 100.0% 

80 1.763 43.3% 94.1% 99.7% 100.0% 100.0% 100.0% 100.0% 

81 1.741 43.7% 94.3% 99.7% 100.0% 100.0% 100.0% 100.0% 

82 1.720 44.1% 94.5% 99.7% 100.0% 100.0% 100.0% 100.0% 

83 1.699 44.5% 94.7% 99.7% 100.0% 100.0% 100.0% 100.0% 

84 1.679 44.9% 94.9% 99.7% 100.0% 100.0% 100.0% 100.0% 

85 1.659 45.3% 95.1% 99.8% 100.0% 100.0% 100.0% 100.0% 

86 1.640 45.7% 95.3% 99.8% 100.0% 100.0% 100.0% 100.0% 

87 1.621 46.0% 95.4% 99.8% 100.0% 100.0% 100.0% 100.0% 

88 1.602 46.4% 95.6% 99.8% 100.0% 100.0% 100.0% 100.0% 

89 1.584 46.8% 95.7% 99.8% 100.0% 100.0% 100.0% 100.0% 

90 1.567 47.2% 95.9% 99.8% 100.0% 100.0% 100.0% 100.0% 

91 1.549 47.6% 96.0% 99.8% 100.0% 100.0% 100.0% 100.0% 

92 1.533 47.9% 96.2% 99.9% 100.0% 100.0% 100.0% 100.0% 

93 1.516 48.3% 96.3% 99.9% 100.0% 100.0% 100.0% 100.0% 

94 1.500 48.7% 96.4% 99.9% 100.0% 100.0% 100.0% 100.0% 

95 1.484 49.0% 96.6% 99.9% 100.0% 100.0% 100.0% 100.0% 

96 1.469 49.4% 96.7% 99.9% 100.0% 100.0% 100.0% 100.0% 

97 1.454 49.7% 96.8% 99.9% 100.0% 100.0% 100.0% 100.0% 

98 1.439 50.1% 96.9% 99.9% 100.0% 100.0% 100.0% 100.0% 

99 1.424 50.4% 97.0% 99.9% 100.0% 100.0% 100.0% 100.0% 

100 1.410 50.8% 97.1% 99.9% 100.0% 100.0% 100.0% 100.0% 

101 1.396 51.1% 97.2% 99.9% 100.0% 100.0% 100.0% 100.0% 

102 1.382 51.5% 97.3% 99.9% 100.0% 100.0% 100.0% 100.0% 

103 1.369 51.8% 97.4% 99.9% 100.0% 100.0% 100.0% 100.0% 

104 1.356 52.2% 97.5% 99.9% 100.0% 100.0% 100.0% 100.0% 

105 1.343 52.5% 97.6% 99.9% 100.0% 100.0% 100.0% 100.0% 

106 1.330 52.8% 97.7% 99.9% 100.0% 100.0% 100.0% 100.0% 

107 1.318 53.2% 97.8% 99.9% 100.0% 100.0% 100.0% 100.0% 

108 1.306 53.5% 97.8% 100.0% 100.0% 100.0% 100.0% 100.0% 

109 1.294 53.8% 97.9% 100.0% 100.0% 100.0% 100.0% 100.0% 

110 1.282 54.2% 98.0% 100.0% 100.0% 100.0% 100.0% 100.0% 

111 1.270 54.5% 98.0% 100.0% 100.0% 100.0% 100.0% 100.0% 

112 1.259 54.8% 98.1% 100.0% 100.0% 100.0% 100.0% 100.0% 
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113 1.248 55.1% 98.2% 100.0% 100.0% 100.0% 100.0% 100.0% 

114 1.237 55.4% 98.2% 100.0% 100.0% 100.0% 100.0% 100.0% 

115 1.226 55.8% 98.3% 100.0% 100.0% 100.0% 100.0% 100.0% 

116 1.216 56.1% 98.4% 100.0% 100.0% 100.0% 100.0% 100.0% 

117 1.205 56.4% 98.4% 100.0% 100.0% 100.0% 100.0% 100.0% 

118 1.195 56.7% 98.5% 100.0% 100.0% 100.0% 100.0% 100.0% 

119 1.185 57.0% 98.5% 100.0% 100.0% 100.0% 100.0% 100.0% 

120 1.175 57.3% 98.6% 100.0% 100.0% 100.0% 100.0% 100.0% 

121 1.165 57.6% 98.6% 100.0% 100.0% 100.0% 100.0% 100.0% 

122 1.156 57.9% 98.7% 100.0% 100.0% 100.0% 100.0% 100.0% 

123 1.146 58.2% 98.7% 100.0% 100.0% 100.0% 100.0% 100.0% 

124 1.137 58.5% 98.8% 100.0% 100.0% 100.0% 100.0% 100.0% 

125 1.128 58.8% 98.8% 100.0% 100.0% 100.0% 100.0% 100.0% 

126 1.119 59.1% 98.9% 100.0% 100.0% 100.0% 100.0% 100.0% 

127 1.110 59.4% 98.9% 100.0% 100.0% 100.0% 100.0% 100.0% 

128 1.102 59.7% 98.9% 100.0% 100.0% 100.0% 100.0% 100.0% 

129 1.093 59.9% 99.0% 100.0% 100.0% 100.0% 100.0% 100.0% 

130 1.085 60.2% 99.0% 100.0% 100.0% 100.0% 100.0% 100.0% 

131 1.076 60.5% 99.0% 100.0% 100.0% 100.0% 100.0% 100.0% 

132 1.068 60.8% 99.1% 100.0% 100.0% 100.0% 100.0% 100.0% 

133 1.060 61.1% 99.1% 100.0% 100.0% 100.0% 100.0% 100.0% 

134 1.052 61.3% 99.1% 100.0% 100.0% 100.0% 100.0% 100.0% 

135 1.044 61.6% 99.2% 100.0% 100.0% 100.0% 100.0% 100.0% 

136 1.037 61.9% 99.2% 100.0% 100.0% 100.0% 100.0% 100.0% 

137 1.029 62.2% 99.2% 100.0% 100.0% 100.0% 100.0% 100.0% 

138 1.022 62.4% 99.3% 100.0% 100.0% 100.0% 100.0% 100.0% 

139 1.014 62.7% 99.3% 100.0% 100.0% 100.0% 100.0% 100.0% 

140 1.007 63.0% 99.3% 100.0% 100.0% 100.0% 100.0% 100.0% 

141 1.000 63.2% 99.3% 100.0% 100.0% 100.0% 100.0% 100.0% 

142 0.993 63.5% 99.3% 100.0% 100.0% 100.0% 100.0% 100.0% 

143 0.986 63.7% 99.4% 100.0% 100.0% 100.0% 100.0% 100.0% 

144 0.979 64.0% 99.4% 100.0% 100.0% 100.0% 100.0% 100.0% 

145 0.972 64.2% 99.4% 100.0% 100.0% 100.0% 100.0% 100.0% 

146 0.966 64.5% 99.4% 100.0% 100.0% 100.0% 100.0% 100.0% 

147 0.959 64.7% 99.5% 100.0% 100.0% 100.0% 100.0% 100.0% 

148 0.953 65.0% 99.5% 100.0% 100.0% 100.0% 100.0% 100.0% 

149 0.946 65.2% 99.5% 100.0% 100.0% 100.0% 100.0% 100.0% 

150 0.940 65.5% 99.5% 100.0% 100.0% 100.0% 100.0% 100.0% 

151 0.934 65.7% 99.5% 100.0% 100.0% 100.0% 100.0% 100.0% 

152 0.928 66.0% 99.5% 100.0% 100.0% 100.0% 100.0% 100.0% 
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153 0.922 66.2% 99.6% 100.0% 100.0% 100.0% 100.0% 100.0% 

154 0.916 66.5% 99.6% 100.0% 100.0% 100.0% 100.0% 100.0% 

155 0.910 66.7% 99.6% 100.0% 100.0% 100.0% 100.0% 100.0% 

156 0.904 66.9% 99.6% 100.0% 100.0% 100.0% 100.0% 100.0% 

157 0.898 67.2% 99.6% 100.0% 100.0% 100.0% 100.0% 100.0% 

158 0.892 67.4% 99.6% 100.0% 100.0% 100.0% 100.0% 100.0% 

159 0.887 67.6% 99.6% 100.0% 100.0% 100.0% 100.0% 100.0% 

160 0.881 67.8% 99.7% 100.0% 100.0% 100.0% 100.0% 100.0% 

161 0.876 68.1% 99.7% 100.0% 100.0% 100.0% 100.0% 100.0% 

162 0.870 68.3% 99.7% 100.0% 100.0% 100.0% 100.0% 100.0% 

163 0.865 68.5% 99.7% 100.0% 100.0% 100.0% 100.0% 100.0% 

164 0.860 68.7% 99.7% 100.0% 100.0% 100.0% 100.0% 100.0% 

165 0.855 69.0% 99.7% 100.0% 100.0% 100.0% 100.0% 100.0% 

166 0.849 69.2% 99.7% 100.0% 100.0% 100.0% 100.0% 100.0% 

167 0.844 69.4% 99.7% 100.0% 100.0% 100.0% 100.0% 100.0% 

168 0.839 69.6% 99.7% 100.0% 100.0% 100.0% 100.0% 100.0% 

169 0.834 69.8% 99.8% 100.0% 100.0% 100.0% 100.0% 100.0% 

170 0.829 70.1% 99.8% 100.0% 100.0% 100.0% 100.0% 100.0% 

171 0.825 70.3% 99.8% 100.0% 100.0% 100.0% 100.0% 100.0% 

172 0.820 70.5% 99.8% 100.0% 100.0% 100.0% 100.0% 100.0% 

173 0.815 70.7% 99.8% 100.0% 100.0% 100.0% 100.0% 100.0% 

174 0.810 70.9% 99.8% 100.0% 100.0% 100.0% 100.0% 100.0% 

175 0.806 71.1% 99.8% 100.0% 100.0% 100.0% 100.0% 100.0% 

176 0.801 71.3% 99.8% 100.0% 100.0% 100.0% 100.0% 100.0% 

177 0.797 71.5% 99.8% 100.0% 100.0% 100.0% 100.0% 100.0% 

178 0.792 71.7% 99.8% 100.0% 100.0% 100.0% 100.0% 100.0% 

179 0.788 71.9% 99.8% 100.0% 100.0% 100.0% 100.0% 100.0% 

180 0.783 72.1% 99.8% 100.0% 100.0% 100.0% 100.0% 100.0% 

181 0.779 72.3% 99.8% 100.0% 100.0% 100.0% 100.0% 100.0% 

182 0.775 72.5% 99.8% 100.0% 100.0% 100.0% 100.0% 100.0% 

183 0.770 72.7% 99.8% 100.0% 100.0% 100.0% 100.0% 100.0% 

184 0.766 72.9% 99.9% 100.0% 100.0% 100.0% 100.0% 100.0% 

185 0.762 73.1% 99.9% 100.0% 100.0% 100.0% 100.0% 100.0% 

186 0.758 73.3% 99.9% 100.0% 100.0% 100.0% 100.0% 100.0% 

187 0.754 73.5% 99.9% 100.0% 100.0% 100.0% 100.0% 100.0% 

188 0.750 73.6% 99.9% 100.0% 100.0% 100.0% 100.0% 100.0% 

189 0.746 73.8% 99.9% 100.0% 100.0% 100.0% 100.0% 100.0% 

190 0.742 74.0% 99.9% 100.0% 100.0% 100.0% 100.0% 100.0% 

191 0.738 74.2% 99.9% 100.0% 100.0% 100.0% 100.0% 100.0% 

192 0.734 74.4% 99.9% 100.0% 100.0% 100.0% 100.0% 100.0% 
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193 0.731 74.6% 99.9% 100.0% 100.0% 100.0% 100.0% 100.0% 

194 0.727 74.7% 99.9% 100.0% 100.0% 100.0% 100.0% 100.0% 

195 0.723 74.9% 99.9% 100.0% 100.0% 100.0% 100.0% 100.0% 

196 0.719 75.1% 99.9% 100.0% 100.0% 100.0% 100.0% 100.0% 

197 0.716 75.3% 99.9% 100.0% 100.0% 100.0% 100.0% 100.0% 

198 0.712 75.4% 99.9% 100.0% 100.0% 100.0% 100.0% 100.0% 

199 0.709 75.6% 99.9% 100.0% 100.0% 100.0% 100.0% 100.0% 

200 0.705 75.8% 99.9% 100.0% 100.0% 100.0% 100.0% 100.0% 

201 0.701 76.0% 99.9% 100.0% 100.0% 100.0% 100.0% 100.0% 

202 0.698 76.1% 99.9% 100.0% 100.0% 100.0% 100.0% 100.0% 

203 0.695 76.3% 99.9% 100.0% 100.0% 100.0% 100.0% 100.0% 

204 0.691 76.5% 99.9% 100.0% 100.0% 100.0% 100.0% 100.0% 

205 0.688 76.6% 99.9% 100.0% 100.0% 100.0% 100.0% 100.0% 

206 0.684 76.8% 99.9% 100.0% 100.0% 100.0% 100.0% 100.0% 

207 0.681 77.0% 99.9% 100.0% 100.0% 100.0% 100.0% 100.0% 

208 0.678 77.1% 99.9% 100.0% 100.0% 100.0% 100.0% 100.0% 

209 0.675 77.3% 99.9% 100.0% 100.0% 100.0% 100.0% 100.0% 

210 0.671 77.4% 99.9% 100.0% 100.0% 100.0% 100.0% 100.0% 

211 0.668 77.6% 99.9% 100.0% 100.0% 100.0% 100.0% 100.0% 

212 0.665 77.8% 99.9% 100.0% 100.0% 100.0% 100.0% 100.0% 

213 0.662 77.9% 99.9% 100.0% 100.0% 100.0% 100.0% 100.0% 

214 0.659 78.1% 99.9% 100.0% 100.0% 100.0% 100.0% 100.0% 

215 0.656 78.2% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 

216 0.653 78.4% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 

217 0.650 78.5% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 

218 0.647 78.7% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 

219 0.644 78.8% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 

220 0.641 79.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 

221 0.638 79.1% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 

222 0.635 79.3% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 

223 0.632 79.4% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 

224 0.629 79.6% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 

225 0.627 79.7% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 

226 0.624 79.9% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 

227 0.621 80.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 

228 0.618 80.2% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 

229 0.616 80.3% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 

230 0.613 80.4% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 

231 0.610 80.6% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 

232 0.608 80.7% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 
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233 0.605 80.8% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 

234 0.603 81.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 

235 0.600 81.1% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 

236 0.597 81.2% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 

237 0.595 81.4% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 

238 0.592 81.5% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 

239 0.590 81.6% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 

240 0.588 81.8% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 

241 0.585 81.9% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 

242 0.583 82.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 

243 0.580 82.2% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 

244 0.578 82.3% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 

245 0.576 82.4% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 

246 0.573 82.5% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 

247 0.571 82.7% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 

248 0.569 82.8% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 

249 0.566 82.9% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 

250 0.564 83.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 

251 0.562 83.1% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 

252 0.560 83.3% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 

253 0.557 83.4% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 

254 0.555 83.5% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 

255 0.553 83.6% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 

256 0.551 83.7% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 

257 0.549 83.8% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 

258 0.547 84.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 

259 0.544 84.1% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 

260 0.542 84.2% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 

261 0.540 84.3% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 

262 0.538 84.4% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 

263 0.536 84.5% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 

264 0.534 84.6% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 

265 0.532 84.7% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 

266 0.530 84.8% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 

267 0.528 84.9% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 

268 0.526 85.1% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 

269 0.524 85.2% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 

270 0.522 85.3% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 

271 0.520 85.4% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 

272 0.518 85.5% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 
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273 0.516 85.6% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 

274 0.515 85.7% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 

275 0.513 85.8% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 

276 0.511 85.9% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 

277 0.509 86.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 

278 0.507 86.1% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 

279 0.505 86.2% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 

280 0.504 86.3% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 

281 0.502 86.4% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 

282 0.500 86.5% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 

283 0.498 86.6% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 

284 0.496 86.7% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 

285 0.495 86.8% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 

286 0.493 86.8% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 

287 0.491 86.9% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 

288 0.490 87.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 

289 0.488 87.1% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 

290 0.486 87.2% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 

291 0.485 87.3% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 

292 0.483 87.4% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 

293 0.481 87.5% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 

294 0.480 87.6% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 

295 0.478 87.7% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 

296 0.476 87.7% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 

297 0.475 87.8% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 

298 0.473 87.9% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 

299 0.472 88.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 

300 0.470 88.1% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 

301 0.468 88.2% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 

302 0.467 88.3% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 

303 0.465 88.3% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 

304 0.464 88.4% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 

305 0.462 88.5% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 

306 0.461 88.6% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 

307 0.459 88.7% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 

308 0.458 88.7% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 

309 0.456 88.8% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 

310 0.455 88.9% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 

311 0.453 89.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 

312 0.452 89.1% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 
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313 0.450 89.1% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 

314 0.449 89.2% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 

315 0.448 89.3% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 

316 0.446 89.4% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 

317 0.445 89.4% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 

318 0.443 89.5% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 

319 0.442 89.6% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 

320 0.441 89.7% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 

321 0.439 89.7% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 

322 0.438 89.8% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 

323 0.437 89.9% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 

324 0.435 90.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 

325 0.434 90.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 

326 0.433 90.1% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 

327 0.431 90.2% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 

328 0.430 90.2% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 

329 0.429 90.3% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 

330 0.427 90.4% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 

331 0.426 90.4% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 

332 0.425 90.5% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 

333 0.423 90.6% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 

334 0.422 90.6% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 

335 0.421 90.7% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 

336 0.420 90.8% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 

337 0.418 90.8% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 

338 0.417 90.9% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 

339 0.416 91.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 

340 0.415 91.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 

341 0.413 91.1% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 

342 0.412 91.2% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 

343 0.411 91.2% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 

344 0.410 91.3% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 

345 0.409 91.3% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 

346 0.408 91.4% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 

347 0.406 91.5% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 

348 0.405 91.5% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 

349 0.404 91.6% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 

350 0.403 91.6% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 

351 0.402 91.7% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 

352 0.401 91.8% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 
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