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Abstract

Magnetorotational instability (MRI) is a plausible mechanism to trigger turbulence in

the accretion disk, to excite the outward transportation of the angular momentum while

the mass accretes to the center. We use the Lagrangian approach to obtain Hain-Lüst

equation, which is a second-order ordinary differential equation for the radial component

of the Lagrangian displacement. The WKB approximation is applied to this equation.

It is a lengthy work to deduce the Hain-Lüst equation but avoids the ignorance of terms

in the traditional WKB treatment. The traditional WKB treatment deals with a group

of equations rather than a single one and is liable to fail in keeping important terms for

studying non-axisymmetric disturbances.

In chapter 2 short-wavelength stability analysis is made of axisymmetric rotating flows

of a perfectly conducting fluid (MHD), subjected to external azimuthal magnetic field Bθ

to non-axisymmetric as well as axisymmetric perturbations. Our WKB approximation is

applied to the Hain-Lüst equation which is deduced here in a slightly different way from

the traditional derivation from the well known Frieman-Rotenberg equation. When the

magnetic field is sufficiently weak, the instability occurs for Ro = rΩ′/(2Ω) < Roc with

Roc close to zero and the maximum growth rate close to the Oort A-value |Ro|, where

Ω(r) is the angular velocity of the rotating flow as a function only of r, the distance from

the axis of symmetry, and the prime designates the derivative in r. As the magnetic field

is increased, the flow becomes unstable to waves of very short axial wavelengths for the

whole range of Ro when Rb = r2(Bθ/r)′/(2Bθ )>−3/4, and to waves of very long axial

wavelengths for a finite range of |Ro| when Rb<−1/4. For the both waves, the maximum

growth rate increases, beyond the Oort A-value, without bound in proportion to the square

of |Bθ |.

Chapter 3 is concerned with the three-dimensional short-wavelength analysis of the

AMRI, but in the inductionless limit. As opposed to chapter 2, the viscosity and the

electrical resistivity are considered. The extended Hain-Lüst equation for the radial La-
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grangian displacement is obtained. We apply the WKB approximation to the extended

Hain-Lüst equation, whereby we can retain all the terms, being otherwise liable to be

missed for non-axisymmetric disturbances. Envisioning a liquid metal, the magnetic re-

sistivity is assumed much larger than viscosity, which is called inductionless limit. Un-

like the case of a perfectly conducting fluid, no instability occurs for sufficiently weak

magnetic field. When the magnetic field is sufficiently strong, there are mainly two insta-

bility modes depending on Rb. A Keplerian flow is unstable for arbitrary Rb. For non-

axisymmetric disturbances, the growth rate is found to increase with Bθ without bound in

proportion to the square of the magnetic field strength which is faster than the AMRI in

strong magnetic field regime for the ideal MHD in chapter 2.

In chapter 4, the energy of the ideal MHD is calculated by means of the Lagrangian

displacement. The ideal MHD is a Hamiltonian system. Krein’s theorem states that when

two real eigenvalues corresponding to wave energy of opposite-sign (positive and neg-

ative) collide, the real eigenvalues could bifurcate to complex ones which have imag-

inary part and signifying instability. Starting from the energy formula deducible from

the Frieman-Rotenberg equation, we obtain two simply energy formulas expressible by

the Lagrangian displacement and an induced variable which describes the magnetic field

‘displacement’. Using one of the formulas, we calculate the energy of a rigid-rotation

flow subject to azimuthal magnetic field which is linear in radius r and an axial constant

component. We find the bifurcation in accordance with Krein’s theorem of Hamiltonian

spectra.
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Chapter 1

Introduction

1.1 Magnetorotational instability (MRI)

1.1.1 Background

Magnetorotational instability (MRI) studies the instability of an electrically conducting

rotating flow subject to external magnetic field. From the name magneto+rotational we

can catch an intuitive idea that both magnetic f ield and rotation are necessary for MRI.

When there is no magnetic field, for Taylor-Couette flow, there is hydrodynamic insta-

bility of centrifugal force origin by the differential rotation. Rayleigh’s criterion gives a

necessary condition on the velocity for stability. When there is magnetic field and flow

is static, there are different instability modes for different magnetic-field configuration

[1, 2, 3]. For instance, if there is a purely toroidal (azimuthal) magnetic field, instability

known as the Tayler instability occurs, e.g. sausage (varicose) mode (m=0) and kink mode

(m=1), where m is the azimuthal wavenumber in the cylindrical coordinates (r,θ ,z). Since

the rediscovery of Velikhov and Chandrasekhar’s result [4, 5] by Balbus and Hawley in

1991 [6], the MRI has attracted great attention as a plausible mechanism for triggering

turbulence in the flow of an accretion disk, for promoting outward transport of angular

momentum, while the matter accretes the center.
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The ideal MHD refers to the dynamics of an inviscid and perfect electrically conduct-

ing flow. When there is no magnetic field, Rayleigh’s criterion determines the condition

for stability of a rotating flow [7]. Given the angular velocity Ω(r) as a function only

of r, define the local Rossby number by Ro = 1
2dlogΩ/dlogr = rΩ′/(2Ω) [8, 9]. Here

the prime designates the derivative with respect to r. In terms of the epicyclic frequency

κ2 = (Ω2r4)′/r3, it is expressed as Ro = κ2/(4Ω2)− 1. For the absence of magnetic

field, if κ2 ≥ 0 or equivalently Ro ≥ −1 everywhere, such a rotating flow is linearly sta-

ble against axisymmetric disturbances [7, 9]. For an accretion disk, the angular velocity

could satisfy the Keplerian law Ω(r)2r =−∇Φ; Φ= 1/r, and as a consequence Ω ∝ r−3/2

for which Ro = −3/4. Rayleigh’s criterion may imply that Keplerian rotation is hydro-

dynamically stable. The magnetic field parallel to the rotation axis drastically alters the

stability characteristics. If the axial magnetic field is applied, no matter how weak it is, a

rotating flow suffers from instability if Ro < 0 [4, 5], implying that an accretion disk with

Keplerian flow is unstable. This is the magnetorotational instability. To be specific, we re-

fer to this instability caused by the axial magnetic field as the standard magnetorotational

instability (SMRI).

In a protoplanatory disk surrounding a young star, the ionization depends on the ra-

diation from the X-ray and cosmic rays [10], and the temperature of the disk. It tends to

be that the mid-plane of the accretion disk receives fewer radiation and the cold region

of the disk is only weakly ionized. In those places, the magnetic diffusion is not negli-

gible. Laboratory experiments, for instance the Madison plasma couette flow experiment

(MPCX) [11], Potsdam Rossendorf Magnetic Instability Experiment (PROMISE) [8] and

the other Taylor-Couette container filled with liquid metals like sodium and gallium [13],

are designated to study MRI. In astrophysics, for the cold part and less radiated part of

the protoplanatory disk and for liquid metal experiments, both the effect of the viscosity ν

and the electrical resistivity η should be taken into consideration. Because of comparably

high electrical resistivity and low viscosity, the ratio ν/η is considered to be much small
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than unity or of the order unity [13]. We focus on the former case (ν/η ≪ 1), which is

known as the inductionless limit [14, 8]. Before the study of MRI, we would like to talk

about the rotating flow and the magnetic field.

1.1.2 Motion of accretion disk

An accretion disk is a mass disk where the mass in a differential rotation accretes into the

massive center body which is typically a star (or a black hole). The center body grows

heavier and heavier by the feeding of the mass from the outer disk. The accretion disk

looks like a short cylinder, with very large radius. The cylindrical coordinates (r, θ , z)

is introduced. The (r, θ ) plane is parallel to the top and bottom surfaces of the accretion

disk, and the z axis penetrates through the center of the accretion disk. The accretion disk

is usually set in a differential rotation around the symmetry axis (z axis) with velocity

Uθ = rΩ(r) in the azimuthal direction eθ and so Ωez is the angular velocity. Newton’s

second law requests:
U2

θ
r

= Ω2r =
d
dr

Φ, (1.1)

where the Φ is the gravitational potential and −dΦ/dr is the centripetal force. The po-

tential has different radial dependence, e.g. Φ ∝ 1/r characterizes a Keplerian flow so

Ω ∝ r−3/2 by the Kepler’s third law, while Ω ∝ r−1 is characteristic of the galaxy disk.

[15] For our research, the Keplerian flow is exclusively considered.

For a rotating particle, the angular momentum about the origin is defined by.

L= r× (mrΩez), (1.2)

with rer the vector from the origin to the particle and m the mass of the particle. Here

we take the relative origin to be the coordinate origin so that r = rer. For a Keplerian

flow, |L| ∝ r1/2 so that the angular momentum increases outward. When matter accretes

towards the center, the angular momentum would be lost. However, if there is no external
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torque acting on it, this contradicts with the law of conservation of angular momentum;

the lost momentum has to be transferred outward. As a means for realizing the outward

huge momentum transformation, the turbulence is needed. The large turbulence viscosity

helps to efficiently transport the angular momentum outwards to place far away from the

center.For this, some instability should be invited on a rotating flow to generate the turbu-

lence. But within hydrodynamics, Rayleigh’s stability criterion implies that the Keplerian

flow is linearly stable to small disturbance.

1.1.3 Hydrodynamic instability

In 1917 Lord Rayleigh found stability criterion, which states:

For a rotating inviscid flow between two rotating coaxial cylinders, the sufficient con-

dition for stability of axisymmetric disturbance is that the circulation (angular momen-

tum) increases outward [16], i.e.
d(Ω2r)

dr
> 0. (1.3)

Assume that the inner and outer cylinders have radius and angular velocity as R1 and

R2 and Ω1 and Ω2 respectively. (1.3) is translated into

Ω2
2R2 > Ω2

1R1. (1.4)

Define the Rossby number

Ro =
1
2

r
Ω

dΩ
dr

. (1.5)

Then (1.3) is translated into Ro > −1, so that the critical Rossby number for instability

is Roc = −1. For the velocity profile of Keplerian flow, Ω ≈ r−3/2, the Rossby number

can be calculated as RoK =−3/4. Accordingly, an inviscid Keplerian flow is stable with

respect to the hydrodynamical mechanism of centrifugal origin. It is also true for a viscous

Keplerian flow as will be discussed in chapter 3 and be shown in Fig. 1.1 [17].

In 1923, Taylor considered the effect of viscosity and published his cornerstone theo-
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Figure 1.1: The left one is Taylor’s apparatus [17] to study the Taylor-Couette flow in
coaxial cylinders; the right one describes the experiment results (the dots) which coincides
with the analytic result (the curve). The dashed line a little bit below the curve is the
Reyleigh’s stability boundary for an invisid flow. [17]

retical and experimental results on the stability boundary. He designated a new apparatus

as shown in Fig. 1.1 [17]. This apparatus constitutes two coaxial cylinders with large

height in order to to get rid of the end effect from the top and bottom of the cylinders. His

theoretical and experimental results successfully coincided as shown in the right panel of

Fig. 1.1. The curved line is the theoretical stability boundary with the instability region

above it and the stability region below it. The dots are the experiment data. The curve

and the dots well coincides with each other. The dashed line stands for the Rayleigh’s

stability boundary for the inviscid flow which is slightly lower than solid line. We see

from Fig. 1.1 that the viscosity stabilizes the flow and contracts the instability region.

Hydrodynamics of neutral fluid fails to provide instability for the Keplerian flow. We

have to search for other possible mechanisms. And then the magnetic field prevails in the

universe and MRI comes to our view.
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1.1.4 Magnetohydrodynamics

Maxwell equations, Lorentz force and induction equation

In the electrodynamics,the electric field and the magnetic field interact with each other.

Their relation is determined by the Maxwell equations [35]

∂B
∂ t =−∇×E (Faraday),
1
c2

∂E
∂ t

=∇×B−µ0J (Ampére),

∇ ·E =
τ
ε0

(Poisson),

∇ ·B = 0 (no magnetic monopoles)

(1.6)

where E, B, J are the electric field, the magnetic field, and the current density re-

spectively and µ0,c,τ,ε0 are the permeability of free space, the light speed, total charge

density, permittivity of the vacuum, respectively. Faraday’s law describes the generation

of electric field from the magnetic field. Conversely, the magnetic field can also be gen-

erated by the electric field by Ampére’s law. Because the speed of light c is very large,

in Ampére’s law, the left-hand side is in many cases negligible and gives the relation

between J and B as

J =
1
µ0

∇×B. (1.7)

Assume that the accretion disk consists of the plasma being made up of particles with

positive and negative charges. If a charged particle with electric charge q and moves in

electric field and magnetic field with velocity u, the force exerted on it by the electric and

magnetic field

fL = q(E+u×B), (1.8)

which is a combination of the electric force qE and the Lorenz force qv×B.

For a fluid consisting of positive and negative charged particles, the total force acting

on it is the summation of the force acting on charged particles. By the assumption that
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the fluid is everywhere quasi neutral, the total electric force of qE might be considered as

zero and the Lorentz force on the fluid becomes

FL = J ×B, where J = ∑qu. (1.9)

By the relation between J and B presumed by (1.7), it can be further written as

FL =
1
µ0

(∇×B)×B. (1.10)

The Lorentz force is added into Navier-stokes equation as an external force. Distinct from

the pressure and the gravity force, Lorentz Force is not a potential force anymore. This

will make a big difference on the hydrodynamical theory about the instability. Lorentz

Force can destabilize the flow and bring in magnetorotational instability.

By Ohm’s law,

J = σ(E+u×B), (1.11)

where σ is the electrical conductivity. Ohm’s law connects electric field E with magnetic

field B.

If we replace E in Faraday’s law in (1.6) by −u×B+J/σ , we reach at the induction

equation with electrical resistivity η = 1/(σ µ0)

∂B
∂ t

= ∇× (u×B)−σ∇×J = ∇× (u×B)+η∇2B, (1.12)

where (1.6) has been used in the second equality.

1.1.5 Spring-like Lorentz Force and MRI

The Lorentz Force comes from the Maxwell stress and can be modeled as the tension

brought by the spring [18] as shown in Fig. 1.2. Consider two particles mo and mi set

in steady state, are moving along concentric circle near each other. And consider that as
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Figure 1.2: Lorentz Force acts like a spring between two particles mo, mi. Assume that at
the beginning mi and mo are in the small circle of same radius and near each other. After
a disturbance shifted mi inward a little bit because the inner circle rotates faster, it will
obtain a pulling back force and lose angular momentum by the pulling back from mo and
go further inward because the inner cirle has lower angular momentum. At the same time
mo will obtain the angular momentum that mi lost and go outward. Consequently, flow
becomes unstable.
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would be like in the Keplerian flow, the angular velocity decreases outward. Therefore

the inner orbit rotates faster. Then at a time, a tiny disturbanc makes mi displace inward

a little bit, by the spring-like Lorentz force the particle mo will act a pull-back drug on

mi. Therefore mi get a retarding torque. This torque makes mi lose angular velocity.

By losing angular velocity the centrifugal force becomes weaker than the inward force

attracted by the mass sitting at the center, and it will further fall inward to inner orbit

which corresponding to smaller angular momentum. Oppositely mo will increase angular

velocity by being pulled forward by mi and will go further outward to the outer orbit.

As a result, mi and mo will go further and further away from each other, signifying the

instability.

In 1959, Velikhov studied the stability of the inviscid and perfectly conducting rotating

flow subject to the axial direction uniform magnetic field B = Bzez. He first found the

magnetorotational instability and obtained the stability criterion for MRI. It states that

when there is a uniform axial magnetic field, the neccesary condition for a flow to be

stable is
dΩ2

dr
> 0. (1.13)

It means for any flow with outwards increasing |Ω| is stable. Compared with the Rayleigh’s

criterion (1.3), the stability parameter region shrinks. For a Keplerian flow, ΩK ∝ r−3/2,

so dΩ2
K/dr < 0, and Keplerian flow is unstable to MRI! In terms of the Rossby number,

the critical Rossby number for the MRI is determined to be Roc = 0 and it is higher than

the Keplerian Rossby number RoK = −3/4. As a result, MRI raises the critical Rossby

number, which turns the Keplerian flow to be unstable.

Over 30 years of quietness after this discovery, the silence was broken in the year

1991. Balbus & Hawley made linear analysis of a rotating flow for ideal MHD flow

(inviscid and perfectly conducting). The flow is subjected to magnetic field with both

poloidal component (corresponding to axial and radial components). Later they included

toroidal component (corresponding to azimuthal component). They published their redis-
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covering result about the magnetorotational instability of axisymmetric disturbance [6].

A very astonishing feature of MRI is that instability occurs as long as the poloidal mag-

netic field exists, no matter how weak the magnetic field is . From Balbus & Hawley’s

rediscovery, the MRI exited a huge research group, and established its status as the de-

sired mechanism to trigger the turbulence in the accretion disk. Later, non-axisymmetric

disturbance was also studied mostly numerically and the analytical stability criterion and

growth rate were yet to be examined [15].

Most of local analyses explored the Eulerian treatment is used. For non-axisymmetric

disturbance, the traditional local analysis or the WKB analysis is liable to miss certain

terms. We save this difficulty by appealing to the Lagrangian approach and obtain the

equations retaining all the important terms.

1.2 Lagrangian approach

1.2.1 Resistive MHD and ideal MHD equations

The Basic equations for magnetohydrodynamics (MHD) include Navier-stokes equation,

induction equation, continuous equation and the no-monopole equation as

∂u
∂ t

+(u ·∇)u=− 1
ρ

∇p0 +j×b+ν∇2u Navier-stokes equation, (1.14)

∂b
∂ t

= ∇× (u×b)+η∇2b induction equation, (1.15)

∇ ·u= 0 incompressibility (continuous equation), (1.16)

∇ ·b= 0 no magnetic monopole. (1.17)

where u= urer +uθeθ +uzez is the velocity field, b= brer +bθeθ +bzez the magnetic

field, j = ∇ × b/µ0 the current density, ρ the density, p0 the hydrodynamic pressure

and µ0, ν , η the magnetic permeability, the kinematic viscosity, the electrical resistivity

respectively. We assume that ρ, µ0, ν , η are all constant [26]. We use lower case u, b,
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j rather than the capital letters because the capital forms are used to describe the steady

flow here.

Including the electrical resistivity η , the relation among the electric field E, the mag-

netic field B and the current density J is provided by Ohm’s law as

E+u×B = ηj. (1.18)

By (1.18), the Faraday’s law and Ampére’s law in (1.6), the induction equation (1.15) is

obtained. The induction equation decides how magnetic field develops influenced by the

velocity field governed by the Navier-Stokes equation augmented by the Lorenz force.

For the ideal MHD where the viscosity ν and electrical resistivity η are both zero,

equations (1.14)-(1.17) become

∂u
∂ t

+(u ·∇)u=− 1
ρ

∇p0 +j×b Navier-stokes equation, (1.19)

∂b
∂ t

= ∇× (u×b) induction equation, (1.20)

∇ ·u= 0 incompressibility (continuous equation), (1.21)

∇ ·b= 0 no magnetic monopole. (1.22)

with the last two unchanged from (1.16) and (1.17).

1.2.2 Lagrangian displacement

There are two different viewpoints to characterize fluid. One is the Eulerian approach,

which describes fluid fields in the way that we are observing the fluid motion i.e. the

velocity field at specific locations as time passes by. In the Eulerian approach, we are not

interested in where a particular particle comes from and goes. The velocity field is the

essential variable and correspondingly we usually study the streamlines. Differently, the

Lagrangian approach follows every particle and describes every particle’s position. The
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Figure 1.3: The solid line is the original path, e.g. the Keplerian rotation. After a small
external disturbance added to how a fluid partical shifts away to move in the dashed line
rather than the solid line. The displacement of a particle position is called the Lagrangian
displacement and denoted by ξ .

position in place of the velocity becomes the essential variable and the path line can be

considered correspondingly.

After tiny disturbance, the velocity, magnetic field and the total pressure are assumed

to consist of two parts (steady field + disturbance)

u=U + ũ, b=B+ b̃, p0 = P0 + p̃0, (1.23)

where U , B, P are the velocity, magnetic field and pressure of the badsic steady state

while ũ, b̃, p̃0 denote the small disturbance fields of them.

In the Lagrangian approach, to study the disturbance, the Lagrangian displacement is

viewed as the basic variable which describes how a particle moves away from the original

path of the steady state. In Fig. 1.3, the solid line is the original path, e.g. the Keplerian

rotation. After a small external disturbance added to the particle, it obtains or loses energy

and will shift away to move along the dashed line rather than the solid line. From the

mathematical description ξ= ξrer +ξθeθ +ξzez is used to denote the displacement from
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the original path. We are interested in whether the disturbance grows or not. If it grows,

the particles will be conveyed further and further away from the original path as time

marches.

There are three disturbance fields in (1.23), ũ, b̃, p̃, and we will see that they can all

be represented by ξ if we restrict the flow to the so-called isomagnetovortical surfaces in

§1.2.4.

Let x0(t) denote the the steady path of a fluid particle at time t, and after disturbance,

the path shifts to x0(t)+ξ(x0(t), t) at time t by the Lagrangian displacement ξ. Introduce

the Lagrangian derivative which is also known as the material derivative

D
Dt

=
∂
∂ t

+u ·∇. (1.24)

The velocity is defined as

u(x, t) =
Dx

Dt
. (1.25)

Similarly the velocity of the particle at x0(t)+ ξ(x0(t), t) after disturbance can be ob-

tained by taking material derivative of x0(t)+ξ(x0(t), t) and it becomes

u(x0 +ξ, t) =
Dx0

Dt
+

Dξ

Dt
=U +

∂ξ
∂ t

+U ·∇ξ, (1.26)

where U =U(x0, t) denotes the velocity of the steady flow at position x0 and time t. By

Taylor expansion, the left hand side of (1.26) can be expanded around the x0 to the first

order of the small disturbance ξ as

u(x0 +ξ, t) = u(x0, t)+ξ ·∇U . (1.27)

Distinguish that u(x0, t) is the velocity at (x0, t) after disturbance and therefore u(x0, t)=

U + ũ(x0, t). So if we substitute (1.27) into (1.26), we see immediately that the Eulerian
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variable ũ and the Lagrangian variable ξ are related as

ũ(x0, t) =
∂ξ
∂ t

+U ·∇ξ−ξ ·∇U . (1.28)

To get the relation between ˜b(x0, t) and ξ is not so direct anymore. First we introduce

the concept of isovortical and isomagnetovortical disturbances. The isovortical distur-

bances are used in the study of hydrodynamics of inviscid fluid while isomagnetovortical

disturbances are the extension of the first one in idea MHD.

1.2.3 Isovortical disturbance

In hydrodynamics of an inviscid fluid, the vorticity defined by

∂ω
∂ t

+(u ·∇)ω− (ω ·∇)u= 0. (1.29)

is frozen into the flow. In other words, a vortex moves with the flow. For hydrodynamics

of an inviscid incompressible fluid, the vortex equation is obtained by taking the curl of

the Euler equation (1.19).

The evolution of ω guarantees that the vortex line is moving with the fluid parti-

cle. Concomitantly (1.29) guarantees the well known Kelvin’s circulation theorem which

states, the circulation along any material loop or the vorticity flux across any material

surface is invariant in the fluid motion [19].

d
dt

∮
C
U ·dx=

d
dt

∫
S
ω ·dS = 0, (1.30)

where C is an arbitrary closed material curve and S is the material surface surrounded by

C.
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The helicity is defined by quadratic integral

HU =
∫

D
u ·ωdV, (1.31)

where D is the whole fluid domain. It can be verified that for the circulation-preserving

flow, the helicity is conservative, i.e.

dHU

dt
= 0. (1.32)

If we constrain the disturbance to preserve the circulation for arbitrary closed loop

and therefore the helicity disturbance, this class of disturbances are called the isovortical

disturbances (kinematically accessible disturbance). It is important to notice that Kelvin’s

circulation theorem and the helicity conservation are satisfied only when the forces acting

on the fluid are all potential forces. In the MHD, magnetic field is present and the Lorentz

force is not a potential force. The circulation or the vorticity flux are not invariant any

more. Instead there are new conservative quantities.

1.2.4 Isomagnetovortical Disturbance

For the ideal MHD, the fluid is inviscid and perfectly conducting, i.e. ν and η are both

zero. Because of the influence of the Lorentz force Fl = j×b, the vorticity flux is not a

invariant in time anymore. However, if we exam (1.15), we can find by using of (1.16)

and (1.17) the evolution of b becomes

∂b
∂ t

+(u ·∇)b− (b ·∇)u= 0. (1.33)

It can be noticed that the evolution of b is similar to the evolution of ω in (1.29). It can

be verified that for ideal MHD the magnetic flux, in an analogous way as the vortex flux
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of a neutral fluid, is conserved [35, 20, 21]

d
dt

∫
S
b ·ds= 0. (1.34)

On the other hand, there are two conservative quadratic integrals, with one corre-

sponding to helicity in (1.31), the magnetic helicity[21]

HM =
∫

D
b · (∇−1)×bdV. (1.35)

and the other one the cross-helicity [44, 20]

HC =
∫

D
b ·udV. (1.36)

If all of HM, HC and
∫

S b · dS do not change even after the disturbance, this kind of

disturbances are called isomagnetovortical disturbances [21] (Kinematically accessible

disturbance) and similarly we can obtain the relation between ũ, b̃ and the Lagrangian

displacement ξ [19, 37, 20, 21] as

ũ = P [ξ×Ω+η×B] ,

b̃ = ∇× (ξ×B) , (1.37)

where η is sort of ‘magnetic displacement’ indroduced similar to lagrangian displacement

ξ and P[ · ] is an operator projecting a vector field to a solenoidal one.8

Assume that the flow is incompressible and the density ρ = 1, and that the perme-

ability of the free space is µ0 = 1 for simplicity. The total energy in ideal MHD for

incompressible flow is then

H =
1
2

∫
D
u2 +b2dV, (1.38)

which includes the kinetic energy
∫

Du2dV/2 and the magnetic energy
∫

Db2dV/2. If no
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external disturbance or force introduced, total energy of the whole fluid is conserved in

time. When a disturbance is added to the basic flow, the total energy will change (increase

or decrease), and the sign of the wave energy holds a key to decide the stability of the flow

according to Krein’s theory of Hamiltonian spectra.

1.2.5 Frieman-Rotenberg equation and Hain-Lüst equation

In the book by J. P. Goedbloed etal., they use assumption of adiabatic development for

obtaining the relation between p̃0 and ξ. In the incompressible case, p̃0 can be obtained

by the assistance of (1.19) and (1.21). Substituting ũ, b̃ and p̃0 expressed in terms of ξ

into (1.19), we can get by dropping the zeroth order, a linearized disturbance the equations

for ξ only, which is called the Frieman-Rotenberg equation. [37]

ρ
∂ 2ξ

∂ t2 +2ρ(U ·∇)
∂ξ
∂ t

−F0[ξ] = 0. (1.39)

where

F0[ξ] =−ρ(U ·∇)2ξ+ρ(ξ ·∇)(U ·∇)U −∇p̃+
1

4π
(∇× b̃)×B+

1
4π

(∇×B)× b̃.

Here the basic velocity field U(r) and the magnetic field B(r) only depend on radius r.

We will use then the Frieman-Rotenberg equation to calculate the wave energy to study the

instability in Chapter 4. By the MHD version of Arnold theorem, for isomagnetovortical

disturbances, if any disturbance has definite (positive energy or negative) wave energy,

then the flow is stable. The wave energy is useful to judge the stability condition [37, 20].

Krein’s theorem tells that collision of two imaginary eigenvalues with energy of opposite

signature could bring in instability [47, 41].

Because the background fields (steady flow) have no dependence on t, θ , z, we can

assume the disturbance to be in the normal-mode form i.e. ∝ exp[λ t + i(mθ + kz)]. λ

is the growth rate and θ , z are wavenumbers in azimuthal and axial direction. If we
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eliminate ξθ and ξz in (1.39), then finally we are left with a second order differential

equation of ξr. Furthermore, we can use a newly defined variable χ = rξr. The equation

for χ is known as the Hain-Lüst equation [37]. The deduction of the Hain-Lüst equation

in detail will be given in chapter 2 for ideal MHD and given in chapter 3 for inductionless

MHD. We briefly show the Hain-Lüst equation for the ideal MHD as below.

d
dr

(
f

dχ
dr

)
= gχ, (1.40)

where,

f =
1

h2r

(
λ̃ 2 +

F2

ρµ0

)
,

g =
d
dr

(
2im
h2r2

(
Ωλ̃ − iµF

ρµ0

))
+

1
r

(
λ̃ 2 +

F2

ρµ0

)
+

dΩ2

dr
− 1

ρµ0

dµ2

dr
+

4k2
(

Ωλ̃ − µiF
ρµ0

)2

h2r(λ̃ 2 + F2

ρµ0
)

.

for a given steady state rotating flow and magnetic field U = rΩ(r)eθ andB = rµ(r)eθ +

Bzez,, and with the definitions that h2 = m2/r2 + k2 and F = mµ + kBz.

We deduce (1.40) in a natural way in chapter 2 and extend it to resistive MHD to in-

clude the viscosity ν and electrical resistivity η in chapter 3. Based on Hain-Lüst equation

for variable χ , we explore the WKB approximation to make local stability analysis.

1.2.6 WKB approximation

Let us think about the second order differential equation

( f x′)′+h′x′−gx = 0, (1.41)

where f (r), h(r), g(r) are given functions of variable r and x(r) is the unknown function

of r to be decided; the prime denotes the differentiation d/dr. The solution is assumed to
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be in the form

x(r) = p(r)exp
[

i
∫

q(r)dr
]
. (1.42)

Next step is to determine p and q in x(r). Substitute (1.42) into (1.41), it yields

f ′p′+ f p′′+ i( f pq)′− f pq2 +h′p′+ ih′pq−gp = 0. (1.43)

Assume the wave length is very small compared to L such that qL ≫ 1, the second order

inhomogeneous terms f p′′+ h′p′ can be neglected, and (1.41) can be written into two

equations (zero order and first order of qL) [37]

f pq2 +gp = 0, f (ln( f p2q))′ =−h′. (1.44)

From the first one of (1.44), we instantaneously conclude

q =

√
−g

f
, (1.45)

and p also can be calculated from the second one in (1.44), but would need more efforts.

After we obtain p and q, then we resubstitute them back into the solution form (1.42),

the local solution of equation (1.41) is obtained. As a result, by using the WKB approx-

imation, we can solve the equation in the short-wavelength limit. Equation (1.45) gives

rise to the dispersion relation between the growth rate λ and axial, azimuthal and radial

wavenumbers k,m and q. We use the WKB method to solve our Hain-Lüst equation in

both the ideal MHD (zero ν and η) and the resistive MHD case (nonzero ν and η).
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Chapter 2

Short-wavelength stability analysis of

AMRI in ideal MHD

2.1 Short-wavelength stability analysis

We consider a circular symmetric flow of an incompressible inviscid fluid with infinite

electric conductivity, subjected to a steady external magnetic field, and the linear stabil-

ity of a localized disturbance along one of the streamlines. We assume that the radial

wavelength is much small compared with the radius r of the streamline, being a sort of

the WKB approximation. We introduce global cylindrical coordinates (r,θ ,z) with the

z-axis lying on the symmetric axis. The basic state is a rotating flow in equilibrium, with

the angular velocity Ω(r), subject to a magnetic field having the azimuthal and the axial

components Bθ (r) = rµ(r) and Bz.

U = rΩ(r)eθ , B = rµ(r)eθ +Bzez, (2.1)

where eθ and ez are the unit vectors in the azimuthal and the axial directions, respectively.

After the second half of §3.2, we focus on the azimuthal field.

The linearized equations of the momentum and the induction equations for disturbance
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ũ, B̃ and p̃ are

∂ ũ
∂ t

+(ũ ·∇)U +(U ·∇)ũ=− 1
ρ
(∇p̃)+

1
ρµ0

(B̃ ·∇)B+
1

ρµ0
(B ·∇)B̃, (2.2)

∂B̃
∂ t

= ∇× (u× B̃)+∇× (ũ×B), (2.3)

∇ · ũ= 0, (2.4)

∇ · B̃ = 0, (2.5)

where µ0 is the magnetic permeability and the density ρ is assumed to be constant. The

last equation is the solenoidal property of the magnetic field. The first step is to assume

the disturbances in the normal-mode form

ũ= ũ1 exp[λ t + i(mθ + kz)],

B̃ = B̃1 exp[λ t + i(mθ + kz)],

p̃= p̃1 exp[λ t + i(mθ + kz)].

(2.6)

Later we will use ũ, B̃ and p̃ to denote ũ1, B̃1 and p̃1for simplicity. Then the linearized

equations (2.2)–(2.5) combine into matrix form for ξ = (ũr, ũθ , ũz, B̃r, B̃θ , B̃z, p̃) as

Mξ = 0, (2.7)
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where

M=



λ̃ −2Ω 0 − iF
ρµ0

2µ
ρµ0

0
1
ρ

d
dr

2Ω+ r
dΩ
dr

λ̃ 0 −(2µ + r
dµ
dr

) − iF
ρµ0

0
1

rρ
im

0 0 λ̃ 0 0 − iF
ρµ0

1
ρ

ik

−iF 0 0 λ̃ 0 0 0

r
dµ
dr

−iF 0 −r
dΩ
dr

λ̃ 0 0

0 0 −iF 0 0 λ̃ 0
1
r
+

d
dr

im
r

ik 0 0 0 0

0 0 0
1
r
+

d
dr

im
r

ik 0



, (2.8)

with λ̃ = λ + imΩ and F = mµ +Bzk.

We can rule out, from (2.7), the disturbance magnetic field to obtain representations

for ũ in terms of p̃ and its derivative as

ũr +
1

Eρ

(
λ̃ +

F2

λ̃ρµ0

)
dp̃
dr

+
im

Eρr

(
2Ω− 2iµF

λ̃ρµ0

)
p̃ = 0, (2.9)

ũθ −
1

Eρ

[
2Ω+

(
1+

F2

λ̃ 2ρµ0

)
r

dΩ
dr

− 2iµF
λ̃ρµ0

]
d p̃
dr

+
im

Erρ

(
λ̃ +

F2

λ̃ρµ0
+

2iµF
λ̃ 2ρµ0

r
dΩ
dr

− 2µ
λ̃ρµ0

r
dµ
dr

)
p̃ = 0, (2.10)

ũz +
ik

ρ
(

λ̃ +F2/(λ̃ρµ0)
) p̃ = 0, (2.11)

where

E =

(
λ̃ +

F2

λ̃ρµ0

)2

+
2µr

λ̃ρµ0

(
λ̃ +

F2

λ̃ρµ0

)(
iF
λ̃

dΩ
dr

− dµ
dr

)
+2
[

2Ω+

(
1+

F2

λ̃ 2ρµ0

)
r

dΩ
dr

− 2iµF
λ̃ρµ0

](
Ω− iµF

λ̃ρµ0

)
. (2.12)

Substitution of (2.9)-(2.11) into the continuity equation (2.4) then gives rise to a second-
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order differential equation of p̃

(
1
r
+

d
dr

)[(
λ̃ +

F2

λ̃ρµ0

)
1
E

d p̃
dr

+
2im
rE

(
Ω− iµF

λ̃ρµ0

)
p̃
]

− im
rE

{[
2Ω+

(
1+

F2

λ̃ 2ρµ0

)
r

dΩ
dr

− 2iµF
λ̃ρµ0

]
d p̃
dr

− im
r

(
λ̃ +

F2

λ̃ρµ0
+

2irµF
λ̃ 2ρµ0

dΩ
dr

− 2rµ
λ̃ρµ0

dµ
dr

)
p̃

}

− k2

λ̃ +F2/(λ̃ρµ0)
p̃ = 0. (2.13)

Introduce a new variable χ =−rur/λ̃ associated with the radial Lagrangian displace-

ment [35]. Equation (2.9) expresses χ in terms of p̃ and d p̃/dr. Next by taking differen-

tiation, with respect to r, of (2.9) after multiplication by r, we relate dχ/dr with p̃, d p̃/dr

and d2 p̃/dr2, the last of which is eliminated with the aid of (2.13). By using (2.9) again

to further eliminate d p̃/dr, we are led to

ρ
h2r

(
λ̃ 2 +

F2

ρµ0

)
dχ
dr

− 2imρ
h2r2

(
Ωλ̃ − iµF

ρµ0

)
χ = p̃. (2.14)

Substitution (2.14) for p̃ into (2.9) gives rise to

d
dr

(
f

dχ
dr

)
= gχ, (2.15)

where, by use of the definition h2 = m2/r2 + k2,

f =
1

h2r

(
λ̃ 2 +

F2

ρµ0

)
,

g =
d
dr

[
2im
h2r2

(
Ωλ̃ − iµF

ρµ0

)]
+

1
r

(
λ̃ 2 +

F2

ρµ0

)
+

dΩ2

dr
− 1

ρµ0

dµ2

dr

+
4k2
(

Ωλ̃ −µiF/(ρµ0)
)2

h2r(λ̃ 2 +F2/(ρµ0))
.

This is no other than the Hain-Lüst equation [37], as extended to accommodate the effect

29



of a rotating flow. We seek the solution of (2.15) in the WKB approximation. For this pur-

pose, we substitute into (2.15) the form χ(r) = p(r)exp[i
∫

q(r)dr] with the constraint that

the radial wavelength 2π/q is assumed to be much shorter than the characteristic length L,

a measure for radial inhomogeneity, namely, qL ≫ 1. Neglecting the second-order terms

in qL ≫ 1, the dispersion relation is gained from (2.15) as q2 =−g/ f , producing

(h2 +q2)

(
λ̃ 2 +

F2

ρµ0

)2

+4k2
(

Ωλ̃ − iµF
ρµ0

)2

+4h2

[
imr
2

d
dr

(
Ωλ̃ − iµF

ρµ0

h2r2

)
+Ω2Ro− µ2

ρµ0
Rb

](
λ̃ 2 +

F2

ρµ0

)
= 0, (2.16)

where we have introduced the Rossby number Ro [8, 9] and the magnetic Rossby number

Rb [32] by

Ro =
1
2

r
Ω

dΩ
dr

, Rb =
1
2

r
µ

dµ
dr

. (2.17)

2.2 Axisymmetric perturbations

For the standard MRI (SMRI), that is for B = Bzez with Bθ left out, the maximum

growth rate is the Oort A-value νA/Ω = 1
2 |dlogΩ/dlogr| = |Ro| [22] which is attained

at m = 0, the radial wavenumber q = 0 and the axial wavenumber k satisfying ωA/Ω =

±
√

1−κ4/(16Ω4), with ωA = kBz/
√ρµ0 and κ being the epicyclic frequency [15, 27].

At the outset, we shall confirm that our approach of using (2.15) restores this well known

result.

For the SMRI, the dispersion relation (2.16) simplifies, when m = 0, to

λ 2

Ω2 +Ro
(

λ 2

Ω2 +
ω2

A
Ω2

)
+

1
4α2

(
λ 2

Ω2 +
ω2

A
Ω2

)2

= 0, (2.18)

where α = k/
√

q2 + k2. We read off from (2.18) limited to λ = 0 the stability boundary

as

Roc =−
ω2

A
4α2Ω2 (< 0), or

ωA

Ω
= 0. (2.19)
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As the magnetic field
√

k2 +q2Bz → 0, the above representation Roc → 0, and the Velikhov-

Chandrasekhar paradox [4, 5], a glamour of the MRI, is retrieved. We note in passing that

this paradox was resolved by taking account of the electric resistivity and the viscosity

[?, 9]. The eigenvalue λ , the root of (2.18), is

λ
Ω

=±

√√√√α2Ro2 −

(
|α |∓

√
α2(1+Ro)2 +

(ωA

Ω

)2
)2

. (2.20)

The growth rate Re[λ ], the real part of λ , reaches the maximum value |αRo| at (ωA/Ω)2 =

α2[1− (1+Ro)2], among which the maximum growth rate νA/Ω = |Ro|, being the Oort

A-value, is attained at |α|= 1. It should be born in mind that the Oort A-value is realizable

only when −2 < Ro < 0 as required by (ωA/Ω)2 > 0 with k a disposable parameter. For

a Keplerian rotation (Ro =−3/4), νA = 3|Ω|/4 when ωA =±
√

15Ω/4 in accord with ref

[15].

The critical wavenumber for the instability is read off from (2.19) to be ωA/Ω =

±
√
−4Ro, meaning that the instability is invited when ωA/Ω∈ (−

√
−4Ro,0)∪(0,

√
−4Ro).

For the SMRI, the most unstable mode is likely to be axisymmetric. The axisymmetric

mode is tractable since the eigenvalues λ are either real or pure imaginary, whereas for

a non-axisymmetric perturbation, the eigenvalues are complex, being less analytically

tractable.

Next, we turn to the azimuthal MRI (AMRI), for which the magnetic field has an

azimuthal component B = rµ(r)eθ only. For the axisymmetric case (m = 0), the growth

rate calculated from (2.16) is

λ =±2Ωα
√

−1−Ro+Rbω2
Aθ/Ω2, λ = 0, (2.21)

where ωAθ = µ/√ρµ0, and λ = 0 is a double root. The instability region is Ro <

Rbω2
Aθ/Ω2 − 1, i.e., the critical Rossby number Roc = Rbω2

Aθ/Ω2 − 1, which recov-

ers Michael’s criterion [38] (See also refs [5, 39]). Recently, this criterion is extended
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to include the viscosity and the electric resistivity [26]. In case of RbωAθ = 0, the cri-

terion reduces to that of Rayleigh’s centrifugal instability; when either magnetic field or

the magnetic shear vanishes, the Keplerian flow is stable. The magnetic shear acts to

either lower (Rb < 0) or to raise (Rb > 0) the critical Rossby number for the axisym-

metric mode. In view of (2.21), for a Keplerian flow (Ro =−3/4), the instability occurs

for Rbω2
Aθ/Ω2 > 1/4. Either increase of Rb on the side of Rb > 0 or ω2

Aθ increases the

growth rate.

2.3 Non-axisymmetric perturbations: overview

Inclusion of non-axisymmetric perturbations (m ̸= 0) supplies rich characteristics of the

AMRI. In order to gain an insight into the three-dimensional AMRI, we start with the

stability analysis for motionless state and then proceed to the case of a very weak magnetic

field. The former corresponds to the strong-field limit.

By trial and error of numerical calculation, it is probable that the maximum growth

rate is attained in the limit of k → ∞. The dispersion relation (2.16) reduces, in the limit

of k2 +q2 → ∞, to

4(λ̃Ω− imω2
Aθ )

2 +
1

α2 (λ̃
2 +m2ω2

Aθ )
2 +(λ̃ 2 +m2ω2

Aθ )(4Ω2Ro−4Rbω2
Aθ ) = 0. (2.22)

Equation (2.22), which is valid for a strong magnetic field as well, was derived by Ogilvie

and Pringle [31], and coincides with equation in the inductionless limit [26] if the viscous

and resistive terms are dropped off.

For motionless state (Ω≡ 0), the roots λ of (2.22) are written out explicitly in compact

form as

λ =±
√

−m2 +2α2Rb±2α
√

m2 +α2Rb2 ωAθ . (2.23)

One of the roots (2.23) becomes positive, signifying instability, when 2|α|
√

m2 +α2Rb2 >

m2−2α2Rb. For an axisymmetric perturbation (m = 0), the instability criterion is Rb > 0.
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For non-axisymmetric perturbations, this condition is superseded by Rb > m2/(4α2)−1.

A glance at (2.23) shows that the growth rate is zero for α = 0. When m exhausts all

the integers and α exhausts all the real numbers contained in the range of 0 < |α | ≤ 1,

the magnetic Rossby number Rb > −3/4 is the widest possible Rb-range for instability

[31]. This condition coincides with the necessary condition for the instability derived in

a wider context by Newcomb’s energy principle [13, 3], which takes the form

−rp′ >
1

2µ0
m2B2, (2.24)

where p′ = dp/dr [35]. Substituting B(r) = Bθ (r)eθ into the equilibrium condition 0=

−∇p+(∇×B)×B/µ0, we have, p′ =−Bθ/(µ0r)(rBθ )
′. As noted in ref [35], (2.24) is

not valid for the axisymmetric case m = 0, for which (2.24) is taken place of by Suydam’s

criterion for the local interchange condition. As a consequence, m=±1 in (2.24) provides

the maximum possible range for instability, and this condition is exactly Rb >−3/4.

The maximum growth rate is found by rewriting (2.23) as

λ =±
√

α2(Rb+1)2 −
(√

m2 +α2Rb2 ∓α
)2

ωAθ . (2.25)

Since m takes integral values but α is confined to the range 0 < |α | ≤ 1, the maximum

of λ is attained either at m = 0 or m = ±1. When Rb is larger than 3/4, the maximum is

λmax = 2
√

Rb|ωAθ | attained at m = 0 and |α |= 1. For −3/4 < Rb ≤ 3/4, the maximum

is attained at m =±1 with its value λmax =
√
−1+2Rb+2

√
1+Rb2|ωAθ |.

For comparison, we look into the case of k = 0. The dispersion relation (2.16) reduces

to

(
λ̃ 2 +m2ω2

Aθ

)[(
q2 +

m2

r2

)
(λ̃ 2 +m2ω2

Aθ )+
4m2

r2 (Ω2Ro+Rbω2
Aθ )

+
4imΩRo

r2 (λ +2imΩ)

]
= 0. (2.26)
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For motionless state (Ω ≡ 0), the eigenvalues are

λ =


± mωAθ√

m2 +q2r2

√
−4Rb−m2 −q2r2,

±imωAθ .

(2.27)

The criterion for instability is read off, from (2.27) as,

Rb <−m2 +q2r2

4
≤−1

4
. (2.28)

with the maximum value of growth rate

λ = |ωAθ |
√
−4Rb−1 (2.29)

being attained at m =±1 and q = 0. The instability relevant to the current-free magnetic

field Bθ (r) ∝ 1/r (Rb=-1) is this mode rather than that of k → ∞. The growth rate is

proportional to |ωAθ |.

It is instructive to look into the eigenvalues and eigenfunctions of waves, of k → ∞,

on a rotating flow with no external magnetic field. For a non-axisymmetric perturbation

m ̸= 0 and simultaneously in the presence of a rotational flow with angular velocity Ω ̸= 0,

the energy principle is difficult to apply, and we appeal to the WKB method by restricting

to short-wavelength perturbations. In the absence of magnetic field (ωAθ ≡ 0), (2.22) has

roots λ1,2/Ω =−im±2α
√

−(1+Ro) and λ3,4/Ω =−im. The latter pertain to the mode

characterized by the advection of the disturbance magnetic field frozen into the local rotat-

ing flow. The root λ1,2 pertain to the inertial wave or the Kelvin wave [42]. Its frequency

ω1,2 as defined by λ1,2 = −iω1,2 is given by ω1,2 = m∓ 2α
√

1+Ro. This distinction

between λ1,2 and λ3,4 manifests itself by constructing the eigenfunction ξ of (2.7). For

simplicity, we take Ro = 0, α = 1 and |m| ≪ |k|. The eigenfunctions corresponding to

λ1,2 =−i(m∓2) are ξ1,2 = (∓i,1,0,0,0,0,0), and those corresponding to λ3,4 =−iω3,4

are ξ3 =(0,0,0,1,0,0,0) and ξ4 =(0,0,0,0,1,0,0). It is simply the disturbance magnetic
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field ξ3,4 that is advected by the fluid (ω3,4 = m). For a uniform rotation (Ro = 0), the

frequency ω1,2 = m∓2α is confined to −2 ≤ ω1 ≤ 0 (upper sign) and 0 ≤ ω2 ≤ 2 (lower

sign) [41]. The parameter α plays the role of a counter for the radial nodal structure, with

|α |= 1, or |q/k| ≪ 1, corresponding to a simple structure and with |α | ≪ 1, or |q/k| ≫ 1,

corresponding to a highly fine radial structure. The mode with eigenfrequecy ω1, being

smaller than mΩ, is called the retrograde mode, while the one with eigenfrequency ω2,

being larger than mΩ, is called the cograde mode [42]. Alternatively, from the viewpoint

of the way approaching the limiting frequency m for α = 0, ω1 and ω2 are referred to as

the Sturmian and the anti-Sturmian, respectively [37]. There is no growing perturbation

unless Ro < −1. This implies that the same criterion as Rayleigh’s one for the centrifu-

gal instability applies to the non-axisymmetric perturbations too. Fig. 2.1 depicts Re[λ ]

(left) and Im[λ ] = −ω (right) of the eigenvalue for the helical perturbation m = 1 with

the simplest nodal structure α = 1 when no external magnetic field is applied (ωAθ ≡ 0).
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Figure 2.1: The growth rate Re[λ ] (left) and the frequency Im[λ ] = −ω (right) of the
perturbation of m = 1 and α = 1 in the absence of the external magnetic field (ωAθ ≡ 0
and consequently Rb = 0).

We are now ready to inquire into how a weak azimuthal magnetic field deforms the

above dispersion relation. When ωAθ ̸= 0, but with |ωAθ/Ω| ≪ 1, the expression for

the eigenvalue can be expanded to second order in a small parameter ωAθ/Ω as, unless
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|α | ≪ 1,

λ1,2

Ω
≈



−im±2|α|
√

−(1+Ro)− 1
1+Ro

(
im±Rb|α |

√
−(1+Ro)

± m2

4|α |
2+Ro√
−(1+Ro)

)(ωAθ
Ω

)2
(Ro ̸=−1),

−im±
√

2αmωAθ
Ω

+ i
αωAθ

Ω
± α2 −m2 +α2Rb

2
√

2αm

(ωAθ
Ω

)3/2
(Ro =−1),

(2.30)

λ3,4

Ω
≈



−im±m

√
Ro

−(1+Ro)
ωAθ
Ω

+
im

1+Ro

(ωAθ
Ω

)2
(Ro ̸=−1,0),

−im± i

√
2αmωAθ

Ω
− i

αωAθ
Ω

∓ i
α2 −m2 +α2Rb

2
√

2αm

(ωAθ
Ω

)3/2
(Ro =−1),

−im+m
(

i∓
√

Rb−m2/(4α2)

)(ωAθ
Ω

)2
(Ro = 0),

(2.31)

where the double-sign corresponds, and the upper sign corresponds to λ1 and λ3, and

the lower sign corresponds to λ2 and λ4. For both λ1,2 and λ3,4, the first expansions

are singular at Ro = −1, where a separate treatment is necessary. For the expansion at

Ro =−1, we have ignored terms of O
(
(ωAθ/Ω)2). For λ3,4, the first expansion for Ro ̸=

−1,0 of (2.31) is invalidated in the limit of Ro → 0 as well, because the coefficient of the

third term (ωAθ/Ω)3 is proportional to Ro−1/2, which diverges in the limit Ro → 0. This

singularity requires a separate treatment for the case of Ro= 0 and the resulting expression

is the third expression of (2.31). The branches λ1,2 of the inertial waves, subjected to the

azimuthal magnetic field, are called the fast magneto-Coriolis (MC) waves. The branches

λ3,4 are called the slow magneto-Coriolis (MC) waves [9]. In case of |α | ≪ 1, (2.30) and

(2.31) give way to

λ1,2

Ω
≈ −im

(
1+

ωAθ
Ω

)
± i
(

1+
ωAθ
Ω

)
|α |+O(α2), (2.32)

λ3,4

Ω
≈ −im

(
1− ωAθ

Ω

)
± i
(

1− ωAθ
Ω

)
|α |+O(α2). (2.33)

By applying the magnetic field, the frequency m degenerate at α = 0 is split into m(1±

ωAθ/Ω). In the limit of |α| → 0, the frequency defined via λ1,2 =−iω1,2 of the fast MC
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waves degenerate to m(Ω+ωAθ ) with ω1 (upper sign) approaching from below and ω2

(lower sign) from above, and that of the slow MC waves, stemming from the frozen-in

advection, degenerate to m(Ω−ωAθ )with ω3 (upper sign) approaching from below and

ω4 (lower sign) from above. For this reason, the fast and slow MC waves may refer to

the forward and the backward modes, with the upper sign Sturmian and the lower sign

anti-Sturmian [37].
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Figure 2.2: The growth rate Re[λ ] (left) and the frequency Im[λ ] = −ω (right) of the
perturbation of m = 1 and α = 1 for ωAθ/Ω = 0.5. The magnetic shear is Rb = 0. The
long dashed lines (left) draw the positive real part of the first of (2.30) for Ro < −1 and
that of (2.31) for −1 < Ro < 0.

The first expansion of (2.31) suggests that the instability occurs when Ro <∼ 0. This

property is reminiscent of the SMRI for which the critical Rossby number (2.19) is close

to but less than zero if the resistivity is zero [9]. The situation is slightly different for

the AMRI. The first of (2.31) becomes invalid at Ro = 0, to which the third expansion

of (2.31) applies. The third one implies that, when Rb > m2/(4α2) ≥ m2/4 by varying

|α | ∈ (0,1], Roc > 0, but otherwise, Roc ≤ 0. In the following, we determine Roc

It turns out that Roc is very small. Near Roc ≈ 0, we seek the eigenvalues of the slow

MC wave in a power series in small parameter ωAθ/Ω, and, in the keeping, we represent

Ro in a power series in ωAθ/Ω. The result for the slow MC wave is

λ3,4

Ω
≈−im+m

(
i±
√

Rb−Ro2 −m2/(4α2)

)(ωAθ
Ω

)2
, (2.34)
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for 0 < |α | ≤ 1 and Ro = Ro2 (ωAθ/Ω)2 + · · · . It follows from (2.34) that the slow MC

wave is amplified when Ro2 < Rb−m2/(4α2). For small values of (ωAθ/Ω)2, the AMRI

is caused when approximately

Ro <

(
Rb− m2

4α2

)(ωAθ
Ω

)2
≤ Roc ≈

(
Rb− 1

4

)(ωAθ
Ω

)2
. (2.35)

Fig. 2.2 draws the growth rate (left) and the frequency (right) for ωAθ/Ω = 0.5. The

other parameters m= 1, α = 1 and Rb= 0 are common with Fig. 2.1. For this choice of the

parameters, Roc =−1/16. It is observed that the instability is driven when the frequencies

ω3 and ω4 of the slow MC wave (= backward wave) collide at around ω = m = 1 at

the critical value Roc. To clarify the source for the instability, the positive values of

the asymptotic formulas Re[λ1,2/Ω] and Re[λ3,4/Ω] provided by the first equations of

(2.30) and (2.31) respectively are superposed, with long dashed lines, on the left panel of

Fig. 2.2. For Ro > −1, the instability originates from the slow MC waves, but, for Ro <

−1, the dominant role in the instability is played by the fast MC waves. At the dividing

point Ro=−1, the flow is necessarily unstable; for αmωAθ/Ω> 0, Re[λ1,2] ̸= 0 as is seen

from the second of (2.30) and the fast MC wave is amplified, but, for αmωAθ/Ω < 0, the

slow MC wave is amplified, with growth rate given by |Re[λ3,4]|, the real part of the

second of (2.31).

Here we point out that, unlike the axisymmetric SMRI, the axisymmetric AMRI is of

the fast MC-wave origin. The growth rate of the axisymmetric AMRI, the left values of

(2.21) in the limit of k → ∞, has a link with the first of (2.30) specialized to m = 0. For the

fast MC wave, the critical Rossby number Roc is close to -1 when |ωAθ/Ω| ≪ 1, being in

consistent with the argument of §3.2. On the contrary, the eigenvalues (2.31) of the slow

MC wave become zero for m = 0, in agreement with the second values of (2.21), which

does not contribute to the axisymmetric AMRI. For the AMRI, the slow MC wave, raising

the critical value to Roc ≈ 0, close to Velikhov-Chandrasekhar’s value for the SMRI, is

intrinsic to non-axisymmetric perturbations.
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Given a small value of |ωAθ/Ω|, the maximum growth rate increases with |m|. Inter-

estingly, the maximum growth rate approaches, as |m| is increased, the same value as that

of the SMRI. Fig. 2.3 displays the growth rate ν = Re[λ3,4] as functions of the Alfvén fre-

quency ωAθ with azimuthal wavenumbers m = 1, 5 and 10 for Ro =−3/4 and Rb =−1.

Since the system is Hamiltonian, to each damping perturbation (ν < 0) corresponds the

growing perturbation (ν > 0) and therefore we display only the solution with positive real

part ν . The change of the sign of Rb, namely, the choice of Rb = 1, does not change much

the growth rate. We observe from Fig. 2.3 that, as m increases, the maximum growth

rate approaches 3|Ω|/4, though the width of the instability band in ωAθ/Ω is narrowed

with m. This was examined by Ogilvie et al. and the maximum growth rate 3|Ω|/4 was

also obtained [31]. Indeed, by taking mω2
Aθ = 0 and Rbω2

Aθ = 0 in (2.22) as a limit of

small values of |ωAθ/Ω| with maintaining |mωAθ/Ω| finite, we can show that the maxi-

mum growth rate happens to coincides with the Oort A-value νA/|Ω|= |Ro|. In this limit,

(2.22) is solved for λ̃ , yielding

λ
Ω

=−im±

√√√√α2Ro2 −

(√(
m

ωAθ
Ω

)2
+α2(1+Ro)2 ∓α

)2

. (2.36)

The growth rate ν = |Re[λ ]| takes the maximum value close to |αRo| when√
(mωAθ/Ω)2 +α2(1+Ro)2 = |α |, or at m≈±(Ω/ωAθ )α

√
1− (1+Ro)2. Actually

m should be an integer closest to the right hand side. By varying α , the maximum value

among the above is close to the Oort A-value νA/|Ω|= |Ro| at α =±1 [22]. The instabil-

ity window is found from (2.36) as α2Ro2 > (

√
(mωAθ/Ω)2 +α2(1+Ro)2 −|α |)2. The

instability takes place for 0 < |ωAθ/Ω|< 2
√
|αRo|/|m|, whose upper bound 2

√
|Ro|/|m|

is reached at |α | = 1, The width of the instability band is narrowed with |m| in inversely

proportional to |m| as is confirmed from Fig. 2.3.

The AMRI shares common features with the SMRI that the instability occurs for Ro<

Roc ≈ 0 no matter how weak the external magnetic field may be, when it is applied,
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Figure 2.3: The growth rate, in the limit k →∞ with fixing α = 1, of the non-axisymmetric
AMRI versus ωAθ/Ω, in the range of small values, for different azimuthal wavenumbers
m = 1 (solid line), 5 (dashed line) and 10 (long dashed line) for Ro =−3/4, a Keplerian
rotation. The magnetic Rossby number is Rb =−1.

and the maximum growth rate is |Ro|, regardless of strength of the external field. This

resemblance holds true as far as |ωAθ/Ω| ≪ 1. However, a distinctive behavior manifests

itself when the azimuthal magnetic field Bθ is intensified to the level |ωAθ/Ω|= O(1) as

will be described in the subsequent section.

2.4 Non-axisymmetric perturbations: strong external field

This section is concerned with the case of |ωAθ/Ω| ∼ 1. A purely magnetic instability

of |k| → ∞ is excited when Rb > −3/4. The both cases Ro < 0 and Ro ≥ 0 entail this

instability, or, put another way, there is no critical Rossby number. But this mode subsides

down as Rb is decreased and dies down at Rb =−3/4. Another unstable mode of k = 0 is

born at Rb = −1/4, develops as Rb is decreased, and surpasses the mode of |k| → ∞ for

Rb ≤−1/
√

8. The instability mode of k = 0 is confined to a finite range in Ro centered on

Ro = 0, Ro2 < (|Rb|−1/4)(ωAθ/Ω)2 for −1/2 ≤ Rb <−1/4, and Ro2 < Rb2(ωAθ/Ω)2

for Rb <−1/2. We should keep in mind the results of the previous section that, for small

value of |ωAθ/Ω|, the unstable mode of |k|→∞ prevails for the entire range of Rb, though

40



restricted to Ro < Roc, with Roc depending on Rb as given by (2.35).

The numerical calculation for m = 1, for instance, shows that, for Rb > 0, the maxi-

mum growth rate is taken in the limit of k → ∞ and that the maximum value overshoots

the Oort A-value νA when |ωaθ | and Rb are increased. In the limit of k → ∞ with fixing α ,

the asymptotics of the growth rate for |ωAθ/Ω| ≫ 1 is deduced with ease by manipulating

the expansion of (2.22) in Ω/ωAθ , up to O(1), as

λ1,2

Ω
≈ ±

√
2α2Rb−m2 +2|α |

√
m2 +α2Rb2 ωAθ

Ω
− im

(
1− |α |√

m2 +α2Rb2

)
,(2.37)

λ3,4

Ω
≈ ±

√
2α2Rb−m2 −2|α |

√
m2 +α2Rb2 ωAθ

Ω
− im

(
1+

|α |√
m2 +α2Rb2

)
.(2.38)

The parameter Ro resides only in higher-order terms in Ω/ωAθ . The both sides of Ro < 0

and Ro ≥ 0 entail the instability, as opposed the case of small values of |ωAθ/Ω|. When

Rb > 0, (2.37) and (2.38) are reduced, if specialized to m = 0, to the large ωAθ/|Ω|

asymptotics of the left and the right of (2.21). Unlike the case of |ωAθ/Ω| ≪ 1, the

unstable mode is necessarily the fast MC wave (λ1,2) regardless of the value of Ro. When

Rb < 0, the roles of λ1,2 and λ3,4 are exchanged. The growth rate is proportional to

ωAθ/Ω. The maximum value of the growth rate ν1,2 = Re[λ1,2] with respect to m and α

is evaluated by rewriting (2.37) into

ν1,2

Ω
≈±

√
α2(Rb+1)2 −

(√
m2 +α2Rb2 −|α|

)2 ωAθ
Ω

. (2.39)

For an integer m and 0 < |α | ≤ 1, this is real when Rb ≥ m2/(4α2)−1 ≥−3/4 (m ̸= 0)

and Rb ≥ 0 (m = 0). The maximum value is taken at |α|= 1, and at m = 0 for Rb ≥ 3/4,

but at |m|= 1 for −3/4 < Rb < 3/4, with the maximum values

νmax

Ω
≈

 2
√

Rb|ωAθ/Ω| (Rb ≥ 3/4),√
2Rb−1+2

√
1+Rb2|ωAθ/Ω| (−3/4 < Rb < 3/4).

(2.40)
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Figure 2.4: The growth rate, for m = 1
and k →∞ with fixing α = 1, of the non-
axisymmetric AMRI over a wide range
of ωAθ/Ω for negative Ro = −3/4 and
different non-negative magnetic Rossby
numbers Rb: Rb = 0 (solid line), 1
(dashed line) and 5 (long dashed line).
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Figure 2.5: The growth rate, for m = 1 and
k → ∞, of the non-axisymmetric AMRI over
a wide range of ωAθ/Ω for positive Ro = 1
and different non-negative Rb: Rb = 0 (solid
line), 1 (dashed line), 5 (long dashed line).

This value decreases to zero as Rb decreases to −3/4.

Fig. 2.4 shows the growth rate, for m = 1 in the limit of k → ∞, over a wide range

of the Alfvén frequency ωAθ/Ω and for typical values of Rb (= 0, 1, 5) in the range

of Rb > −3/4. The flow is Keplerian (Ro < 0). Fig. 2.5 is the counterpart for positive

Ro(= 1). The difference lies in the neighborhood of the origin (ωAθ/Ω,ν/Ω) = (0,0).

The critical condition (2.35), if rearranged, implies that, for Rb > 1/4, the unstable mode

of |k| → ∞ is excited for (ωAθ/Ω)2 > Ro/(Rb− 1/4), though the validity is limited to

|ωAθ/Ω|≪ 1. Fig. 2.5 for Ro> 0 exhibits the disappearance of instability in a finite range

in |ωAθ/Ω|, being wider for a smaller value of Rb (> 1/4). For instance, the k → ∞ mode

arises at ωAθ/Ω ≈ 0.48 for Ro = 1 and Rb = 5, for which
√

Ro/(Rb−1/4)≈ 0.4588.

An unstable mode of the other extreme k → 0 is seeded at Rb =−1/4, is strengthened

and becomes dominant as Rb is decreased on the side of Rb < 0 and |ωAθ/Ω| ∼ 1. In this

limit, the dispersion relation (2.16) admits its roots in a tidy form as

λ
Ω

=
−im(m2 +q2r2 +2Ro)±m

√
(−4Rb−m2 −q2r2)(m2 +q2r2)(ωAθ/Ω)2 −4Ro2

m2 +q2r2 ,

λ
Ω

= −im
(

1± ωAθ
Ω

)
. (2.41)
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The instability is driven on the side of −4Rb−m2 −q2r2 > 0 with m ̸= 0, namely, Rb <

−(m2 +q2r2)/4 ≤−1/4. The possible real part ν of the first of (2.41) reads

ν
Ω

= ± m
m2 +q2r2

√
[4Rb2 − (m2 +q2r2 +2Rb)2]

(ωAθ
Ω

)2
−4Ro2. (2.42)

It follows from (2.42) that the sign of Ro is irrelevant to the growth rate, The instabil-

ity occurs in a finite range in Ro centered on Ro = 0. Noting that the realizability of

m2 + q2r2 + 2Rb = 0 for m ̸= 0 is confined to Rb ≤ −1/2, the maximum width of the

instability band is obtained, for −1/2 ≤ Rb < −1/4, by taking |m| = 1 and q = 0, with

the instability range Ro2 < (|Rb|−1/4)(ωAθ/Ω)2. For Rb < −1/2, the instability range

is Ro2 < Rb2(ωAθ/Ω)2, and the large-magnetic-field asymptotics of the growth rate ν is

obtained from (2.42) as

ν
Ω

≈

√
4|Rb|

m2 +q2r2 −1
∣∣∣mωAθ

Ω

∣∣∣≤√4|Rb|−1
∣∣∣ωAθ

Ω

∣∣∣ , (2.43)

with the upper bound taken at q = 0 and |m|= 1. Comparison with (2.40) shows that the

instability mode of k = 0 prevails over that of |k| → ∞ for approximately Rb ≤−1/
√

8.

The condition 1 ≤ m2 + q2r2 < −4Rb, under restriction of m ̸= 0, for existence of

the unstable mode of k = 0 signifies that the value of |Rb| limits the range of |m| for

instability. For instance, Rb = −1 admits only m = ±1 for instability. To have an idea

of the instability parameters for the case of Rb < −1/4 and |ωAθ/Ω| ∼ 1, we draw in

Fig. 2.6 the instability region, in the space of (m,Ro), of the k = 0 wave, for a Keplerian

flow (Ro = −3/4). The left panel of Fig. 2.6 fixes Rb = −1 and varies the values of

|ωAθ/Ω|. The right panel fixes |ωAθ/Ω| = 1 and varies the values of Rb. The gray

region indicates the set of parameters for which the AMRI occurs, painted with darker

gray as the parameter value is increased. Fig. 2.6 shows that the increase of |ωAθ (r)/Ω|

and/or |Rb| enlarges the instability range in Ro, though limited the case of Rb < −1/4

with |ωAθ/Ω| ∼ 1. The left figure confirms that Rb determines the range of azimuthal
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Figure 2.6: The instability region of the non-axisymmetric wave of k = 0 for Rb <−1/4.
The flow is Keplerian (Ro=−3/4). The left figure fixes Rb=−1 and depicts the instabil-
ity region with increasing |ωAθ (r)/Ω| from dark gray to light gray. The right figure fixes
|ωAθ (r)/Ω| = 1 and depicts the instability region with increasing |Rb| from dark gray to
light gray.

wavenumber m for the instability. The right figure shows that increases in |Rb| results in

widening of the instability range both in Ro and m.

For Rb ≥ −1/
√

8, the shortest waves (k → ∞) dominate over the long waves (k = 0)

for |ωAθ/Ω| ∼ 1 , and the transition of behavior from the regime of |ωAθ/Ω| ≪ 1 to the

regime |ωAθ/Ω| ∼ 1 is displayed in a single figure Fig. 2.4 for the case of Ro ≤ 0 and in

Fig. 2.5 for the case of Ro > 0. A distinctive feature of Fig. 2.5 arises around the origin

(ωAθ/Ω,ν/Ω) = (0,0), where the instability disappears in a finite range of ωAθ/Ω with

its width depending on Rb. Notably, the maximum growth rate increases, beyond the Oort

A-value, indefinitely with |ωAθ/Ω| linearly in it.

On the other hand, a smooth transition may not be expected from the regime of

|ωAθ/Ω| ≪ 1 to that of |ωAθ/Ω| ∼ 1, when Rb <−1/
√

8, because the maximum growth

rate occurs in the short-wave limit (k → ∞) for |ωAθ/Ω| ≪ 1, but in the long-wave limit

for |ωAθ/Ω| ∼ 1. With a choice of Ro = −3/4 and Rb = −1/2, Fig. 2.7 draws the
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tion of ωAθ/Ω. The flow is Keplerian
(Ro = −3/4). In the both limits, the
maxima are taken at |α|= 1.
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Figure 2.8: The crossover of the most
unstable mode of m = 1 from the regime
of |ωAθ/Ω| ≪ 1 to that of |ωAθ/Ω| ∼ 1
in the case of Rb = −1 for a Keplerian
flow (Ro = −3/4). For the limit of k =
0, |qr|= 1 at the critical point ωAθ/Ω =
3/4 and |qr| decreases, with ωAθ/Ω, to
zero along the graph.

maximum growth rate of m = 1 mode, in the limit of k → ∞ and in the opposite limit

k → 0 simultaneously. For the former, the maximum occurs at |α| = 1 and for the lat-

ter, the maximum occurs at q = 0, being mathematically equivalent to each other. As

argued above, because Rb < −1/
√

8, the mode of k → 0 overweighs that of k → ∞ in

the regime of |ωAθ/Ω| ∼ 1. The maximum growth rate of the former increases without

bound in proportion to |ωAθ/Ω|. The instability mode of k = 0, being admitted only

for |ωAθ/Ω|> |Ro/Rb|= |Ro|/
√

|Rb|−1/4 = 3/2 when Rb =−1/2, is excluded in the

regimes of |ωAθ/Ω| ≪ 1

Fig. 2.8 chooses Rb = −1, with the other parameters being unchanged. The regime

|ωAθ/Ω|≪ 1 accommodates the instability modes of |k|→∞ with |m| ≥ 2 as well with the

overall maximum growth rate being close to the Oort A-value, as illustrated by Fig. 2.3. In

the regime |ωAθ/Ω| ∼ 1, the instability mode of k → ∞ disappears because Rb ≤ −3/4.

The maximum growth rate for k → ∞ corresponds to |α | = 1. But this is not the case
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Figure 2.9: The growth rate of the non-axisymmetric wave of m = 1 and k → 0, versus qr
with q being the radial wavenumber, for Rb =−1 and ωAθ/Ω = 1. The flow is Keplerian
(Ro =−3/4). The maximum growth rate is νmax =

√
7Ω/3 taken at qr =±1/

√
8.

with the wave of k = 0. Near the critical point |ωAθ/Ω| = |Ro/Rb| = 3/4, the most

unstable mode has |qr| = 1 in favor of m2 + q2r2 + 2Rb = 0. As |ωAθ/Ω| is increased,

|qr| decreases monotonically to zero as is seen from (2.43). In between, the maximum is

taken at an intermediate value of qr. On the whole, for |ωAθ/Ω| >∼ 0.8 approximately, the

mode of k = 0 prevails over that of k → ∞.

For Ro = −3/4 and Rb = −1, we draw in Fig. 2.9 the growth rate ν as a function of

the radial wavenumber qr. The maximum growth rate is found with ease to be νmax/|Ω|=
√

7/3 which is attained at q = 1/
√

8. This value is larger than the Oort A-value νA/|Ω|=

3/4.

2.5 Discussions

We have explored the AMRI of a perfectly conducting fluid to non-axisymmetric as well

as axisymmetric perturbations of short wavelengths, based on the Hain-Lüst equation

(2.15) augmented with the terms originating from a background flow of differential ro-

tation. The present investigation is capable of dealing with a rotating flow of arbitrary

angular velocity profile Ω(r). The advantage of using the Hain-Lüst equation is that a

risk of dropping-off the terms with radial derivatives can be avoided. If we substitute
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the WKB ansatz ξ ∝ exp[i
∫

q(r)dr], at an earlier stage, into (2.7) say, the derivative in

r is replaced by multiplication iq, and after this stage, the operation of radial derivative

iq = d/dr is liable to be inactive, though it should be. It is safer to keep all the derivative

terms to the very last stage where we apply the short wavelength approximation. Retain-

ing all the relevant terms has disclosed rich aspects of the AMRI to non-axisymmetric

perturbations than known ones (cf. ref [15]).

Given Rb, for small values of |ωAθ/Ω|, a rotating flow is unstable to non-axisymmetric

perturbations of |k| → ∞ if Ro < (Rb−1/4)(ωAθ/Ω)2 as dictated by (2.35). It is recov-

ered that the maximum growth rate is the Oort A-value |Ro| [31]. For |ωAθ/Ω| ∼ 1, the

situation is changed. When Rb > −3/4, the rotating flow is unstable to perturbations

of |k| → ∞ in the whole range of Ro. But the mode of |k| → ∞ subsides down as Rb

is decreased and disappears at Rb = −3/4. Another unstable mode of k = 0 emerges

at Rb = −1/4, develops as Rb is decreased, and surpasses the mode of |k| → ∞ for

Rb ≤−1/
√

8. The instability mode of k = 0 is confined to a finite range in Ro centered on

Ro = 0, Ro2 < (|Rb|−1/4)(ωAθ/Ω)2 for −1/2 ≤ Rb <−1/4, and Ro2 < Rb2(ωAθ/Ω)2

for Rb <−1/2, as is derived from (2.42). The behavior, over the whole range of ωAθ/Ω,

of the modes of m = 1 and |k| → ∞ and of m = 1 and k = 0 is summarized as fol-

lows. For Ro < 0 and Rb < −3/4, the mode of |k| → ∞ is confined approximately to

0< |ωAθ/Ω|<
√
|Ro|/(|Rb|+1/4) as is read off from (2.35). The unstable mode of k= 0

exists for |ωAθ/Ω| > |Ro/Rb| when Ro < −1/2, and for |ωAθ/Ω| > |Ro|/
√
|Rb|−1/4

when −1/2 ≤ Ro < −1/4. The overall behavior for Ro < 0 and Rb < −3/4 looks like

Fig. 2.8. For Rb >−3/4, the mode of |k| → ∞ extends to the entire range of ωAθ/Ω, and

for −3/4 < Rb <−1/
√

8, the graph looks like Fig. 2.7. For Ro < 0 and Rb >−1/
√

8, the

mode of |k| → ∞ predominates over the mode of k = 0 over the entire range of ωAθ/Ω.

For Rb ≥ −1/4, the mode of k = 0 disappears. The asymptotic behavior at large val-

ues of |ωAθ/Ω| is common for all values of Ro and is given by (2.40). At small values

of |ωAθ/Ω|, the mode of |k| → ∞ is confined to 0 < |ωAθ/Ω| <
√

|Ro/(Rb−1/4)| for
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−1/4 < Rb < 1/4 and Ro < 0. This branch is absent for Ro ≥ 0. For Rb > 1/4, this

branch exists for |ωAθ/Ω| >
√

Ro/(Rb−1/4). As a whole, for Rb > −1/4, the graph

looks like Fig. 2.4 for Ro < 0 and like Fig. 2.5 for Ro > 0. It is remarkable that the growth

rate exceed the Oort A-value by increasing |ωAθ/Ω|.

This is not the end of story. We have exclusively explored the unstable modes in the

two extremes, |k| → ∞ and k = 0, as either of the two is likely to be dominant. However,

a detailed examination shows that there are cases that, given Ro and Rb, the mode of the

largest growth rate occurs at an intermediate value of k. For instance, given a Keplerian

rotation (Ro = −3/4), for |ωAθ/Ω| ≪ 1 and fixing m = 1 and q = 0, the most unstable

mode occurs at an intermediate value of k when Rb <∼−17.5. Furthermore, the transition

of the behavior from |ωAθ/Ω| ≪ 1 to that of |ωAθ/Ω| ∼ 1 calls for elaboration.

It is probable that these properties, in particular, non-existence of critical Rossby num-

ber for large values of Rb (Rb >−3/4 for the AMRI) may carry over to the helical MRI

(HMRI) for which the both axial and azimuthal magnetic fields are externally imposed.

From the practical view point, the inductionless limit is worth pursuing, since the lab-

oratory experiments of using a liquid metal, such as PROMISE (Potsdam ROssendorf

Magnetic InStability Experiment) [34], belongs to this regime. From previous papers on

AMRI [26] and HMRI [32] in the inductionless limit, the condition for non-existence of

critical Rossby number is obtained to be Rb >−1/2.

Care should be excised for the most unstable mode of k = 0 and q = 0 which is dom-

inant |ωAθ/Ω| ∼ 1 for Rb < −1/
√

8. This mode may lie outside the range of validity of

the WKB approximation to short-wavelength waves. Moreover, the perturbation of large

m invites the action of the viscous and/or resistive cut off. To draw a definite conclusion

on the AMRI or HMRI to non-axisymmetric perturbations, the global modal analyses

are indispensable. For the purpose of the global stability analyses as well, the Hain-Lüst

equation provides us with a sound basis [40]. The determination of the maximum growth

rate for the AMRI and the HMRI is left for a future investigation.

48



Chapter 3

Short-wavelength stability analysis of

AMRI in resistive MHD

3.1 Equations and short wavelength approximation

We consider a circular symmetric rotating flow of an incompressible viscous fluid with

finite electric conductivity, and its linear stability to localized disturbance of three dimen-

sions, along one of the streamlines, when a steady azimuthal magnetic field Bθ (r) = rµ(r)

is applied. In chapter 2 and a companion paper[23], we dealt with a steady rotating flow of

an incompressible inviscid fluid with infinite electric conductivity, subjected to the same

magnetic field. We assume that the radial wavelength is much shorter than the radius

of the circular streamline, a setting to which the WKB approximation is applicable. We

employ the global cylindrical coordinates (r,θ ,z) with the z-axis lying on the symmetric

axis. The basic state is a rotating flow in equilibrium, with the angular velocity Ω(r) of

the basic flow U , applied by a steady magnetic field B with the azimuthal and the axial

components rµ(r) and Bz(r), respectively. Later in §3.3, we focus on the former field.

U = rΩ(r)eθ , B = rµ(r)eθ +Bzez, (3.1)
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where eθ is the unit vector in the azimuthal direction, and the axial magnetic field Bz is

assumed to be constant.

The Navier-Stokes equation and induction equation, the equations for incompressibil-

ity assumption and the solenoidal property of the magnetic field are

∂u
∂ t

+(u ·∇)u=− 1
ρ

∇P+
1

ρµ0
(b ·∇b)+ν∇2u, (3.2)

∂
∂ t

= ∇× (u×b)+η∇2b, (3.3)

∇ ·u= 0, (3.4)

∇ ·b= 0, (3.5)

where u is the velocity field, b is the magnetic field, ρ is density, p = p0 + b2/(2µ0)

is the total pressure consisting the hydrodynamic pressure p0 and the magnetic pressure

b2/(2µ0), and µ0, ν and η represent the magnetic permeability, the kinematic viscosity

and the electrical resistivity, respectively. We assume that ρ, µ0, ν , η are all constant[26].

The velocity, the magnetic and the total pressure fields are partioned into the steady flow,

being assumed to be steady, and the disturbance as

u=U + ũ, b=B+ b̃, p= P+ p̃. (3.6)

The Navier-Stokes and the induction equations linearized in the disturbance are

∂ ũ
∂ t

+(ũ ·∇)U +(U ·∇)ũ=− 1
ρ

∇p̃+
1

ρµ0
(B ·∇)b̃+

1
ρµ0

(b̃ ·∇)B+ν∇2ũ,(3.7)

∂ b̃
∂ t

= ∇× (u× b̃)+∇× (ũ×B)+η∇2b̃, (3.8)

∇ · ũ= 0, (3.9)

∇ · b̃= 0.. (3.10)

Owing to the steadiness and to the symmetries with respect to translation along and ro-
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tation about the z-axis, we may pose the disturbances in the normal-mode form exp[λ t +

i(mθ + kz)]. The azimuthal wavenumber m takes an integer and the axial wavenumber k

is taken to be a real number. The remaining task is to determine the radial dependence.

Substitution of this normal-mode form into (3.7)–(3.10) yields a coupled system of 8 or-

dinary differential equations, with r independent variable. The viscous and the resistive

terms stand as obstacles to carry through the stability analysis. With a view to incorporate

only the leading-order effect of short-wave disturbances under the assumption of ν and η

being small, we may simply replace −∇2 by |k|2 = k2 +q2 +m2/r2 with an introduction

of the radial wavenumber q(r). This procedure amounts to discarding the terms includ-

ing the derivative of q(r) and m/r, and should be justified a posterióri. The resulting

equations are combined into matrix form for ξ = (ũr, ũθ , ũz, b̃r, b̃θ , B̃z, p̃) as

Mξ = 0, (3.11)

where

M=

λ̃ν −2Ω 0 − iF
ρµ0

2µ
ρµ0

0
1
ρ

d
dr

2Ω+ r
dΩ
dr

λ̃ν 0 −(2µ + r
dµ
dr

) − iF
ρµ0

0
1

rρ
im

0 0 λ̃ν 0 0 − iF
ρµ0

1
ρ

ik

−iF 0 0 λ̃η 0 0 0

r
dµ
dr

−iF 0 −r
dΩ
dr

λ̃η 0 0

0 0 −iF 0 0 λ̃η 0
1
r
+

d
dr

im
r

ik 0 0 0 0

0 0 0
1
r
+

d
dr

im
r

ik 0



,

(3.12)

where ων = |k|2ν and ωη = |k|2η , λ̃ν = λ + imΩ+ων , λ̃η = λ + imΩ+ωη and F =
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mµ +Bzk. By the 4th to 6th equations in (3.11), the magnetic field disturbance b̃r, b̃θ and

b̃z can be expressed in terms of the other variables. As a consequence, by eliminating the

magnetic-field disturbance, we can reduce (3.11) to equations for ξ1 = (ũr, ũθ , ũz, p̃) asas

M1ξ1 = 0, (3.13)

where

M1 = (3.14)

Λ+
2µr

ρµ0λ̃η

(
iF
λ̃η

dΩ
dr

)
− dµ

dr
−2Ω+

2iFµ
ρµ0λ̃η

0
1
ρ

d
dr

2Ω+ r
dΩ
dr

(
1+

F2

ρµ0λ̃ 2
η

)
− 2iFµ

ρµ0λ̃η
Λ 0

1
rρ

im

0 0 Λ
1
ρ

ik

1
r
+

d
dr

im
r

ik 0


,

where we have introduced the notation Λ = λ̃ν +F2/λ̃η to simplify the expressions.

We then embark on combining all the equations into a single second-order differential

equation for the radial component of the Lagrangian displacement field. As an intermedi-

ate step, we solve algebraic equations (3.13) and express (ũr, ũθ , ũz) in terms of p̃ as

ũr =− Λ
Eρ

dp̃
dr

+
im

Eρr

(
2iFµ

λ̃ηρµ0
−2Ω

)
p̃,

ũθ =
1

Eρ

[
2Ω+ r

dΩ
dr

(
1+

F2

ρµ0λ̃ 2
η

)
− 2iFµ

ρµ0λ̃η

]
d p̃
dr

− im
Erρ

[
Λ+

2µr
ρµ0λ̃η

(
iF
λ̃η

dΩ
dr

− dµ
dr

)]
p̃,

ũz =− ik
ρΛ

p̃, (3.15)
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where

E = Λ2 +
2Λµr
λ̃ηρµ0

(
iF
λ̃η

dΩ
dr

− dµ
dr

)
+2

(
Ω− iµF

λ̃ηρµ0

)

×

[
2Ω+

(
1+

F2

λ̃ 2
ηρµ0

)
r

dΩ
dr

− 2iµF
λ̃ηρµ0

]
. (3.16)

Upon substitution from (3.15) for ũr, ũθ and ũz, the continuity equation (3.9) produces a

second-order differential equation of p̃

d
dr

(
Λ

ρE
dp̃
dr

)
+

[
Λ

rEρ
− im

Eρ

(
1+

F2

ρµ0λ̃ 2
η

)
dΩ
dr

]
dp̃
dr

+
2im

Er2ρ

(
Ω− iFµ

ρµ0λ̃η

)
p̃+

d
dr

[
2im
Erρ

(
Ω− iFµ

ρµ0λ̃η

)]
p̃

− 2m2

Er2ρ

(
Λ
2
+

µr
ρµ0λ̃η

(
iF
λ̃η

dΩ
dr

− dµ
dr

))
p̃− k2

Λρ
p̃ = 0.

(3.17)

We are now ready to deduce an equation of the Lagrangian displacement ξr = ur/λ̃

in the radial direction. With η effect, we introduce a new variable χ =−rur/λ̃η , with the

minus sign for convenience of the later calculation. The first equation of (3.15) reads the

expression of χ in terms of p̃ and d p̃/dr

χ =
Λr

λ̃ηEρ
dp̃
dr

+
2im

Eρλ̃η

(
Ω− iFµ

ρµ0λ̃η

)
p̃. (3.18)

In order to derive the equation for χ , our target, first we take the radial derivative of (3.18),
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and simplify it, with the help of (3.17), leaving

dχ
dr

=
im

Eρλ̃η

[(
1− λ̃ν

λ̃η

)
r

dΩ
dr

+2

(
Ω− iFµ

ρµ0λ̃η

)]
dp̃
dr

+
2m2

Eρλ̃ 2
η

(
Ω− iFµ

ρµ0λ̃η

)
dΩ
dr

p̃

+
h2r

ΛEρλ̃η

[
Λ2 +

2µr
λ̃ηρµ0

Λ

(
iF
λ̃η

dΩ
dr

− dµ
dr

)]
p̃

+
2k2r

ΛEρλ̃η

[
2Ω+

(
1+

F2

λ̃ 2
ηρµ0

)
r

dΩ
dr

− 2iµF
λ̃ηρµ0

](
Ω− iµF

λ̃ηρµ0

)
p̃,(3.19)

where h2 = k2 +m2/r2. A combination of (3.18) and (3.19) brings the expression of

dp̃/dr in terms of χ and dχ/dr

dp̃
dr

= −
2iρmλ̃η

h2r2

(
Ω− iFµ

ρµ0λ̃η

)
dχ
dr

+
ρλ̃ηE

Λr
χ

−
2ρm2λ̃η
h2r3Λ

(
Ω− iFµ

ρµ0λ̃η

)[(
1− λ̃ν

λ̃η

)
r

dΩ
dr

+2

(
Ω− iFµ

ρµ0λ̃η

)]
χ(3.20)

With this help in (3.19), we reach a tidy equation,

Λr
dχ
dr

− im

[(
1− λ̃ν

λ̃η

)
r

dΩ
dr

+2

(
Ω− iFµ

ρµ0λ̃η

)]
χ =

h2r2

ρλ̃η
p̃. (3.21)

Multiplying both side of (3.21) by ρλ̃η/(h2r2) and taking r derivative, then substituting

dp̃/dr expressed in terms of χ and dχ/dr using (3.18) and (3.19), we eventually arrive at

a desired equation for χ

d
dr

(
f

dχ
dr

)
+ s

dχ
dr

−gχ = 0, (3.22)
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where

f =
λ̃ηΛ
h2r

,

s =
imρE(λ̃ν − λ̃η)

h2r
dΩ
dr

,

g =
d
dr

[
imλ̃η
h2r2

((
1− λ̃ν

λ̃η

)
dΩ
dr

+2

(
Ω− iFµ

ρµ0λ̃η

))]

+
Eλ̃η
Λr

−

(
Ω− iFµ

ρµ0λ̃η

)

×
2m2λ̃η
Λh2r3

[(
1− λ̃ν

λ̃η

)
dΩ
dr

+2

(
Ω− iFµ

ρµ0λ̃η

)]
.

This is thought of as a version of the Hain-Lüst equation [37] extended with allowance

for the effect of the viscous dissipation and the magnetic diffusion.

We seek the solution of (3.22) in the WKB approximation. To this end, we substitute

into (3.22) the form χ(r) = p(r)exp[i
∫

q(r)dr] and get

f ′p′+ f p′′− f pq2 + sp′−g = 0 (3.23)

where the prime ′ denotes the radial derivative. We make the assumption that the radial

wavelength 2π/q is assumed to be much shorter than the characteristic length L, a measure

for radial inhomogeneity, qL ≫ 1. Under this assumption, for instance, qp ≫ p′, and for

this reason, the second order inhomogenous terms f ′p′+ f p′′ are ignored in (3.23), and

so is sp′, because s includes the derivative term dΩ/dr. Finally the dispersion relation

(3.23) is approximated, in the short-wavelength limit, by q2 =−g/ f , which is written out

as

(h2 +q2)λ̃ 2
ηΛ2 +4k2

(
Ωλ̃η − iFµ

ρµ0

)[
ΩRo(ωη −ων)+

(
Ωλ̃η − iFµ

ρµ0

)]
+4Λh2λ̃η

[
(Ω2Ro− µ2

ρµ0
Rb)+

imr
2

d
dr

(
Ωλ̃η − iµF

ρµ0

h2r2

)]
= 0, (3.24)
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where we have introduced the Rossby number Ro and the magnetic Rossby number Rb

by [8, 9]

Ro =
1
2

r
Ω

dΩ
dr

, Rb =
1
2

r
µ

dµ
dr

. (3.25)

Two kinds of Alfvén frequency ωA and ωAθ as well as their comparative parameter β

are defined as follows

ωA =
kBz√ρµ0

, ωAθ =
µ2

√ρµ0
, β =

ωAθ
ωA

. (3.26)

In addition, we introduce three dimensionless parameters, namely, the magnetic Prandtl

number Pm, the Reynolds number Re and the Hartmann number Ha by

Pm =
ων
ωη

, Re =
Ω
ων

, Ha =
ωA√ωνωη

. (3.27)

The dispersion relation for non-dimensional variables, with the derivative term in (3.24)

being expanded out, leads to

(Λ1Λ2 + H̃a
2
)2 +4

h2(Λ1Λ2 + H̃a
2
)

h2 +q2 (Re2PmRo−β 2Ha2Rb)

+
4im(Λ1Λ2 + H̃a

2
)

r2(h2 +q2)

[
ReRo

√
Pm(Λ2 + imRe

√
Pm)

−i(2mβ +1)βHa2Rb+(iH̃aβHa−Re
√

PmΛ2)
k2

h2

]
+4α2

[
(ReΛ2

√
Pm− iH̃aβHa)

(
ReΛ2

√
Pm− iH̃aβHa+RoRe(1−Pm)

)]
= 0.

(3.28)
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where

Λ1 = λ + imRe
√

Pm+
√

Pm,

Λ2 = λ + imRe
√

Pm+
1√
Pm

,

H̃a = Ha(1+mβ )

α =
k2

h2 + k2

This form of the dispersion relation plays the key role, in the following sections, for

determining the instability criterion and for calculating the growth rate for both the ax-

isymmetric (m = 0) and the non-axisymmetric (m ̸= 0) MRI.

3.2 Axisymmetric perturbations

For the axisymmetric SMRI (m = 0, B = Bzez), the dispersion relation (3.28) simplifies,

in the inductionless limit (Pm → 0), to

4α2Re2(1+Ro)+(1+Ha2 +
λ
Ω

Re)2 = 0. (3.29)

The growth rate can be solved from (3.29) as

λ
Ω

=−1+Ha2

Re
±2
√

−α2(1+Ro) (3.30)

where α2 = k2/(q2 + k2) when m = 0. From (3.30), the instability region is

Ro < Roc =−1−
(

1+Ha2

αRe

)2

. (3.31)

As Re goes to infinity the critical Rossby number approaches Roc = −1. Here magnetic

field or Ha lowered the critical Rossby number, which is different from ideal SMRI where

magnetic field, no matter how weak, can raise the critical Rossby number from Roc =−1
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for hydrodynamic flows to Roc = 0 for MHD flows, i.e. Velikhov-Chandrasekhar paradox

[8]. The viscosity acts to stabilize the MHD flow when the magnetic field is weak.

Next, we consider the inductionless azimuthal MRI (AMRI), where the magnetic field

has only the azimuthal component B = rµ(r)eθ . Putting m = 0, and taking account of

only the azimuthal magnetic field by replacing βHa = Haθ and then taking Ha → 0,

where ωAθ = µ/√ρµ0 and Haθ = ωAθ/
√ωνωη , the growth rate is found from (3.28) to

be

λ =
−1+2α2Ha2

θ Rb±2α
√

α2Ha4
θ Rb2 − (1+Ro)Re2

Re
. (3.32)

We expand (3.32) in small 1/Re to the first order for large Reynolds number as

λ = 2
√

−α2(1+Ro)+(−1+2α2Ha2
θ Rb)

1
Re

(3.33)

When Re → ∞, the instability region from the zero order and first order coefficients of

1/Re in (3.33) becomes

Ro <−1 or Ro ≥ 0, Rb >
1

2α2Ha2
θ

(3.34)

In the rest of this section, we revisit the axisymmetric HMRI occurring in the presence

of both azimuthal and axial components of magnetic field B = rµ(r)eθ + Bzez. The

dispersion relation (3.28) is solved for the eigenvalue as

λ = − 1
Re

+
Ha2

Re
(−1+2α2β 2Rb)

±2α
Re

[
β 2Ha4 +α2β 4Ha4Rb2 −Re2(1+Ro)+ iβHa2Re(2+Ro)

]1/2
.(3.35)
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When Reynolds number tends to infinity, we expand (3.35) as

λ = ±2iα
√

1+Ro+
[
−1+Ha2

(
2α2β 2Rb−1

±(2+Ro)αβ√
1+Ro

)] 1
Re

, (Ro ̸=−1),

λ = ±2αHa
√

iβ
1√
Re

+(−1−Ha2 +2α2β 2Ha2Rb)
1

Re
,

(Ro =−1). (3.36)

Obviously from the zero order term in (3.36), Ro <−1 always guarantees the instability

and Ro =−1 is also unstable if Ha, β are nonzero. So it is left to consider the case when

Ro >−1, from (3.36), if growth rate is positive, then it must grow with |Ha|.

For 1 ≪ Ha ≪ Re and Ro ̸=−1, from (3.36), the growth rate (λR=Re[λ ]) becomes

λR =

(
2α2β 2Rb−1± (2+Ro)αβ√

1+Ro

)
Ha2

Re
− 1

Re

=

[
2Rb

(
αβ ± 2+Ro

4Rb
√

1+Ro

)2

− (2+Ro)2

8Rb(1+Ro)
−1

]
Ha2

Re
− 1

Re
. (3.37)

From second line in (3.37), the criterion for instability for 1 ≪ Ha ≪ Re case is

2Rb
(

αβ ± 2+Ro
4Rb

√
1+Ro

)2

− (2+Ro)2

8Rb(1+Ro)
> 1. (3.38)

We can also write it from the first line in (3.37) to be

√
1+Ro+

1√
1+Ro

>
1−2α2β 2Rb

|αβ |
. (3.39)

So the critical Rossby number depends on Rb, α , β and the criterion for instability is
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separated into two cases as



Ro ∈ ∀ Reals, (c < 2) ,

Ro ∈
((

c
2 +

1
2

√
c2 −4

)2
−1,+∞

)
∪(

−∞,
(

c
2 −

1
2

√
c2 −4

)2
−1
)

(c ≥ 2)

c =
1−2α2β 2Rb

|αβ |

(3.40)

When Rb < 0 the maximum growth rate turns out to be −
(

(2+Ro)2

8Rb(1+Ro)
+1
)

Ha2

Re
,

so the instability region is

Ro ∈
[
−∞,2

(
−
√

2
√

2Rb2 +Rb−1−2Rb
)]

∪
[
2
(√

2
√

2Rb2 +Rb−1−2Rb
)
,+∞

]
. (3.41)

Especially when Rb = −1, Roc = 2(1±
√

2) corresponding to αβ = ±
√

2/2, and thus

Liu’s limit was recovered. [36, 8, 9]

3.3 Non-axisymmetric perturbations

3.3.1 Weak external field

After a discussion of axisymmetric perturbations, we want to focus on the non-axisymmetric

perturbations in the inductionless limit. Inclusion of non-axisymmetric perturbations

(m ̸= 0) entirely alters the characteristics of the inductionless AMRI. At the beginning,

we deduce the inductionless (Pm → 0) dispersion relation. Making (Pm → 0) in (3.28),
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we get

λ̂ 2 −
4h2Ha2

θ Rbλ̂
h2 +q2 −4iα2Ha2

θ mReRo

+
4λ̂ (2h2Ha2

θ m2Rb−Ha2
θ k2m2 − ik2mRe+ ih2mReRo)

(h2 +q2)h2r2

+α2(−2iHa2
θ m+2Re)2 +4α2Re2Ro = 0, (3.42)

where α = k2/(k2+q2+m2/r2), λ̂ = 1+Ha2
θ m2+λRe+ imRe and Haθ =ωAθ/

√ωνωη .

To see the instability when magnetic field is weak, we do the small Haθ expansion of

the solution of (3.42)

λ
Ω

= ±2

√
−α2(1+Ro)− m2(k2r2(Ro−1)+m2Ro)2

h4r8(h2 +q2)2

− 1
Re

− im(h2(h2r2 +q2r2 +2Ro)−2k2)

h2r2(h2 +q2)
+o(Haθ ). (3.43)

In (3.43), Thesquare root term is the hope for positive growth rate. There are two terms

in the square root, one is −α2(1+Ro) which can become positive by Ro < −1 and the

second term is definitely non-positive −(m2(k2r2(Ro−1)+m2Ro)2)/(h4r8(h2+q2)2)≤

0. This non-positive term has the effect of decreasing the growth rate. So m = 0 is an

appropriate choice connecting with the largest growth rate. We should reconsider the

simpler case of m = 0 when Ha = 0.

In §3.2, we considered the growth rate of axisymmetric AMRI in large Re expansion

as (3.33). If we set Haθ = 0 in (3.33) we get the same result as when we set m = 0 in

(3.43) except o(Haθ ) terms. In this case the growth rate becomes

λ
Ω

= ±2α
√
−1−Ro−1/Re, (3.44)

by setting Haθ = 0 in (3.33). As a result, the instability requires Ro < Roc, where

Roc = −1− 1/(4Re2). Comparing to ideal hydrodynamics, whose critical Rossby num-
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ber is Roc = −1, the famous Rayleigh criterion and the maximum growth rate becomes

2α
√
−1−Ro by Re → ∞, the critical Rossby number is lowered by 1/4Re2 and the max-

imum growth rate is also lowered by 1/Re when viscosity exists.

When Ro>−1, for instance, the Keplerian flow Ro=−3/4, for the non-axisymmetric

waves as well as the axisymmetic ones, the 1/Re in zero order term of Haθ (3.43), stops

the instability from the higher order terms o(Haθ ). It breaks down the similar singularity

of the ideal AMRI. In ideal AMRI, weak magnetic fields arouse magneto-Coriolis waves,

raise the critical Rossby number from Roc = −1 for hydrodynamic flows to Roc ≈ 0 for

MHD flows- the resolution of Velikhov-Chandrasekhar paradox to the ideal AMRI case.

The 1/Re term in the zeroth order term in (3.43) for Ro >−1 prevents the occurrence of

instability for very weak magnetic field. The disappearance of the singularity is the same

as in the inductionless AMRI as discussed in (3.2).

3.3.2 Strong external field

Now we turn to strong magnetic fields. We consider that viscosity is small, i.e. Reynolds

number is large. When Re → ∞ the leading order (zero order to 1/Re) of growth rate

solved from (3.42) becomes

λ
Ω

=±2

√
−α2(1+Ro)− m2(k2r2(Ro−1)+m2Ro)2

h4r8(h2 +q2)2 . (3.45)

We may check that for instability in (3.45), Ro < −1 is necessary. We are more inter-

ested in the cases when Ro > −1, for example Ro = −3/4 for an Keplerian flow, so the

zeroth order is far from enough. We have to look for the first order of 1/Re term of the

eigenvalues in (3.42) to seek instability for Ro ≥−1.

The axial wavenumber k is important when we decide the maximum growth rate and

the instability region. Fig. 3.1 shows the growth rate to k for different Rb. For the case,

m = 1, Ro =−3/4 and q = 0 (because numerically q = 0 mode likely corresponds to the
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Figure 3.1: The normalized growth rate ν/Ω to the axial wavenumber k for a Keplerian
flow with the Reynolds Re = 104, the Hartmann number Haθ = 100 in the inductionless
limit Pm = 0. When the magnetic Rossby number Rb increases from −1 to 1, the axial
wavenumber k corresponding to the maximum growth rate quickly changes from 0 to ∞.
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fastest growth rate ), when Rb has the value around −1/4 there is some finite k, which

corresponds to the maximum growth rate. But when Rb goes smaller than −1/4, the fast

growth rate quickly moves to k = 0 mode. And at the same time, if Rb increases to the

more right side, the infinite k mode grows fastest. It is important and easier to analytically

consider k = 0 and k = ∞ for understanding.

When Rb <−m2/4, we consider the limit of k → 0 and q → 0. So, we fix k = 0. By

small 1/Re expansion to the first order, the growth rate can be expanded to the first order

in 1/Re as

λ1

Ω
= −im− (1+Ha2

θ m2)
1

Re
,

λ2

Ω
= −i(m+4

mRo
m2 +q2r2 )−

(
1+Ha2

θ m2
(

1+4
Rb

m2 +q2r2

))
1

Re
. (3.46)

From λ2 in (3.46) the instability region, we can immediately get the instability region

Rb <−m2

4
and Ha2

θ >
1

m2 +4Rb
. (3.47)

From (3.47), Rb is essential rather than Ro to decide the instability. When Rb = −1, the

m =±1 modes are the only possible modes for instability and it is notable that the Liu’s

limit disappear, i.e. instability exists for arbitrary Rossby number. When m = 1 is fixed,

Rb <−1/4 is the promising of the k = 0 mode instability.

Fig. 3.2 displays the growth rate to Haθ when Re = 104, m = 1, k = q = 0, Ro =−3/4

and Rb =−1. The left one shows that the growth rate increases with the increase of Haθ

and the right one confirms that there is an onset of |Haθ |=
√

3/3 ≈ 0.5774 for instability

which is quite small but nonzero.

When Rb >−m2/4, the maximum growth rate for Ro >−1 occurs when k → ∞. We
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Figure 3.2: The growth rate Re[λ ] to Haθ when Re = 104, m = 1, k = q = 0, Ro =−3/4
and Rb =−1. The left figure shows that large Haθ increase the growth rate and the right
one is the amplification of the left one when Haθ is small, which demonstrates that a
certain strength of magnetic field is necessary for instability.

expand the eigenvalues to the first order in small 1/Re for the case k → ∞.

λ1,2

Ω
= −im±2α

√
−1−Ro

+

[
Ha2

θ

(
2α2Rb−m2 ± αm(2+Ro)√

1+Ro

)
−1
]

1
Re

.

(3.48)

From (3.48), when Ro < −1, it is unstable from the zeroth order term, and if Ro > −1,

the instability criterion becomes

2α2Rb−m2 +
|αm|(2+Ro)√

1+Ro
> 0,

and Ha2 >

√
1+Ro

(2α2Rb−m2)
√

1+Ro+ |αm|(2+Ro)
.

(3.49)

To decide the critical Rossby number, the first inequality in (3.49) is equal to

√
1+Ro+

1√
1+Ro

>
m2 −2α2Rb

|αm|
.

(3.50)
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The criterion for instability by use of Ro is separated into two cases expressed similarly

as in (3.40)



Ro ∈ ∀ Reals, (c < 2) ,

Ro ∈
((

c
2 +

1
2

√
c2 −4

)2
−1,+∞

)
∪(

−∞,
(

c
2 −

1
2

√
c2 −4

)2
−1
)

(c ≥ 2)

c =
m2 −2α2Rb

|αm|

(3.51)

When Rb =−1, the first inequality in (3.49) can be written as

−1 < Ro <
4+n4

2n2 − 1
2

√
(n4 +4)(n2 +2)2

n4 ≤ 2−2
√

2,

or, Ro >
4+n4

2n2 − 1
2

√
(n4 +4)(n2 +2)2

n4 ≥ 2+2
√

2,

(3.52)

where n = αm and the two equalities are obtained when n = αm = ±
√

2. (3.52) also

reveals the Liu′s limit for the instability in the axisymmetric HMRI.

From Keplerian flow Ro =−3/4, Rb >−25/32 is necessary for instability. Actually,

choosing m/α =±5
4 in (3.49), the critical Rossby number Rbc =−25/32 can be obtained.

If we furthermore choose that Rb= 0, it can be calculated that the |Haθ |=
√

6/3≈ 0.8165

is the onset of AMRI as show in Fig. 3.3.

Recall from (3.47), Rb < −1/4 is necessary for k = 0, m = 1 mode instability. And

from (3.49), Rb>−25/32 is necessary for the k =∞, m= 1 mode instability. Because the

later one overlaps with the former one, it concludes that the instability exists for arbitrary

magnetic Rossby number. Maybe you will be curious about other mode of finite and

nonzero k mode. Those modes has the maximum growth rate when Rb in an narrow

region as show in 3.4 and for a large range of Rb the k = 0 or the k = ∞ modes take the

maximum growth rate. Fig. 3.4 shows the growth rate to magnetic Rossby number Rb
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Figure 3.3: The growth rate Re[λ ] to Haθ when Re = 104, m = 1, k = q = 0, Ro =−3/4
and Rb =−1. Left figure shows that large Haθ increase the growth rate and the right one
is the amplification of the left one when Haθ is small, which demonstrates that a certain
strength of magnetic field is needed for instability.

for Re = 104, Haθ = 100, m = 1, and Re = −3/4. We can see the the crossover of the

k = 0, q = 0 mode and the k = ∞ mode and the maximum growth rate, whose left part

coincides with the k = 0 mode, the right part coincides with the k = ∞, α = 1 mode, and

in between there is a narrow range the maximum is taken for finite and nonzero k mode.
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Figure 3.4: the growth rate to magnetic Rossby number Rb for Re = 104, Haθ = 100,
m = 1, and Re =−3/4. Dotted one is k = 0, q = 0 mode, solid line is the k = ∞ mode and
dashed line stands for the maximum growth rate, whose left part coincide with the k = 0
mode and the right part coincides with the k = ∞, α = 1 mode.
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Chapter 4

Energy of ideal MHD

This chapter is different from the previous two chapters in that we make a global modal

analysis rather than the local analysis with respect to the short-wavelength waves. We

still use the cylindrical coordinates (r,θ ,z) and the flow is confined between two coaxial

cylinders. The ideal MHD is an Hamiltonian system of infinite degree of freedom. By

the Arnold theorem, the signature of the energies of eigenmodes plays a vital role for

stability of a steady state; if the wave energies for all the admissible disturbances are all

positive or all negative, then the steady state is linearly stable [43, 47, 44, 45, 46]. Krein’s

theorem tells for a Hamiltonian system of finite degree of freedom that the collision of

two imaginary eigenvalues with energy of opposite signature, instability could occur. In

this chapter, we will deduce two energy formulas for the MHD waves, and by using one of

them, calculate the wave energy and put the bifurcation on the ground of Krein’s theorem

[47, 41].

We confine our analysis to ideal MHD of an incompressible flow with constant density

ρ = 1 and the magnetic permeability µ0 = 1 for simplicity. The flow has the velocity field

u=U + ũ, (4.1)
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and the magnetic field

b=B+ b̃, (4.2)

being constituted from a steady flow U and B and a small disturbance ũ and b̃ to them.

The flow is bounded by two concentric cylinders and the boundary conditions should be

n ·u= 0, n ·b= 0. (4.3)

The boundary conditions mean that the flow and magnetic field do not go out or come in

through the boundary.

4.1 Second formula of energy

As introduced in §1.2.5 the Lagrangian displacement satisfies the Frieman-Rotenberg

equation.

ρ
∂ 2ξ

∂ t2 +2ρ(U ·∇)
∂ξ
∂ t

−F0[ξ] = 0. (4.4)

where

F0[ξ] =−ρ(U ·∇)2ξ+ρ(ξ ·∇)(U ·∇)U −∇p̃+
1

4π
(∇× b̃)×B+

1
4π

(∇×B)× b̃.

In (4.4) we can regard F0 as the force operator, which can be used to define the po-

tential energy. The energy of the disturbance ξ directly obtained from (4.4) is an integral

over the whole domain D [37]

H =
1
2

∫
D

ρ|∂ξ
∂ t

|2 −ξ∗ ·F0[ξ]dV. (4.5)

Here the ∗ is used to express the complex conjugate. Equation (4.5) is regarded as the first

energy formula.

69



H includes two parts, the kinetic energy K and the potential energy W

K =
1
2

∫
D
|∂ξ
∂ t

|2dV, W =−1
2

∫
D
ξ∗ ·F0[ξ]dV (4.6)

One may directly calculate energy from (4.5), but F0 is a complicated operator and

makes the calculation awkward. We make an attempt to simplify it. Multiplying the

Frieman-Rotenberg equation by ξ∗, it yields

∂ 2ξ

∂ t2 ·ξ∗+2(U ·∇)
∂ξ
∂ t

·ξ∗−F0[ξ] ·ξ∗ = 0. (4.7)

Substitute F0[ξ] ·ξ∗in (4.5 by using (4.7)

H =
1
2

∫
D
|∂ξ
∂ t

|2 −ξ∗ ·F0[ξ]dV.

=
1
2

∫
D
|∂ξ
∂ t

|2 − ∂ 2ξ

∂ t
·ξ∗−2(U ·∇)

∂ξ
∂ t

·ξ∗dV.

=
∫

D
|∂ξ
∂ t

|2 − (U ·∇)
∂ξ
∂ t

·ξ∗− ∂
∂ t

(∂ξ
∂ t

·ξ∗
)
dV (4.8)

Usually ξ is assumed to be in eigenmode ξ = ξ̂(r)exp[−iωt + i(kz+mθ)]. So it can

be verified the last term in (4.8)

∂
∂ t

(∂ξ
∂ t

·ξ∗
)
= 0. (4.9)

Consequently we obtained our second formula for energy

H =
∫

D
|∂ξ
∂ t

|2 − (U ·∇)
∂ξ
∂ t

·ξ∗dV (4.10)

70



4.2 Third formula of energy

We consider isomagnetovortical perturbations as introduced in §1.2.4. By using the con-

servation of magnetic helicity HM [21]

HM =
∫

D
b · (∇×)−1bdV (4.11)

and the cross-helicity

HC =
∫

D
b ·udV, (4.12)

the disturbances ũ and b̃ can be expressed by ξ[21, 44, 45, 46].

We rely on the formula for the isomagnetovortical perturbations derived by Vladimirov,

Moffatt and Ilin (1999).

ũ = P [ξ×Ω+η×B] ,

b̃ = ∇× (ξ×B) , (4.13)

where η describes magnetic displacement, similar to how ξ describes the Lagrangian

displacement and P[ · ] is an operator projecting a vector field to a solenoidal field. And

we restate the other relation between ξ and ũ as shown in (1.28) of §1.2.2

ũ(x0, t) =
∂ξ
∂ t

+U ·∇ξ−ξ ·∇U . (4.14)

By a combination of (4.13) and (4.14), ∂ξ/∂ t can be written as

∂ξ
∂ t

= ũ−U ·∇ξ+ξ ·∇U = ξ×Ω+η×B−U ·∇ξ+ξ ·∇U (4.15)
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In order to make no confusion, we regards ξ to be real. From (4.8) in §4.1,

H =
1
2

∫
D

∂ξ
∂ t

−ξ ·F0(ξ)dV

=
1
2

∫
D

∂ξ
∂ t

−ξ · (2(u ·∇)
∂ξ
∂ t

+
∂ 2ξ

∂ t2 )dV

=
∫

D
(
∂ξ
∂ t

)2 − (u ·∇)
∂ξ
∂ t

·ξ− 1
2

∂
∂ t

(
∂ξ
∂ t

·ξ)dV, (4.16)

Substitute (4.15) into (4.16) we can obtain the following result

H =
∫

D

∂ξ
∂ t

·
(
ξ×Ω+η×B−U ·∇ξ+ξ ·∇U

)
− (U ·∇)

∂ξ
∂ t

·ξ− 1
2

∂
∂ t

(
∂ξ
∂ t

·ξ)dV

=
∫

D

∂ξ
∂ t

· (ξ×Ω)+
∂ξ
∂ t

· (η×B)+
∂ξ
∂ t

· (ξ ·∇U)− 1
2

∂
∂ t

((η×B+ξ ·∇U) ·ξ)dV

=
∫

D

∂ξ
∂ t

· (ξ×Ω)+
∂ξ
∂ t

· (η×B)+
1
2

∂ξ
∂ t

· (ξ ·∇U)− 1
2

∂ξ
∂ t

·∇U ·ξ− 1
2

∂
∂ t

(η×B ·ξ)dV

=
∫ 1

2
∂ξ
∂ t

· (ξ×Ω)+
1
2

(
∂ξ
∂ t

· (η×B)−ξ · (∂η
∂ t

×B)

)
dV (4.17)

where we have used the divergence theorem and the boundary condition at the surface for

several times. The evolution of η can be found in Appendix A

4.3 Energy of rigid rotaion

We consider an example flow between two coaxial cylinders. The steady velocity and

magnetic field are

U = rΩeθ , B = rµeθ +Bzez,

B.C. n ·U = 0, n ·B = 0.

where, Ω, Bz and µ are all constant . (4.18)

The disturbance is assumed to be in the eigenmode f̂ (r)exp[λ t+i(mθ +kz)]= f̂ (r)exp[−iωt+

i(mθ +kz)]. The equation for χ = rξ̂r(r) from Hain-Lüst equation (1.40) in §1.2.5 can be
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Figure 4.2: The eigenvalue to axial wavenumber k. The parameters are m = −5, Ω =
0.25, µ = 1, Bz = 0. The left one shows the real part of ω , and the right one shows the
imaginary part of ω , which is the growth rate
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simplified to [37]

r
d
dr

[
1

h2r
dχ
dr

]
−
[

1−
(

α2 − 2mα
h2r2

)
k2

h2

]
χ = 0,

with α =
2(µF +Ωω̃)

ω̃2 −F2 , F = mµ +Bz, ω̃ = ω −mΩ,

B. C. χ = 0. (4.19)

Take into consideration the boundary condition, (4.19) can be solved and the solution

χ can be analytically expressed in terms of the Bessel functions as

χ =
1

(α2 −1)(ρλ̃ 2 −F2)

[
rJ′m(lr)−mαJm(lr)

]
, (4.20)

with l = k
√

α2 −1, Jm is the Bessel function and the prime designates the derivative in r.

After a long calculation which can be found in Appendix B, the energy is calculated as

HR =
1
2

∫
D

[
ω(ω −mΩ− kBz)−

Ωω
α

]
|ξ|2dV. (4.21)

In (4.21), the coefficient
[
ω(ω −mΩ− kBz)− Ωω

α
]

decides the signature of energy, so we

can view
[
ω(ω −mΩ− kBz)− Ωω

α
]

as the normalized energy.

In Fig. 4.1, we draw the energy with dependence to the axial wavenumber. The pa-

rameters are

m =−5, Ω = 0.25, µ = 1, Bz = 0. (4.22)

In Fig. 4.2, we draw the eigenvalue with dependence to the axial wavenumber k as the

varying parameter. The left graph shows the real part of ω and the right graph corresponds

to the imaginary part of ω which is thus the growth rate.

From Fig. 4.1 and Fig. 4.2 we can clearly see the collision of two pure imaginary

(corresponding to that ω is a real number) eigenvalues of zero energy collide and they
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bifurcate to eigenvalues which have real part (corresponding to that ω is complex) and

instability occurs there. This is the fact of the Krein’s theorem.
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Chapter 5

Conclusion

We studied three-dimensional linear stabilities of rotating flows of an electrically con-

ducting fluid, subject to azimuthal magnetic field. The basic field is assumed to be ax-

isymmetric. We addressed this problem from both the local stability analysis of using the

WKB method and the global modal analysis.

In chapter 2 we explored the AMRI of a perfectly conducting fluid to non-axisymmetric

as well as axisymmetric perturbations of short wavelengths, based on the Hain-Lüst equa-

tion (1.40) augmented with the terms originating from a background flow of differential

rotation. The present investigation is capable of dealing with a rotating flow of arbitrary

angular velocity profile Ω(r). The advantage of using the Hain-Lüst equation is that a

risk of dropping-off the terms including radial derivatives can be avoided. If we substi-

tute the WKB ansatz ξ ∝ exp[i
∫

q(r)dr], at an earlier stage, into (3.11) say, the derivative

in r is replaced by multiplication iq, and after this stage, the operation of radial deriva-

tive iq = d/dr is liable to be inactive, though it should be. For example, the continuity

equation (2.4)
∂ ũr

∂ r
+

im
r

ũθ + ikũz = 0. (5.1)

is approximated by

iqũr +
im
r

ũθ + ikũz = 0. (5.2)
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Substitution of (2.9) into (5.1) or (5.2) gives different results. It is safer to keep all the

derivative terms to the very last stage when the equations are combined to one second

order differential equation for χ = rξr(r). Then we apply the short wavelength approxi-

mation where the appropriate assumption becomes ξ ∝ p(r)exp[i
∫

q(r)dr]. This approach

retains all the relevant terms which has disclosed a novel instability mode, of long wave-

lengths, of the AMRI to non-axisymmetric perturbations than known ones (cf. ref [15]).

Given Rb, for small values of |ωAθ/Ω|, a rotating flow is unstable to non-axisymmetric

perturbations of |k| → ∞ if Ro < (Rb− 1/4)(ωAθ/Ω)2 as dictated by (2.35), with the

maximum growth rate close to the Oort A-value |Ro|. For |ωAθ/Ω| ∼ 1, the situation is

changed. When Rb > −3/4, the rotating flow is unstable to perturbations of |k| → ∞ in

the whole range of Ro. But the mode of |k| → ∞ subsides down as Rb is decreased and

disappears at Rb=−3/4. Instead, another unstable mode of k = 0 emerges at Rb=−1/4,

develops as Rb is decreased, and surpasses the mode of |k| → ∞ for Rb ≤ −1/
√

8. The

instability mode of k = 0 is confined to a finite range in Ro centered on Ro = 0.

In chapter 3 we extended the Hain-Lüst equation to include the viscosity and the

electric resistivity. This extended Hain-Lüst equation serves as a basis for the linear sta-

bility analysis of the AMRI and the HMRI in the inductionless limit. By making the

WKB analysis of the extended Hain-Lüst equation, we obtained the dispersion relation in

the short wavelength limit. We showed that this approach restores the known results of

the axisymmetric SMRI and the axisymmetric AMRI. Liu’s limit for the critical Rossby

number is restored; in the presence of the axial as well as the azimuthal magnetic field,

the critical Rossby number is raised from −1 of Rayleigh’s criterion to at most Liu’s limit

Roc = 2(1−
√

2) for Bθ/Bz =±
√

2/2. In §3.3 we also showed that for non-axisymmetric

AMRI in weak magnetic field, the critical Rossby number is lower than Rayleigh’s value

Roc =−1. When the azimuthal magnetic field is sufficiently strong, we dealt exclusively

with two extreme modes of k → 0 and k → ∞. For a Keplerian flow, the k → 0 mode

is excited for Rb < −1/4, with the growth rate proportional to square of the magnetic-
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field strength. On the other hand, the k → ∞ mode is excited for Rb > −25/32, with

the growth rate proportional to square of the field strength the field strength. Either of

these two modes is excitable at any value of Rb, and we are led to a conclusion that the

Keplerian flow is unstable in the presence of a strong azimuthal magnetic field.

Chapter 4 sheds light on the aspect that the ideal MHD is a Hamiltonian system.

Krein’s collision theorem makes the wave-energy an essential factor to distinguish insta-

bility from stability. We simplified the lengthy energy formula and then obtained two new

energy formula. Based on the simplified energy formula, we revisited an rigidly rotat-

ing flow whose eigenfunction of disturbance can be written out explicitly in terms of the

Bessel functions. We obtained the energy of this rigidly rotating flow and confirmed that

the bifurcation complies with Krein’s theorem.
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Appendix A

Evolution of η

In the appendix, the δ stands for the disturbance and is the same as previous ,̃ e.g. δu= ũ,

and δ 2 will be used to denote the second order disturbance.

Vorticity equation for steady state:

0 =
∂Ω
∂ t

=∇× (U ×Ω)+∇× (J×B).

For Dynamicallyaccessibleperturbations [44, 45]

δu= ξ×Ω+(∇×η)×B. (A.1)

Taking the curl of it, we obtain

δω =∇× (ξ×Ω)+∇× ((∇×η)×B). (A.2)

Moreover by taking time derivative of both sides, and substituting the relation ∂ξ/∂ t +
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U ·∇ξ −ξ ·∇U = δu, it yields,

∂δω
∂ t

= ∇× (
∂ξ
∂ t

×Ω)+∇× (
∂ (∇×η)

∂ t
×B)

= ∇× ((δu−U ·∇ξ+ξ ·∇U)×Ω)+∇× (
∂ (∇×η)

∂ t
×B)

= ∇× (δu×Ω)−Ω ·∇(U ·∇ξ−ξ ·∇U)+(U ·∇ξ−ξ ·∇U) ·∇Ω

+∇× (
∂ (∇×η)

∂ t
×B)

= ∇× (δu×Ω)+[−Ω ·∇U ·∇ξ−U ·∇(Ω ·∇ξ)+U ·∇Ω ·∇ξ]

+[Ω ·∇ξ ·∇U +ξ ·∇(Ω ·∇U)−ξ ·∇Ω ·∇U ]

+(U ·∇ξ) ·∇Ω+[−ξ ·∇(U ·∇Ω)+U ·∇(ξ ·∇Ω)−U ·∇ξ ·∇Ω]

+∇× (
∂ (∇×η)

∂ t
×B)

= ∇× (δu×Ω)+∇× (U ×δΩ)+(U ·∇Ω−Ω ·∇U) ·∇ξ

+ξ ·∇(Ω ·∇U −U ·∇Ω)+∇× (
∂ (∇×η)

∂ t
×B)

= ∇× (δu×Ω)+∇× (U ×δΩ)+(∇× (J×B)) ·∇ξ+ξ ·∇(−∇× (J×B))

+∇× (
∂ (∇×η)

∂ t
×B). (A.3)

where we used that ∇× (U ×Ω)+∇× (J×B)= 0, and the relationships

Ω ·∇ξ ·∇U −ξ ·∇Ω ·∇U =∇× (ξ×Ω) ·∇U

andU ·∇(ξ ·∇Ω)−U ·∇(Ω ·∇ξ) =−U ·∇(∇× (ξ×Ω)).

On the other hand, we linearize the vorticity equation as

∂δω
∂ t

=∇× (δu×Ω)+∇× (U ×δω)+∇× (δJ×B)+∇× (J×δB). (A.4)

First we calculate the last two terms of this equation but in opposite sign as
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∇× (J×δB)+∇× (δJ×B)

= ∇× (J× (∇× (ξ×B))+∇× (δJ×B)

= (B ·∇ξ−ξ ·∇B) ·∇J−J ·∇(B ·∇ξ−ξ ·∇B)+∇× (δJ×B)

= [B ·∇(ξ ·∇J)−ξ ·∇(B ·∇J)+ξ ·∇B ·∇J ]−ξ ·∇B ·∇J

+[−J ·∇B ·∇ξ−B ·∇(J ·∇ξ)+B ·∇J ·∇ξ]

+[J ·∇ξ ·∇B+ξ ·∇(J ·∇B)−ξ ·∇J ·∇B]+∇× (δJ×B)

= (∇× (J×B) ·∇ξ+ξ ·∇(−∇× (J×B))+∇× ((δJ−∇× (ξ×J))×B).

(A.5)

(A.4) can be written as

∂δω
∂ t

= ∇× (δu×Ω)+∇× (U ×δω)+(∇× (J×B) ·∇ξ+ξ ·∇(−∇× (J×B))

+∇× ((δJ−∇× (ξ×J))×B). (A.6)

Comparing (A.6) and (A.3), we get

∂ (∇×η)

∂ t
= δJ−∇× (ξ × J)+ c0B. (A.7)
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Appendix B

Energy of rigid flow

Define a,b,c as

ξr = aeΘ =
1
r

χeΘ,

ξθ = beΘ =
i

h2r

(m
r

χ ′− k2αχ
)

eΘ,

ξz = ceΘ =
i

h2r

(
kχ ′+

m
r

kαχ
)

eΘ,

where Θ =−iωt + i(mθ + kz). (B.1)

Re[ξ] =


acosΘ

bsinΘ

csinΘ

 , Re[
∂ξ
∂ t

] =


ωasinΘ

−ωbcosΘ

−ωccosΘ

 , (B.2)

From (4.10), energy is written as

H =
∫

D
|∂ξ
∂ t

|2 − (U ·∇)
∂ξ
∂ t

ξ∗dV

=
1
2

∫
D

ω2(a2 +b2 + c2 − (Ωm+Bzk)ω(a2 +b2 + c2 −2Ωabω))dV (B.3)
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Now we calculate a2 +b2 + c2 and ab as

∫
D

a2 +b2 + c2dV =
(χ

r

)2
+

1
h4r2

[
h2χ ′2 + k2α2h2χ2

]
=

(χ
r

)2
+

1
h2r2 (χ

′2 + k2α2χ2)

= |ξ|2

(Substitute the Bessel solution:)

=
2πJ2

m

(α2 −1)(ρλ̃ 2 −F2)2
(αm+α2k2 +α2k2), (B.4)

and

∫
D

abdV = − 1
h2r2 χ

(m
r

χ ′− k2αχ
)
=

i
2
(ξθ ξ ∗

r −ξrξ ∗
θ )

(Substitute the Bessel solution:)

=
πJ2

m

(α2 −1)(ρλ̃ 2 −F2)2

(
αm+α2k2 +α2k2) . (B.5)

From (B.4) and (B.5) we conclude that

HR =
1
2

∫
D

(
(ω2 − (Ωm+Bzk)2 +F2)− 2

α
(Ω(Ωm+Bzk)−µF)

)
|ξ|2dV

=
1
2

∫
D

[
ω(ω −mΩ− kBz)−

Ωω
α

]
|ξ|2dV. (B.6)
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