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Cup and cap products in real moment-angle manifolds
Abstract

In this thesis, the algebraic topology of real moment-angle manifolds is studied, with

emphasis on the cup and cap products in their (co)homology. Here a real moment-angle

manifold refers to a real moment-angle complex which is a topological manifold.

The condition to characterize a real moment-angle manifold is discussed in Chapter

3. As a result, a necessary and sufficient condition for a moment-angle complex to be

a topological manifold is obtained. Also, the well-known cochain algebra of a moment-

angle complex given by V. Buchstaber, T. Panov and I. Baskakov is deduced from that

of the associated real moment-angle complex, using the construction due to A. Bahri,

M. Bendersky, F. R. Cohen and S. Gitler.

The cup and cap products are discussed in Chapter 2, based on the (co)chain complex

established in Chapter 1; by cap products a new proof of the simplicial Alexander duality

in a generalized homology sphere is obtained.

In Appendix A, the (co)chain equivalence between the singular (co)chain complex of a

real moment-angle complex and the (co)chain complex established in Chapter 1 is proved

in detail, with cup and cap products involved.
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Introduction

An abstract simplicial complex K with ground set V is a collection of subsets of V ,
such that

(1) v ∈ K, for each element v ∈ V , and
(2) if σ ∈ K, then τ ∈ K for all τ ⊂ σ; ∅ ∈ K.

An element in K is called a simplex and |K| refers to the geometric realization of K.
Let m be a positive integer and K be an abstract simplicial complex with ground set

[m] := {1, 2, . . . ,m}. The associated real moment-angle complex (D1, S0)K is defined as

(1) (D1, S0)K =
∪
σ∈K

{(xi)
m
i=1 ∈ Rm | |xi| ≤ 1,∀i; |xi| = 1 if i ̸∈ σ}.1

Clearly from the definition, (D1, S0)K has a CW decomposition with each cell being
a cube of suitable dimension. It is well-known that the topology of (D1, S0)K is deeply
related to the combinatorics of K. For instance, Bahri, Bendersky, Cohen and Gitler
[BBCG10a] showed that the suspension Σ(D1, S0)K is homotopy equivalent to the wedge
sum over the double suspensions of all full subcomplexes of |K|. Davis [Dav83] proved
that (D1, S0)K is aspherical if and only if K is a flag complex (i.e., any finite set of
vertices that are pairwise connected by edges spans a simplex of K), with π1((D

1, S0)K)

isomorphic to the commutator subgroup of a right-angled Coxeter group, whose Coxeter
diagram (with all edges labeled by ∞) is isomorphic to the one dimensional non-faces of
K.

Throughout this thesis, coefficients in (co)homology groups are assumed to be integers.
The first main topic is to establish the cup and cap products in a real moment-angle

complex, which can be calculated explicitly and effectively. This is done in Chapter 1 and
Chapter 2. The approach here is different that from [BBCG12], the latter is more general,
while lack of explicit calculations. It is well-known that the difficulty to make calculations
for cup and cap products with certain cellular (co)chain complex comes from the diagonal
approximations at the (co)chain level. To overcome this, we use H. Whitney’s formulae
for cup and cap products in a Cartesian product of compact polyhedra (see formulae
(16), (17) for details); however, (D1, S0)K is embedded as a proper subset in the m-fold
product of the 1-disks [−1, 1], with each cell being a product of simplices. In Appendix
A we shall prove that Whitney’s formulae also work in this situation (see Theorem A.20,
where Alexander-Whitney chain maps (68) are used for diagonal approximations).

1It is not difficult to see that by the definition here, (D1, S0)K is always connected. If points i ∈ [m]
with {i} ̸∈ K are allowed, by which we can factor out copies of {−1, 1} in (D1, S0)K , being a product,
until we get a connected space (D1, S0)K

′ , where the ground set of K ′ is smaller, with each of its points
a vertex of K ′.
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(D1, S0)K is called a real moment-angle manifold if it is a topological manifold. The
characterizations of real moment-angle manifolds were given by Davis (see [Dav08, The-
orem 10.6.1, p. 197], with the assumption that K is a flag complex): (D1, S0)K is a
homology n-manifold (resp. PL n-manifold) if and only if |K| is a generalized homology
(n− 1)-sphere (resp. PL (n− 1)-sphere); it is a topological n-manifold if and only if |K|
is a generalized homology (n − 1)-sphere, which is simply connected when n > 3 (see
Theorem 3.7).

We will give an alternative proof for this theorem in Section 3.2, without assuming
that K is a flag complex.

When |K| is the boundary complex of a convex polytope, (D1, S0)K is called polytopal
and can be smoothed to a link, i.e. a transverse intersection of real quadrics with the
unit sphere in Rm (see [BM06]). With respect to such a link, there is a special class of
open book constructions, which is introduced in [GL13] by López de Medrano and Gitler
(see also [BLV13]), and by which we can obtain a smooth manifold homeomorphic to
the moment-angle complex (D2, S1)K , called a polytopal moment-angle manifold. Bosio
and Meersseman [BM06] showed that every even-dimensional polytopal moment-angle
manifold admits a complex structure to be an LV-M manifold, which is non-Kähler in
general.

Independently in [BBCG10b], Bahri, Bendersky, Cohen and Gitler introduced the
KJ construction: for a sequence of m positive integers J = (ni)

m
i=1, the resulting com-

plex KJ can be constructed by a sequence of simplicial wedge constructions, such that
(D1, S0)KJ is homeomorphic to the polyhedral product ((Dni , Sni−1)mi=1)

K . It turns out
that, topologically the operations from (D1, S0)K to (D1, S0)KJ coincide with the asso-
ciated open book constructions indicated above. For instance, when J is constant with
integers 2, we get the moment-angle complex (D2, S1)K (see Definition 3.3, Lemma 3.4
for more details).

Based on their approaches and Davis’s characterization theorem, in Section 3.1 we
will prove that (D2, S1)K is a topological manifold if and only if |K| is a generalized
homology sphere (see Theorem 3.16). Moreover, there is a cochain algebra R∗

KJ as-
sociated to each polyhedral product ((Dni , Sni−1)mi=1)

K , as an analogue of the cochain
algebra for (D2, S1)K given by Buchstaber, Panov and Baskakov, such that H∗(R∗

KJ)
∼=

H∗
(
((Dni , Sni−1)mi=1)

K
)

as rings (see Definition 3.32 and Corollary 3.35). R∗
KJ has 2m

generators, and is graded commutative if and only if ni > 1, for all i = 1, 2, . . . ,m. This
approach also follows the spirit of [BBCG12] and [BBCG10b], with emphasis on direct
calculations at the cochain level.

Here is a list of other results.
In Chapter 1 we construct a (co)chain complex for (D1, S0)K , which is isomorphic to

the direct sum of the augmented simplicial (co)chain complexes of all full subcomplexes
of K, with degrees shifted by 1. From this we obtain a well-known decomposition of the
(co)homology of (D1, S0)K .

In Chapter 2, we use Whitney’s formulae for this (co)chain complex, yielding cup and
cap products in (co)homology. When (D1, S0)K is a homology manifold, the Poincaré
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duality induced by cap products on the orientation class of (D1, S0)K implies the simplicial
Alexander duality in |K|, a generalized homology sphere (see Section 2.3).
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CHAPTER 1

The cellular chain complex

In Section 1.1 we introduce a chain complex
(
C∗((D

1, S0)K), ∂C
)
, which is chain-

homotopy equivalent to the singular chain complex of (D1, S0)K , through a cubical cell-
decomposition. A change of basis gives a degree-shifted chain isomorphism between(
C∗((D

1, S0)K), ∂C
)

and the direct sum of the augmented simplicial chain complexes of all
full subcomplexes of K, providing a decomposition of H∗((D

1, S0)K). This is done in Sec-
tion 1.2. In Section 1.3, we perform a similar treatment for the cohomology H∗((D1, S0)K).

The (co)chain complex constructed in this chapter, together with its relation with
the augmented simplicial (co)chain complexes of full subcomplexes of K, shall be used
throughout this thesis.

In what follows, a cell (resp. simplex) may refer to either a space or an oriented cellular
(resp. simplicial) chain, whose orientation will be illustrated depending on the situation.

1.1. A cellular decomposition

Let u be the 1-cell of the interval I = [−1, 1] connecting the two 0-cells t and t at both
ends, i.e. points {−1} and {1}, respectively, such that

∂u = t− t.

For the m-fold product Im, products of cells give rise to a cellular chain complex C∗(I
m) =⊗m

i=1C∗(Ii), in which the subgroup of p-chains is given by

Cp(I
m) =

⊕
∑m

i=1 pi=p

m⊗
i=1

Cpi(Ii).

More explicitly, C∗(I
m) is generated by cells of the form

(2) uσtτ tγ := ⊗m
i=1ei, ei =

{
ui if i ∈ σ,

ti (resp. ti) if i ∈ τ (resp. i ∈ γ),

where σ, τ and γ are pairwise disjoint subsets with their union [m], and deg(uσtτ tγ) =

card(σ). The boundary operator ∂C : C∗(I
m) → C∗(I

m) shifts the degrees down by one,
such that

(3) ∂C(uσtτ tγ) =
∑
j∈σ

(−1)κ(j,σ\{j})(uσ\{j}tτ∪{j}tγ − uσ\{j}tτ tγ∪{j})

on each generator, where κ(j, σ\{j}) = card({i ∈ σ\{j} | i < j}). Let
(
C∗((D

1, S0)K), ∂C
)

be the restriction of (C∗(I
m), ∂C) to (D1, S0)K (see (1) for definition), which is closed under

∂C . It can be checked that the cellular chain uσtτ tγ of form (2) belongs to C∗((D
1, S0)K)

if and only if σ ∈ K.
1



2 1. THE CELLULAR CHAIN COMPLEX

Proposition 1.1. There is a chain map

(4) ι :
(
C∗((D

1, S0)K), ∂C
)
−−−→ S∗((D

1, S0)K),

inducing a chain equivalence between
(
C∗((D

1, S0)K), ∂C
)
and the singular chain complex

of (D1, S0)K, which implies isomorphisms

H∗(C((D1, S0)K), ∂C)
ι−−−→∼= H∗((D

1, S0)K)

between respective homology groups in all dimensions. After taking Hom on (4), we have
isomorphisms

H∗(C((D1, S0)K), δC)
ι∗←−−−∼=

H∗((D1, S0)K)

between cohomology groups, where δC is the coboundary operator dual to ∂C.

Proof. This is a direct consequence of Proposition A.12 in Appendix A. □

1.2. A change of basis

To understand the (co)homology of (D1, S0)K further, it is convenient to use a new
basis for

(
C∗((D

1, S0)K), ∂C
)
: for the three generators u, t and t in (C∗(I), ∂), let ∂u

be the chain t − t and denote t by t. Then u, ∂u and t form a new basis of C∗(I).
Correspondingly,

(
C∗((D

1, S0)K), ∂C
)

is generated by

(5) uσtγ := uσtγ(∂u)τ = ⊗ici ∈
m⊗
i=1

C∗(Ii), ci =


ui if i ∈ σ ∈ K,

ti if i ∈ γ,

∂ui if i ∈ τ,

in which σ, γ and τ is a partition of [m] (any two of the three may be empty). When σ

and γ are both empty, we shall write the word ⊘ instead of the void.

Remark 1.2. Notice that in each word expressing a basis element above, we omit the
part (∂u)τ . Actually it means a sum of 2card(τ) cells with signs. For instance, we have

⊘ = (∂u)[m] =
∑
τ⊂[m]

(−1)card(τ)tτ t[m]\τ ,

a cellular chain with 2m 0-cells involved.

From (5) we have

(6) uσtτ tγ = uσ

∏
i∈τ

(∂ui + ti)tγ = uσ

∏
i∈τ

(1 + ti)tγ =
∑
τ ′⊂τ

uσtτ ′tγ =
∑
τ ′⊂τ

uσtτ ′∪γ,

where formally we use the notation of multiplication, with ∂ui replaced by “1”, and
tτ ′tγ = tτ ′∪γ.

Example 1.3. Let K ⊂ 2[2] be two discrete points {1} and {2}. Hence (D1, S0)K is a
simplicial 1-sphere with four 1-cells. Figure 1 illustrates a comparison of the two basis. It
is easy to check that H0((D

1, S0)K) is generated by t1,2, and H1((D
1, S0)K) is generated

by u2 − u1.

In what follows, suppose
(
C∗((D

1, S0)K), ∂C
)

is endowed with the basis (5).



1.2. A CHANGE OF BASIS 3

Figure 1. A comparison of the two basis

For ω ⊂ [m], let Kω be the full subcomplex of K with ground set ω, namely

(7) Kω = {σ ∈ K | σ ⊂ ω}.

Let C∗((D
1, S0)K)|ω be the subgroup of C∗((D

1, S0)K) generated by all chains of the form

(8) uσt[m]\ω (σ ∈ Kω),

where the union of the subscripts of u and ∂u is ω.
Due to the basis-change, differential rule (3) becomes neater:

(9)
∂C(uσt[m]\ω) =

∑
j∈σ

(−1)κ(j,σ\{j})uσ\{j}t[m]\ω (κ(j, σ \ {j}) = card({i ∈ σ \ {j} | i < j})) .

We find C∗((D
1, S0)K)|ω is closed under ∂C . Observe that we have the decomposition

(10)
(
C∗((D

1, S0)K), ∂C
)
=

⊕
ω⊂[m]

(
C∗((D

1, S0)K)|ω, ∂C
)
.

For instance, C∗((D
1, S0)K)|∅ is generated by a single chain t[m], and C∗((D

1, S0)K)|[m] is
generated by basis elements of the form uσ (σ ∈ K), meaning uσ(∂u)[m]\σ.

Denote by (C̃∗(K), ∂′) the augmented simplicial chain complex of K, and suppose
[m] induces a natural ordering on the vertices of K. As a free Abelian group, C̃∗(K) =⊕

p≥−1Cp(K): for p ≥ 0, Cp(K) is generated by oriented simplices of the form σ =

[i0, i1, . . . , ip], such that i0 < i1 < · · · < ip (the interchanging of two indices yields a minus
sign, we write σ as a subset of [m] with the given ordering). The augmentation C−1(K)



4 1. THE CELLULAR CHAIN COMPLEX

is generated the empty set. The boundary operator ∂′ : C̃∗(K)→ C̃∗(K) satisfies

(11) ∂′σ =

{∑
j∈σ(−1)κ(j,σ\{j}) (σ \ {j}) if σ ∈ Cp(K), for p ≥ 0,

0 if σ = ∅ ∈ C−1(K).

By definition, the reduced (co)homology groups of Kω of dimension −1 is trivial when
ω is non-empty, while H̃−1(K∅) and H̃−1(K∅) are both isomorphic to Z. The (co)homology
groups of K∅ vanish in other dimensions.

Theorem 1.4. The map

η :
⊕
ω⊂[m]

C̃∗(Kω)→ C∗((D
1, S0)K)

defined via

(12)
η|ω : C̃p(Kω) Cp+1((D

1, S0)K)|ω
σ uσt[m]\ω,

................................................................. ............

.............................................................................................................................................................................................. ............

................

for each ω ⊂ [m] with p ≥ −1, is a chain isomorphism shifting the degrees up by one.
Consequently, we have isomorphisms⊕

ω⊂[m]

H̃p(Kω)
ι◦η−−−→ Hp+1((D

1, S0)K);

in particular, H̃−1(K∅) corresponds to H0((D
1, S0)K).

Proof. By definition, η|ω is one-one onto, sending ∅ ∈ Kω to t[m]\ω. A comparison
of (9) and (11) shows that it preserves boundary operators on both sides. Together with
decomposition (10) and Proposition 1.1, the second statement follows. □

Remark 1.5. Note that when ω varies, η sends the empty sets in Kω to different
elements in C∗(D

1, S0)K .

1.3. Cohomology

Note that if we dualize the basis used in the previous section, the relation between the
cochains of (D1, S0)K and those of full subcomplexes of K cannot be obtained directly, as
what we have done for homology groups. Therefore we use another basis for the cochain
complex C∗((D1, S0)K); the relation between C∗((D1, S0)K) and C∗((D

1, S0)K) will be
discussed in Section 2.2.

Let u∗, t∗ and t
∗ be the basis in (C∗(I), δ) dual to u, t and t described in Section 1,

respectively, thus
−δt∗ = δt

∗
= u∗, δu∗ = 0.

Definition 1.6. Denote by 1∗ the sum t∗ + t
∗ and set t∗ = t

∗, and let (C∗(I), δ) be
endowed with the basis u∗, 1∗ and t∗. Similar to (5), a basis element of

C∗((D1, S0)K) = Hom(C∗((D
1, S0)K),Z)
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is denoted by

(13) uσtτ := uσtτ1γ = ⊗ic
∗
i ∈

m⊗
i=1

C∗(Ii), c∗i =


u∗
i if i ∈ σ ∈ K,

t∗i if i ∈ τ,

1∗i if i ∈ γ,

where σ, τ and γ are pairwise disjoint subsets with their union [m].

Note that δ1∗ = 0 and δt∗ = u∗, thus the coboundary operator δC dual to ∂C satisfies

(14) δC(u
σtτ ) =

∑
j∈τ

(σ∪{j})∈K

(−1)κ(j,σ)uσ∪{j}tτ\{j}, κ(j, σ) = card({i ∈ σ | i < j}).

It can be easily checked that δC ◦ δC = 0.
For each ω ⊂ [m], denote by C∗((D1, S0)K)|ω the subcomplex generated by

uσtω\σ, σ ∈ Kω;

one can check that it is closed under δC , by (14). Similarly we have the decomposition

(C∗((D1, S0)K), δC) =
⊕
ω⊂[m]

(C∗((D1, S0)K)|ω, δC),

and for each p ≥ −1, we have the cochain isomorphisms

(15)
µ :

⊕
ω⊂[m](C̃

p(Kω), δ
′) (Cp+1((D1, S0)K), δC)

(σ∗, ω) uσtω\σ,

................................................ ............

.......................................................................................................................................................................................................................................................... ............

................

shifting the degrees up by one, where (C̃p(Kω), δ
′) is the augmented simplicial cochain

complex dual to (C̃p(Kω), ∂
′) (see (11)), with (σ∗, ω) a p-cochain such that

δ′(σ∗, ω) =
∑
j∈ω\σ

(σ∪{j})∈K

(−1)κ(j,σ)(σ ∪ {j})∗.

Passing to cohomology, it follows that

Theorem 1.7. We have additive isomorphisms⊕
ω⊂[m]

H̃p(Kω)
(ι∗)−1◦µ−−−−−→ Hp+1((D1, S0)K)

in all dimensions p ≥ −1.

Example 1.8. Let K ⊂ 2[4] be the tetragon with maximal simplices {i, i + 1}, i =
1, 2, 3, 4 mod 4. All full subcomplexes of K having non-trivial (co)homology groups are
K∅, K1,3, K2,4 and K[4]. By Theorems 1.4 and 1.7, H0((D

1, S0)K) and H0((D1, S0)K) are
generated by [t1,2,3,4] and [11,2,3,4], corresponding to the point with constant coordinates
−1 and the sum of the 16 dual points with coordinates ±1, respectively. H1((D

1, S0)K) is
generated by α1 = [(u1−u3)t2,4] with ω = {1, 3}, and α2 = [(u2−u4)t1,3] with ω = {2, 4}.
They are the orientation classes of circles

S1
α1

= {(xi)
4
i=1 ∈ (D1, S0)K | x2 = x4 = −1}, S1

α2
= {(xi)

4
i=1 ∈ (D1, S0)K | x1 = x3 = −1},
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respectively. H1((D1, S0)K) is generated by [u2t4] and [u1t3]. It can be checked that
(D1, S0)K is a torus, in which tubular neighborhoods of S1

α1
and S1

α2
form a plumbing.

Remark. Originally, (D1, S0)K was constructed by Davis and Januszkiewicz [DJ91],
with the name universal Abelian cover, under the assumption that |K| is the (polar) dual
of a simple convex polytope P .

Explicitly, let G be the group (Z2)
m acting on Rm, generated by gi changing the sign

of the i-th coordinate (i = 1, 2, . . . ,m), and let X be the intersection of (D1, S0)K with
the first orthant of Rm. Suppose ∂X is the union

∪m
i=1Xi with Xi the subspace fixed by

gi. As a manifold with faces, X is homeomorphic to P . Then there is a piecewise linear
homeomorphism between (D1, S0)K and the space

(G×X)
/
∼,

sending g(x) to (g, x), x ∈ X and g ∈ G, where (g, x) ∼ (g′, x′) if and only if x = x′ and
g−1g′ ∈ ⟨gi⟩x∈Xi

.
Davis [Dav83] proved that for each ω ⊂ [m], the chain map

ϑ|ω : S∗(X,Xω) S∗((D
1, S0)K)

z
∑

τ⊂ω(−1)card(τ)∏
i∈ω gi

∏
j∈τ gj(z),

.................................................................................................................................................... ............

............................................................................................... ............

................

induces a splitting in homology, where Xω =
∪

i∈ω Xi and z is a relative cycle in S∗(X,Xω).
This yields an isomorphism⊕

ω⊂[m]

H∗(X,Xω)
ϑ−−−→∼= H∗((D

1, S0)K).

Later similar results were obtained by López de Medrano [LdM89], based on an earlier
work of Wall [Wal80].

The (co)homological decomposition of real moment-angle complexes can also be ob-
tained from [BBCG10a]: the suspension of (D1, S0)K is homotopy equivalent to the
wedge sum over the double suspensions of all full subcomplexes of |K|.

On cup products in cohomology, a general approach based on homotopy theory
was given [BBCG12]. In Chapter 3 we shall give an answer to a question proposed
in [BBCG12, p. 462] about the relation between H∗((D1, S0)K) and H∗((D2, S1)K).
The cellular cochain algebra constructed in Chapter 1 follows the spirit of Baskakov-
Buchstaber-Panov [BBP04], [Pan08] for H∗((D2, S1)K).



CHAPTER 2

Cup and cap products

This chapter is devoted to the formulae for cup and cap products in the (co)homology
of (D1, S0)K , using the (co)chain complexes with basis (5) and (13), respectively.

The idea here is as follows, due to Whitney [Whi38]. Let X =
∏m

i=1 |Ki| be a product
of compact polyhedra, in which every Ki is a finite simplicial complex. Then there is a
natural cochain equivalence between S∗(X) and the tensor product

⊗m
i=1C

∗(Ki) over
simplicial cochain complexes C∗(Ki), which preserves the cup products, up to cochain
homotopy. Here cup products in

⊗m
i=1C

∗(Ki) is defined in this way: suppose that cp =

⊗m
i=1c

pi is a p-cochain with pi-cochains cpi ∈ Cpi(Ki), cq = ⊗m
i=1c

qi a q-cochain with
qi-chains cqi ∈ Cqi(Ki), respectively, then we have

(16) cp ⌣ cq = (−1)κ(cp1 ⌣ cq1)⊗ · · · ⊗ (cpm ⌣ cqm), κ =
m∑
i=1

qi(
∑
j>i

pj),

being a cochain of degree p + q. Likewise, for cap products, assume cr = ⊗m
i=1cri ∈⊗m

i=1C∗(Ki) an r-chain with ri-chains cri ∈ Cri(Ki), then

(17) cp ⌢ cr = (−1)ν(cp1 ⌢ cr1)⊗ · · · ⊗ (cpm ⌢ crm), ν =
m∑
i=1

pi(
∑
j>i

(ri − pi)),

which coincides with the cap product using singular (co)chains for X when passing to
(co)homology.

In Appendix A we shall extend the property above to the situation here, namely
(D1, S0)K is embedded in Im as a proper subcomplex with each cell a product of simplices
(see Theorem A.20).

The cup product will be discussed in Section 2.1, where we treat
(
C∗((D1, S0)K), δC

)
as a differential graded algebra (R∗

K , d), which is not commutative in any sense (while
its cohomology is graded commutative). In Section 2.2 the cap product is formulated as
an R∗

K-module structure on the chain complex (C∗((D
1, S0)K), ∂C). Once (D1, S0)K is

a homology manifold, the Poincaré duality coincides with the Alexander duality in |K|.
This will be discussed in Section 2.3.

2.1. The algebra R∗
K and the cup product

Recall that the simplicial cup product in an abstract simplicial complex K is defined
as follows: choose a partial ordering on the vertex set of K inducing a total ordering on
each simplex, then

Cp(K)
⊗

Cq(K)
⌣−−−→ Cp+q(K)

7
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is defined by

(18) (cp ⌣ cq)([vi0 , . . . , vip+q ]) = cp([vi0 , . . . , vip ])c
q([vip , . . . , vip+q ])

where [vi0 , . . . , vip+q ] is a simplex in Cp+q(K) with vi0 < · · · < vip+q in the given ordering.
For instance, with the induced ordering of R, cup products in C∗(I) (see Definition

1.6) are listed below:

1∗ ⌣ u∗ = u∗ ⌣ 1∗ = u∗, 1∗ ⌣ t∗ = t∗ ⌣ 1∗ = t∗, 1∗ ⌣ 1∗ = 1∗;

t∗ ⌣ t∗ = t∗, t∗ ⌣ u∗ = 0, u∗ ⌣ t∗ = u∗ u∗ ⌣ u∗ = 0.

Definition 2.1. Denote by (R∗, d) the differential graded algebra with the properties
below:

◦ R∗ is the quotient of the free Z-algebra with degree-one generators u1, u2, . . .,
um and degree-zero generators t1, t2, . . ., tm, subject to relations

(19)
uiti = ui, tiui = 0, uitj = tjui, titi = ti, uiui = 0, uiuj = −ujui, titj = tjti,

for i, j = 1, 2, . . . ,m with i ̸= j. We say that a monomial in R∗ is reduced if it
is written in the square-free form uσtτ = x1 . . . xm, where σ and τ are disjoint
subsets of [m], with xi = ui for i ∈ σ, xi = ti for i ∈ τ , and xi = 1 (the identity
with degree zero) otherwise.
◦ The differential d satisfies

(20) d(xy) = (dx)y + (−1)deg(x)x(dy)

for homogeneous elements x, y ∈ R∗, with

dui = 0, dti = ui and d1 = 0.

For a simplicial complex K with ground set [m], the corresponding Stanley-Reisner
ideal IK in R∗ is generated by all square-free monomials of the form uτ , where τ is not a
simplex of K.

The differential graded algebra (R∗
K , d) is defined to be the quotient R∗/IK endowed

with the differential d above. A reduced monomial in R∗
K is the (non-trivial) image of a

reduced monomial in R∗ under the quotient homomorphism.

By definition, every monomial of R∗
K can be uniquely written in a reduced form, i.e. of

the form uσtτ where σ and τ are disjoint subsets of [m], such that σ ∈ K.
It can be checked that the differential d is compatible with the algebraic structure.

For instance, IK is closed under d, and

ui = dti = d(titi) = uiti + tiui = ui.

Example 2.2. Let K be the pentagon with ground set [5] with the set of maximal
simplices

{{1, 2}, {2, 3}, {3, 4}, {4, 5}, {5, 1}}.
It can be checked that the Stanley-Reisner ideal is generated by

u1,3, u1,4, u2,4, u2,5, u3,5,
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therefore u1t3 is a cocycle in R1
K , since

d(u1t3) = (du1)t3 − u1(dt3) = −u1,3 = 0.

In the same way u3t1,4+u4t1,3 is a cocycle in R1
K , whose difference with d(t1,3,4) gives the

cocycle u1t3,4.

For any subset ω ⊂ [m], let R∗
K |ω be the submodule generated by reduced monomials

of the form uσtω\σ, where σ runs through subsets of ω. Clearly by (20), R∗
K |ω is closed

under d.

Lemma 2.3. The map

(21)
ϕ : (C∗((D1, S0)K), δC) (R∗

K , d)
uσtτ uσtτ ,

............................................................................................................................................... ............

........................................................................................................................................................................................................................................................................................ ............

................

is a cochain isomorphism preserving products: the cup product in C∗((D1, S0)K) on the
left-hand side and the multiplication in R∗

K on the right.

Proof. Clearly as a homomorphism between Z-modules, ϕ is one-one onto, preserving
differentials on both sides, by formulae (14) and (20). By Theorem A.20, the simplicial
cup product in C∗((D1, S0)K) follows (16), hence ϕ preserves products, since uiuj =

−ujui. □

With the lemma above, we can associate each reduced monomial uσtτ in R∗
K to the

dual simplex σ∗ in C̃∗(Kσ∪τ ) (Kσ∪τ is the full subcomplex), by the composition ϕ ◦ µ, in
which µ is defined by (15).

Definition 2.4. The ∗̄-product in the second row of the diagram

(22)

C∗((D1, S0)K)
⊗

C∗((D1, S0)K)
⌣−−−→ C∗((D1, S0)K)

∼=
x(µ,µ) ∼=

xµ ⊕
ω⊂[m]

C̃∗(Kω)

⊗ ⊕
ω⊂[m]

C̃∗(Kω)

 ∗̄−−−→
⊕
ω⊂[m]

C̃∗(Kω)

is defined via its commutativity. More explicitly, for two dual simplices σ∗
p = σp ∈ C̃p(Kω)

and σ∗
p′ = σp′ ∈ C̃p′(Kω′), we have

σp∗̄σp′ = µ−1
(
µ(σp) ⌣ µ(σp′)

)
= µ−1

(
uσptω\σp ⌣ uσp′ tω

′\σp′
)

=

{
(−1)κ(σp,σp′ ) (σp ∪ σp′)

∗ if σp′ ∩ ω = ∅,
0 otherwise,

where κ(σp, σp′) =
∑

j∈σp′
card({i ∈ σp | i > j}), and (σp ∪ σp′)

∗ is the dual of (σp ∪σp′) ∈
C̃p+p′+1(Kω∪ω′).

From the cochain isomorphism (21) and the differential rule (20), it turns out that the
∗̄-product satisfies

(23) δ′(cp∗̄cp′) = (δ′cp)∗̄cp′ + (−1)p+1cp∗̄(δ′cp′),
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for cp ∈ C̃p(Kω) and cp
′ ∈ C̃p′(Kω′). Therefore it gives rise to a product structure for⊕

ω⊂[m]

H̃∗(Kω). The following theorem is based on Lemma 2.3, Theorem 1.7 and Proposi-

tion 1.1.

Theorem 2.5. We have the following isomorphisms between algebras:⊕
ω

H̃∗(Kω)
(ι∗)−1◦µ−−−−−→∼=

H∗((D1, S0)K)
ϕ◦ι∗−−−→∼= H∗(RK , d),

where the first is endowed with the ∗̄-product, the second with the cup product and the
third with the multiplication in R∗

K.

Proof. The only thing we need to prove now is that the additive isomorphism

ι∗ : H∗((D1, S0)K)→ H∗(C((D1, S0)K), δC)

appearing in Proposition 1.1 preserves product structures. This follows from Theorem
A.20. □

Example 2.6. Let K be the pentagon in Example 2.2. Here we describe its coho-
mology by Theorem 2.5. It can be easily checked that all full subcomplexes of K with
non-vanishing (co)homology are: Ki,i+2 with i = 1, 2, 3, Ki,i+3 with i = 1, 2, Ki,i+2,i+3

with i = 1, 2, . . . , 5, (we are using mod 5 integers i), together with K∅ and K[5]. Corre-
spondingly, we can choose a basis for H∗(RK). For H1(RK) we have ten basis elements,

(24) α1 = [u1t3], α2 = [u1t4], α3 = [u2t4], α4 = [u2t5], α5 = [u3t5],

and

β1 = [u1t3(1− t4)], β2 = [u2t4(1− t5)], β3 = [u3t5(1− t1)], β4 = [u4t1(1− t2)],

β5 = [u5t2(1− t3)].(25)

For H0(RK), we choose the identity [1] ∈ R0
K . For H2(RK), a basis can be γ =

[ui,i+1ti+2,i+3,i+4] with i any mod 5 integer (for instance, u1,2t3,4,5−u2,3t1,4,5 = d(u2t1,3,4,5)).
By Theorem 3.7, (D1, S0)K is a closed manifold, thus it is an orientable surface of genus
5. It can be checked that

γ = −α1β2 = α2β5 = −α3β3 = α4β1 = −α5β4

presents all non-trivial products in H∗(RK), since products between any two α-elements
from (24) or any two β-elements from (25) vanish.

2.2. R∗
K-module C∗((D

1, S0)K) via the cap product

Recall that in a simplicial complex K, the simplicial cap product

⌢ : C∗(K)
⊗

C∗(K)→ C∗(K)

is defined as follows. Choose a partial ordering on the vertex set of K which gives a total
ordering on each simplex, then

(26) cp ⌢ [i0, . . . , ir] = cp([ir−p, . . . , ir])[i0, . . . , ir−p] (cp([ir−p, . . . , ir]) ∈ Z),
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for cp ∈ Cp(K) and [i0, . . . , ir] a simplex in Cr(K) (r ≥ p) with i0 < . . . < ir in the given
ordering.

For instance, the cap products in the simplicial (co)chain complex of [−1, 1] (i.e. C∗(I)

and C∗(I)), with the basis given in Sections 1.2 and 1.3, respectively, are listed below (note
that t∗ is the dual of the cell {1} rather than that of t = {−1}):

t∗ ⌢ ∂u = ∂u+ t, t∗ ⌢ u = u, t∗ ⌢ t = 0, 1∗ ⌢ ∂u = ∂u, 1∗ ⌢ u = u, 1∗ ⌢ t = t;

u∗ ⌢ u = t, u∗ ⌢ ∂u = 0, u∗ ⌢ t = 0.

(27)

Remark. Here other basis for C∗(I) and C∗(I) also works. The basis presented
above, as we have already seen in the previous chapter, illustrates the correspondence
between the (co)chains of (D1, S0)K and those of full subcomplexes of K in an explicit
way. Another reason is that, no extra minus signs come out from these products.

Using the cochain isomorphism ϕ : C∗((D1, S0)K) → R∗
K (see (21)), C∗((D

1, S0)K)

can be endowed with an RK-module structure, by formula (17) and list (27):

Definition 2.7. The cap product ⌢ : R∗
K⊗C∗((D

1, S0)K)→ C∗((D
1, S0)K) is defined

via

(28) uσtτ ⌢ uσ′tτ ′ =

{
(−1)ν(σ,σ′)uσ′\σtσ

∏
i∈τ\σ′(1 + ti)tτ ′ if σ ⊂ σ′ and τ ∩ τ ′ = ∅,

0 otherwise,

here ν(σ, σ′) =
∑

j∈σ card({i ∈ σ′ \ σ | i > j}), and
∏

i∈τ\σ′(1 + ti) is a formal notation
(“1” means ∂ui in each bracket), i.e.

uσ′\σtσ
∏

i∈τ\σ′

(1 + ti)tτ ′ =
∑

γ⊂(τ\σ′)

uσ′\σtσ∪γ∪τ ′ .

The proposition below follows directly from [Whi38] (see also (77)):

Proposition 2.8. Let αp and αp′ be two homogeneous elements in Rp
K and Rp′

K,
respectively, and let cr be an r-chain in Cr((D

1, S0)K) (r ≥ p+ p′). Then we have

(29) ∂C(α
p ⌢ cr) = (−1)r−p(dαp) ⌢ cr + αp ⌢ ∂Ccr

and

(30) αp′ ⌢ (αp ⌢ cr) = (αp′αp) ⌢ cr.

Theorem 2.9. Passing to (co)homology, the cap product defined by (28) coincides
with the one for the singular (co)chain complex of (D1, S0)K.

Proof. This follows from Theorem A.20. □

The following example was studied by López de Medrano in full detail, with a more
geometric argument (see [LdM89], [BLV13]). As a comparison, here we consider it with
the products established so far.

Example 2.10. Let P be the polytope defined as the Gale transform of the 7-tuple
λ = (λi)

7
i=1 in R2, consisting of the real and imaginary parts of the solutions of the
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Figure 1. The Heptagon

equation z7 = 1. Here by Gale transform we mean the transpose of a basis of (real)
solutions of the equation

(31)
{∑7

i=1 xiλi = 0,∑n
i=1 xi = 1,

namely if we write a basis as a (4× 7)-matrix of rank 4, A = (Ai)
7
i=1, whose row vectors

satisfies (31), then the Gale transform of λ is the column vectors of A. Let P ⊂ R4

be the convex hull conv(Ai)i∈[7]. Actually the combinatorial type of P is independent
of the chosen basis: by the fundamental property of Gale transforms, for any σ ⊂ [7],
conv(Ai)i∈σ is a face of P if and only if the origin of R2 is in the relative interior of
conv(λi)i∈[7]\σ. Therefore all faces of P are determined by the configuration given by λ

(see Figure 1). For instance, let K be the boundary complex of P , then

(i) any subset of [7] with cardinality 2 is a simplex of K (i.e. P is a neighborly
4-polytope), and

(ii) any subset of [7] not in K must contain three consecutive points of the form
{i, i+ 1, i+ 2}, i = 1, 2, . . . , 7 mod 7.

From (i), (D1, S0)K is a simply connected 4-manifold (see [Dav08, Chapter 1, p. 12]).
Using Theorem 1.4, we can write down the orientation class of (D1, S0)K :

Γ =[u1,2,4,5 − u1,2,4,6 + u1,2,5,6 + u1,3,4,6 − u1,3,4,7 − u1,3,5,6 + u1,3,5,7 − u1,4,5,7

+ u2,3,5,6 − u2,3,5,7 + u2,3,6,7 + u2,4,5,7 − u2,4,6,7 + u3,4,6,7],(32)

which is also a list of all 14 codimension-one faces of P . Since K is a simplicial 3-sphere,
by Alexander duality we have

H̃3−i−1(Kω) ∼= H̃i(K[7]\ω).
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Figure 2. Full subcomplexes K1,2,3 and K4,5,6,7

Together with (i), it follows that Kω has non-trivial reduced (co)homology only when
card(ω) = 0, 3, 4, 7, in which H̃−1(K∅) and H̃3(K[7]) (resp. H̃−1(K∅) and H̃3(K[7])) cor-
respond to H0((D

1, S0)K) and H4(D
1, S0)K) (resp. H0((D1, S0)K) and H4(D1, S0)K)),

respectively. By (ii) it follows that other (co)homology groups of dimension 2 arise from
full subcomplexes of the form {i, i + 1, i + 2} and their complements in [7], as shown in
Figure 2.

As a conclusion, a basis for H2(RK) can be chosen and divided into two groups
B1 = {[ui,i+1ti+2]}7i=1 and B2 = {[uj+1,j+2tj,j+3]}7j=1 (i, j are mod 7 integers) according to
card(ω) = 3 and card(ω) = 4, respectively. It is not difficult to check that all products are
trivial between basis elements in B1, and each basis element in B1 has a unique pairing in
B2, such that their product generates H4(RK). For instance, [u1,2t3u5,6t4,7] = [u1,2,5,6t3,4,7].
But notice that elements in B2 have non-trivial products: [u1,2t3,7u5,6t4,7] = [u1,2,5,6t3,4,7].
To remedy this, we can use another basis

B′
2 = {[uj+1,j+2tj(1− tj+3)] = [uj+1,j+2tj − uj+1,j+2tj,j+3]}7j=1

instead of B2, and a straightforward calculation shows that all products between elements
from B′

2 vanish. With basis elements from B1 and B′
2, we see that (D1, S0)K and ♯7S

2×S2

have isomorphic cohomology, hence they are homeomorphic by the classification theorem
of Freedman [Fre82].

To illustrate the intersection of submanifolds through cup products, by Poincaré du-
ality, we proceed with (28). For instance,

(33) [u1,2t3 ⌢ Γ] = [(u4,5 − u4,6 + u5,6)t1,2(1 + t3)]︸ ︷︷ ︸
K4,5,6,7⊔K3,4,5,6,7

= [(u4,5 − u4,6 + u5,6)t1,2,3]︸ ︷︷ ︸
K4,5,6,7

,

because K3,4,5,6,7 is acyclic. Here the geometric meaning of the class [(u4,5−u4,6+u5,6)t1,2,3]

is as follows: consider the sphere

α = {(xi)
7
i=1 ∈ (D1, S0)K | x1 = x2 = x3 = −1, x7 = 1}

with suitable orientation, and let s7 : R7 → R7 be the reflection changing the sign of the
last coordinate, then [(u4,5−u4,6+u5,6)t1,2,3] corresponds to the class [α]−s7[α] (see (5) for
definition). Therefore if we use the representative [u1,2t3(1− t7)] in (33) instead of [u1,2t3],
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we will get the class −s7[α], which is represented by a submanifold whose intersection
with the sphere

α′ = {(xi)
7
i=1 ∈ (D1, S0)K | x4 = x5 = x6 = x7 = −1}

is the point with constant coordinates −1. In the same way, a calculation of [u5,6t4(1 −
t7) ⌢ Γ] shows that it coincides with suitable orientation class of α′. From the Poincaré
duality we can read the plumbing of spheres s7(α) and α′, which can also be checked
directly.

Remark 2.11. Gitler and López de Medrano [GL13] gave a full topological classi-
fication of (D1, S1)K with |K| dual to a neighborly simple 4-polytope: each of them is
homeomorphic to a connected sum of copies of S2 × S2. In general, however, a direct
diffeomorphim between them is still missing in current literature. In the example pre-
sented above, as a special case, Gutiérrez and López de Medrano [GL13’] illustrated such
a diffeomorphism.

2.3. Alexander Duality

Recall that a locally compact topological space X is an unbounded homology n-
manifold, if for each x0 ∈ X, the local homology group Hi(X,X \ {x0}) vanishes if
i ̸= n and is infinite cyclic if i = n. Davis [Dav08] proved that (D1, S0)K is a homology
n-manifold if and only if |K| is a generalized homology sphere of dimension n−1, namely
|K| has the homology of an (n− 1)-sphere, as a homology (n− 1)-manifold (see Theorem
3.7 for details).

Now we define another combinatorial product, whose relation with the cap product
(see Definition 2.7) is analogous to that between the ∗̄-product (see Definition 2.4) and
the cup product. As we will see below, by these combinatorial products the (co)homology
of K can be understood in another way.

Definition 2.12. The ⊓-product in the second row of the diagram

(34)

R∗
K

⊗
C∗((D

1, S0)K)
⌢−−−→ C∗((D

1, S0)K)

∼=
x(ϕ◦µ,η) ∼=

xη ⊕
ω⊂[m]

C̃∗(Kω)

⊗ ⊕
ω⊂[m]

C̃∗(Kω)

 ⊓−−−→
⊕
ω⊂[m]

C̃∗(Kω),

is defined by the commutativity, where the (degree-shifted) (co)chain isomorphisms ϕ, η
and µ are defined by (21), (12) and (15), respectively.

By Definition 2.7 and Proposition 2.8, the following properties are straightforward:

Proposition 2.13. The generator of C̃−1(K[m]), ∅ = (ϕ ◦ µ)−1(1), is the unique
identity such that ∅ ⊓ cr = cr, for every cr ∈ C̃r(Kω′). For αp ∈ C̃p(Kω1), we have

∂′(αp ⊓ cr) = (−1)r−pδ′αp ⊓ cr + αp ⊓ ∂′cr,
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where ∂′ (resp. δ′) is the simplicial boundary (resp. coboundary) operator. Additionally,
assume that αq ∈ C̃q(Kω2), then

αq ⊓ (αp ⊓ cr) = (αq∗̄αp) ⊓ cr.

Lemma 2.14. Choose a p-cochain cp ∈ Rp
K |ω and an r-chain cr ∈ Cr((D

1, S0)K)|[m],
we have

cp ⌢ cr ∈
⊕
τ⊂ω

C̃r−p(K[m]\τ ).

Moreover, for each τ ⊂ ω, there is a p-chain c̃pτ ∈ Rp
K |τ such that

(cp − c̃pτ ) ⌢ cr ∈
⊕

τ⊊γ⊂ω

C̃r−p(K[m]\γ).

Proof. Without loss of generality, we can write cp as a finite sum,

cp =
∑
σ⊂ω

card(σ)=p

kσu
σtω\σ,

where kσ are integers as coefficients. Then by Definition 2.7 and a direct calculation, it
follows that

(35) cp ⌢ cr = (. . . )tω︸ ︷︷ ︸
∈C̃r−p(K[m]\ω)

+
∑
τ⊊ω

(. . . )tτ︸ ︷︷ ︸
∈C̃r−p(K[m]\τ )

,

from which the first statement follows. For the second one, we claim that if (. . . )tτ appears
in the resulting cp ⌢ cr as the sum of all terms in C̃r−p(K[m]\τ ), then (. . . )tτ must also
appear as the corresponding term in c̃pτ ⌢ cr, where

c̃pτ =
∑
σ⊂τ

card(σ)=p

kσu
σtτ\σ ∈ Rp

K |τ

is obtained by changing associated terms in cp. To see this, observe that uσtω\σ ⌢ uσ′

(since cr ∈ Cr((D
1, S0)K)|[m] by assumption, see (8)) is non-trivial only when σ ⊂ σ′ (see

(28)), which is

(−1)ν(σ,σ′)uσ′\σtσ
∏

i∈ω\σ′

(1 + ti) = (−1)ν(σ,σ′)
∑

ξ⊂ω\σ′

uσ′\σtσ∪ξ.

Then for any fixed γ = σ ∪ ξ with γ ⊂ τ , replacing ω by τ yields the same summand
(−1)ν(σ,σ′)uσ′\σtγ, thus by summing up these terms with their coefficients kσ in cp, which
is exactly c̃pτ , the claim follows. □

Actually, in the order that card(τ) decreases, we can eliminate every extra term of the
form (. . . )tτ in (35), where τ ⊊ ω, by repeating the construction above:

Corollary 2.15. Assume that cp ∈ Rp
K |ω and cr ∈ Cr((D

1, S0)K)|[m], then there
exists c̃p ∈

⊕
τ⊊ω R

p
K |τ , such that (cp − c̃p) ⌢ cr belongs to C̃r−p(K[m]\ω).

Assume that |K| is a generalized homology (n−1)-sphere, thus (D1, S0)K is a homology
n-manifold, which is orientable by Theorem 1.4 with its orientation class given by the
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orientation class of |K|. Let ΓK ∈ C̃n−1(K) be the orientation class, and define

AD :
⊕
ω⊂[m]

C̃∗(Kω)→
⊕
ω⊂[m]

C̃∗(Kω)

via

(36) ADω : C̃∗(Kω)
⊓ΓK−−−→

⊕
ω⊂[m]

C̃∗(Kω)
πω−−−→ C̃∗(K[m]\ω),

where πω is the projection onto the direct summand. An explicit formula for AD is as
follows. Suppose that σ∗

p ∈ C̃p(Kω) is a dual p-simplex and σ′ ∈ C̃n−1(K) is a simplex
appearing in the class ΓK (as a finite sum of simplices of degree n − 1, with coefficients
±1), then

πω(σ
∗
p ⊓ σ′) =

{
(−1)ν(σp,σ′)(σ′ \ σp) if σp = σ′ ∩ ω,

0 otherwise,
where ν(σp, σ

′) =
∑

j∈σp
card({i ∈ σ′ \ σp | i > j}) and AD(σ∗

p) is the sum with terms of
above form, multiplied with their coefficients in ΓK .

Example 2.16. Let Γ be the orientation class given in (32), as shown in Example 2.10.
Interpreting the calculation (33) in the language of ⊓-product, it becomes (see Figure (2))

π4,5,6,7({1, 2}∗︸ ︷︷ ︸
K1,2,3

⊓Γ) = π4,5,6,7({4, 5} − {4, 6}+ {5, 6}︸ ︷︷ ︸
K3,4,5,6,7

+ {4, 5} − {4, 6}+ {5, 6}︸ ︷︷ ︸
K4,5,6,7

)

= {4, 5} − {4, 6}+ {5, 6}︸ ︷︷ ︸
K4,5,6,7

.

Theorem 2.17. Let |K| be a generalized homology (n−1)-sphere with the orientation
class ΓK. Then for each ω ⊂ [m], AD induces isomorphisms

(37) H̃ i(Kω)
ADω−−−→∼= H̃n−i−2(K[m]\ω)

with −1 ≤ i ≤ n− 1.

Proof. By Theorem 1.4 and diagram (34), the diagram

Ri
K

⌢η(ΓK)−−−−−→ Cn−i((D
1, S0)K)

ϕ◦µ
x∼= η

x∼=⊕
ω⊂[m]

C̃i−1(Kω)
⊓ΓK−−−→

⊕
ω⊂[m]

C̃n−i−1(K[m]\ω)

commutes for every i with 0 ≤ i ≤ n, where (D1, S0)K is now a compact homology man-
ifold with the orientation class η(ΓK). The Poincaré duality in (D1, S0)K (see [Mun84,
Section 67, p. 394–397]) implies that the bottom row is an isomorphism when passing to
(co)homology. It remains to show the isomorphism still holds after projections πω.

This is clear when ω is empty, by Proposition 2.13. In what follows we assume ω ̸= ∅.
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(Injectivity of ADω.) If there exists an i-cochain ci ∈ C̃ i(Kω), such that [ci] ∈ ker(ADω),
then by Corollary 2.15, we have

(ci − c̃i) ⊓ ΓK = AD(ci), for some c̃i ∈
⊕
τ⊊ω

C̃i(Kτ ),

hence [ci − c̃i] is in the kernel of the isomorphism induced by ⊓ΓK , and it follows that it
must be a coboundary, so must be ci, since

⊕
τ⊊ω C̃

∗(Kτ ) is closed under δ′.
(Surjectivity of ADω.) Let [cn−2−q] ∈ H̃n−2−q(K[m]\ω) be any class such that

(38) cn−2−q = cq ⊓ ΓK .

It remains to prove that cq can be chosen from C̃q(Kω). First notice that if cq has a
summand cqτ ∈ C̃q(Kτ ) with τ ⊊ ω, then by Lemma 2.14, cqτ ∩ ΓK has no contributions
to C̃n−2−q(K[m]\ω), thus it can be ignored in the image ADω(c

q). Therefore, without loss
of generality, suppose that cq ∈

⊕
ω⊂γ C̃

q(Kγ). For any non-trivial summand of cq not
contained in C̃q(Kω), say cqγ ∈ C̃q(Kγ) with ω ⊊ γ, the proof of Lemma 2.14 implies that
there is a q-cochain cqγ′ ∈ C̃q(Kω) such that

ADω(c
q
γ′) = ADω(c

q
γ),

thus we can replace the summand cqγ by cqγ′ . After using this trick for all summands of
this form, the proof will be completed. □



CHAPTER 3

Polyhedral products as real moment-angle complexes

With respect to a sequence J = (ni)
m
i=1 of positive integers, Bahri, Bendersky, Co-

hen and Gitler [BBCG10b] introduced an operation on a simplicial complex K (whose
ground set is [m]), such that with the resulting complex KJ (with the original nota-
tion K(J) in [BBCG10b]) and pairs (Dni , Sni−1)mi=1, the associated polyhedral product
((Dni , Sni−1)mi=1)

K is homeomorphic to the real moment-angle complex (D1, S0)KJ (see
Lemma 3.4). Also, they developed a local construction that arose in earlier works with
the name simplicial wedge construction (see [PB80]), such that KJ can be obtained by
using a sequence of the local constructions consecutively (i.e. Lemma 3.13).

On the other hand, in the language of simple polytopes, simplicial wedge constructions
appeared in the work of Wall [Wal80], and later they were intensely used in [LdM89] and
[GL13] by López de Medrano and Gitler. In these works, this construction (also named
as the Buchstaber construction) is closely related to a class of open book constructions on
certain transverse intersections of real quadrics with the unit spheres: they are smooth
manifolds homeomorphic to the polyhedral products indicated above.

Based on the characterization work of Davis for real moment-angle manifolds (see
Theorem 3.7), we shall proceed with homology manifolds, and consider the infulence of
a simplicial wedge construction on associated manifold. Consequently, in Section 3.1, a
necessary and sufficient condition that a moment-angle complex (D2, S1)K is a topological
manifold is obtained (see Theorem 3.16). In Section 3.2, we give an alternative proof of
Theorem 3.7, which is an adaptation of the approaches in [BP02] and [Dav08]. In Section
3.3, we analyse the topological open book construction by cochains, and illustrate that
the augmented simplicial cochain complexes of all full subcomplexes of K are sufficient
to give the cohomology of the real moment-angle complex (D1, S0)KJ , in the form of the
cohomology of a differential graded algebra R∗

KJ (see Corollary 3.35). This idea follows
that of Baskakov-Buchstaber-Panov [BBP04], [Pan08] for H∗((D2, S1)K).

Throughout this chapter, let K be an abstract simplicial complex with ground set [m];
for ω ⊂ [m], the full subcomplex Kω will be denoted as K|ω.

3.1. KJ and simplicial wedge constructions

Definition 3.1 (see [BBCG10a]). Let K be the category induced by K, in which
objects are simplices of K, and morphisms are inclusions. Let T be the category of
topological spaces and suppose (Xi, Ai)

m
i=1 are m pairs chosen from T. The polyhedral

product functor determined by (Xi, Ai)
m
i=1 and K is given by

D : K −−−→ T

18
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sending each object σ ∈ K to the space

D(σ) =
m∏
i=1

Yi, where Yi =

{
Xi if i ∈ σ,

Ai otherwise.

The colimit of D (see Definition A.1) is referred to as the corresponding polyhedral product
and will be denoted as ((Xi, Ai)

m
i=1)

K . If all m pairs (Xi, Ai)
m
i=1 are homeomorphic to a

given one, (X,A), then ((Xi, Ai)
m
i=1)

K will be abbreviated as (X,A)K .

It can be checked that the polyhedral product ((Xi, Ai)
m
i=1)

K is homeomorphic to the
union

∪
σ∈K D(σ). For instance, a real moment-angle complex (D1, S0)K is the polyhedral

product with m pairs (D1, S0).

Definition 3.2. A subset of [m] not contained in K is called a missing face of K, if
all of its proper subsets are simplices of K.

For abstract simplicial complexes K1 and K2 with disjoint ground sets V1 and V2,
respectively, their join is defined as

K1 ∗K2 = {σ1 ∪ σ2 | σ1 ∈ K1, σ2 ∈ K2},

with the new ground set V1 ∪ V2. Let v ∈ K be a vertex (i.e. card(v) = 1), then the link
of v in K is given by

Link(v,K) = {σ ∈ K | (v ∪ σ) ∈ K, v ∩ σ = ∅};

the link of a vertex in |K| refers to the geometric realization of the associated link with
the form above.

Clearly, each τ ⊂ [m] not contained in K must contain certain missing face of K, and
vice versa. Thus with a given ground set, K is completely determined by its missing faces.
For example, the (m − 1)-simplex ∆m−1 consisting of all subsets of [m] has no missing
faces, and any K ⊂ 2[m] with no missing faces must be ∆m−1.

Definition 3.3 (see [BBCG10b]). Let J = (ni)
m
i=1 be a sequence of positive integers

with Ni =
∑i

j=1 nj, i = 1, 2, . . . ,m. For each missing face τ = {i1, i2, . . . , il} of K, let
τ(J) = {Bi1 , Bi2 , . . . , Bil} be a subset of [Nm], such that Bij is a block of consecutive
indices from Nij−1 + 1 to Nij−1 + nij (here we set N0 = 0), j = 1, 2, . . . , l. Let KJ the
abstract simplicial complex with ground set [Nm], given by its missing faces: as τ runs
through the missing faces of K, every τ(J) is a missing face of KJ , and all missing faces
of KJ are of this form.

Note that by definition, we have card(τ(J)) =
∑

i∈τ ni for each missing face τ of K.
KJ = K if and only if ni = 1 for all i = 1, 2, . . . ,m.

For the sequence J = (ni)
m
i=1, let Dni be the unit ni-disk with its boundary Sni−1.

Observe that (Dni , Sni−1) is homeomorphic to a pair of polyhedral products

(Ini , ∂Ini) = ((D1, S0)∆
ni−1

, (D1, S0)∂∆
ni−1

).

Lemma 3.4 (see [BBCG10b]). The polyhedral product ((Dni , Sni−1)mi=1)
K is homeo-

morphic to the real moment-angle complex (D1, S0)KJ .
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Proof. Let fi : (Ini , ∂Ini) → (Dni , Sni−1) be m chosen homeomorphisms a priori,
i = 1, 2, . . . ,m, and let fJ = (f1, f2, . . . , fm) : INm →

∏m
i=1D

ni be their product. Clearly
fJ is a homeomorphism.

Denote by KJ the category induced by KJ , and suppose DJ : KJ → T is the polyhe-
dral product functor defining (D1, S0)KJ . Now we define a map

(39)
FJ : (D1, S0)KJ

∏m
i=1D

ni

DJ(σ
′) fJ(DJ(σ

′)).
......................................................................................................... ............

................................................................................................................................................. ............

................

Note that by passing each σ′ ∈ K(J) to the colimit, FJ is well-defined and continuous.
We claim that with its image restricted to ((Dni , Sni−1)mi=1)

K , FJ is a bijection. Since
(D1, S0)KJ is compact and ((Dni , Sni−1)mi=1)

K is Hausdorff, if follows from the claim that
FJ is closed thus it induces a desired homeomorphism.

To prove the claim, we check the image of FJ . Choose a point x = (xi)
m
i=1 ∈

∏m
i=1D

ni

with xi ∈ Dni , i = 1, 2, . . . ,m, by definition, x ∈ ((Dni , Sni−1)mi=1)
K if and only if

σx := {i ∈ [m] | xi ∈ Dni \ Sni−1}

does not contain any missing faces of K (see Definition 3.1). This happens if and only if

σf−1
J (x)(J) := {Bi | f−1

i (xi) ∈ Ini \ ∂Ini}

does not contain any missing faces of KJ , i.e., σf−1
J (x)(J) ∈ KJ (where Bi is a block of

consecutive indices
Ni−1 + 1, Ni−1 + 2, . . . , Ni−1 + ni,

with Ni−1 =
∑i−1

j=1 nj). Therefore the claim follows. □

Remark 3.5. As mentioned in Section 2.3, a topological space X is a homology n-
manifold (without boundary) if it has the same local homology groups with Rn. Using
the long exact sequence of relative homology groups, it turns out that (see for example,
[Mun84, Theorem 63.2, p. 375; Exercise 1, p. 377]) a polyhedron X (see Definition 3.21)
is a homology n-manifold if and only if, with any given triangulation of X, the link of
each vertex has the homology of an (n− 1)-sphere.

Definition 3.6. Let n be a positive integer, and let |K| be the geometric realization
of K.

(1) |K| is a generalized homology (n−1)-sphere (abbr. GHSn−1), if |K| is a homology
manifold and has the homology of an (n− 1)-sphere.

(2) |K| is a PL (n − 1)-sphere (abbr. PLSn−1), if |K| is PL homeomorphic to the
boundary of an n-simplex (see Definition 3.21 for details).

(3) |K| is a polytopal (n−1)-sphere (abbr. PSn−1), if |K| is simplicially homeomorphic
to the boundary of a convex n-polytope P n ⊂ Rn.

We say that the corresponding real moment-angle complex (D1, S0)K is polytopal, if |K|
is a polytopal sphere.

Theorem 3.7 (see [Dav08, Theorem 10.6.1, p. 197], [Dav83, Section 17]). Let
(D1, S0)K be a real moment-angle complex. Then

(1) (D1, S0)K is a homology n-manifold if and only if |K| is a GHSn−1.
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(2) It is a topological n-manifold if and only if |K| is a GHSn−1, which is simply
connected when n− 1 ̸= 0, 1.

(3) It is a PL n-manifold if and only if |K| is a PLSn−1.
(4) It is homeomorphic to a smooth manifold if |K| is polytopal.

Remark 3.8. Panov and Ustinovsky [PU12] proved that the last statement in The-
orem 3.7 can be generalized to the case when K is induced from a complete simplicial fan
(which is equivalent to the condition that K is star-shaped). The last statement can be
strengthened that, there is a piecewise differentiable homeomorphism from (D1, S0)K to
a smooth manifold embedded in Rm (see, for example, [Cai14, Lemma 6.3]).

Convention 3.9. In what follows, “|K| is a sphere” means that it is either a GHS,
a PLS or a PS. Correspondingly, a manifold may refer to either a homology manifold, a
topological manifold, a PL manifold or a smooth manifold. If we say that a polyhedral
product ((Dni , Sni−1)mi=1)

K is a smooth manifold, then K shall be implicitly assumed to be
polytopal.1

Proposition 3.10. Let J = (ni)
m
i=1 be a sequence of positive integers with Nm =∑m

i=1 ni. Assume that |K| is a sphere of dimension n − 1, then |KJ | will be a sphere of
the same type and of dimension Nm −m + n − 1. Moreover, |KJ | is simply connected,
provided that Nm > m and n ̸= 1.

Corollary 3.11. Suppose (D1, S0)K is a manifold of dimension n, then the polyhedral
product ((Dni , Sni−1)mi=1)

K is a manifold of the same type and of dimension Nm −m+ n.
Moreover, ((Dni , Sni−1)mi=1)

K is always a topological manifold whenever Nm > m.

To prove Proposition 3.10 and Corollary 3.11, we need to understand KJ in more
detail.

Definition 3.12 (see [BBCG10b], [PB80, p. 578]). For i = 1, 2, . . . ,m, let vi = {i}
be the i-th vertex of K. The simplicial wedge of K on vi, being an abstract simplicial
complex with ground set [m+ 1], is defined as

(40) Kvi := ({i, i+ 1} ∗ Link({i}, K))
∪(
{i} ∗K|[m]\{i}

)∪(
{i+ 1} ∗K|[m]\{i}

)
,

such that for j = i+1, i+2, . . . ,m, the original label of the j-th vertex of K is shifted to
j + 1 (see Figure 1 for an illustration). Other labels are preserved.

It is easy to check that if K is the boundary complex of an (m−1)-simplex ∆m−1, then
Kvi is the boundary complex of the m-simplex ∆m, i = 1, 2, . . . ,m. This observation can
be generalized as follows.

Lemma 3.13 (see [BBCG10b]). Kvi is simplicially isomorphic to KJi (see Definition
3.3), with

Ji = (1, . . . , 1, 2, 1, . . . , 1),

1S. Choi and H. Park [CP13] had already considered the star-shaped cases, which we will not discuss
here.
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Figure 1. From K to Kv1

whose i-th entry is 2 and other entries are 1. Consequently, simplicial wedge constructions
are commutative in the following sense: for i ∈ [m] and j ∈ [m+ 1],

Kvivj =

{
Kvj−1vi if j ≥ i+ 1,

Kvjvi+1 otherwise,

and KJ can be obtained by Nm −m simplicial wedge constructions consecutively on K.

Proof. By their definitions, Kvi and KJi are both simplicial complexes with ground
set [m + 1], thus it suffices to check their missing faces. Let τ ⊂ [m] be a missing face
of K. According to (40), (a) if i ̸∈ τ , then it will be a missing face of Kvi (whose labels
may be shifted); (b) otherwise by the observation above, τ ∪ {i + 1} is a (label-shifted)
missing face of Kvi. Conversely, it can be checked that any missing face of Kvi comes
from either (a) or (b), namely in the form τ(Ji) in Definition 3.3. As τ runs through
missing faces of K, we find that all missing faces of Kvi coincides with those of KJi. The
second statement follows from the definition directly. □

The following two lemmas are well-known:

Lemma 3.14 ([CP13, Proposition 2.2, p. 8]). |Kv1| is PL homeomorphic to the sus-
pension S|K| = |S0 ∗K| (here S0 consists of two points not contained in K).

Proof. It suffices to show that, after a subdivision, Kv1 is simplicially heomeomor-
phic to S0 ∗ K (see [RS72]). The subdivision is constructed as follows: first add an
extra vertex labeled by m+ 2 to the middle point of the edge {1, 2}, then generate other
simplices in subcomplexes {1,m + 2} ∗ Link({1}, K) and {2,m + 2} ∗ Link({1}, K), re-
spectively. This is well-defined by (40). To see its relation with S0 ∗ K, we relabel the
vertices of K: label the first vertex {1} by m + 2, and then shift the label i to i + 1 for
each i = 2, 3, . . . ,m (see Figure 2); after this we take joins {1} ∗K and {2} ∗K, with {1}
and {2} being considered as two external points, whose union along the common part K
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Figure 2. The suspension

givens S0 ∗K. By sending vertices to those with the same labels, |S0 ∗K| is simplicially
homeomorphic to |Kv1|. □

Lemma 3.15. |K| is a PLSn−1 (resp. GHSn−1) if and only if |S0 ∗ K| is a PLSn

(resp. GHSn).

Proof. (The case when |K| is a PLSn−1.) For the “if” part, we use the fact that,
if a PL homeomorphism (A, a) → (B, b) between polyhedra sending point a to b, then
|Link(a,A)| is PL homeomorphic to Link(b, B), for any triangulations on A and B with
a and b respective vertices (see [RS72, Lemma 2.19, p. 21]). Since the link of a vertex in
the boundary of an (n + 1)-simplex bounds its opposite face, i.e. an n-simplex, and the
link of a point of S0 in |S0 ∗K| is |K|, the conclusion follows from the fact above. The
“only if ” part follows from the fact that the suspension of a PL (n − 1)-sphere is a PL
n-sphere (see [RS72, Proposition 2.23, pp. 23–24]).

(The case when |K| is a GHSn−1.) Now the “if” part follows from Proposition 3.22,
since K is a link in S0 ∗ K. For the “only if” part, a standard argument using Mayer-
Vietoris exact sequence shows that

Hi

(
|S0 ∗K|

) ∼= Hi−1 (|K|) ,

thus |S0 ∗K| has the homology of an n-sphere. It remains to show that |Link(v, S0 ∗K)|
has the homology of an (n − 1)-sphere. This is clear when v ∈ S0. Otherwise suppose
v ∈ K, we have

Link(v, S0 ∗K) = S0 ∗ Link(v,K)

where |Link(v,K)| has the homology of an (n−2)-sphere. Then we can repeat the previous
argument to complete the proof. □
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Proof of Proposition 3.10. By Lemma 3.14, every simplicial wedge construction
will increase the dimension by one, therefore the dimension of |KJ | can be deduced from
Lemma 3.13, which is Nm −m+ n− 1.

Without loss of generality, suppose KJ = Kv1.
(The case when |K| is a GHSn−1.) Since (local) homology groups are topological

invariants, by Lemma 3.14, it suffices to consider the suspension S|K|, which is proven in
Lemma 3.15.

(The case when |K| is a PLSn−1.) By Lemma 3.14, |Kv1| is PL homeomorphic to
S|K|, thus again we can use Lemma 3.15.

(The case when |K| is a PSn−1.) This is well-known and we omit the proof here (see
[CP13, Proposition 2.2, p. 8]).

The second statement follows from the van Kampen theorem. □

It turns out that Corollary 3.11 follows from Proposition 3.10 and Theorem 3.7, except
for the case n = 1, i.e. K consists of two points (m = 2). But in this case |K| is polytopal,
hence (D1, S0)KJ is a topological manifold.

Theorem 3.16. Let J = (ni)
m
i=1 be a sequence with constant integers ni = 2. Then

(D1, S0)KJ is a topological (n+m)-manifold if and only if |K| is a GHSn−1. Respectively,
it is a PL (n+m)-manifold if and only if |K| is a PLSn−1.

Proof. In either case, the “if” part follows from Corollary 3.11 and Theorem 3.7,
respectively. For the “only if” parts, we claim that |Kv1| is either a GHSn or PLSn,
then |K| must be of the same type. By Theorem 3.7, starting from KJ , as a GHS or a
PLS obtained from K via m simplicial wedge constructions consecutively, the statement
follows by using the claim for m times.

Notice that by the PL homeomorphism between |Kv1| and |S0∗K|, it suffices to prove
claim for |S0 ∗K|. This is done in Lemma 3.15. □

Remark 3.17. By Lemma 3.4, the theorem above gives a necessary and sufficient
condition for a moment-angle complex (D2, S1)K to be a topological manifold. But for
the PL case, we can only say that (D2, S1)K is homeomorphic to a PL manifold, since it
does not have an obvious PL structure a priori.

By Proposition 3.22, |K| is a GHSn−1 if and only if K is Gorenstein* over Z (see
[BP02, Theorem 3.38, p. 46]).

3.2. An alternative proof of Theorem 3.7

Since the language Davis used to prove Theorem 3.7 is not standard for most toric
topologists, this section is devoted to a more direct proof, which is adapted from [Dav08,
Chapter 10].

The approach is as follows. First we triangulate (D1, S0)K , by a homeomorphism
uφ′ : U(G, |K ′

+|) → (D1, S0)K with U(G, |K ′
+|) a simplicial complex, such that uφ′ is

linear when restricted to a simplex in U(G, |K ′
+|) (see (46) for more details). This part

is adapted from [BP02, Chapter 4, pp. 53–55]. With this triangulation at hand, the
barycentric subdivision of |K| appears as the link of a vertex in (D1, S0)K , from which we
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get the necessary conditions for (D1, S0)K to be a manifold of certain type (see Convention
3.9). The main task is to show that these conditions are also sufficient.

In what follows, let K ′ be the derived complex of K, in which a simplex is in the
form of a dimension-increasing sequence of simplices in K, such that a simplex of lower
dimension is included in those of higher dimensions. The augmentation K ′

+ means the
first simplex in each sequence of K ′ can be the empty set. Geometrically, |K ′| is the
barycentric subdivision of |K|. |K ′

+| is a cone over |K ′| with the collapsed end point
corresponding to the sequence (∅).

The star of a simplex σ in K is defined as

(41) Star(σ,K) = {τ ∈ K | σ ⊂ τ}.

From Definition 3.2, immediately we have σ ∗ Link(σ,K) = Star(σ,K).

Definition 3.18 (The Basic Construction [Dav08, Chapter 5]). Suppose (X,FX) is
a topological space with a system of subspaces FX = {X1, . . . , Xm}, and let (G,S) be
a group finitely generated by S = {s1, s2, . . . , sm}. Let XI be the intersection of all Xi

with i ∈ I ⊂ [m], and for a subset T ⊂ S, GT refers to the subgroup generated by T (it
is convenient to set X∅ = X and G∅ as the identity). The associated Basic Construction
U(G,X) is a G-space

U(G,X) = (G×X)/ ∼,
where (g, x) ∼ (g′, x′) if

x = x′ ∈ XIx and g−1g′ ∈ G{si}i∈Ix
,

where Ix := {I ⊂ [m] | x ∈ Xi}, and the G-action follows

g′[g, x] = [g′g, x]

for [g, x] ∈ U(G,X) and g′ ∈ G.

It is easy to check that this G-action is well defined.
Throughout this section, let G be the group (Z2)

m. Consider the canonical action of
G on Rm generated by

(42) si(x1, . . . , xi−1, xi, xi+1, . . . , xm) = (x1, . . . , xi−1,−xi, xi+1, . . . , xm),

i = 1, 2, . . . ,m. It can be checked that the quotient space (D1, S0)K/G of the induced
action on (D1, S0)K is

(43) XK :=
∪
σ∈K

{(x1, . . . , xm) ∈ [0, 1]m | xj = 1 if j ̸∈ σ}.

Proposition 3.19. XK is simplicially homeomorphic to |K ′
+|. More precisely, let

φ : K → Rm be the map given by

(44) φ(σ) = (x1, . . . , xm), xi =

{
0 if i ∈ σ,

1 otherwise,

for σ ∈ K, and denote by φ′ : |K ′
+| → XK the simplicial map derived from φ, i.e. for

σ′ ∈ K ′
+ being a dimension-increasing sequence (σi0 , σi1 , . . . , σil) with σij ⊂ σij+1

, j =
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0, 1, . . . , l − 1,

(45) φ′(|σ′|) = l(φ(σi0), φ(σi1), . . . , φ(σil)),

where the object on the right-hand side is the simplex linearly spanned by corresponding
vertices. Then φ′ is a homeomorphism.

This is a direct consequence of the following lemma, on the decomposition of cubical
complexes (see [BP02, Chapter 4, p. 53]).

Lemma 3.20. For the cube Cσ := {(x1, . . . , xm) ∈ [0, 1]m | xj = 1 if j ̸∈ σ} where
σ ⊂ [m] with card(σ) = k, there is a simplicial decomposition

Cσ =
∪

σ′∈(2σ)′+

φ′(|σ′|)

where σ′ runs through (2σ)′+ as dimension-increasing sequences. (As the power set of σ,
2σ is an abstract simplicial complex of dimension k − 1.)

Proof. Consider those simplices σ′ ∈ (2σ)′+ of maximal dimension k: each is a se-
quence of the form

σ′ = (σ0, σ1, . . . , σk),

where σ0 = ∅, σk = σ and card(σi) = i, i = 0, 1, . . . , k. (φ(σi))
k
i=1 gives rise to a path

with k + 1 nodes ordered by 0, 1, . . . , k, from φ(∅) = (1, 1, . . . , 1) to φ(σ), such that each
node has coordinates with values 0 or 1, and adjacent nodes (xi)

m
i=1 and (x′

i)
m
i=1 in order

have Euclidean distance 1, with xi ≥ x′
i for i = 1, 2, . . . ,m. It turns out that the nodes

on each path linearly spans a simplex of dimension k, such that the interiors of these k!

different simplices and those of their boundaries give rise to a partition of Cσ (see [ES52,
p. 68]). □

Now we use the basic construction to triangulate (D1, S0)K . Denote by φ′ : |K ′
+| →

(D1, S0)K the composition of φ′ : |K ′
+| → XK and the obvious inclusion XK → (D1, S0)K .

Let |K ′
+| be equipped with the system F|K′

+| = {F1, F2, . . . , Fm}, such that a simplex |σ′|
belongs to Fi if and only if φ′(|σ′|) is fixed by si, i.e., points with i-th coordinate 0.
Clearly σ′ is a sequence with each simplex containing i ∈ [m]. It follows that Fi =

|Star (({i}), K ′) |. Let U(G, |K ′
+|) be the resulting space of the basic construction, and let

uφ′ be the G-map defined in the bottom row of the diagram

(46)

|K ′
+|

uφ′ : U(G, |K ′
+|) (D1, S0)K

[g, x] gφ′(x),

................................. ............

............................................................................................................................. ............

................

.............................................................................................
.....
............

i

.................................................................................................. .......
.....

φ′

in which i(x) = [1, x]. We see that U(G, |K ′
+|) is a simplicial complex with each simplex

of the form [g, |σ′|], g ∈ G and σ′ ∈ K ′
+, and uφ′ is a homeomorphism preserving the

G-action, which is linear when restricted to a simplex in U(G, |K ′
+|) (see Proposition

3.19).
Next we turn to the proof of Theorem 3.7. Before that we need some preparations.
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Definition 3.21. A subspace X ⊂ Rm is called a polyhedron if each point x ∈ X has
a neighborhood of the form x ∗ Lx = {tx + (1 − t)l | l ∈ Lx, t ∈ [0, 1]} ⊂ X, with Lx

compact. A (continuous) map f : X → Y between two polyhedra X and Y is piecewise
linear (abbr. PL) if for all y ∈ Y with a given neighborhood Uy, there is a neighborhood
x∗Lx for each x ∈ f−1(y), such that f(x∗Lx) ⊂ Uy with f(tx+(1−t)l) = ty+(1−t)f(l),
for all l ∈ Lx and t ∈ [0, 1].

A triangulation of X is a PL homeomorphism f : |KX | → X such that the restriction
of f to each simplex in |KX | is linear. X is an unbounded PL n-manifold if |Link(v,KX)|
is a PLSn−1 (see Definition 3.6), for any vertex v ∈ KX .

Note that every polyhedron admits a triangulation, which is unique up to PL homeo-
morphism (see [RS72, Theorems 2.11, 2.14, pp. 16–17]). Up to PL homeomorphism, the
link of each vertex in a PL manifold (without boundary) is independent of the triangula-
tion (see [RS72, Lemma 2.19, p. 21]).

Using the cone construction (see [RS72, Lemma 1.10, p. 8]), the cone over a PLSn−1

is PL homeomorphic to an n-simplex ∆n, by extending the defining homeomorphism
PLSn−1 → ∂∆n linearly to the collapsing point (this is a crucial difference between PL
and smooth categories).

In what follows, a PL (resp. homology) n-disk refers to the cone over a PLSn−1

(resp. GHSn−1); if n = 0, PLS−1 and GHS−1 are both empty, and the cone over which is
a point. All manifolds mentioned are assumed to have no boundaries.

The following proposition is well-known, and we shall omit the proof here (see [RS72,
Exercise 2.24(3), p. 24], [Mun84, Section 63, Exercise 2, p. 377], respectively):

Proposition 3.22. Suppose that a polyhedron X is a PL (resp. homology) n-manifold
with a given triangulation f : |K| → X. Let σ ∈ K be a k-simplex with k ≥ 0, then
|Link(σ,K)| is a PLSn−k−1 (resp. GHSn−k−1) in |K| (which is empty when k = n).

For a simplex σ in K, denote by L′(σ) the subcomplex of K ′ consisting of all sequences
with σ the first simplex, namely a simplex in L′(σ) is a sequence of the form (σ, . . .). For
example, if σ is a vertex, then we have L′(σ) = Star ((σ), K ′).

Corollary 3.23. Let |K| be a PL (resp. homology) (n − 1)-manifold and let |K ′|
be its barycentric subdivision. Then for a k-simplex σ in K with k ≥ 0, |L′(σ)| is a PL
(resp. homology) (n− k − 1)-disk in |K ′|.

Proof. Let σ′
k = (σ0, σ1, . . . , σk) be any sequence in K ′ with σk = σ, such that the

dimension of |σi| is i, i = 0, 1, . . . , k. It can be checked that

(47) L′(σ) = Star ((σ),Link(σ′
k, K

′)) .

Then the statement follows from Proposition 3.22, since |K| is PL homeomorphic to
|K ′|. □

Now we prove Theorem 3.7. Let (D1, S0)K be the polyhedron equipped with the
triangulation uφ′ : U(G, |K ′

+|)→ (D1, S0)K , as in (46).
First assume that (D1, S0)K is a PL (resp. homology) manifold. Let x+ ∈ (D1, S0)K be

the point with constant coordinates 1. By definition, Link
(
u−1
φ′ (x+),U(G, |K ′

+|)
)

coincides
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with Link
(
(φ′)−1(x+), |K ′

+|
)
, which is |K ′| (see Proposition 3.19). Therefore |K| is a PLS

(resp. GHS) by Proposition 3.22. This gives the necessary condition for (D1, S0)K to be
a PL (resp. homology) manifold. For the condition that it is a topological manifold, we
need the following famous theorem (see [Dav08, Theorem 10.4.10, p. 194]):

Theorem 3.24 (Edwards [Edw78], Freedman [Fre82]). For n ≥ 3, a polyhedral
homology n-manifold is a topological manifold if and only if the link of each of its vertices
is simply connected.

When (D1, S0)K is an n-manifold with n = 1, 2, |K| is S0 or an m-gon, thus is
polytopal.

Theorem 3.25 ([Dav83, Section 17, pp. 321–323]). (D1, S0)K is homeomorphic to a
smooth n-manifold, provided that |K| is a PSn−1.

It remains to prove the sufficient conditions in other cases. For a k-simplex σ ∈ K

(k ≥ 0), denote by S ′
+(σ) the subcomplex consisting of all sequences in K ′

+, such that
each simplex appearing in the sequence is a proper face of σ. That is to say, every simplex
of maximal dimension in S ′

+(σ) has the form σ′ = (σ0, σ1, . . . , σk) with card(σi) = i,
i = 0, 1, . . . , k. Hence (φ(σi))

k
i=0 is a path with k + 1 nodes in the cube

Cσ = {(xi)
m
i=1 ∈ [0, 1]m | xj = 1 if j ̸∈ σ},

such that the ending node has distance 1 from φ(σ) (see Proposition 3.19, Lemma 3.20
and the proof for details). It follows that

(48) uφ′

 ∪
g∈G{si}i∈σ

g|S ′
+(σ)|

 =
∪

g∈G{si}i∈σ

gφ′ (|S ′
+(σ)|

)
is the PL k-sphere bounding the (k + 1)-cube C ′

σ := {(xi)
m
i=1 ∈ [−1, 1]m | xi = 1 if i ̸∈ σ}

(si is the reflection changing the sign of the i-th coordinate, see (42)).
Recall that, for two polyhedra X and Y embedded in RN , if for all points x ∈ X,

y ∈ Y and t ∈ [0, 1], we have

tx+ (1− t)y = t′x′ + (1− t′)y′

only when t = t′ = 0 with y = y′, or t = t′ = 1 with x = x′, then we say that their
external join exists, which is defined by

X ∗ Y = {tx+ (1− t)y | x ∈ X, y ∈ Y, t ∈ [0, 1]}.

If either X or Y is empty, say Y = ∅, then X ∗ Y always exists and is defined to be X.
It can be checked that if |K1| and |K2| are embedded in RN such that |K1| ∗ |K2| exists,
then it is a geometric realization of the join K1 ∗K2, and in this case we write

|K1| ∗ |K2| = |K1 ∗K2|.

For three polyhedra X, Y and Z such that X ∗ Y and (X ∗ Y ) ∗ Z exists, we have

(49) X ∗ Y = Y ∗X and (X ∗ Y ) ∗ Z = X ∗ (Y ∗ Z)

up to PL homeomorphism (see [Mun84, Lemma 62.4, p. 371]).
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Lemma 3.26. Suppose that |K| is a PLSn−1 (resp. GHSn−1) with n ≥ 3, and let σ be
a k-simplex of K with k ≥ 0. Then

(50) N(σ) =
∪

g∈G{si}i∈σ

gφ′ (|S ′
+(σ) ∗ L′(σ)|

)
=

 ∪
g∈G{si}i∈σ

gφ′ (|S ′
+(σ)|

) ∗ φ′(|L′(σ)|)

is a star of the point φ′ (|(σ)|) = φ(σ) in (D1, S0)K, in which the link of φ′ (|(σ)|) is a
simply connected PLSn−1 (resp. GHSn−1).

Proof. As a sequence of simplices of K (may start with ∅), each simplex in S ′
+(σ) ends

with a proper face of σ, and each simplex in L′(σ) starts with a simplex containing σ, the
join S ′

+(σ)∗L′(σ) is well-defined: the join of two simplices is the new sequence connecting
them. With the same reason the external join φ′ (|S ′

+(σ)|
)
∗φ′ (|L′(σ)|) exists. Note that

each simplex in φ′ (|L′(σ)|) is linearly spanned by those points with i-th coordinate 0, for
all i ∈ σ (see Proposition 3.19), hence φ′ (|L′(σ)|) is fixed under G{si}i∈σ

, by which (50)
holds.

We have shown that
Sk
PL :=

∪
g∈G{si}i∈σ

gφ′ (|S ′
+(σ)|

)
is a PL k-sphere in both cases (see (48)), hence by Lemma 3.15, it has the form

Sk
PL = |S0| ∗ |S0| ∗ · · · ∗ |S0|︸ ︷︷ ︸

k+1

,

up to PL homeomorphism. On the other hand, by (47), φ′(|L′(σ)|) is a cone φ(σ)∗Sn−k−2
σ

with Sn−k−2
σ a PLSn−k−2 (resp. GHSn−k−2), then by (49) we have

N(σ) = Sk
PL ∗

(
φ′ (|(σ)|) ∗ Sn−k−2

σ

)
=

(
Sk
PL ∗ Sn−k−2

σ

)
∗ φ(σ)

=

|S0| ∗ |S0| ∗ · · · ∗ |S0|︸ ︷︷ ︸
k+1

∗Sn−k−2
σ

 ∗ φ(σ).
Therefore the statement follows from Lemma 3.15. The simple connectivity can be de-
duced from the van Kampen theorem, with the assumption n ≥ 3. □

Proposition 3.27. If |K| is a PLSn−1 (resp. GHSn−1) with n ≥ 3, then (D1, S0)K is
a PL (resp. homology) manifold of dimension n. Moreover, it is a topological manifold,
provided that |K| is simply connected.

Proof. Let (D1, S0)K be triangulated by uφ′ : U(G, |K ′
+|)→ (D1, S0)K . We need to

check the links of all vertices. Since G acts on (D1, S0)K simplicially, it suffices to consider
the vertices contained in the image of φ′, each of the form φ(σ) with σ ∈ K.

If the dimension of σ is non-negative, then by Lemma 3.26, N(σ) contains the desired
link, which is always simply connected. Otherwise suppose σ = ∅. By the definition of
uφ′ , the link of φ(∅) in (D1, S0)K is |K ′|, which is PL homeomorphic to |K|. Then the
whole proof is completed by Edwards-Freedman Theorem 3.24. □
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3.3. Cochains and the topological open book constructions

Convention 3.28. In what follows, suppose that |K| is a GHSn−1, and the ground
set of K is [m].

• Let (X,X+, X0) be a triple of polyhedra in Rm, such that

X = (D1, S0)K , X+ = X
∩
{(xi)

m
i=1 ∈ Rm | x1 ≥ 0}, X0 = X

∩
{(xi)

m
i=1 ∈ Rm | x1 = 0}.

• Respectively, let (X ′, X ′
+, X

′
0) be a triple of polyhedra in Rm+1, such that

X ′ = (D1, S0)Kv1
∩
{(xi)

m+1
i=1 ∈ Rm+1 | x2

1 + x2
2 ≤ 1},

X ′
+ = X ′

∩
{(xi)

m+1
i=1 ∈ Rm+1 | x1 ≥ 0}, X ′

0 = X ′
∩
{(xi)

m+1
i=1 ∈ Rm+1 | x1 = 0},

in which Kv1 is the simplicial wedge on the first vertex (see (40) for definition).

Observe that from the convention above, X is the union of X+ with its image un-
der the reflection in Rm changing the sign of the first coordinate, along their common
part X0. Moreover, X0 is a disjoint union of 2m−k copies of the polyhedral product
(D1, S0)Link({1},K), here k is the number of vertices in Star ({1}, K). For the same reason,
X can be embedded in X ′

+ as its boundary X ′
0, since Link ({1}, Kv1) coincides with K,

after a label-shifting (see (40), together with Figure 1 for an illustration).

Remark 3.29. It is not difficult to show that (X+, X0) and (X ′
+, X) are pairs of

homology manifolds. if |K| is a PLS, it follows from Lemma 3.15 that they are two pairs
of PL manifolds. If |K| is a PS, it can be shown that these pairs are homeomorphic to
pairs of smooth manifolds (see [GL13]).

Notice that X0 may not be a topological manifold even if X is: a link in a simply con-
nected GHS can be non-simply connected (consider the suspension of a Poincaré homology
sphere).

Note that X ′ is the polyhedral product associated to K, with the first pair (D2, S1)

and the other pairs (D1, S0), which is homeomorphic to (D1, S0)Kv1 . A key ingredient to
consider X ′ is that it can be endowed with the S1-action

(51)
S1 ×X ′ X ′(

e
√
−1θ, (x1, x2, x3, . . . , xm)

)
(x1 cos θ, x2 sin θ, x3, . . . , xm),

............................................................................................................................................................................................................................................................................................................................................................................................ ............

........................................................................................ ............

................

such that the quotient space can be identified with X+:
X ′ X+

(x1, x2, x3, . . . , xm) (
√

x2
1 + x2

2, x3, . . . , xm).
.......................................................................................................................................................................................................................................................................................................... ............

...................................................................... ............

................

Consider the projection
X ′ [0, 1]

(x1, x2, x3, . . . , xm)
√
x2
1 + x2

2;

............................................................................................................................................................................................................................................................. ............

................................................................................................................... ............

................

the two parts p−1 ([0, 1/2]) and p−1 ([1/2, 1]) decompose X ′ into the union

X+ × S1
∪

∂X+ ×D2 = ∂
(
X+ ×D2

)
,
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which is compatible with the S1-action (51) (here ∂X+ = X0). Therefore, X ′ can be
constructed as an open book, where X+ is the leaf and X0 the binding, such that the
holonomy is trivial.

The remaining part of this section is devoted to understanding these open book con-
structions at the cochain level. Recall that the cohomology of (D1, S0)K is isomorphic to
that of the differential graded algebra R∗

K (see Definition 2.1, Lemma 2.3); R∗
K can be

decomposed as a direct sum
⊕

ω⊂[m]R
∗
K |ω, where R∗

K |ω is closed under the differential d,
and it is generated by those reduced monomials of the form uσtω\σ (σ ∈ K) such that
σ ⊂ ω.

Definition 3.30. Let Kvi be the simplicial wedge of K on the i-th vertex. Denote
by ϖi : R∗

K → R∗
Kvi

the additive homomorphism such that for each reduced monomial
uσtω\σ ∈ Rp

K |ω with card(σ) = p, we have

(52) ϖi(u
σtω\σ) =

{
uεi(σ)tεi(ω)\εi(σ) ∈ Rp

Kvi
|εi(ω) if i ̸∈ ω,

uεi(σ)tεi(ω)\εi(σ)ui+1 ∈ Rp+1
Kvi
|εi(ω)∪{i+1} otherwise,

where εi : 2[m] → 2[m+1] is a label-shifting map sending each τ = {jk}lk=0 to εi(τ) =

{j′k}lk=0, in which j′k = jk if jk ≤ i and j′k = jk + 1 otherwise (thus the label i + 1 is
skipped in the image), and εi(∅) = ∅.

Theorem 3.31. The homomorphism ϖi : R∗
K → R∗

Kvi
preserves the differential d

on both sides, inducing an additive isomorphism H∗(RK) ∼= H∗(RKvi). More precisely,
between

H∗(RK) =
⊕
ω⊂[m]

H∗(RK |ω) and H∗(RKvi) =
⊕

ω′⊂[m+1]

H∗(RKvi|ω′),

ϖi induces isomorphisms

(53) Hp(RK |ω) ∼= Hp+1(RKvi|εi(ω)∪{i+1})

if i ∈ ω, and isomorphisms

(54) Hp(RK |ω) ∼= Hp(RKvi|εi(ω))

otherwise, for all p ≥ 0.
Proof. By their definitions, it is straightforward to check that for every ω ⊂ [m], the

restriction of ϖi to R∗
K |ω, with its image in R∗

Kvi
|εi(ω) (i ̸∈ ω) or R∗

Kvi
|εi(ω)∪{i+1} (i ∈ ω),

is a monomorphism preserving the differential d on both sides. Since when i ̸∈ ω, the
full subcomplex K|ω is simplicially isomorphic to Kvi|εi(ω), (54) follows from Theorem 2.5
(notice that H0(RKvi)

∼= H0(RKvi|∅)).
It remains to prove (53). Suppose i ∈ ω. By definition, we have i ∈ εi(ω) while

(i+ 1) ̸∈ εi(ω). For each p ≥ 0, consider the exact sequence

0 −−−→ Rp
K |ω

ϖi−−−→ Rp+1
Kvi
|εi(ω)∪{i+1} −−−→ Rp+1

Kvi
|εi(ω)∪{i+1}

/
Rp

K |ωui+1 −−−→ 0,

in which Rp
K |ωui+1 is denoted as the image of Rp

K |ω under ϖi. We claim that each
relative cohomology group Hp+1

(
RK({i})|εi(ω)∪{i+1}, RK |ωui+1

)
vanishes. Then (53) fol-

lows by using the long exact sequence. To prove the claim, consider those cochains in
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Rp+1
K({i})|εi(ω)∪{i+1}

/
Rp

K |ωui+1: they are generated by monomials of the form

(55)
(
uσtεi(ω)\(σ∪{i})ui

)
ti+1

with σ ⊂ εi(ω) \ {i} such that σ ∈ K and card(σ) = p, or by those of the form

(56)
(
uσ′

tεi(ω)\σ
′
)
ti+1

with σ′ ⊂ εi(ω) \ {i} such that σ′ ∈ K and card(σ′) = p + 1. We find that those terms
appearing in the parentheses of (55) and (56) are in one-one correspondence with the
simplicial (p + 1)-cochains of the full subcomplex Kvi|εi(ω), i.e., Star

(
{i}, Kvi|εi(ω)

)
(see

(40)), by sending each dual simplex σ∗ to uσtεi(ω)\σ. Thus we can extend it to be a cochain
map

C̃p(Kvi|εi(ω))→ Rp+1
K({i})|εi(ω)∪{i+1}

/
Rp

K |ωu
i+1

by multiplying ti+1 from the right, because

d
(
(. . .)ti+1

)
= (d(. . .)) ti+1 + (. . .)dti+1,

where the second summand vanishes in the quotient group (recall that dti+1 = ui+1).
Then the acyclicity of Star

(
{i}, Kvi|εi(ω)

)
implies that the claim holds. □

Let KJ be the construction given in Definition 3.3. By Lemma 3.13, KJ can be
obtained by a sequence of consecutive simplicial wedge constructions, and here we specify
the following one (the order is from left to right):

KJ =K vmvm+1 · · · vm+nm−2︸ ︷︷ ︸
nm−1

vm−1vm · · · vm−1+nm−1−2 · · ·(57)

vm−i+1+nm−i+1−2 vm−ivm−i+1 · · · vm−i+nm−i−2︸ ︷︷ ︸
nm−i−1

vm−i−1 · · · v2+n2−2 v1v2 · · · v1+n1−2︸ ︷︷ ︸
n1−1

,

where if ni = 1, the block marked by ni − 1 shall be deleted.
Let R∗

KJ be the algebra associated to KJ . With respect to (57) we define compositions

ϖnk
:= ϖk+nk−2 ◦ · · · ◦ϖk+1 ◦ϖk,

for k = 1, 2, . . . ,m, and consider the cochain map

ϖ′
J := ϖn1 ◦ϖn2 ◦ · · · ◦ϖnm

sending each monomial uσtω\σ ∈ R∗
K to ϖ′

J(u
σtω\σ) ∈ R∗

KJ . Suppose ω = {i1, i2, . . . , il}
with i1 < i2 < . . . < il and

uσtω\σ = xi1xi2 . . . xil (xij = uij or tij),

then by (52), when k ≥ il, ϖnk
will not change the form of uσtω\σ until k = il, i.e.,

ϖnil
ϖnil+1

· · ·ϖnm(u
σtω\σ) = ϖnil

(uσtω\σ) = xi1xi2 . . . xiluB̃il ,

where
B̃k = {k + 1, k + 2, . . . , k + nk − 1},
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which is empty when nk = 1, k = 1, 2, . . . ,m. As k decreases, next non-trivial term will
not appear until k = il−1. That is to say,

ϖnil−1
ϖnil−1+1 · · ·ϖnm(u

σtω\σ) = ϖnl−1
ϖnil

(uσtω\σ)

(58)

= xi1xi2 . . . xil−1xi′luB̃′
iluB̃il−1

= (−1)(nil−1
−1)(nil

−1+deg(xil ))xi1xi2 . . . xil−1uB̃il−1xi′luB̃′
il ,

where i′l = il +
∑il−1

j=il−1
(nj − 1) and

B̃′
il
= {il + 1 +

il−1∑
j=il−1

(nj − 1), il + 2 +

il−1∑
j=il−1

(nj − 1), . . . , il + nl − 1 +

il−1∑
j=il−1

(nj − 1)},

due to the label-shifting. This calculation implies that we can set blocks

ũi = tiuB̃i and ṽi = uiuB̃i

to simplify the image of ϖ′
J :

Definition 3.32. Suppose that J = (ni)
m
i=1 is a sequence of positive integers, and

(Dni , Sni−1)mi=1 are corresponding pairs of disks and spheres. Let R∗J be the differential
graded algebra given as the quotient of the free Z-algebra, generated by 2m generators ṽi
and ũi, i = 1, 2, . . . ,m, with deg(ṽi) = ni and deg(ũi) = ni − 1, respectively, subject to
relations

(59) xixj = (−1)deg(xi)deg(xj)xjxi, (xi)2 =

{
xi if deg(xi) = 0,
0 otherwise,

where xi is ũi or ṽi, for distinct i, j = 1, 2, . . . ,m, together with

ũiṽi = 0, ṽiũi =

{
vi if deg(ui) = 0,
0 otherwise,

for all i = 1, 2, . . . ,m.
We say that a monomial in R∗J is reduced if it is written in the square-free form

ṽσũτ = x1 . . . xm, where σ and τ are disjoint subsets of [m], with xi = ṽi for i ∈ σ, xi = ũi

for i ∈ τ , and xi = 1 (the identity with degree zero) otherwise.
The differential d satisfies

(60) d(xy) = (dx)y + (−1)deg(x)x(dy)

for homogeneous elements x, y ∈ R∗J , with

dṽi = 0, dũi = ṽi and d1 = 0.

For a simplicial complex K with ground set [m], the corresponding Stanley-Reisner
ideal IKJ ⊂ R∗J is generated by all square-free monomials of the form ṽτ , where τ is not
a simplex of K.
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The differential graded algebra (R∗
KJ, d) is defined to be the quotient R∗J/IKJ en-

dowed with the differential d above. A reduced monomial in R∗
KJ is the (non-trivial)

image of a reduced monomial in R∗J under the quotient homomorphism.

Note that R∗
KJ has 2

∑m
i=1 ni generators while R∗

KJ has 2m.

Definition 3.33. Let J = (ni)
m
i=1 be a sequence of positive integers, with Ni =∑i

j=1 nj. Denote by ϖJ : R∗
K → R∗

KJ the homomorphism sending each reduced monomial
uσtω\σ = x1x2 . . . xm to

(61) ϖJ(u
σtω\σ) = (−1)ν′(σ,ω)ṽσũω\σ = (−1)ν′(σ,ω)y1y2 . . . ym,

where y1y2 . . . ym is the full form of the reduced monomial ṽσũω\σ, and as a mod 2 integer,
(62)

ν ′(σ, ω) =
m∑
i=1

(
deg(yi)− deg(xi)

)∑
j>i

deg(yj) =
∑
i∈ω

(ni − 1)card ({k ∈ σ | k > i}) + cω,

where
cω =

∑
i∈ω

(ni − 1)
∑
j∈ω
j>i

(nj − 1)

is a constant about ω.

Lemma 3.34. Let ϖ′
J : R∗

K → R∗
KJ be the homomorphism by composing the sequences

of ϖi : R∗
K → R∗

Kvi
with respect to (57). Then ϖ′

J coincides with ϖJ , if we set

uiuB̃i = ṽi and tiuB̃i = ũi.

Here B̃i = {i + 1, i + 2, . . . , i + ni − 1} (which is empty when ni = 1) i = 1, 2, . . . ,m.
Consequently, the homomorphism ϖJ is a cochain map preserving the differential d on
both sides.

Proof. This follows from the definitions and the calculation (58). Here we check the
cochain map (61) directly. First note that from (62), we have

ν ′(σ ∪ {i}, ω)− ν ′(σ, ω) =
∑

k∈ω,k<i

(nk − 1)

for any i ∈ ω \ σ. By taking d on both sides of (61), it turns out that (in what follows
suppose k ∈ ω)

ϖJ

(
d(uσtω\σ)

)
=

∑
i∈ω\σ

(σ∪{i})∈Kω

(−1)card({k∈σ|k<i})ϖJ

(
uσ∪{i}tω\(σ∪{i})

)
=

∑
i∈ω\σ

(σ∪{i})∈Kω

(−1)card({k∈σ|k<i})+ν′(σ∪{i},ω)ṽσ∪{i}ũω\(σ∪{i})

=
∑
i∈ω\σ

(σ∪{i})∈Kω

(−1)card({k∈σ|k<i})+
∑

k<i(nk−1)+ν′(σ,ω)ṽσ∪{i}ũω\(σ∪{i})

=
∑
i∈ω\σ

(σ∪{i})∈Kω

(−1)
∑

k<i,k∈σ nk+
∑

k<i,k∈ω\σ(nk−1)+ν′(σ,ω)ṽσ∪{i}ũω\(σ∪{i})
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= d
(
(−1)ν′(σ,ω)ṽσũω\σ

)
,

where the last equation holds by (60), with deg(ṽk) = nk and deg(ũk) = nk − 1. □

We shall end this section with the corollary below, which follows directly from Theorem
2.5, Lemma 3.4, Lemma 3.13, Theorem 3.31 and Lemma 3.34:

Corollary 3.35. The cohomology of the polyhedral product ((Dni , Sni−1)mi=1)
K is

isomorphic to that of R∗
KJ , with degrees and products preserved. Moreover, there is a

degree-shifting cochain map⊕
ω⊂[m] C̃

∗(K|ω) R∗
KJ

σ∗ (−1)ν′(σ,ω)ṽσũω\σ,

....................................................................................................................................... ............

............................................................................................................................................ ............

................

in which σ ∈ K|ω and ν ′(σ, ω) is defined by (62), such that it induces an additive isomor-
phism when passing to cohomology.



APPENDIX A

Colimits and Chain equivalences

This part is devoted to the proofs of several properties we have used so far.
A standard description of the colimit that we have used in the definition of polyhedral

products (see Definition 3.1) is given in Section A.1 (see [May99]).
Section A.2 is based on the related materials from [Mun84], in which we treat the

chain complex C∗
(
(D1, S0)K

)
defined in Section 1.1 as a colimit colimC∗|A (see Diagram

(71)), which is chain equivalent to the singular chain complex S∗
(
(D1, S0)K

)
(see Propo-

sition A.12).
Following [Spa66, Section 6, Chapter 5], Section A.3 is devoted to extending Whit-

ney’s formulae (16) and (17) (see Theorem A.20). Then we obtain the desired formulae
for cup and cap products in a real moment-angle complex (see Chapter 2).

A.1. Colimits

Definition A.1. Let F : A→ C be a functor between categories A and C, where A is
small (i.e. A has a set of objects). Any object C of C determines the constant functor C

that sends each object of A to C, and sends each morphism of A to the identity morphism
of C.

Denoted by colimF the colimit of F , which is an object of C, together with a natural
transformation τ : F → colimF , such that for any natural transformation τ̄ : F → C

with C arbitrary, there is a unique morphism φτ̄ : colimF → C in C, with the property
φτ̄ ◦ τ = τ̄ . That is to say, for each morphism f : a → a′ in A, we have a commutative
diagram

F (a) F (a′)

colimF

C.

............................................................................................................................................................................................................................................................................................................................................... ............
F (f)

............................................................................................................................................
...
............

τa′
................................................................................................................................................... .........

...

τa
........................................................................................................................................................................................................................................... ........

....

τ̄a

.......................................................................................................................................................................................................................................
....
............

τ̄a′..........................................................
.....
.......
.....
φτ̄

Notice that the uniqueness of colimF can be deduced from that of each morphism φτ̄ .
For instance, let K be an abstract simplicial complex with ground set [m] and T be

the category of topological spaces. We treat K as a category K, in which objects are
simplices and morphisms are inclusions, then the geometric realization functor

G : K −−−→ T

sends each σ = {i0, i1, . . . , ip} to the linear simplex spanned by {ei0 , ei1 , . . . , eip} ⊂ Rm,
where ei is the i-th canonical basis element in Rm. We call colimG the geometric realization
of K and denote it by |K|.

36
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A.2. Chain equivalences

Definition A.2. Let C be the category of chain complexes endowed with chain
maps as morphisms. A chain complex refers to a graded Abelian group endowed with a
boundary operator shifting the degrees by one,1 and chain maps are homomorphisms
preserving degrees and boundary operators. A chain homotopy between chain maps
f1, f2 : (C1, ∂1) → (C2, ∂2) is a homomorphism D : C1 → C2 shifting the degree up by
one, such that

f2 − f1 = D ◦ ∂1 + ∂2 ◦D.

A chain equivalence between (C1, ∂1) and (C2, ∂2) refers to a chain map f : C1 → C2

together with its chain-homotopy inverse g : C2 → C1, such that there is a chain homotopy
between g ◦ f and the identity morphism of C1, together with a chain homotopy between
f ◦ g and the identity morphism of C2.

The dual of an object (resp. a morphism) in C is the corresponding object (resp. mor-
phism) with respect to the Hom-functor.

It is straightforward to check that if there is a chain homotopy between f1 and f2,
then the dual of the chain homotopy gives a cochain homotopy between their duals f ∗

1 and
f ∗
2 , respectively; moreover, f1 and f2 (resp. f ∗

1 and f ∗
2 ) induces the same homomorphisms

between corresponding homology groups (resp. cohomology groups).
Let S∗ : T → C be the singular chain functor sending each space X to its singular

chain complex (S∗(X), ∂), in which the subgroup of p-chains shall be denoted as Sp(X).

Definition A.3. Let X =
∏m

i=1 |Ki| be the product space of m compact simplicial
complexes |Ki|, i = 1, 2, . . . ,m. Assume that X is endowed with a cell structure to be a
CW complex, with each cell being a product of m simplices

(63) |σ1| × |σ2| × . . .× |σm|, σi ∈ Ki, i = 1, 2, · · · ,m,

and suppose A ⊂ X is a subcomplex with respect to this cell structure. Let A be the
subcategory of T with objects as cells contained in A and morphisms as inclusions, and
let S∗|A : A→ C be the restriction of S∗ to A, sending each cell eA ∈ A to S∗(eA).

Remark A.4. In what follows we shall implicitly use the fact that C is cocomplete,
namely colimF always exists as a suitable object of C, for any functor F with C as the
target category, whose source category is small (see [May99]).

By Definition A.1 there is a unique chain map

(64) iA : (colimS∗|A, ∂) −−−→ (S∗(A), ∂)

induced by chain inclusions S∗(eA) → S∗(A) for each eA ∈ A. Here the boundary oper-
ator of colimS∗|A is defined by composing each ∂ : S∗(eA) → S∗(eA) and τeA : S∗(eA) →
colimS∗|A, and then passing to colimit.

Remark A.5. It turns out that colimS∗|A is generated by those singular simplices
whose image lies in some cell eA ∈ A. With the fact that in a CW complex, each cell is a
1if the boundary operator in a chain complex increases the degree by one, we shall call it a cochain
complex with associated coboundary operator
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deformation retract of its certain neighborhood, it can be proved that iA in (64) induces
a chain equivalence (see [Mun84, pp. 179–180]).

Definition A.6. Let Tm be the m-fold product category of topological spaces, whose
morphisms are m-tuples of continuous maps, and let S ′

∗ : Tm → C be the functor sending∏m
i=1Xi to the chain complex

⊗m
i=1 S∗(Xi), such that the boundary operator is generated

by

(65) ∂S′(σs
1 ⊗ . . .⊗ σs

m) =
m∑
i=1

(−1)
∑

j<i deg(σs
j )σs

1 ⊗ . . .⊗ ∂σs
i ⊗ . . .⊗ σs

m,

in which σs
i ∈ S∗(Xi) is a singular simplex, i = 1, 2, . . . ,m. Here the subgroup of p-chains

is given by

S ′
p(X) :=

⊕
∑m

i=1 pi=p

m⊗
i=1

Spi(Xi).

To proceed, we need the following fact:

Theorem A.7 (Eilenberg-Zilber [EZ53]). There is a natural transformation T be-
tween S∗ and S ′

∗, as functors from Tm to C, inducing a degree-preserving chain equivalence
between them. Moreover, T is unique up to natural chain homotopy.

That is to say, for such a natural transformation T there is a natural transformation
T−1 : S ′

∗ → S∗, together with natural transformations DS : S∗ → S∗ and DS′ : S ′
∗ → S ′

∗
shifting the degree up by one, such that

(66) T−1 ◦ T − idS∗ = ∂ ◦DS +DS ◦ ∂

and

(67) T ◦ T−1 − idS′
∗ = ∂S′ ◦DS′ +DS′ ◦ ∂S′ ,

where idS∗ (resp. idS′
∗) is the identity of S∗ (resp. S ′

∗). Moreover, if we have two such
natural transformations T and T ′ from S∗ to S ′

∗, then there is a natural transformation
D′ : S∗ → S ′

∗, such that
T ′ − T = ∂S′ ◦D′ +D′ ◦ ∂.

The following construction provides an explicit natural transformation in Eilenberg-Zilber
theorem A.7:

Definition A.8. Let X =
∏m

i=1Xi be an object in Tm. Suppose that for each non-
negative integer p, ∆p ⊂ Rp is the simplex spanned by vertices e0 = O (the origin in Rp),
e1, e2, . . ., ep, with labels 0, 1, . . ., p, respectively, where ei is the i-th canonical basis
vector in Rp. We treat each singular p-simplex in X as a continuous map ∆p → X. The
Alexander-Whitney chain map TAW

X : S∗(X)→ S ′
∗(X) is defined by sending each singular

simplex f(∆p) to the sum
(68)
TAW
X (f)(∆p) =

∑
0=i0≤i1≤...≤im−1≤im=p

f1(∆
p|[i0,i1])⊗ f2(∆

p|[i1,i2])⊗ . . .⊗ fm(∆
p|[im−1,im]),
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where f = (f1, f2, . . . , fm), such that fj+1(∆
p|[ij ,ij+1]) : ∆ij+1−ij → Xj+1 is defined by

composing fj+1 : ∆p → Xj+1, and ∆ij+1−ij → ∆p that is linearly spanned by mapping
vertices of ∆ij+1−ij to those of ∆p labeled from ij to ij+1, respectively, with the order
preserved, j = 0, 1, . . . ,m− 1.

It can be checked directly that TAW
X is a desired chain map for each given X ∈ Tm,

which is natural with respect to morphisms in Tm.

Theorem A.9. Let T be the natural transformation in the Eilenberg-Zilber theorem
and let (X,A) be the CW pair given in Definition A.3. Denote by S ′

∗|A : A → C the
restriction of S ′

∗ to A, then we have the commutative diagram

(69)

(S∗(X), ∂)
TX−−−→ (

⊗m
i=1 S∗(|Ki|), ∂S′)

jA
x j′A

x
(colimS∗|A, ∂)

TA−−−→ (colimS ′
∗|A, ∂S′),

in which TA induces a chain equivalence.

Proof. By Definition A.1, jA and j′A are the unique morphisms defined via each
inclusion eA → X, with eA running through cells in A, and TA can be defined by passing
compositions TeA : S∗(eA) → S ′

∗(eA) and τ ′eA : S ′
∗(eA) → colimS ′

∗|A to colimit. Boundary
operator ∂S′ on colimS ′

∗|A can also be given in this way.
Likewise, T−1

A : colimS ′
∗|A → colimS|A is defined by passing the compositions of chain-

homotopy inverse T−1
S′
∗(eA) : S ′

∗(eA) → S∗(eA) and τeA : S∗(eA) → colimS∗|A to colimit. At
last, natural transformations DS and DS′ in (66) and (67) can be extended over colimits
colimS∗|A and colimS ′

∗|A, respectively, due to their definitions on each piece S∗(eA) and
S ′
∗(eA), and the naturality. Then the statement follows. □

Next we turn to the relation between the simplicial and singular chain complexes. The
following theorem is fundamental (see, for example, [Mun84]):

Theorem A.10. Let K be an abstract simplicial complex with the simplicial chain
complex (C∗(K), ∂′). With a partial ordering of the vertices of K that induces a total
ordering on each simplex, the chain map

(70)
ς : C∗(K) S∗(|K|)

σ = [vi0 , vi1 , . . . , vip ] l(vi0 , vi1 , . . . , vip),
.................................................................................................................................................................................................................................... ............

....................................................................................................... ............

................

induces a chain equivalence, such that its chain-homotopy inverse ς−1 satisfies

ς−1(l(vi0 , vi1 , . . . , vip)) = [vi0 , vi1 , . . . , vip ].

Here vi0 < vi1 < . . . < vip is in the given ordering and l(vi0 , vi1 , . . . , vip) : ∆p → |σ| is
linearly spanned by corresponding vertices.

Let (
⊗m

i=1C∗(Ki), ∂C) be the tensor product of simplicial chain complexes C∗(Ki),
with each Ki given an ordering a priori. Suppose ∂C follows (65) with ∂S′ replaced by ∂C
and singular simplices replaced by simplicial ones, respectively. A well-known construction
implies that the chain equivalence (70) can be extended over tensor products, as in the
following lemma.
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Lemma A.11. The chain map
ς̃ : (

⊗m
i=1C∗(Ki), ∂C) (

⊗m
i=1 S∗(|Ki|), ∂S′)

σ1 ⊗ . . .⊗ σm ς1(σ1)⊗ . . .⊗ ςm(σm)

.................................................. ............

............................................................................................. ............

................

induces a chain equivalence, where ςi : C∗(Ki) → S∗(|Ki|) is defined by (70) for i =

1, 2, . . . ,m. Moreover, ς̃ is natural with respect to m-tuples of simplicial maps.

Proof. Clearly ς̃ is a well-defined chain map. It suffices to show that ς̃−1 = ς−1
1 ⊗

ς−1
2 ⊗ . . .⊗ς−1

m is the chain-homotopy inverse of ς̃, where ς−1
i is the chain-homotopy inverse

of ςi with chain homotopies Di : C∗(Ki)→ C∗(Ki), such that

ς−1 ◦ ς − idi = ∂′ ◦Di +Di ◦ ∂′

with idi the identity of C∗(Ki), i = 1, 2, . . . ,m. With a direct calculation, it turns out
that DC :

⊗m
i=1 C∗(Ki)→

⊗m
i=1C∗(Ki) defined by

DC(σ1 ⊗ · · · ⊗ σm) =
m∑
i=1

(−1)
∑

j<i deg(σj)ς−1
1 ◦ ς1(σ1)⊗ ς−1

2 ◦ ς2(σ2)⊗ · · ·

⊗ ς−1
i−1 ◦ ςi−1(σi−1)⊗Diσi ⊗ σi+1 ⊗ · · · ⊗ σm

satisfies
ς̃−1 ◦ ς̃ − idC∗ = ∂C ◦DC +DC ◦ ∂C ,

in which idC∗ is the identity of (
⊗m

i=1C∗(Ki), ∂C). Similarly, we can construct a chain
homotopy for (

⊗m
i=1 S∗(|Ki|), ∂S′), thus the first statement follows. By the construction

above, the second statement follows from the naturality of each ςi, i = 1, 2, . . . ,m. □

Now let (X,A) be the CW pair given in Definition A.3, and let C∗|A : A→ C be the
functor sending each object eA =

∏m
i=1 |σi| to

⊗m
i=1C∗(σi). Since morphisms (i.e. inclu-

sions) in A are simplicial, colimC∗|A is well-defined. Moreover, from each chain inclusion⊗m
i=1C∗(σi)→

⊗m
i=1C∗(Ki) with eA =

∏m
i=1 |σi| running through all cells of A, we have

a unique chain map j′′A : colimC∗|A →
⊗m

i=1C∗(Ki).
With a proof similar to that of Theorem A.9, it can be shown that diagram

(71)

(
⊗m

i=1C∗(Ki), ∂C)
ς̃−−−→ (

⊗m
i=1 S∗(|Ki|), ∂S′)

j′′A

x j′A

x
(colimC∗|A, ∂C)

ς̃A−−−→ (colimS ′
∗|A, ∂S′) ,

commutes, in which ς̃A induces a chain equivalence.
Here we make a conclusion to end this section.

Proposition A.12. Let (X,A) be the CW pair given in Definition A.3. Then
colimC∗|A is generated by chains of the form σ1 ⊗ . . . ⊗ σm, where

∏m
i=1 |σi| is a cell

of A, and the boundary operator ∂C satisfies

∂C(σ1 ⊗ . . .⊗ σm) =
m∑
i=1

(−1)
∑

j<i deg(σj)σ1 ⊗ . . .⊗ σi−1 ⊗ ∂′σi ⊗ σi+1 ⊗ . . .⊗ σm
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on each generator. Then the sequence

(72) S∗(A)
(iA)−1

−−−−→ colimS∗|A
TA−−−→ colimS ′

∗|A
(ς̃A)−1

−−−−→ colimC∗|A
induces a chain equivalence between (S∗(A), ∂) and (colimC∗|A, ∂C), yielding an isomor-
phism H∗(A) ∼= H∗(colimC∗|A, ∂C).

Moreover, as the dual of (72), the sequence

S∗(A)
(i∗A)−1

←−−−− Hom(colimS∗|A,Z)
(TA)∗←−−− Hom(colimS ′

∗|A,Z)
(ς̃∗A)−1

←−−−− Hom(colimC∗|A,Z)
induces a cochain equivalence between (S∗(A), δ) and (Hom(colimC∗|A,Z), δC), where δ

and δC are the duals of ∂ and ∂C, respectively, and hence we have the isomorphism
H∗(A) ∼= H∗(colimC∗|A, δC).

A.3. On cup and cap products

Let S∗ : T→ C be the functor of singular cochains, sending each space X to S∗(X) =

Hom(S∗(X),Z). Let θ2 : S∗(X)
⊗

S∗(X) → Hom(S∗(X)
⊗

S∗(X),Z) be the cochain
map given by

(73) θ2(c
p1 ⊗ cp2)(cq1 ⊗ cq2) = cp1(cq1)c

p2(cq2),

for each cp1⊗cp2 ∈ Sp1(X)
⊗

Sp2(X) and cq1⊗cq2 ∈ Sq1(X)
⊗

Sq2(X), respectively. Note
that cp1(cq1)c

p2(cq2) vanishes if either p1 ̸= q1 or p2 ̸= q2.
Consider the sequence

(74) S∗(X)
d∗−−−→ S∗(X ×X)

TX×X−−−→ S∗(X)
⊗

S∗(X),

in which d∗ is induced by the diagonal map d : X → X × X, and T is the natural
transformation in the Eilenberg-Zilber theorem A.7, with m = 2. To define the cap
product, we need a homomorphism

(75)
h : S∗(X)

⊗
S∗(X)

⊗
S∗(X) S∗(X)

(cp, cr1 ⊗ cr2) cp(cr2)cr1 .
................................................................................................................. ............

................................................................................................................................................................................................. ............

................

With a straightforward calculation, it can be checked that h satisfies the following prop-
erty: for cp ∈ Sp(X) and cr ∈ S ′

r(X × X) =
⊕

r1+r2=r Sr1(X) ⊗ Sr2(X) (see Definition
A.6),

(76) ∂ ◦ h(cp, cr) = (−1)r−ph(δcp, cr) + h(cp, ∂S′cr).

Definition A.13. The cup product ⌣ : S∗(X)
⊗

S∗(X) → S∗(X) is a homomor-
phism defined as the composition d∗ ◦ T ∗

X×X ◦ θ2, where d∗ and T ∗
X×X are the dual maps

of d∗ and TX×X , respectively (see (74)).
The cap product ⌢ : S∗(X)

⊗
S∗(X)→ S∗(X) is a homomorphism defined as

cp ⌢ cr := h(cp, TX×X ◦ d∗(cr)).

Immediately from the definition above, formula (76) can be interpreted as

(77) ∂(cp ⌢ cr) = (−1)r−pδcp ⌢ cr + cp ⌢ ∂cr.
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Notice that we have already defined the simplicial cup and cap products by (18) and
(26), respectively. The following (well-known) lemma shows that how they are related
with Definition A.13:

Lemma A.14. Suppose that K is a simplicial complex with a partial ordering on
vertices, such that it gives a total ordering on each simplex. Let TAW

|K|×|K| : S∗(|K|×|K|)→
S∗(|K|)

⊗
S∗(|K|) be the Alexander-Whitney map with m = 2 (see (68)), then the bottom

rows of the commutative diagrams
S∗(|K|)

⊗
S∗(|K|) ⌣−−−→ S∗(|K|)yς∗⊗ς∗

yς∗

C∗(K)
⊗

C∗(K) −−−→ C∗(K)

and
S∗(|K|)

⊗
S∗(|K|)

⌢−−−→ S∗(|K|)yς∗⊗ς−1

yς−1

C∗(K)
⊗

C∗(K) −−−→ C∗(K)

give the simplicial cup and cap products, respectively, where ς induces the chain equivalence
between the simplicial and singular chain complexes (see (70)), and ς∗ is the dual of ς.

Proof. Without loss of generality, we may assume that [v0, v1, . . . , vp+q] is an oriented
simplex in Cp+q(K) (i.e., v0 < v1 < . . . < vp+q is in the given ordering) with p + q = r.
Choose cp ∈ Sp(|K|) and cq ∈ Sq(|K|), respectively, then a direct calculation shows that

ς∗(cp) ⌣ ς∗(cq)([v0, v1, . . . , vp+q])

=cp ⌣ cq(ς([v0, v1, . . . , vp+q]))

=cp ⌣ cq(l(v0, v1, . . . , vp+q))

=θ2(c
p ⊗ cq)

(
TAW
|K|×|K| ◦ d∗ (l(v0, v1, . . . , vp+q))

)
=θ2(c

p ⊗ cq)

{
p+q∑
i=0

l(v0, v1, . . . , vi)⊗ l(vi, vi+1, . . . , vp+q)

}
due to (68)

=cp (l(v0, v1, . . . , vp)) c
q (l(vp, vp+1, . . . , vp+q)) ,

yielding (18) (see Theorem A.10). As for the cap product, similarly we have

ς∗(cp) ⌢ [v0, v1, . . . , vp+q]

=ς−1
(
cp ⌢ ς([v0, v1, . . . , vp+q])

)
=ς−1

(
cp ⌢ l(v0, v1, . . . , vp+q)

)
=ς−1

(
h
(
cp, TAW

|K|×|K| ◦ d∗ (l(v0, v1, . . . , vp+q))
) )

=ς−1
( p+q∑

i=0

h (cp, l(v0, v1, . . . , vi)⊗ l(vi, vi+1, . . . , vp+q))
)

=ς−1
(
cp (l(vq, vq+1, . . . , vq+p)) l(v0, v1, . . . , vq)

)
by Theorem A.10
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=cp (l(vq, vq+1, . . . , vq+p)) [v0, v1, · · · , vq],(78)

from which (26) follows. □

Convention A.15. In what follows, we shall use the notation Tm : S∗ → S ′
∗ to denote

the natural transformation in the Eilenberg-Zilber theorem A.7. In particular, we need
T 2 to define the cup and cap products (see Definition A.13).

Now we consider functors from Tm to C. Let X =
∏m

i=1Xi be an object in Tm with
diagonal maps di : Xi → Xi ×Xi, i = 1, 2, . . . ,m, then we have a diagram

(79)

S∗(X) S∗(X ×X) S∗(X)
⊗

S∗(X)

⊗m
i=1 S∗(Xi)

⊗m
i=1(S∗(Xi)

⊗
S∗(Xi)),

⊗m
i=1 S∗(Xi)

⊗⊗m
i=1 S∗(Xi)

....................................................... ............
d∗

....................................................................................................... ............
T 2
X×X

..................................................................................................................................................................................
.....
.......
.....

Tm
X

.................................................................................................
....
............

Tm
X ⊗ Tm

X

............................................................................................................................................................................................................. ............
⊗m

i=1T
2
Xi×Xi

◦ (di)∗ .........
.........

.........
.........

.........
.........

.........
.........

.........
.........................

Ω

in which the homomorphism Ω is defined as follows: let ⊗m
i=1cpi ⊗ cqi be a chain from⊗m

i=1 Spi(Xi)
⊗

Sqi(Xi), then

(80) Ω (⊗m
i=1cpi ⊗ cqi) = (−1)κ (⊗m

i=1cpi)⊗ (⊗m
i=1cqi) , κ =

m∑
i=1

qi
∑
j>i

pj,

namely the mod 2 integer κ is generated by the rule that, every time an interchange of the
positions of two homogenous elements gives rise to a summand of κ, which is the product
of their degrees.

Proposition A.16. As homomorphisms from S∗(X) to
⊗m

i=1 S∗(Xi)
⊗⊗m

i=1 S∗(Xi),

Ω ◦ (⊗m
i=1T

2
Xi×Xi

◦ (di)∗) ◦ Tm
X and (Tm

X ⊗ Tm
X ) ◦ T 2

X×X ◦ d∗

are both chain maps, as natural transformations between functors from Tm to C. More-
over, the two chain maps above are differed by a natural chain homotopy, i.e. a natural
transformation between the two functors above, inducing a chain homotopy when the space
is specified.

As a conclusion, Diagram (79) commutes, up to natural chain homotopy.

Proof. The first statement, i.e. Ω is a chain map, can be checked by a direct calcula-
tion. The second one follows by the Acyclic Model Theorem (see [EM53]), with models
as 2m-product of simplices (see [Spa66, Section 6, Chapter 5, p. 252] for the details of
the case m = 2, and the proof for the general case is similar). □

Now we define a canonical cochain map (sometimes called an evaluation map) analo-
gous to (73), namely

θ :
m⊗
i=1

S∗(Xi)→ Hom(
m⊗
i=1

S∗(Xi),Z)
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such that
θ(⊗m

i=1c
pi)(⊗m

i=1cri) =
m∏
i=1

cpi(cri)

for ⊗m
i=1c

pi ∈
⊗m

i=1 S
pi(Xi) and ⊗m

i=1cri ∈
⊗m

i=1 Sri(Xi). Observe that in the bottom row
of the diagram

Hom(S∗(X),Z)
⊗

S∗(X)
⊗

S∗(X)
h−−−→ S∗(X)

(Tm
X )∗

x Tm
X

y Tm
X

y Tm
X

y
Hom(S ′

∗(X),Z)
⊗

S ′
∗(X)

⊗
S ′
∗(X)

h−−−→ S ′
∗(X),

we can define the homomorphism h by replacing S∗(X) and S∗(X) with S ′
∗(X) and

Hom(S ′
∗(X),Z) in (75), respectively, such that the diagram above is commutative in

the following sense:

Lemma A.17. Assume that cp ∈
⊗m

i=1 S
∗(Xi) is a p-cochain and cr1 , cr2 ∈ S∗(X) are

two chains of degrees r1 and r2, respectively, we have

(81) Tm
X ◦ h((Tm

X )∗ ◦ θ(cp), cr1 ⊗ cr2) = h(θ(cp), Tm
X (cr1)⊗ Tm

X (cr2)).

Henceforth in this section, let (X,A) be the CW pair given by Definition A.3. and
occasionally we shall identify S∗(A) with Hom(colimS∗|A,Z), as discussed in Remark A.5.
Recall that in Theorem A.9, we have defined the unique chain map Tm

A : colimS∗|A →
colimS ′

∗|A, by passing sequences

S∗(eA)
TeA−−−→ S ′

∗(eA)
τ ′eA−−−→ colimS ′

∗|A,
to colimit, eA ∈ A. Let jA : colimS∗|U → S∗(X) and j′A : colimS ′

∗|U → S ′
∗(X) be the chain

maps induced by inclusions eA → X, with their duals j∗A and (j′A)∗, respectively.

Lemma A.18. The diagram

(82)

colimS∗|A
T 2
A×A◦d∗
−−−−−→ colimS∗|A

⊗
colimS∗|A

Tm
A

y Tm
A ⊗Tm

A

y
colimS ′

∗|A
Ω◦(⊗m

i=1T
2
|Ki|×|Ki|

◦(di)∗)
−−−−−−−−−−−−−−→ colimS ′

∗|A
⊗

colimS ′
∗|A

commutes, up to chain homotopy.

Proof. By Proposition A.16, the statement holds if A is an m-fold product of sim-
plices.

Suppose that in the top row of Diagram (79), X is replaced by eA. With eA running
through all cells of A, we see that the composition T 2

A×A ◦ d∗ is well-defined by passing
T 2
eA×eA

◦ d∗ to colimit. Similarly, Ω ◦ (⊗m
i=1T

2
|Ki|×|Ki| ◦ (di)∗) can be defined through each

S ′
∗(eA). The chain homotopy colimS∗|A → colimS ′

∗|A
⊗

colimS ′
∗|A can also be obtained

from all pieces eA ∈ A. □

Proposition A.19. Assume that cp = ⊗m
i=1c

pi ∈
⊗m

i=1 S
pi(|Ki|) and cq = ⊗m

i=1c
qi ∈⊗m

i=1 S
qi(|Ki|) are two cochains of degree p and q, respectively, and cr = ⊗m

i=1cri is an
r-chain from colimS ′

∗|A, where eA =
∏m

i=1 |σi| is a cell of A. Then by a diagram chasing
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on
(83)

S∗(X) S∗(X)
⊗

S∗(X)

colimS∗|A colimS∗|A
⊗

colimS∗|A

colimS ′
∗|A colimS ′

∗|A
⊗

colimS ′
∗|A

⊗m
i=1 S∗(|Ki|)

⊗m
i=1 S∗(|Ki|)

⊗⊗m
i=1 S∗(|Ki|)


T 2
X×X ◦ d∗

..........................................................................................................................................................................................................................................................................................................................................................................................................................................................................
.....
.......
.....

Tm
X



Ω ◦ (⊗m
i=1T

2
|Ki|×|Ki| ◦ (di)∗)

..........................................................................................................................................................................................................................................................................................................................................................................................................................................................................
.....
.......
.....

Tm
X ⊗ Tm

X

..................................................................................................................................................................................................................................................... ............
T 2
A×A ◦ d∗

............................................................................................................
.....
.......
.....

Tm
A

..................................................................................................................................................................................................................................................... ............

Ω ◦ (⊗m
i=1T

2
|Ki|×|Ki| ◦ (di)∗)

............................................................................................................
.....
.......
.....

Tm
A ⊗ Tm

A

........
........
........
........
........
........
........
........
........
........
........
........
........
.........................

jA
.............
.............
..................
............jA ⊗ jA

.................................................................................................................................................................
.....
...........
.

j′A

................................................ ........
....

j′A ⊗ j′A

and its dual diagram, the following properties holds:
(1) let κ be the mod 2 integer

∑m
j=1 qj

∑
i>j pi, we have

(84) (Tm
A )∗ ◦ (j′A)∗ ◦ θ(cp) ⌣ (Tm

A )∗ ◦ (j′A)∗ ◦ θ(cq) = (−1)κ(Tm
A )∗ ◦ (j′A)∗ ◦ θ(⊗m

i=1c
pi ⌣ cqi),

up to cochain homotopy from
⊗m

i=1 S∗(|Ki|)
⊗⊗m

i=1 S∗(|Ki|) to colimS∗|A, where
the cup product on the left-hand side is the one in S∗(A), (Tm

A )∗ the dual of Tm
A ;

(2) let ν be the mod 2 integer
∑m

j=1 pj
∑

i>j(ri − pi), we have

(Tm
A )∗ ◦ (j′A)∗ ◦ θ(cp) ⌢ (Tm

A )−1(cr) = (−1)ν(Tm
X )−1(⊗m

i=1c
pi ⌢ cri)+

(Tm
A )−1 ◦ h

(
(j′A)∗ ◦ θ(cp), ∂S′×S′ ◦D(cr) +D ◦ ∂S′(cr)

)
,(85)

in which we treat j′A(cr) = cr since they have the same form, and

D : colimS ′
∗|A → colimS ′

∗|A
⊗

colimS ′
∗|A

is a chain homotopy, ∂S′×S′ the boundary operator in colimS ′
∗|A

⊗
colimS ′

∗|A.

Proof. Clearly Diagram (83) is a combination of Diagrams (79) and (82). For the
first statement, we proceed as follows:

(Tm
A )∗ ◦ (j′A)∗ ◦ θ(cp) ⌣ (Tm

A )∗ ◦ (j′A)∗ ◦ θ(cq)

=d∗ ◦ (T 2
A×A)

∗ ◦ θ2
(
(Tm

A )∗ ◦ (j′A)∗ ◦ θ(cp)⊗ (Tm
A )∗ ◦ (j′A)∗ ◦ θ(cq)

)
by Definition A.13

=j∗A ◦ d∗ ◦ (T 2
X×X)

∗ ◦ θ2
(
(Tm

X )∗ ◦ θ(cp)⊗ (Tm
X )∗ ◦ θ(cq)

)
=j∗A ◦ (Tm

X )∗ ◦ (⊗m
i=1d

∗
i ◦ (T 2

|Ki|×|Ki|)
∗) ◦ Ω∗ ◦ θ2(θ(cp)⊗ θ(cq)) by Proposition A.16

=(−1)κj∗A ◦ (Tm
X )∗ ◦ (⊗m

i=1d
∗
i ◦ (T 2

|Ki|×|Ki|)
∗) ◦ θ

(
⊗m

i=1 θ2(c
pi ⊗ cqi)

)
by (80)

=(−1)κj∗A ◦ (Tm
X )∗ ◦ θ(⊗m

i=1c
pi ⌣ cqi)

=(−1)κ(Tm
A )∗ ◦ (j′A)∗ ◦ θ(⊗m

i=1c
pi ⌣ cqi),
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thus (84) holds.
Now we prove (85). First we can do the expansion (the subscript at the bottom of a

chain means its degree)

Ω ◦
(
⊗m

i=1T
2
|Ki|×|Ki| ◦ (di)∗

)
(cr) = Ω

(
⊗m

i=1

(
cri−pi ⊗ c̄pi +

∑
qi ̸=pi

cri−qi ⊗ cqi
))

= (−1)ν (⊗m
i=1cri−pi)⊗ (⊗m

i=1c̄pi) + L,

where the last term L ∈
⊗m

i=1 S∗(|Ki|)
⊗⊗m

i=1 S∗(|Ki|) is a sum with each summand
of the form α ⊗ β, in which β = ⊗m

i=1cti such that at least one ti is not pi. Therefore,
h ((j′A)∗ ◦ θ(cp), L) vanishes since degrees do not agree (see (75)). On the other hand,

h
(
(j′A)∗ ◦ θ(cp), (⊗m

i=1cri−pi)⊗ (⊗m
i=1c̄pi)

)
=

m∏
i=1

cpi(c̄pi) (⊗m
i=1cri−pi)

=⊗m
i=1 h

(
cpi , T 2

|Ki|×|Ki| ◦ (di)∗(cri)
)
= ⊗m

i=1c
pi ⌢ cri ,

where the last term is in S∗(A). It follows that

(Tm
X )∗ ◦ (j′A)∗ ◦ θ(cp) ⌢ (Tm

A )−1(cr)

=h
(
(Tm

X )∗ ◦ (j′A)∗ ◦ θ(cp), T 2
A×A ◦ d∗ ◦ (Tm

A )−1(cr)
)

=(Tm
A )−1 ◦ h

(
(j′A)∗ ◦ θ(cp),Ω ◦ (⊗m

i=1T
2
|Ki|×|Ki| ◦ (di)∗)(cr) + ∂S′×S′ ◦D(cr) +D ◦ ∂S′(cr)

)
=(−1)ν(Tm

A )−1
(
⊗m

i=1 c
pi ⌢ cri

)
+ (Tm

A )−1 ◦ h
(
(j′A)∗ ◦ θ(cp), ∂S′×S′ ◦D(cr) +D ◦ ∂S′(cr)

)
,

in which from the second line to the third, we have used (81), and the chain homotopy D

to make Diagram (83) commute (see Lemma A.18). □

Now we turn to the simplicial cup and cap products. Recall that (colimC∗|A, ∂C) coin-
cides with the cellular chain complex of A, such that each cell eA is a product of simplices∏m

i=1 |σi| (see Proposition A.12), and colimS ′
∗|A is generated by all tensor products of the

form ⊗m
i=1σ

s
i , such that there exists certain cell

∏m
i=1 |σi| of A, with σs

i a singular simplex
whose image lies in |σi|, i = 1, 2, . . . ,m. It follows that j′A and j′′A are monic (i.e. they
are chain inclusions), hence their duals (j′A)∗ and (j′′A)∗ are epic, because colimC∗|A and
colimS ′

∗|A are both free Abelian groups.
The finiteness of each Ki guarantees that θ :

⊗m
i=1C

∗(Ki) → Hom(
⊗m

i=1C∗(Ki),Z)
is an isomorphism, therefore we have a sequence of epimorphisms

(86)
⊗m

i=1C
∗(Ki)

θ−−−→∼= Hom(
⊗m

i=1C∗(Ki),Z)
(j′′A)∗

−−−→ Hom(colimC∗|A).

We shall end this section with the following theorem, in which the same notations in
Proposition A.12 will be used.

Theorem A.20. Assume that cp = ⊗m
i=1c

pi ∈
⊗m

i=1C
pi(Ki) is a p-cochain, cq =

⊗m
i=1c

qi ∈
⊗m

i=1C
qi(Ki) a q-cochain, and cr = ⊗m

i=1c
ri ∈

⊗m
i=1Cri(σi) an r-chain such

that
∏m

i=1 |σi| is a cell of A. Then we have

(i∗A)−1 ◦ (Tm
A )∗ ◦ (ς̃∗A)−1 ◦ (j′′A)∗ ◦ θ(cp) ⌣ (i∗A)−1 ◦ (Tm

A )∗ ◦ (ς̃∗A)−1 ◦ (j′′A)∗ ◦ θ(cq)
=(i∗A)−1 ◦ (Tm

A )∗ ◦ (ς̃∗A)−1 ◦ (j′′A)∗ ◦ θ ((−1)κ ⊗m
i=1 c

pi ⌣ cqi) ,(87)



A.3. ON CUP AND CAP PRODUCTS 47

up to cochain homotopy, where κ =
∑m

i=1 qi
∑

j>i pj and

(i∗A)−1 ◦ (Tm
A )∗ ◦ (ς̃∗A)−1 : Hom(colimC∗|A,Z)→ S∗(A)

is the cochain equivalence, together with

(i∗A)−1 ◦ (Tm
A )∗ ◦ (ς̃∗A)−1 ◦ (j′′A)∗ ◦ θ(cp) ⌢ iA ◦ (Tm

A )−1 ◦ ς̃A(cr)
=iA ◦ (Tm

A )−1 ◦ ς̃A ((−1)ν ⊗m
i=1 c

pi ⌢ cri)+

iA ◦ (Tm
A )−1 ◦ h

(
(ς̃∗A)

−1 ◦ (j′′A)∗ ◦ θ(cp), ∂S′×S′ ◦D ◦ ς̃A(cr) +D ◦ ∂S′ ◦ ς̃A(cr)
)
,(88)

with ν =
∑m

j=1 pj
∑

i>j(ri − pi).
Moreover, if we give Hom(colimC∗|A,Z) the cup-product structure via the commuta-

tivity of the diagram

(89)

⊗m
i=1C

∗(Ki)
⊗⊗m

i=1C
∗(Ki)

⌣−−−→
⊗m

i=1C
∗(Ki)

(j′′A)∗⊗(j′′A)∗
y (j′′A)∗

y
Hom(colimC∗|A,Z)

⊗
Hom(colimC∗|A,Z) −−−→ Hom(colimC∗|A,Z),

then by formula (87), after passing to cohomology, we have a ring isomorphism H∗(A) ∼=
H∗(Hom(colimC∗|A,Z)).

Likewise, if the cap product on colimC∗|A and its dual is given by the bottom row of
the diagram

(90)

⊗m
i=1C

∗(Ki)
⊗ ⊗m

i=1C∗(Ki)
⌢−−−→

⊗m
i=1C∗(Ki)

(j′′A)∗
y j′′A

x j′′A

x
Hom(colimC∗|A,Z)

⊗
colimC∗|A −−−→ colimC∗|A

via its commutativity, then by formula (88) it coincides with the one ⌢ : H∗(A)⊗H∗(A)→
H∗(A) using singular (co)homolgy.

Proof. By Diagram (71), we have

(ς̃∗A)
−1 ◦ (j′′A)∗ ◦ θ = (j′A)∗ ◦ (ς̃∗)−1 ◦ θ,

thus (87) (resp. (88)) follows from (84) (resp. (85)) and Lemma A.14.
The second statement follows from the epicness of (j′′A)∗ ◦ θ, as illustrated in (86).
For the last statement, it remains to show that the last summand in (88) vanishes

when passing to (co)homology. Let c̃p be a p-cocycle in Hom(colimC∗|A,Z) and c̃r an
r-cycle in (colimC∗|A, ∂C), it follows that

h
(
(ς̃∗A)

−1 ◦ (j′′A)∗ ◦ θ(c̃p), ∂S′×S′ ◦D ◦ ς̃A(c̃r) +D ◦ ∂S′ ◦ ς̃A(c̃r)
)

=h
(
(ς̃∗A)

−1 ◦ (j′′A)∗ ◦ θ(c̃p), ∂S′×S′ ◦D ◦ ς̃A(c̃r)
)

=∂S′ ◦ h
(
(ς̃∗A)

−1 ◦ (j′′A)∗ ◦ θ(c̃p), D ◦ ς̃A(c̃r)
)
± h

(
δS′ ◦ (ς̃∗A)−1 ◦ (j′′A)∗ ◦ θ(c̃p), D ◦ ς̃A(c̃r)

)
=∂S′ ◦ h

(
(ς̃∗A)

−1 ◦ (j′′A)∗ ◦ θ(c̃p), D ◦ ς̃A(c̃r)
)
± h

(
(ς̃∗A)

−1 ◦ (j′′A)∗ ◦ θ(δC c̃p), D ◦ ς̃A(c̃r)
)

=∂S′ ◦ h
(
(ς̃∗A)

−1 ◦ (j′′A)∗ ◦ θ(c̃p), D ◦ ς̃A(c̃r)
)
,
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where the third line follows from (76). Since iA and (Tm
A )−1 are chain maps, the last

statement holds from the calculation above. □
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