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NUMERICAL EXPERIMENTS WITH 2D AND 3D TRANSONIC
FLOWS

JIŘ́ı TREFILÍK1, JAROSLAV HUML1, KAREL KOZEL2 AND JAROMÍR PŘÍHODA2

Abstract. This work deals with the development of numerical methods for simulation of tran-
sonic flows of an inviscid and a viscous (turbulent) compressible fluid in a two- and three-dimensional
channel and in the DCA 8% cascade. Results of numerical experiments modelling the inviscid and
viscous flows at the different inlet Mach numbers are compared and discussed. The numerical so-
lution was obtained by the finite volume method using Lax-Wendroff scheme (MacCormack’s and
Richtmyer’s form) and the multistage Runge-Kutta method on structured non-orthogonal grids.
Jameson’s artificial dissipation was added to increase of the numerical stability. In the case of invis-
cid flows two different inlet boundary conditions are considered. For turbulence modelling algebraic
Baldwin-Lomax model and two equations k − ω model were applied.
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1. Mathematical models.

1.1. Navier-Stokes equations. The two-dimensional laminar flow of a viscous
compressible liquid is described by the system of Navier-Stokes equations

Wt + Fx +Gy = Rx + Sy(1.1)

where
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⎛
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ρ
ρu
ρv
e

⎞
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and
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with shear stresses given for the laminar flow by equations

τxx =
2

3
η(2ux − vy), τxy = η(uy + vx), τyy =

2

3
η(−ux + 2vy).(1.4)

This system is enclosed by the equation of state

p = (κ− 1)

[
e− 1

2
ρ(u2 + v2)

]
.(1.5)
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In the above given equations, ρ denotes density, u, v are components of velocity
in the direction of axis x, y, p is pressure, e is total energy per a unit volume, T is
temperature, η is dynamical viscosity and λ is thermal conductivity coefficient. The
parameter κ = 1.4 is the adiabatic exponent.

1.2. Reynolds averaged Navier-Stokes equations. For the modelling of a
turbulent flow, the system of RANS (Reynolds Averaged Navier-Stokes) equations
enclosed by a turbulence model is used. Two different turbulence models with the
turbulent viscosity were tested, one algebraic, Baldwin-Lomax and the two-equation
k − ω model according to Wilcox. The system of averaged Navier-Stokes equations
is formally the same as (1.1), but this time the flow parameters represent only mean
values in the Favre sense, see [3]. The shear stresses are given for the turbulent flows
by equations

τxx =
2

3
(η + ηt)(2ux − vy)(1.6)

τxy = (η + ηt)(uy + vx)

τyy =
2

3
(η + ηt)(−ux + 2vy)

where ηt denotes the turbulent dynamic viscosity according to the Boussinesq hy-
pothesis. The Reynolds number is defined by Re = u∞L

η∞
and the Mach number by

M =
√

q
a where q =

√
(u2 + v2) and a is the local speed of sound.

All the computations were carried out using dimensionless variables with reference
variables given by inflow values. The reference length L is given by the width of the
computational domain.

2. Turbulence models.

2.1. Baldwin-Lomax model. Algebraic models are based on the model pro-
posed for the boundary-layer flows by Cebeci and Smith. Baldwin-Lomax model is its
modification applicable for general turbulent shear flows. The boundary layer is di-
vided into two regions. In the inner (nearest to the wall) part, the turbulent viscosity
is given by

ηt = ρF 2
Dκ2y2|Ω|(2.1)

where Ω is the vorticity, which is in the 2D flow determined by

Ω =
∂u

∂y
− ∂v

∂x
.(2.2)

and

FD = 1− exp

(
− y+

A+

)
.(2.3)

y+ = u∗y
ν denotes dimensionless distance from the wall, ν = μ

ρ is kinematic viscosity,

u∗ =

√(
τw
ρ

)
is so called friction velocity and τw = μ

(
∂u
∂y

)
y=0

.
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The turbulent viscosity in the outer region is given by

ηto = αρCcpFwFk(2.4)

where Ccp is a constant. Function Fw is determined by the relation

Fw = ymaxFmax(2.5)

for Fw being the maximum of the function

F = yFD|Ω|(2.6)

and ymax the distance from the wall in which F (ymax) = Fmax holds and

Fk =

[
1 + 5.5

(
CKL

y

ymax

)6
]−1

.(2.7)

The Baldwin-Lomax model (1978) contains following values of the constants: κ = 0.4,
A+ = 26, α = 0.0168, Ccp = 1.6, CKL = 0.3.

2.2. k − ω model. Two-equation models are based on transport equations for
two characteristic scales of turbulent motion, mostly for the turbulent energy k and
dissipation rate ε, often used in the form of specific dissipation rate ω = ε/k. These
characteristics are computed from transport equations. Turbulent viscosity is defined
as

ηt = ρ
k

ω
.(2.8)

The standard Wilcox k − ω model is formed by the equations

∂

∂t
(ρk) +

∂

∂xj
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∂

∂xj

[
(η + σ∗ηt)

∂k

∂xj

]
− β∗ρkω(2.9)

∂

∂t
(ρω) +

∂

∂xj
(ρujω) = γ

ω

k
Pk +

∂

∂xj

[
(η + σηt)

∂ω

∂xj

]
− βρω2(2.10)

where Pk = τij∂ui/∂xj represents the production of turbulent energy. Model coeffi-
cients are given by values: α = 5/9, β = 3/40, β∗ = 9/100, σ = 1/2 and σ∗ = 1/2,
i, j ∈ {1, 2}.

3. Numerical methods. For the modelling of the flow cases three finite volume
method numerical schemes were used on non-orthogonal structured grids of quadri-
lateral and hexahedral cells Dij(k).

• the Lax-Wendroff scheme – MacCormack form (MC)

predictor step

W
n+1/2
i,j = Wn

i,j − Δt
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4∑
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k

)
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k
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]
(3.1)

corrector step
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+AD(Wn

i,j)(3.2)
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Fig. 3.1. Evaluation of a derivative in the center of an edge

The Mac Cormack scheme in the cell centered form was applied in solving
the system of RANS equations. Convective terms F , G are considered in
predictor step in forward form and in the corrector step in upwind form of
the first order of accuracy, dissipative terms in central form of the second
order of accuracy. To indicate this we denote their numerical approximation
as F̃ , G̃.

• the Lax-Wendroff scheme – Richtmyer form (Ri)

predictor step

W
n+1/2
i,j = Wn

i,j − Δt

2μi,j

4∑
k=1

(
F̃n
k Δyk − G̃n

kΔxk

)
(3.3)

corrector step

Wn+1
i,j = Wn

i,j − Δt

μi,j

4∑
k=1

(
F̃

n+1/2
k Δyk − G̃

n+1/2
k Δxk

)
+AD(Wn

i,j)(3.4)

• the multistage Runge-Kutta method (RK)

ResW
(r)
i,j,k =

1

μi,j,k

6∑
l=1

(
F̃ , G̃, H̃)i,j,k,l

)
· �n0

i,j,k,lΔSi,j,k,l(3.5)

W
(0)
i,j,k = Wn

i,j,k

W r+1
i,j,k = W

(0)
i,j,k − αrΔtResW

(r)
i,j,k +AD(Wn

i,j,k), r = 0, 1, 2(3.6)

Wn+1
i,j,k = W

(3)
i,j,k

α0,1 = 0.5, α2 = 1

In all the previous cases the value μij(k) represents the surface (volume) of the cell.
Figure 3.1 shows evaluation of derivatives on edges of cells: We imagine a virtual cell
as shown in the picture. We know the values in the centers of the cells and we define
the other two as a mean value of its surrounding cells. From that we extrapolate to
its edges and then we apply Green’s formula.
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Fig. 4.2. test case Long

Each scheme was extended to include Jameson’s artificial dissipation because of
the stability of the method

AD(Wn
i,j,k) = C1ψ1(W

n
i−1,j,k − 2Wn

i,j,k +Wn
i+1,j,k)(3.7)

+ C2ψ2(W
n
i,j−1,k − 2Wn

i,j,k +Wn
i,j+1,k)

+ C3ψ3(W
n
i,j,k−1 − 2Wn

i,j,k +Wn
i,j,k+1)

where

ψ1 =

∣∣∣pni−1,j,k − 2pni,j,k + pni+1,j,k

∣∣∣∣∣∣pni−1,j,k

∣∣∣+ ∣∣∣pni,j,k∣∣∣+ ∣∣∣pni+1,j,k

∣∣∣ ,(3.8)

ψ2 =

∣∣∣pni,j−1,k − 2pni,j,k + pni,j+1,k

∣∣∣∣∣∣pni,j−1,k

∣∣∣+ ∣∣∣pni,j,k∣∣∣+ ∣∣∣pni,j+1,k

∣∣∣ ,

ψ3 =

∣∣∣pni,j,k−1 − 2pni,j,k + pni,j,k+1

∣∣∣∣∣∣pni,j,k−1

∣∣∣+ ∣∣∣pni,j,k∣∣∣+ ∣∣∣pni,j,k+1

∣∣∣ .
The convergence to the steady state is followed by log L2 residual defined by

ResWn =

√√√√ 1

M

∑
k

(
Wn+1

k −Wn
k

Δt

)
(3.9)

where M is a number of all cells in the computational domain.

4. Formulation of the problems. There were 4 types of computational do-
mains, we denote them as GAMM, DCA, Long (a 2D extended modification of
GAMM channel that represent the lower half of the computational domain and where
the upper part of the boundary represents a symmetry axis) and Swept Wing (a 3D
modification of GAMM where a middle part of the lower wall represents the upper
half of a swept wing). Their outlines are presented in the figures Fig. 4.1 – 4.4.
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4.1. Boundary conditions. On the inlet we considered two types of inlet
boundary conditions (IBC):

A ρ1 = 1, u1 = M1 cosα1, v1 = M1 sinα1, w1 = 0, p1 was extrapolated from
the flow field and e1 was calculated using the equation of state.

B ρ1 = 1, u1 = M1 cosα1, v1 = M1 sinα1, w1 = 0, p1 = 1/κ = 0.714 and e1
was calculated using the equation of state.

Inlet boundary conditions IBC A were used for inviscid compressible flows in GAMM,
DCA and Swept Wing; IBC B were used for inviscid compressible flows in GAMM,
DCA and for viscous (turbulent) flows in Long. The angle of attack α1 could be
nonzero just in the case of flows through DCA cascade.

On the outlet we prescribed only pressure p2 = p1 and the rest was extrapolated
from the flow field.

Further on there are three other types of boundary conditions: solid wall, symme-
try axis and periodicity. These conditions are implemented by using virtual cells. Such
cells adjoin from outside on the boundary cells and we prescribe values of unknowns
inside of them to obtain the desired effect.

Solid wall (an inviscid flow): velocity components prescribed so that the sum
of velocity vectors equals to zero in its tangential component. Solid wall (a viscous
flow): velocity components were prescribed so that the sum of velocity vectors equals
zero. In both cases the rest of unknowns is the same in both the virtual and the
boundary cell.

Symmetry axis: this condition was realized by the same way as the wall condi-
tion for an inviscid flow.

Periodicity condition: taking two corresponding segments of boundary we
prescribe into virtual cells of the first segment the values of unknowns contained
in the boundary cells of the second and vice-versa.

Initial conditions were prescribed to comply with the inlet conditions.

5. Numerical results. First results of the inviscid compressible flow in the
GAMM are presented. These results that were obtained by Lax-Wendroff schemes –
MacCormack form (MC, see Fig. 6.1, 6.2) and Richtmyer form (Ri, Fig. 6.3) – and
by the multistage Runge-Kutta method (RK, Fig. 6.5) were compared both each
others (two types of inlet boundary conditions – IBC A, B).

The second test case of inviscid compressible flows was a flow through the DCA
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8% cascade whose numerical solution was obtained by MC (Fig. 6.6) and RK scheme
(Fig. 6.7, 6.8) and was also compared with experiments. There is a mutual agreement.

Further we dealt with a numerical simulation of a turbulent compressible flow in
the Long for which we applied two turbulence models – an algebraic Baldwin-Lomax
model (Fig. 6.9) and 2-equation k − ω model (Fig. 6.10).

The last test case was a 3D inviscid compressible flow around the Swept Wing

(Fig. 6.11) for which a RK scheme was used. Results were verified by WLSQR
scheme (Fig. 6.12).

6. Conclusions. The work presents results of numerical methods solving 2D and
3D inviscid transonic flows using Lax-Wendroff and multistage Runge Kutta methods
with applications in a 2D cascade compared to experimental results and 2D and 3D
GAMM channel. Numerical results of 2D turbulent subsonic flows are compared using
algebraic and k−ω turbulence model in the case of 2D cascade with separation domain
near the trailing edge. All the methods were applied using our solver.
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P101/10/1329 and SGS 10/243/OHK2/3T/12.
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Fig. 6.1. Inviscid compressible flow in the GAMM channel: Mach number isolines at M1 =
0.675 (top) and L2 logarithmic residuals (bottom) – MC scheme, IBC B [Mmax = 1.35], a structured
non-orthogonal grid with 150× 50 cells.

Fig. 6.2. Inviscid compressible flow in the GAMM channel: distribution of Mach number on
the lower wall at M1 = 0.675 – MC scheme, IBC B [Mmax = 1.35], a structured non-orthogonal
grid with 150× 50 cells.
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Fig. 6.3. Inviscid compressible flow in the GAMM channel: Mach number isolines at M1 =
0.675 – Ri scheme, IBC A [Mmax = 1.42 (top)] and B [Mmax = 1.35 (bottom)], a structured
non-orthogonal grid with 240× 50 cells.

Fig. 6.4. Inviscid compressible flow in the GAMM channel: L2 logarithmic residuals at M1 =
0.675 – Ri scheme, IBC A [Mmax = 1.42 (left)] and B [Mmax = 1.35 (right)], a structured non-
orthogonal grid with 240× 50 cells.
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Fig. 6.5. Inviscid compressible flow in the GAMM channel: Mach number isolines at M1 =
0.675 – RK scheme, IBC A [Mmax = 1.39 (top)] and B [Mmax = 1.34 (bottom)], a structured
non-orthogonal grid with 240× 50 cells.

Fig. 6.6. Inviscid compressible flow through the DCA 8% cascade: Mach number isolines at
M1 = 0.85, α1 = 0◦ (top) and experiment by R.Dvorak [1] at M1 = 0.813 (bottom) – MC scheme,
IBC B, a structured non-orthogonal grid with 150× 50 cells .
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Fig. 6.7. Inviscid compressible flow through the DCA 8% cascade: Mach number isolines at
M1 = 0.92, α1 = 2◦ (first) and L2 logarithmic residuals (second) – RK scheme, IBC A, a structured
non-orthogonal grid with 140× 50 cells. Experiment by R. Dvorak [1] at M1 = 0.863 (third)
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Fig. 6.8. Inviscid compressible flow through the DCA 8% cascade: Mach number isolines
at M1 = 1.12, α1 = 0.5◦ (first) and L2 logarithmic residuals (second) – RK scheme, IBC A, a
structured non-orthogonal grid with 140 × 50 cells. Experiment by R. Dvorak [1] at M1 = 1.013
(third)
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Fig. 6.9. Turbulent compressible flow in the Long: Mach number isolines at M1 = 0.6 (top)
and detail of separation near the end of the profile (bottom) – MC scheme, Baldwin-Lomax model,
IBC B, a structured non-orthogonal grid with 150× 30 cells.

Fig. 6.10. Turbulent compressible flow in the Long: Mach number isolines at M1 = 0.6 (top)
and detail of separation near the end of the profile (bottom) – MC scheme, k − ω model, IBC B, a
structured non-orthogonal grid with 150× 30 cells.
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Fig. 6.11. Inviscid compressible flow around the Swept Wing in the 3D gamm channel:
Mach number isolines at M1 = 0.675 (left) and distributions of Mach number on the lower wall in
the slides (right) – RK scheme, IBC A, a structured non-orthogonal grid with 110× 30× 10 cells.

Fig. 6.12. Inviscid compressible flow around the Swept Wing in the 3D gamm channel:
Mach number isolines at M1 = 0.675 (left) and distributions of Mach number on the lower wall in
the slides (right) – WLSQR scheme by J.Holman [6], IBC A, a structured non-orthogonal grid with
180× 35× 35 cells.




