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NUMERICAL SCHEMES FOR ANISOTROPIC DIFFUSION

EQUATIONS
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Abstract. In the course of tuning the developed numerical algorithm for MR-DTI data visual-
ization, it was necessary to introduce a measurement technique capable of quantitatively assessing
the artificial isotropic diffusion in numerical schemes for PDE. Based on such assessment, a qualified
choice of the numerical scheme can be made. This contribution describes the proposed measurement
technique based on total variation evaluation. The procedure is applied to several numerical dis-
cretizations of the anisotropic diffusion model based on the Allen-Cahn equation and the obtained
results are presented. For comparison, the traditional experimental order of convergence measure-
ments are also provided to show their irrelevance in numerical diffusion quantification for the studied
problem.
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1. Introduction. The Allen-Cahn equation having its origin in phase modeling
in physics [1] has later found its application in other fields, including image processing
and mathematical visualization [3, 14]. In particular, in order to visualize the stream-
lines of a given tensor field in 3D, an initial boundary value problem for the modified
Allen-Cahn equation with incorporated anisotropy can be used [11, 14], giving similar
results to the LIC method[6, 9].

The described technique for tensor field visualization is utilized in our DT-MRI
tractography procedure explained in detail in [16]. However, in this contribution, the
context of the medical application is omitted. Instead, focus is put on numerically
solving the problem by the finite volume method using several flux approximation
schemes on a rectangular grid. We also briefly comment on boundary condition treat-
ment.

The schemes suffer from an undesired numerical dissipation effect which demon-
strates itself as an additional isotropic diffusion of the solution. Hence, we proceed
with the development of a measurement technique that would provide for assessing the
amount of the numerical diffusion produced by the schemes. A quantitative scheme
comparison criterion is thereby created. The text follows and extends the ideas briefly
introduced in our recent paper [17].

2. Problem for the Allen-Cahn Equation with Anisotropy.

Formulation. Assume there is a symmetric positive definite tensor field D :
Ω̄ �→ R

3×3 where Ω ⊂ R
3 is a block shaped domain. On the time interval J = (0, T ),
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the initial boundary value problem for the anisotropic Allen-Cahn equation reads

ξ
∂p

∂t
= ξ∇ · D∇p +

1
ξ
f0(p) in J × Ω, (2.1)

∂p

∂n

∣∣∣∣
∂Ω

= 0 on J̄ × ∂Ω, (2.2)

p|t=0 = p0 in Ω (2.3)

where

f0(p) = p(1 − p)
(

p −
1
2

)
.

Let x ∈ Ω. Thanks to D (x) in the diffusion term on the right hand side of (2.1), the
diffusion of p at x is focused into the direction of the principal eigenvector of D (x),
or more precisely, with the directional distribution described by the ellipsoid{

η ∈ R
3
∣∣ηTD (x)−1

η = 1
}

.

In terms of tensor field visualization, we choose the initial condition p0 in (2.3) as
a noisy texture, in particular as a uniformly distributed impulse noise with mean
value 1

2 . Due to the anisotropic diffusion process carried out by solving (2.1-2.3),
the solution p changes in time from noise to an organized structure. Streamlines of
the field of principal eigenvectors of D can be recognized there as parts with locally
similar value of p. The term f0 efficiently increases contrast of the resulting 3D image
provided that the parameter ξ and the final time T are chosen appropriately (in our
case by experiment). In order to actually view the resulting 3D image p (·, T ), 2D
slices through Ω can be helpful.

Numerical Solution. For numerical solution, the method of lines [13] is utilized.
Applying a finite volume (FV) discretization scheme in space, the equation (2.1) is
converted to a system of ODE in the form of a semidiscrete scheme

ξ
d
dt

ph
K (t) = ξ

∑
σ∈EK

FK,σ (t) +
1
ξ
f0

(
ph

K (t)
)

∀K ∈ T (2.4)

where T is generally an admissible finite volume mesh [8] with mesh size

h = max
K∈T

diam(K),

K ∈ T denotes one particular control volume (cell) and EK is the set of all faces of the
cell K. Thanks to the nature of the application and the geometry of Ω, T is chosen as
a uniform rectangular mesh. FK,σ (t) represent the respective numerical fluxes at the
time t, which contain difference quotients approximating the derivatives ∂xp, ∂yp, ∂zp
at the center of the face σ. ph

K (t) is the solution of (2.4) approximating the value of
p (xK , t) where xK ∈ K. It is found by employing the 4th order Runge-Kutta-Merson
solver with adaptive time stepping [5].

Artificial Dissipation and Finite Volume Scheme Design. As indicated
in the introduction, all schemes introduce a certain amount of artificial (numerical)
isotropic diffusion in the solution. However, its strength depends on the exact form

P. Strachotaa et al.



Assessment of Numerical Schemes 75

of FK,σ. This phenomenon needs to be suppressed as much as possible as it may
significantly deteriorate the visual quality of the result due to blurring. Its cause
lies in the occurrence of high frequency structures in the solution: both the initial
noise and the forming streamlines. To be treated correctly, they require the difference
operators used in FK,σ to be of an appropriate order [15, 10].

We have assembled and investigated numerical schemes using the following ap-
proximations of the derivatives in the flux term:

• second order central difference approximation with linear interpolation of the
missing points in the difference stencil;

• multipoint flux approximation (MPFA) central difference scheme with linear
interpolation;

• fourth order MPFA central difference scheme with cubic interpolation.
Thereto, a classical forward-backward finite difference (FD) scheme has been added
[15], approximating the mixed derivatives with first order only.

Details of MPFA. The MPFA schemes are used with the aim of achieving a
higher order of accuracy in flux approximation. There are two forms of difference
expressions used:

• The difference quotient approximating the derivative in the direction perpen-
dicular to the face σ uses a non-equidistant point distribution in order to
avoid redundant interpolation (Figure 2.1a). For simplicity, we provide here
its 1-dimensional analog for a function u ∈ C1 (R), represented by the formula

du

dx

∣∣∣∣
x

i+ 1
2

≈
1

24h
(ui−1 − 27ui + 27ui+1 − ui+2)

where xj = j · h, uj = u (xj) for j ∈ Z, h > 0. This formula is fourth order
accurate provided that u ∈ C5 (R).

• The remaining derivatives are approximated using a uniform 5-point stencil.
Again, its 1D analog can be written as

du

dx

∣∣∣∣
xi

≈
1

12h
(ui−2 − 8ui−1 + 8ui+1 − ui+2) .

Moreover, to achieve fourth order accuracy, the stencil points (Figure 2.1b)
are interpolated from the neighboring grid nodes using 1-dimensional cubic
interpolation. The MPFA variant using linear interpolation instead has also
been investigated to verify the importance of cubic interpolation in practical
cases.

Discretization of Initial and Boundary Conditions. The discrete noisy
initial condition is created by randomly setting ph

K (0) = 0 or ph
K (0) = 1 with the

same probability 1
2 , for each K ∈ T .

The boundary condition (2.2) is implemented by extending the uniform numerical
grid beyond Ω and introducing several layers of additional auxiliary grid nodes in the
exterior of Ω with values of ph mirrored along ∂Ω. As a result, the numerical flux across
∂Ω evaluates to 0 thanks to central differences used in all schemes. The boundary
condition is therefore approximated with the same order of accuracy as the flux itself.

Finally, it is fair to note that a slightly more suitable choice of the boundary
condition could be made. The original equation (2.2) can be rewritten in the form

∇p · n|∂Ω = 0
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Figure 2.1: Point stencils (crosses along the thick solid lines) of difference quotients for
derivative approximations in the MPFA finite volume scheme with cubic
interpolation (along the dashed lines). The notation xi,j,k abbreviates
xKi,j,k

where the indices i, j, k are used to identify the cells Ki,j,k of a
uniform rectangular mesh.

and replaced by

(D∇p) · n|∂Ω = 0, (2.5)

as e.g. in [7]. However, the auxiliary node approach cannot be used easily in this case.
Instead, (2.5) can be treated explicitly by adjusting the numerical scheme accordingly
close to the boundary. Due to implementation complexity, the boundary condition of
this form has been avoided so far.

3. Artificial Diffusion Measurement. Having the results available obtained
by using different schemes but based on identical input settings, one can try to com-
pare them visually to decide on the scheme with the least artificial diffusion. In Figure
3.1, an example of such comparison is demonstrated on a real-data DT-MRI neural
tract visualization. In the center part of the images, a major neural tract in the shape
of U is displayed in the form of streamlines. It can be observed that the FD scheme
produces undesired isotropic diffusion greatly dependent on the prescribed direction
of diffusion. This is related to the asymmetry of the difference stencil. The 2nd
order central difference flux approximation used in the FV scheme is already symmet-
ric. However, it is clearly outperformed by the scheme based on MPFA which causes
significantly weaker blurring.

Scheme Assessment by Total Variation. In this part we introduce a quan-
titative measure of the artificial diffusion in the schemes. For this purpose, the total
variation of the numerical solution ph = ph (t) finds its rather unusual application. It
is defined as

TV
(
ph
)

=
∑
K∈T

∣∣∇hph
K

∣∣m (K) (3.1)
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FD FV 2nd order MPFA cubic 4th order

Figure 3.1: Artificial diffusion in different numerical schemes. Crops from colorized
MR-DTI visualizations based on real data, transverse plane slice.

where ∇hph
K represents the discrete approximation of the gradient and m (K) is the

measure of the cell K. From the image processing point of view, the value of TV is
proportional to both the number of edges in the image ph and its contrast. Both these
quantities assume their maxima for the noisy initial condition and change in time along
with the diffuse evolution of the numerical solution. Performing two computations
with identical settings except for the choice of the numerical scheme, it is possible to
directly compare the TV values of the results. The scheme producing an image with
a greater value of TV exhibits less artificial diffusion as it maintains more edges, more
contrast, or both.

Scheme Comparison Methodology. We have performed extensive testing
with phantom input tensor fields to investigate the behavior of the schemes depend-
ing on the prescribed direction of diffusion. For each triple of spherical coordinates
(r = 1, ϕ, θ) where ϕ ∈ [0, 360◦], θ ∈ [−90◦, 90◦], let a unit vector

v1 (ϕ, θ) = (cos ϕ cos θ, sin ϕ cos θ, sin θ)

represent the principal eigenvector of a uniform tensor field D (ϕ, θ), corresponding
to the eigenvalue λ1 = 100. The remaining eigenvalues are λ2 = λ3 = 1 and the
eigenvectors v2,v3 complete the orthonormal basis of R3. Afterwards, a computation
is carried out using D (ϕ, θ) as input data.

Subsequently, TV is evaluated from the resulting datasets. The TV values alone
are not of particular interest since they depend on both the grid dimensions and the
size of the domain Ω. However, the relative differences of TV between schemes provide
the desired information.

The results of the procedure described above performed for all the four schemes
in several time levels are shown in Figures 3.2-3.6. In each chart, TV is normalized so
that its maximum over all plotted data series is 1. Settings of all important compu-
tation parameters can be found in the figure captions. The initial condition ph

K (0) is
random for each computation, although theoretically it should stay fixed for all ϕ, θ
to keep the comparison absolutely correct. Nevertheless, it turns out that repeated
computations with the same setting and random ph

K (0) result in negligible differences
(< 1%) in the value of TV . This also proves the robustness of this method with
respect to the choice of the initial condition as long as its statistical properties are
maintained.

In Figure 3.2, the latitude θ is fixed to 0 and the longitude ϕ traverses the angles
from 0◦ to 350◦ with the step 10◦. The same is true for Figure 3.3 which only differs
from Figure 3.2 in the setting of parameter ξ. Figure 3.4 depicts the ”diagonal” cut



78 P. Strachota

0

0, 2

0, 4

0, 6

0, 8

1TV

0 20 40 60 80 100 120 140 160 180 200 220 240 260 280 300 320 340

φ

t = 1.25 × 10−4

0

0, 2

0, 4

0, 6

0, 8

1TV

0 20 40 60 80 100 120 140 160 180 200 220 240 260 280 300 320 340

φ

t = 5 × 10−4

FD 1st order FV 2nd order

MPFA linear MPFA cubic

Figure 3.2: Comparison of numerical schemes based on TV, ξ = 5 × 10−3, θ = 0,
ϕ ∈ [0◦, 350◦].

through the space (ϕ, θ) in the range from 0◦ to 90◦, including the worst situation
for all schemes where ϕ = θ = 45◦. Finally, Figures 3.5 and 3.6 contain surface
plots of all measured combinations of ϕ, θ for the FD scheme and the MPFA FV
scheme with cubic interpolation, respectively. For all computations, a uniform grid of
200 × 200 × 200 cells was used.

Observations from Figures 3.2-3.6 can be summed up as follows:
• Artificial diffusion clearly depends on v1 and occurs least when the direction

v1 is aligned with coordinate axes. For the FD scheme, a straightforward
explanation can be given: In the degenerate case λ2 = λ3 → 0, the equation
systems for different rows of grid nodes along v1 become independent.

• The performance of all schemes improves (i.e. TV rises) with growing time.
This is obvious as the ongoing diffusion gradually limits the frequency spec-
trum of the solution. At the beginning, the infinite spectrum of the initial
condition can not be handled properly by any difference operator.

• The performance of the schemes improves with decreasing ξ (compare Figures
3.2 and 3.3).

• The FD scheme exhibits a highly asymmetric behavior, whereas all FV schemes
are symmetric (see Figures 3.3 and 3.5 and compare visually to Figure 3.1).

• The FV scheme with MPFA and cubic interpolation outperforms all other
schemes in the comparison except for the FD scheme when v1 is aligned with
some coordinate axis.

Extension to Real DT-MRI Data Visualization. One may ask whether the
described technique can serve as an efficient tool of numerical diffusion measurement
in the case of real (and complicated) input tensor data. At the first sight, such

P. Strachotaa et al.
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Figure 3.3: Comparison of numerical schemes based on TV, ξ = 10−2, θ = 0, ϕ ∈
[0◦, 350◦].
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Figure 3.4: Comparison of numerical schemes based on TV in different time levels,
ξ = 10−2, θ ∈ [0◦, 90◦], ϕ = θ.



0, 2

0, 3

0, 4

0, 5

0, 6

0, 7

0, 8

0, 9

1, 0

TV

0, 2

0, 3

0, 4

0, 5

0, 6

0, 7

0, 8

0, 9

1, 0

TV

P. Strachotaa et al.



Assessment of Numerical Schemes 81

h L∞(J ; L2(Ω))
error ×10−4

EOC in
L∞(J ; L2(Ω))

L∞(J ; L∞(Ω))
error ×10−2

EOC in
L∞(J ; L∞(Ω))

0.00990 4.4982 - 1.0613 -
0.00497 1.1830 1.940 0.2957 1.857
0.00332 0.5328 1.975 0.1352 1.938
0.00249 0.3013 1.987 0.0769 1.966

Table 3.1: EOC results for the FV scheme with 2nd order flux approximation,
anisotropic case, Dirichlet b.c.

the anisotropy strength and called fractional anisotropy (FA) can be calculated from

the eigenvalues of D (x). It is used in MRI for several purposes [2, 4]. Evaluating TV
only in the regions where FA > given threshold fulfills the above requirement and
also excludes the regions outside the brain where no diffusion occurs and the initial
noise remains intact. For the input data used in Figure 3.1, the experiments indicate
TV improvement in the order of tens of percent in favor of the MPFA scheme with
cubic interpolation compared to the rest of the schemes.

Experimental Order of Convergence. Evaluation of the experimental order
of convergence (EOC) is a routine tool for numerical scheme verification [12]. The
solution is computed on a sequence of gradually refining grids, making it possible to
calculate the ratio

EOCi = log
(

Errori

Errori−1

)/
log

(
hi

hi−1

)

where h = maxK diam(K) is the mesh size and Errori is the difference of the i-th
solution from the precise (analytical) solution measured in an appropriate norm. To
be able to calculate the analytical solution, the right hand side of (2.1) is modified
to obtain an alternate problem with any prescribed solution of class C2

(
Ω̄ × J

)
.

In contrast to TV evaluation, smooth enough solutions are necessary for the EOC
measurement to make sense. Of course, the prescribed solution must satisfy the
initial and boundary condition.

Measurements were performed for all schemes introduced in Section 2 with both
Dirichlet and homogeneous Neumann boundary conditions. In addition, isotropic
and anisotropic constant tensor fields were taken into account. It has been found that
all schemes in all measurement variants exhibit EOC ≈ 2. This result confirms the
conclusion that EOC and TV measurements produce unrelated results, rendering the
EOC incapable of capturing artificial diffusion behavior in the numerical schemes.

A more detailed examination reveals, though, that the MPFA schemes produce
a smaller absolute error on the same grid size compared to the scheme based on the
standard 2nd order flux approximation (see Table 3.1 and 3.2). This observation is in
agreement with the expected behavior. However, it still gives little information about
artificial diffusion.

4. Conclusion. We have developed an approach for measuring the amount of
artificial isotropic diffusion in numerical schemes. Thorough computational studies
based on phantom input data confirm that this technique fulfills the given objective
and produces results in agreement with an intuitive notion of blurring observable
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h L∞(J ; L2(Ω))
error ×10−4

EOC in
L∞(J ; L2(Ω))

L∞(J ; L∞(Ω))
error ×10−3

EOC in
L∞(J ; L∞(Ω))

0.00971 1.3357 - 3.0835 -
0.00493 0.3395 2.019 0.8407 1.915
0.00330 0.1522 2.002 0.3840 1.956
0.00248 0.0860 2.000 0.2189 1.970

Table 3.2: EOC results for the FV scheme with MPFA and cubic interpolation,
anisotropic case, Dirichlet b.c.

in images obtained by solving (2.4). Introducing a suitable threshold in (3.1), the
measurement can also be applied to computations with real DT-MRI input data.

The results provide the necessary information for a qualified choice of the numer-
ical scheme for solving anisotropic diffusion problems. The evaluation of EOC can
only serve as an ancillary tool in numerical diffusion assessment.
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