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NUMERICAL MODELING OF GENERALIZED NEWTONIAN 
FLOWS IN CHANNELS 

VLADIM:fR. PROKOP1 AND KAREL KOZEL1 

Abstract. This paper is concerned with numerical solution of generalized Newtonian flow in the 
channel geometry. This flow is described by the system of generalized N avier-Stokes equations. The 
system of equations consists of continuity and momentum equations. Viscosity in the momentum 
equations is not constant and is prescribed by a function depending on the shear rate. Numerical 
solution is based on the artificial compressibility method. Using this method allows us to solve 
hyperbolic-parabolic system of equations as a system of parabolic equations in time and to use 
time marching methods to find steady solution. Cell centered finite volume method is used for 
spatial discretization of the equations. Convective and viscous fluxes are computed using central 
discretization. Dual finite volume cells are used to compute spatial derivatives of the components of 
the velocity vector. Three-stage Runge-Kutta method is used for the solution of an arising system 
of ordinary differential equations. Unsteady computation is carried on by the dual-time stepping 
method. 

Key words. generalized Newtonian fluid, Navier-Stokes equations, finite volume method, dual­
time stepping method 
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1. Introduction. This paper deals with numerical solution of generalized Navier­
Stokes equations in channel geometries. Solution of such a flow could be of interest 
in many industrial or biomedical applications. This work focuses mainly on the ap­
plication of a simple mathematical model for blood flow. Blood is non-Newtonian 
suspension of blood cells in plasma. In some cases blood can be considered N ewto­
nian, particularly in the vessels of big diameter, where the shear rate is high enough. 
Both, Newtonian and non-Newtonian cases of the flow are inspected in the geometry 
of the channel with bypass. 

2. Mathematical model. The considered fluid {blood) is treated as an isother­
mal continuum. External forces are in this case neglected. The system of generalized 
Navier-Stokes equations is used to model incompressible viscous fl.ow with variable 
viscosity. This system consists of equation of continuity and momentum equations [1] 
with variable viscosity: 

dp = O and therefore V · w* = 0 
dt 

aw* ....; ~ ~ ....; 
p- +p'V · (w* ®w*) = V ·CT 

8t 

{2.1) 

(2.2) 

where p is density, W* = ( u*, v*) denotes velocity vector in 2D with physical compo­
nents u*, v*. Cauchy stress tensor u satisfies the following formula: 

u = -p*I + 21k1)D (2.3) 

1 Department of Applied Mathematics, Faculty of Mechanical Engineering, Czech Teclmical Uni­
versity, Prague. 

63 



64 V. Prokop and K. Kozel 

In the previous expression, p* denotes physical pressure and D = ! (VW* + (VW*)T) 
in 2D is the symmetric part of velocity gradient (rate of deformation tensor), 11 is 
viscosity and "y is a shear rate. After regrouping and including the relation for a and 
kinematic pressure ii = p* / p, the equation (2.2) becomes 

aw• - - - 1 -- + V · (w* ®w* +Pl)= -V · (211(-'y)D) 
&t p 

(2.4) 

The preceding equation (2.4) and eq. (2.1) rewritten in component form in 2D: 

()u* iJv* 
-+-=0 ax ay 

au* a a - + -((u*)2 +ii)+ -(u*v*) = 
&t 8x 8y 

1 a ( au*) 1 a ( (au* 8v*)) =pox 211(1) ax +pay 1l("r) By + ax 
ov* a a - + -(v*u*) + -((v*)2 +ii)= 
&t ax ay 

= -- 11("r) -+- +-- 211("r)-1 a ( (av• au"')) 1 a ( iJv") p8x ax oy poy oy 

(2.5) 

(2.6) 

(2.7) 

On the rigid boundary and at the inlet are prescribed Dirichlet boundary conditions 
for velocity and Neumann condition for pressure. At the outlet holds Neumann con­
dition for velocity and Dirichlet condition for pressure. 

2.1. Power-law model. The general constitutive equation for stress tensor for 
nonlinear viscous fluids is formulated as follows, see [4]: 

a= -p*I + 2'fJ(Ilv, IIIv)D (2.8) 

where Iln,Illv are the second and third principal invariants ofD. Based on exper­
imental results, see [4] the viscosity 1/ depends only on the second invariant Ilv: 

(2.9) 

where tr means trace. Shear rate or the metric rate of deformation is introduced and 
denoted by "y: 

'Y = J-4Ilv = ../2tr(D2) (2.10) 

The preceding equation (2.10) rewritten in the component form in 2D: 

"y= (au•) 2 

(av•)
2 

(au• av·) 2 

2 - +2 - + - +-ax oy oy ax (2.11) 

In this work only the power-law model is considered. In this case, viscosity 1/ is 
given by the next formula: 

( ·) _ K · (n-1) 
1/'Y- 'Y ' (2.12) 

where K denotes consistency constant and n is the power-law index. This model is 
able to describe behavior of Newtonian and non-Newtonian shear-thinning and shear­
thickening fluids depending upon the value of power-law index. The power-law index 
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ln>l.~--

,,n=l 

FIG. 2.1. Viscosity as a function of shear rate for power-law fluids, a) shear-thinning (n < 1, 
b) constant viscosity (n = 1} ,c) shear-thickening (n > 1} 

n = 1 models Newtonian fluid with constant viscosity , 0 < n < 1 describes shear­
thinning fluid for which the viscosity decreases with increasing shear rate, n > 1 is 
used for shear-thickening fluid for which the viscosity increases as the fluid is subjected 
to higher shear rate. The figure 2.1 shows the dependence of viscosity 17 expressed by 
power-law model on the shear rate. 

2.2. Generalized Navier-Stokes equations. The previous system of equa­
tions (2.6) - (2.7) is transformed into dimensionless vector form and the expression 
for viscosity 1J (2.12) is included: 

R = cliagllO, 1, lll (2.13) 

where the subscripts t,:i: ,11 denotes temporal and spatial derivatives. In the previous 
equation (2.13) W = (p,u,v)T is the vector of solution, pi= (u,u2 + p,uv)T and 
G0 = (v,uv,v2 + p)T are convective fluxes, pu = J"e(0,2'T]U:i:,'TJ(U11 +v:i:))T and Gv = 
~e (0, 'TJ(Vx + u11 ), 21]V11)T are viscous fluxes, u = u* /q00 , v = v* /q00 are dimensionless 
components of the velocity vector and p = p"' / pq~ is dimensionless pressure. Reynolds 
number in 2D for Newtonian fluid is given by the formula Re, = dq00 /v, where q00 

is the characteristic velocity (the speed of upstream flow), v = 17 / p is the kinematic 
viscosity, dis the length scale (the width of the channel). The Reynolds number for 

d(n) (2-n) 

non-Newtonian power-law :fluid is expressed by Re= P it' . 
3. Numerical solution. The system of generalized Navier-Stokes equations 

(2.13) is numerically solved by multistage Runge-Kutta method [5]. 
One approach to solve incompressible viscous flow is based on the idea to sub­

stitute time derivative of the pressure in the continuity equation. This is so called 
artificial compressibility method. 

3.1. Artificial compressibility method. The artificial compressibility method 
is based on the addition of temporal pressure derivative divided by /32 into the conti­
nuity equation, see [8]. The coefficient f3 is so called artificial speed of sound : 

1 8p ..... 
(32 {)t + 'V · w* = 0, /32 

E lR+ (3.1) 

The boundary conditions are steady and the marching procedure converges to 
the steady state solution that does not depend on time and is also independent of the 
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parameter /3. The choice of /3 is discussed in [9]. It is advised to choose /3 constant 
in the domain of the solution and the value of /3 R:l max(us), where V is domain of 

V,s, 
interest and Si is the considered direction of space density of flux, u,, is the velocity 
in the direction s. 

3.2. Finite volume method. The integral formulation of the conservation laws 
is discretized in space by means of the finite volume method (FVM) (see [7]). The 
domain n where the system of conservation laws is solved is divided into subdomains 
Di. The sum of D, covers the entire domain n and the following condition have to 
hold: D;, n Di = 0 for i -# j 

The finite volume method in cell-centered formulation is used. It means that 
pressure and two components of velocity are stored in the centers of finite volume 
cells. 

Quadrilateral finite volumes are considered and the system of equations (2.13), 
where first equation is replaced with (3.1) so R = diaglll//32

, 1, lll· This altered 
system of equations is multiplied by R,-1 and integrated over each finite volume cell. 
By the means of the mean value and Green's theorem one gets the system of ordinary 
differential equations: 

4 

W.t I· ·= --
1
- ~(Fi - Fv)· · kll.Yk - (Gi - G1')· · kll.Xk = -RezW.· · (3.2) i,3 ,L....J i,3, i,3, 1,3' 

µi,j k=1 

where F" = (,B2u, u2 + p, uv) T and Gi = ((32v, uv, v2 + p) T are convective fluxes and 
pv = ii.,(0,21JUz,1J(Uy +vz))T, QV = ii.,(0,1/(Vz +uy),21/Vy)T are viscous fluxes. 
Previous system of equations (3.2) with steady boundary conditions is solved using 
three-stage Runge-Kutta method that is of the second order of accuracy in time [3]: 

w:i. = w.<~> 
i,3 z,3 

W.c1:> = w.c~> - AtRw.c1:-1> 
i,3 i,3 O:rLl. i,3 ' 

W!l:l-1 = w.<~>. m = 3, 
i ,3 i ,3 ' 

RW.(1:-l) = Rezw.Cf'.-l) - DW!'. 
i,3 i,3 1,3 

r= 1, . .. ,3 

(3.3) 

(3.4) 

(3.5) 

(3.6) 

where a1 = 0.5, 0:2 = 0.5, 0:3 = 1.0. The term DW.lj is the term of artificial viscosity 
that is used to stabilize the computation [2]: 

DW = D,,,W + DyW, D .. W=d· ·+1 -d .. 1 " i,3 2 i,1-2 (3.7) 

- hi+!.i (2) 
di+i 1· - ~(.·+1 .(WH1 1· - Wi 1-), 

2 ' ut • :i ,J ' ' 
(3.8) 

(2) - (2) ( x x ) f.+ 1 . - K 1 max vi+l 1-, vi 1· , 
1 2 ,j ' ' 

h•,i+! (2) 
d, 1·+1 = ~€. ·+1(W; 1·+i -Wi1·) 

., 2 ut i,3 2 ' ' 
(3.9) 

y IPi,j+l - 2p;,j + Pi,j-il 
v . ·= ' 

t,J IPi,Htl + 2IPi,jl + IPi,j-tl 
(2) - (2) ( y y ) 

f. ·+1 - K2 max vi 3·+1' v, 3· ' i,3 3 ' ' 
(3.10) 

where Kl2~ has to be chosen in order to achieve convergence of the method (in the 
computed cases were used values in the range 0.1 --t 0.5), h denotes arithmetical 
average of the volumes of the cells adjacent to the face, where the value of d is 
computed, ll.t is time step. 
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Formula for residual (2D) that appears in equation (3.6): 

4 

RezWij = __!___ L ((Fi - Fv)ij,kil.Yk - (G' - G1'}ij,k6.xk) 
µ;,j k=l 

Inviscid fluxes pi are discretized centrally: 

~3 

I 

• ~2 
i,j 
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(3.11) 

+lj 

L\y_ 

FIG. 3.1. a) Approximation of the inviscid fl= at the cell face b) Basic computational cell and 
dual cell for computation of velocity derivatives 

[ ( 
(32u ) ( (32u ) l . 1 . . 1 2 2 

F~ · 1 = -(F~ · + F1+1 ·) = - u + p + u + p 1,3, 2 i,3 1 ,3 2 
UV i,j UV Hl,j 

(3.12) 

Discretization of viscous fluxes pv is done by the means of dual volume cells: 

(3.13) 

The following formulas describe numerical approximation of velocity derivatives in 
viscous fluxes, see fig. 3.2b: 

(3.14) 

1 f 1 4 
uy = -- udx ~ -- L u.,.,,,6.x.,.,., 

µd µd m.-1 
8d -

(3.15) 

where the velocity component Um in the vertex of dual cell is either value of velocity 
in the center of basic cell or is computed as an average of four neighboring basic cells 
sharing considered vertex. The boundary of the dual cell is depicted by od and µdis 
a volume of the dual cell. 

3.3. Time step limitation. The considered Runge-Kutta scheme is explicit 
scheme and from its conditional stability one can obtain limitation on the time step. 
The system of Navier-Stokes or generalized Navier-Stokes equations, where convective 
and diffusive terms are discretized centrally, give rise to the following form of the time 
step limitation in two dimensions and for non-uniform, non-orthogonal grids, see [6]: 

A • CFLIDil 
l..Ji.t =nun-------------------

s,j p 6.y·. + p 6.x· . + 2~ ((.O.x;,;1P+(.O.y,.J)2), 
.A i,3 ~ i,3 R" ID·I 

(3.16) 
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where PA = lul + v'u2 + (32 and p13 = lvl + Jv2 + (32 (when artificial compressibility 
method is used) are spectral radii of Jacobi matrices of convective fluxes A= dF/dW 
and '.B = dG/dW, IDil denotes the area of 2D finite vollUile cell, !::.x; and !::.y; are 
lengths of the j-th edges of the cell, CFL is Courante-Friedrich-Lewy nlUilber, and 
from von Neumann stability analysis for three stage Runge-Kutta method CFL < 2. 

3.4. Implementation of boundary conditions. 
Inlet: the extrapolation of the pressure is used and velocity profile is prescribed: 

Pin= 2Pin+l - Pin+2; U = Uoo, V = O, (3.17) 

where index in means position at the inlet cell, p is pressure, u, v are velocity 
components in the x, y directions and u00 describes inlet velocity profile. 

Outlet: the extrapolation of the velocity vector, pressure has either given constant 
value or in the case of unsteady computation the value of the pressure is 
prescribed by some function: 

Uout = 2Uout-l - Uout-2, Vout = 2Vout-l - Vout-2, 

Pout = Pconat, or Pout = Pconat ( 1 + a sin 27rwt), 

where index out stands for the position at the outlet cell. 

(3.18) 

(3.19) 

Wall: on the wall no-slip condition holds for viscous fluids and it is realized using 
ghost cells adjacent to the boundary: 

'Ughost = -Uinner, Vghost = -Vinner, Wghost = -Winner, Pghost =Pinner• 

(3.20) 
To fulfill no-slip condition the value of velocity components (depicted by an 
index ghost) in the ghost cells have opposite signs to values in the inner cells 
adjacent to the boundary (depicted by an index inner). Pressure Pgjist in the 
ghost cell has the same value as the pressure Pinner in the cell adjacent to the 
boundary. 

3.5. Unsteady computation. The unsteady system of Navier-Stokes equations 
is solved either by the artificial compressibility method only or by the dual time 
stepping method. 

In the artificial compressibility method for unsteady computation, the value of 
the artificial velocity of sound (3 must be now big positive number. The unsteady 
solution can be influenced by the addition of the term p/ (32 into the equation of 
continuity. This modified system of equation can be now directly solved by time­
marching algorithm. The ideal value of {3 is when {3 -4 oo but {3 also appears in the 
denominator of the formula that sets the value of the time step. Hence the value of 
(3 has to be limited from above in order to keep the value of the time step reasonably 
big for the nwnerical computation. The practical computations done in literature has 
shown that (3 = 10 is acceptable value. 

The second possibility is the use of dual-time stepping method. To this end the 
system of Navier-Stokes equations (2.13) for unsteady flow is modified by addition of 
derivative of Win fictitious dual time, see [9]: 

(3.21) 

where the matrices R13 and R can be expressed as follows: 

( 

1 
7P 

Rf3 = ~ 
0 0) 
1 0 
0 1 (

0 0 0) 
R= 0 1 0 

0 0 1 
(3.22) 
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The artificial compressibility method is now applied on the fictitious dual time 
T and next time level in the real time t is reached when the solution in dual time 
converges to the steady state. In this case f3 2: 1 in order to J2 -4 0. To simplify the 
notation of the equation (3.21), the steady residual is introduced: 

(3.23) 

where the steady residual is: 

(3.24) 

The time derivative in the real time can be discretized by three-point backward 
formula and the nnsteady residual can be written as follows: 

3wn+l 4wn + wn-1 
Resu (wn+i) = R -

2
.6.t + Res8 (wn+i) (3.25) 

where index n denotes real time iteration and the scheme is implicit in the real time. 
The next equation can be solved by standard techniques for solution of steady flows 
(i.e. artificial compressibility method) 

(3.26) 

The multistage Runge-Kutta method for the solution of the previous equation (3.26) 
can be written in the following form: 

w.Co) = W!' • • 
Wt+l) = W?) - a.-.6.TResu (Wi(r)) 

w;+1 = wi(m+l) r = 0, ... 'm 

where the unsteady residual can be expressed: 

3wn+l,11 4wn,11 + wn-l,11 
Re u(W!') = R - Re s(wn+1,11) 

s • 2.6.t + s 

(3.27) 

(3.28) 

(3.29) 

(3.30) 

4. Results. In the first part of the result section numerical solution of Newtonian 
and non-Newtonian steady flow in the geometry of stenotic channel and bypass is 
presented as seen on the schematic figure 4.1. The upper part of the geometry of the 
channel is prescribed by the cosine fnnction to simulate a stenosis with the following 
formula: y = h·cos((2·7r-{X8 -xi)/x1))), where the parameter h = 0.35 allows to change 
the height of the stenosis, x8 = 3.7 denotes the position where the stenosis starts, Xi 

describes actual position and xi stands for the length of the part of the channel with 
stenosis. All these parameters can be changed in order to model different setups from 
mild to severe stenosis. The velocity profile at the inlet is computed in advance in a 
channel. The outlet pressure Pout = 0.5. 

In the next series of figures 4.2,4.3,4.4, the simulation of Newtonian, shear­
thinning and shear-thickening flow is presented for Re = 200 for geometry of the 
stenotic bypass and the channel. The channel is stenosed and the amount of the fluid 
volume is divided between the channel and the bypass as can be seen in the figure 
fig. 4.5 showing the velocity magnitude profiles in the cuts in the middle of the by­
pass and the channel. The velocity profile for shear-thinning :fluid is sharper and for 
shear-thinning fluid flatter than in the case of Newtonian fluid. Prior to and behind 
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15 

p=p*,u=v=O 

u,.v. - o ~ 
~ "· """"~---------,,. 

3.5 

11.5 

outlet: 
~ 

p.-~ 

Fm. 4.1. The geometry of the stenotic channel and the bypass 

Re• 200 Newtonian (n = l) 

Re = 200 Newtonian (n = l) 

M l lll : l ll l :• 
P: 0 0.4 0.81.21.6 2 2.42.8 3.2 3.6 4 4.4 

I 
:: 
I 

11111 1 1 1 1 • 
Q: 0.20.4UG.I 1 1.2Ul.61.I 1 2.12.42.62.1 

FIG. 4.2. Stenotic channel and bypass, Re = 200, Newtonian steady flow, isolines of pressure 
and velocity magnitude 

Re = 200 non-Nowtoniim (n = O.S) 
I 111711 I I I 1:• 

Re = 200 non-Newtonian (n = O.S) - 1:-1 
Q: 0.1 OA 0.7 1 1.3 1.6 1.9 2.2 

.~~~ 
0.1 

Fm. 4.3. Stenotic channel and bypass, Re = 200, non-Newtonian steady flow, n = 0.5, isolines 
of pressure and velocity magnitude 

the stenosis strong zones of separation and reversal fl.ow can be observed in the main 
channel. 

In this section, the results of 2D unsteady simulation are presented in the stenotic 
channel with curved bypass. Firstly, the steady results for the chosen geometry must 
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Re=200 non-Nowtonian (n = l.S) 
1 11111111111 1=-

~UMtlUUUU~~•UUtl~~uuu 

Re= 200 non-Newtonian (n = 1.5) 
: 111 1 1111 1 11 1 1: • 

~UUU~UM~UtllUUUUUUUU 

FIG. 4.4. Stenotic channel and bypass, Re = 200, non-Newtonian steady flow, n = 1.5, isolines 
of pressure and velocity magnitude 

1.5 .. 

...... 

-- lbclt~(a-1,$) 
-- lilm'tllimiaa(n-0.S) 

~-N--

0.06 0.1 0.16 0.2 0.26 
y 

1.6 

.. 
----C-1.SJ 
-- --lbimi:q(1P'flj} 
~- Ml'IPtl:m:llllia-o) 

..(1.8 -0.76 -0.7 -0.$6 
y 

FIG. 4.5. Stenotic channel and bypass, Re= 200, steady flow, comparison of velocity profiles 
in the middle of the channel and bypass 

be computed and then by the means of the artificial compressibility method the 
unsteady results are obtained. In this case the value of the parameter {3 in the 
artificial compressibility method, having meaning of the speed of sound, is set to 
{3 = 10 and the output pressure is prescribed with the following function: P2 = 
P20(l + asin21Twt), w = 1Hz, P20 = 0.3, a= 0.5, where w is a frequency and a 
is an amplitude. The pressure P20 is the same as the output pressure for the steady 
case. The series of figures fig.4.6 shows time evolution of unsteady non-Newtonian 
flow for Re= 1000 in one period with prescribed pressure oscillations at the outlet 
and {32 = 100. 

5. Conclusion. In this paper, the numerical model for Newtonian and non­
Newtonian steady and unsteady laminar flows of incompressible viscous fluid was 
implemented. Numerical computations were performed in the geometry of the chan­
nel with bypass. Three values of power-law coefficient n = 0.5, n = LO, n = 1.5 
representing shear-thinning, Newtonian and shear-thickening fluids were tested for 
different rather low Reynolds numbers from the range< 200; 1000 >. Unsteady com­
putations were done in the same geometries for frequency f = 1H z. 

The achieved results are useful in the numerical simulation of blood flow in the 
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FIG. 4.6. Unsteady non-Newtonian flow in bypass, Re=lOOO, n 
0t sin 27r ft), f = lH z, P2o = 0.3, 0t = 0.5, isolines of tJelocity magnitude 

1.5, P2 = P:io(l + 

geometry of vessel and bypass after further improvements would be done. 
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