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Abstract. This contribution deals with the numerical simulation of dislocation dynamics by

means of parametric mean curvature flow. Dislocations are described as an evolving family of closed

and open smooth curves driven by the normal velocity. The equation is solved using direct approach

by semi-discrete scheme based on finite difference method. Numerical stability is improved by tan-

gential redistribution of curve points which allows long time computations and better accuracy. Our

method contains an algorithm which allows topological changes. The results of the simulation of a

dislocation and precipictate interaction are presented.
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1. Introduction. The dislocations are defined as irregularities or errors in crys-
tal structure of the material. The presence of dislocations strongly influences many of
material properties. Plastic deformation in crystalline solids is carried by dislocations.
Theoretical description of dislocations is widely provided in literature such as [1–4].
Dislocation is a line defect of the crystalline lattice. Along the dislocation curve the
regularity of the crystallographic arrangement of atoms is disturbed. The dislocation
can be represented by a curve closed inside the crystal or by a curve ending on the
surface of the crystal. At low homologous temperatures the dislocations can move
only along crystallographic planes (gliding planes) with the highest density of atoms.
The motion results in mutual slipping of neighboring parts of the crystal along the
gliding planes.

This justifies the importance of developing suitable mathematical models [5–14].
From the mathematical point of view, the dislocations can be represented by smooth
closed or open plane curves which evolve in time. Their motion is two-dimensional as
they move in glide planes. The evolving curves can be mathematically described in
several ways. One possibility is to use the level-set method [15–17], where the curve
is defined by the zero level of some surface function. One can also use the phase-field
method [18]. In our case, we use parametric approach [19,20]

In this article, the interaction of precipitates and dislocation curves will be dis-
cussed and numerically simulated. The theory of such process was studied for ex-
ample by Orowan [21] and Brown [22] and numerical simulation for example by
Mohles [23,24].

2. Dislocations and mean curvature flow. The interaction of dislocations
and bulk elastic field can be approximately described using the curvature flow as
follows (see [25]). We consider perfect dislocation curves with the Burgers vector
�b = (b, 0, 0) oriented in the x-direction of the x,y,z coordinate system. The dislocation
curve motion Γ is located in a glide plane, in our case in the xz-plane. The glide of
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dislocation is governed by the relaxation law in the form of the mean curvature flow
equation in the direction of the normal vector

Bv = Lκ + b(τapp + τpr),(2.1)

where B is a drag coefficient, and v(x, t) is the normal velocity of a dislocation at
x ∈ Γ and time t. The term Lκ represents self-force expressed in the line tension ap-
proximation as the product of the line tension L and local curvature κ(x, t). The term
τapp represents the local shear stress acting on the dislocation segment produced by
the bulk elastic field. The term τpr stands for the stress generated by the precipitates.
In our simulations, we consider “stress controlled regime” where the applied stress in
the channel is kept uniform. This is an upper bound limit case. The other limiting
case is “strain controlled regime” as described in [6,7]. The applied stress τapp is the
same in every point of the line and for numerical computations we use τapp = const.

3. Parametric description. The motion law (2.1) in the case of dislocation
dynamics is treated by parametrization where the planar curve Γ(t) is described by a
smooth time-dependent vector function X : S × I → R

2, where S = [0, 1] is a fixed
interval for the curve parameter and I = [0, T ] is the time interval. The curve Γ(t) is
then given as the set

Γ(t) = {X(u, t) = (X1(u, t), X2(u, t)), u ∈ S}.

The evolution law (2.1) is transformed into the parametric form as follows. The
unit tangential vector �T is defined as �T = ∂uX/|∂uX|. The unit normal vector �N

is perpendicular to the tangential vector and �N · �T = 0 holds. The curvature κ is
defined as

κ =
∂uX⊥

|∂uX|
·

∂uuX

|∂uX|2
= �N ·

∂uuX

|∂uX|2
,

where X⊥ is a vector perpendicular to X with the same length. The normal velocity
v is defined as the time derivative of X projected into the normal direction, v =
∂tX · ∂uX⊥/|∂uX|. The equation (2.1) can now be written as

B∂tX ·
∂uX⊥

|∂uX|
= L

∂uuX

|∂uX|2
·
∂uX⊥

|∂uX|
+ b(τapp + τpr),

which holds provided the vectorial evolution law is satisfied

B∂tX = L
∂uuX

|∂uX|2
+ b(τapp + τpr)

∂uX⊥

|∂uX|
.(3.1)

This equation is accompanied by the periodic boundary conditions for closed curves,
or by fixed-end boundary condition for open curves, and by the initial condition.
These conditions are considered similarly as in [20].

The solution of (3.1) exhibits a natural redistribution property which is useful for
short-time curve evolution [12, 26]. For long time computations with time and space
variable force, the algorithm for curvature adjusted tangential velocity is used. This
algorithm moves points along the curve according to the curvature, i.e., areas with
higher curvature contain more points than areas with lower curvature. To incorporate
a tangential redistribution, a tangential term α has to be added to the equation (3.1).

B∂tX = L
∂uuX

|∂uX|2
+ Lα

∂uX

|∂uX|
+ b(τapp + τpr)

∂uX⊥

|∂uX|
.(3.2)
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This improves numerical stability and also accuracy of computation. Details are
described in [8, 19].

4. Numerical scheme. For numerical approximation we consider a regularized
form of (3.2) which reads as

B∂tX = L
∂uuX

Q(∂uX)2
+ Lα

∂uX

Q(∂uX)
+ b(τapp + τpr)

∂uX⊥

Q(∂uX)
,(4.1)

where Q(x1, x2) =
√

x2
1 + x2

2 + ε2 is a regularization term and ε a small parameter.
The term ε serves as a regularization to avoid singularities when the curvature tends to
infinity. We use the backward Euler semi-implicit scheme for numerical solution of the
differential equation (3.2). The first derivative is discretized by backward difference
as follows

∂uX|u=jh ≈

[
X1

j − X1
j−1

h
,
X2

j − X2
j−1

h

]
,

and the second derivative as

∂uuX|u=jh ≈

[
X1

j+1 − 2X1
j + X1

j−1

h2
,
X2

j+1 − 2X2
j + X2

j−1

h2

]
.

The approximation of the first derivative is denoted as Xū,j and the second derivative
as Xūu,j .

The semi-implicit scheme for equation (4.1) has the following form

BXk+1
j − Lt

Xk+1
ūu,j

Q2(Xk
ū,j)

− Ltαj

Xk+1
ū,ej

Q(Xk
ū,j)

= BXk
j + tb(τapp + τpr)

X⊥k
ū,j

Q(Xk
ū,j)

,(4.2)

j = 1, · · · ,m − 1, k = 0, · · · , NT − 1,

where X⊥

ū,j is a vector perpendicular to Xū,j , and αj is redistribution coefficient.
Xk

j ≈ X(jh, kt), t is a time step and NT is the number of time steps. The matrix
of the system (4.2) for one component of Xk+1 has the following tridiagonal structure:

⎛
⎜⎜⎜⎜⎜⎝

B + 2tL
h2Q2 − tLα

hQ
−tL
h2Q2 0 · · ·

−tL
h2Q2 + tLα

hQ

. . . . . . . . .

0
. . .

...
. . .

⎞
⎟⎟⎟⎟⎟⎠ .

The scheme (4.2) is solved for each k by means of matrix factorization. Since there
are two components of X, two linear systems are solved in each time step.

Since the direct (parametric) apporach itself does not handle topological changes,
an additional algorithm was incorporated which is described in detail in [13]. The
algorithm is not supposed to be universal for every situation and possibility. Main
purpose is to simulate topological changes that can happen during dislocation dy-
namics, i.e., topological changes such as merging or splitting of curves, closing of
open curves, etc. The algorithm is designed for topological changes of curves which
touch only in one point.
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5. Simulation of precipitate and dislocation interaction. The hardening
of materials caused by distributing precipitates or small particles of another phase
is a well-known phenomenon and has been used to develop high-strength structural
materials. There are several hardening methods, and all of them (except compos-
ites) are to make dislocation motion more difficult by introducing various obstacles.
The obstacles are divided into several classes. Absolutely strong obstacles (disper-
sion hardening) completely block the movement of the dislocation and lead to so
called Orowan mechanism [21–24]. Less strong obstacles (solid-solution hardening,
precipitation hardening) slow down the movement of the dislocation by means of the
attractive or repulsive interaction.

Our numerical simulations were performed under the following set of parameters:
Burgers vector magnitude b = 0.25 nm

Line tension L = 2 nN
Drag coefficient B = 1.0 · 10−5 Pa · s
Applied stress τapp = 40 MPa
Weak precipitate stress τpr = −10 MPa
Strong precipitate stress τpr = −50 MPa

The simulation of the Orowan mechanism (Orowan looping) is presented in the
Fig. 5.1. Under the applied stress (τapp = 40 MPa), the dislocation bows out between
absolutely strong particles (Fig 5.1b). When the bowed-out dislocation becomes semi-
circular in shape, it splits and leaves the Orowan loop around the obstacle (Fig 5.1c).
The formation of the Orowan loops makes the dislocation motion more and more
difficult and results in a material hardening. This mechanism will happen for every
absolutely strong obstacle (Fig 5.1f) unless the obstacles are too close to each other.
In that case, formation of Orowan islands happens.

If the obstacles are close to each other, the dislocation cannot go through them
and, under the applied stress (τapp = 40 MPa), it surrounds the whole cluster of
obstacles and creates the Orowan island (Fig 5.2). There are 4 obstacles in the
distance of approximately 90 nm. Under some higher applied stress, the island would
disappear leaving only Orowan loops around the obstacles.

The simulation in Fig. 5.3 shows another configuration of the obstacle cluster.
There are 9 obstacles with random positions. The formation of the Orowan island
under applied stress (τapp = 40 MPa) is better visible than in Fig. 5.2. Again, if the
applied stress is increased, the island would disappear and only Orowan loops would
remain.

The lowest obstacle (dashed line) in Fig. 5.3 is set up as a weak obstacle so it
only slows the movement of the dislocation in the gliding plane. This is visible in
Figs. 5.3a and 5.3b.

6. Conclusion. The simulation of dislocation dynamics is important in practice
as dislocations affect many material properties. Our model based on parametric mean
curvature flow is suitable for the simulation of real phenomena and we presented the
application in material hardening, i.e. the formation of Orowan loops and Orowan is-
lands by the gliding dislocation. The numerical simulation requires the redistribution
of discretization points as the curve changes shape dramatically. The parametric ap-
proach itself cannot handle topological changes and we had to introduce the algorithm

for such changes into the model.
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Fig. 5.1: Evolution through a cluster of obstacles and formation of the Orowan loops,
τapp = 40 MPa, t ∈ (0, 0.306), curve discretized by M = 300 nodes, dimensions in
nm.
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