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Abstract. The article presents applications of graph cuts in the image processing. We describe
the original Ford—Fulkerson algorithm and its modification — Edmonds—Karp algorithm. We also
present our modifications of this algorithm. These modifications lead to a major acceleration of
the segmentation process, which is demonstrated using real images of a left ventricle. Although
the results are not equivalent to the non-modified algorithm, this modification is suitable for our
application.

Key words. image segmentation, graph cuts, Ford—Fulkerson algorithm

AMS subject classifications. 05C21, 68R10, 68U10, 90C27

1. Introduction. This paper refers to significant former results in the field of
image segmentation using graph cuts. We show the relation between graph cuts
and resulting image segmentation. We present a classic algorithm for finding the
mazximal flow in a directed weighted graph, which leads to the minimal cut and can
be applied in the semi-automatic segmentation of an image. We also present our
own modifications of this algorithm. Finally we compare implementations of both
the original Edmonds-Karp (slightly modified Ford-Fulkerson) algorithm and the
modified algorithm. We test them by segmenting images of a left ventricle from MRI
data.

Graph cuts in image processing were first introduced in [8] for binary image
reconstruction. Since then, similar methods were developed and applied for various
tasks including image segmentation. Details on the initial graph construction can be
found in [2], [4] and [9]. Authors also describe methods of reusing a former result
during new computation with new initial conditions added.

Fast algorithms for finding maximal flow in a weighted graph are required in all
these applications. The first approach to a maximum flow problem using the graph
theory was presented in [5]. Many modifications followed, forming a group of aug-
menting path methods. Later, [7] introduced different approach, which created a
second group of push-relabel methods. Further experimental results are presented in
[1]. In [3] authors introduce their algorithm combining approach from both augment-
ing path and push-relabel groups. They compare their algorithm with various existing
algorithms.

Further improvements of image segmentation methods are described in [6] and
[10]; the former uses prior information about the object shape, the latter presents a
method enforcing connectivity of the segmented object.

1.1. Organization. First, in the Section 2 we introduce a s—t cut. The Section
3 explains the process of creating a graph based on a given image. Here we show
that an appropriate approach to the graph construction leads to a correspondence
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between minimal graph cut and object segmentation. In the Section 4 we present
the duality of minimum cut and maximum flow problems. Furthermore, we describe
the classic Ford—Fulkerson algorithm for finding the maximum flow. The Section 5
introduces our modifications of the original algorithm. These modifications lead to
a major speed-up of the segmentation process. As a consequence the segmentation
results are altered, but they are even more suitable for our application. Finally, we
present the results of our modified algorithm and compare them with the original
algorithm in the Section 6.

1.2. Contributions. We implement Edmonds—Karp algorithm for the image
segmentation and perform modifications of the algorithm. These modifications com-
bined together lead to major speed-up of the segmentation process. Tests using real
images of a human heart show 50x to 100x improvement compared to original al-
gorithm. Further improvements could lead to an interactive segmentation in real
time.

2. Graph cuts in image segmentation. Let G = (V, E,w) be a directed
weighted graph (network). V' denotes a set of its nodes, E is a set of directed edges
connecting two nodes, w : F — Rar is a cost function that assigns each edge a non-
negative value — capacity. The structure of a example graph is illustrated in figure
2.1.

The set V includes two special nodes: source s and sink t. These two special
nodes are referred to as terminal nodes, P denotes the remaining non-terminal nodes;
V =PU{s,t}.

Edges from the set E connect either a terminal node with a non-terminal node
or two non-terminal nodes. Nodes s and ¢ are not connected by any edge.

A s—t cut C = {S,T} is a partitioning of V into two disjoint subsets S and T so
that s € S and t € T. The cost of the cut C is the sum of costs of all edges that
connect a node from S with another one from 7. Edges directed from S to T are
added with positive sign, edges directed in the opposite direction have negative sign.

Our goal will be to find the minimum s—t cut, the cut with the minimal cost. As
shown in the Section 3, by choosing an appropriate cost function w the minimum s—t
cut will be equivalent to the image segmentation. Subsets S and T will correspond
to the object segment and background segment, respectively.

sink

Fic. 2.1. The structure of a example graph.
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3. Construction of the graph. Let’s presume we are given a grayscale image
as a rectangular 2D grid of pixels. It can be represented as a m-by-n matrix I, for each
ie{l,...,m} and j € {1,...,n} the matrix element I,; is an integer and denotes
the intensity of a pixel with coordinates [i,j]. The image I needs to be segmented
into two parts: an object and its background. Some image pixels are marked as object
seeds, i.e. pixels that are supposed to be a part of the object segment. Similarly some
other image pixels are marked as background seeds.

We start by the construction of a weighted directed graph with two terminal
nodes: s and t. Any s—t cut represents partitioning of the given image into two parts;
pixels corresponding to nodes in subset S form one part of the image, remaining
pixels (corresponding to nodes in subset T') form the other part. By evaluating edge
capacities appropriately the minimum s—t cut will represent segmentation of the given
image into object segment and background segment.

The set of non-terminal nodes P consists of the same number of nodes as is the
count of image pixels. Each node corresponds to one image pixel. Nodes corresponding
to object and background seeds form sets O and B, respectively. O C P, B C P.
One pixel cannot be a part of both object and background, thus O N B = {).

The set of edges consists of t-links and n-links. The t-links are directed edges
(s,p) and (p,t) for each p € P. Every t-link is assigned a capacity which expresses
the similarity of each individual pixel to object seeds or background seeds (referred
to as the regional property). Similarity is measured as the difference of intensities.
The n-links are directed edges (p, ¢), where p, ¢ correspond to two neighboring pixels.
Various (e.g. 4- or 8-) neighborhood systems can be used. Here we use 4-neighborhood
system, so each pixel I;; has up to 4 neighbors I; 1 ;, I; j41, I;—1,; and I; j_;. Pixels
on the border (fori =1V j=1Vi=mVj=mn) have only 3 or 2 neighbors. There
are no n-links connecting two non-neighboring pixels. These n-links enforce a certain
level of smoothness of the segmentation result (referred to as the boundary property).

The next step is to evaluate the edge capacities of this graph with respect to our
demand that the minimum s-t cut divides nodes into an object segment and a back-
ground segment. Therefore edges within the object and edges within its background
should have capacities large enough not to be severed by the minimum cut. On the
contrary edges near the border between the object and its background need to have
their capacities small. General required properties of the cost function w will follow.

First t-links with the seeds need to reflect the fact that the set of object seeds O
is included in the object and not in the background, similarly for the set B. For each
p € O the cost of (s,p) is set to infinity (or the highest possible number) while the
cost of (p,t) is zero. For each p € B the cost of (s,p) is set to zero while the cost of
(p,t) is infinite.

Other t-links, which are not connected to seeds, will describe the similarity of
given pixels to seeds. Edges (s,p) express the similarity to object seeds while edges
(p,t) express the similarity to background seeds. The closer the intensity of given
pixel and the intensity of seeds are, the larger the capacity of the appropriate edge
will be.

The capacity of n-links is related to the similarity of neighboring pixels. The closer
their intensities are, the larger the capacity needs to be. Near the border between
the object and its background largest intensity differences between neighboring pixels
(and therefore edges with smallest capacities) are expected.

As the costs of t-links and n-links are not necessarily related, we adjust a relative
importance of the regional property versus the boundary property by the introduc-
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Type Edge Cost
n-link  (p,q) forp,geP N q)
t-link  (s,p) forpe P\{OUB} AR;(p)

forp e O 00

forpe B 0
(p,t) forpe P\{OUB} AR:(p)

for pe O 0

forpe B o0

TABLE 3.1

Costs of edges.

tion of A-weighted combination of these two properties. Let the costs of t-links are
multiplied by A. By choosing a large A parameter we prefer regional property while
small A enforces a smoother border.

Table 3.1 sums up the procedure of assigning costs to edges as presented above.
N(p, q) denotes the cost function for an n-link (p,q), Rs(p) and R:(p) are cost func-
tions for t-links (s,p) and (p,t), respectively.

We have chosen simple linear cost functions depending on a difference of pixel
intensities as follows:

N(p,q) =D — ‘Ip_IqL

where I,, I, denote the intensity of the pixels p, ¢ and D = Iyyax — Imin is a constant
that keeps function N non-negative;

Rs(p) =M — |TS_IP|7
Ri(p) =M — |Tt—Ip

)

where I, I; denote the average value of intensities of object seeds and background
seeds, respectively; M is the maximum possible value of a pixel intensity. Functions R,
and R, are also non-negative. These functions satisfy general requirements presented
in the previous paragraphs.

If (p,q) is an n-link, (q,p) is also an n-link and N(p,q) = N(q,p). Therefore
each pair of edges (p,q) and (g, p) can be replaced by only one of these edges. While
the values of allowed flow in both former edges were from [0, N(p, ¢)], the new edge
will allow also negative flow: [—N(p,q), N(p,q)]. This change perceives the former
symmetry and simplifies the implementation.

4. Finding the minimum s—t cut. The theorem of Ford and Fulkerson [5]
states that a maximum flow from s to ¢ saturates a set of edges corresponding to a
minimum s—t cut. Moreover, the cost of the minimum cut is equal to the value of the
maximum flow. Thus, the minimum cut and the maximum flow are dual problems.
By finding the maximum flow we receive the minimum cut.

The Ford-Fulkerson algorithm is a basic algorithm that solves the maximum flow
problem. It belongs to the group of augmenting path algorithms. The augmenting
path is a path from s to ¢ that has available capacity on all its edges. The main idea
is that we start with zero flow and as long as an augmenting path exists, we push
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the maximum possible flow along it — we saturate it. By saturating each augmenting
path the total flow in the graph is increased. Once no augmenting path exists, the
maximum flow is reached and the algorithm terminates.

4.1. Marking procedure. This procedure performs a search for an augmenting
path. Let f(e) denote current flow in the edge e, c(e) is the capacity of e.

Mark source node s, all other nodes are not marked.

(3e = (p,q) € E, p is marked, ¢ is not marked, f(e) < c¢(e)) = mark ¢

(3e = (p,q) € E, p is not marked, ¢ is marked, — c(e) < f(e)) = mark p

If ¢ is marked, an augmenting path exists. STOP.

If no node has been marked since last loop iteration, no augmenting path
exists. STOP.

5. GOTO 2.

=W

Steps 2 and 3 can be implemented in various ways. Edmonds—Karp algorithm uses
breadth-first search, which results in finding the shortest augmenting path in each
step.

For the reconstruction of the augmenting path we need to record which node
caused the marking and in which direction; step 2 “marks forwards”, step 3 “marks
backwards”. Then, the augmenting path can be reconstructed by tracing back from
t to s.

4.2. Tracing back and saturating the augmenting path. When the sink ¢
has been marked, we reconstruct the augmenting path. Simultaneously we find the
maximum value of flow which can be added to the former flow along this path. This
increment is strictly positive. It is added to the flow in edges “marking forwards” and
is subtracted from the flow in edges “marking backwards”.

4.3. Ford—Fulkerson algorithm.

1. Perform the marking procedure (4.1).
If no augmenting path doesn’t exist, GOTO 3.
2. Trace back and saturate the augmenting path (4.2)
GOTO 1.
3. Maximum flow has been reached.
Let S be a set of all nodes that have been marked by the last marking pro-
cedure in step 1. Let T =V \ S. {S,T} is the minimum st cut.

Generally the Ford-Fulkerson algorithm is not always finite. But assuming finite
integral (or rational) capacities of all edges, the algorithm finishes in finite number
of steps. Each step increases the total flow by a positive value, in case of integral
capacities by at least 1. The maximum flow is finite, thus only finite number of
augmenting paths will be found.

5. Modifications of the algorithm. Here we present two major changes in
the implementation of Edmonds—Karp algorithm. The first one is easy to perform,
significantly reduces running time with graphs based on real data and does not change
the result compared to non-modified algorithm.

Second modification further improves the speed of the algorithm. While the
resulting segmentation is no longer the same, we show that it corresponds better to
the expectations in our application.
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5.1. Improvement of the marking procedure. The original marking proce-
dure (4.1) stops right after the sink has been marked. Then we are able to reconstruct
only one augmenting path. However if we allow multiple marks of the sink, more than
one augmenting path can be found at once after performing one marking procedure.
As a breadth-first search is used, all these paths found in one step have the same
length.

Because the marking procedure is a very time consuming operation, this modifi-
cation reduces the total count of marking procedures before the algorithm terminates.

Note that now not all of these paths found in one step will actually increase the
total flow in the graph. The reason for this is that multiple paths can share some of
their edges. There is a chance that by saturating one path we also saturate others.

In the worst case only one of these paths will increase the total flow while others
will not; this modification would not bring any advantage in this case. But tests
with graphs constructed in our application show that the implementation modified in
this way completes the segmentation process about ten times faster than the original
algorithm while the results of both implementations are identical.

5.2. Further modifications. The original algorithm used for image segmenta-
tion starts by marking the source. In the next step it marks all nodes connected to the
source by a non-saturated edge, which often means vast majority of the set P. So the
algorithm spends a lot of time in those parts of the image that are far from expected
result. Following alternation of the algorithm significantly reduces this problem.

First, we define a new function that will help to describe the alternated algorithm.
It is clear that for all p € P a path only consisting of two t-links (s,p), (p,t) is the
augmenting path if neither of these links is saturated. The saturation of all these
paths will always be the first step of the algorithm and leads to the saturation of at
least one t-link in each path. At most one ¢-link to each node p preserves free capacity.

For all p € P we define a new function R : P — R as follows:

R(p) == ARs(p) — AR:(p).

This function fully describes the state of all ¢-links after previously introduced first
step of the algorithm. A positive value means that the ¢t-link from the source has some
remaining capacity R(p) while the t-link to the sink is fully saturated. A negative
value indicates that the t-link from the source is saturated while the t-link to the
sink preserves capacity |R(p)|. R(p) = 0 means that both t-links got saturated. We
evaluate this function during the construction of the graph.

Now we propose to start the marking procedure from all object seeds instead of
the source s. The procedure will end by marking any p € P so that R(p) < 0. Because
the starting node is connected to the source by a non-saturable edge (with infinite
capacity) and the node at the end is connected to the sink by a non-saturated edge,
we have found one augmenting path from the source to the sink. However, this path
never includes t-links from the source with a finite capacity. These links would be
meaningless. Therefore we also modify the procedure reconstructing the augmenting
paths.

Instead of one path we reconstruct more of them. Each of them starts in the
source, follows a different ¢-link, then they unite one after another and finally they
reach the sink together using common t-link. They form a system of paths that can
increase the total flow at most by the value —R(p), where p was the last node marked
at the end of the marking procedure. While following the path back we bring flow
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F1G. 5.1. Reconstruction of the system of paths.

using t-links until we reach the object seed or the total flow of this system reaches
the maximum value —R(p).

Figure 5.1 shows an example of this reconstruction; “obj” denotes an object seed.
We start with the last non-terminal node on the right. This system of paths can
increase the total flow at most by 10. Previous node is connected to the source by an
edge with capacity 6. We have found the first augmenting path and only the flow of
size 4 remains. The foregoing node has its t-link fully saturated, so we carry on. The
second node in line has a t-link with free capacity 3, we have found second augmenting
path. The flow of size 1 is brought along the third, longest augmenting path through
the object seed. We have increased the total flow by 10 altogether and the ¢-link to
the sink got saturated.

Results of the algorithm modified in this way will differ from the unchanged
algorithm. In general we perform the marking in a smaller area, thus resultant object
segment will be smaller, especially in the case of the result consisting of several disjoint
areas. The resultant segmentation of the original algorithm can contain more disjoint
segments even if there was only one object seed. Our modified algorithm requires at
least one object seed in every disjoint segment, otherwise marking would neither start
in this segment nor reach it. This requirement is not a limitation in our application,
our goal is to segment only one object.

6. Results. We have implemented two variants of Edmonds—Karp algorithm for
image segmentation: the first implementation incorporates only the simple modifica-
tion (5.1); the second variant includes both introduced modifications (5.1 and 5.2).
The comparison of running times and results of these algorithms show the benefit of
the altered algorithm.

Figure 6.1 (page 53) demonstrates the results of both implementations of the
Edmonds—Karp algorithm. The resolution of the pictures is 484x512 px. Black lines
in the initial images 6.1(a) denote object seeds and white lines represent background
seeds. Segmentation results in 6.1(b) and 6.1(c) are indicated by white borders. Same
parameter A = 2 was used in all cases. The differences between the results of these
two algorithms are significant. The original Edmonds—Karp algorithm marks many
areas of the image as an object while the modified algorithm segments only one area
as intended. Notice that the common areas of the results of both algorithms are
identical.
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(c) Modified algorithm

Fic. 6.1. Comparison of the results of both implementations.

53



54 J. Loucky and T. Oberhuber

Table 6.1 summarizes the running times of the Edmonds—Karp algorithm (E-K)
and the modified algorithm (MOD) processing three sample images in three reso-
lutions. All tests were performed on a CPU Intel Core 2 Duo P8400 (2.26 GHz),
program only made use of one CPU core. The values show that the presented mod-
ification 5.2 speeds-up the segmentation process roughly five to ten times depending
on the initial data.

Resolution E-K MOD E-K MOD E-K MOD

121x128 px 0.182s| 0.024s| 0.220s| 0.015s| 0.188s| 0.020s
242x256 px 0.971s| 0.173s| 1.334s| 0.147s| 1.211s| 0.186s
484x512 px | 14.407 s | 2.795s| 14.443 s| 1.860s| 15.592s| 2.837 s

TABLE 6.1
Running times of both implementations.

7. Conclusion. In this paper we present the basic graph cut approach to the
image segmentation. We introduce our modifications that improve the basic Edmonds—
Karp algorithm. Running times are significantly shorter and the resulting segmenta-
tion of an image corresponds to the expected result more precisely.
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