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FINITE DIFFERENCE SCHEME FOR THE ERICKSEN-LESLIE
EQUATION

ATSUSHI FUWA! AND TETSUYA ISHIWATA?Z

Abstract. Ericksen Leslie equation describes the time evolution of a spin vector and velocity in
liquid crystals. This equation has following property:
(i) the length preserving of a spin vector,
(ii) the energy conservation or the dissipation property,
(iii) the incompressibility of a velocity vector.
In physics papers, the fourth order Runge-Kutta’s method is used for numerical analysis of some
types of the liquid crystal model(ex. [6] etc.). However, it abandons the properties (i), (ii). Some
schemes which have already been proposed as the mathematical study inherit (ii) and (iii). By these
schemes, the property (i) is obtained approximately. For example, these are based on the penalization
method(ex. [3]). In this paper, we construct the new implicit scheme for Ericksen-Leslie equation
which is based on the MAC method and inherits above three properties. Especially, this scheme
inherits the property (i) directly.
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1. Introduction. The Ericksen-Leslie model describes the time evolution of a
spin and a velocity vector in liquid crystals and is stated as the following nonlinear
system:

[EL1]

B
8—j+(u-V)s—7(As+|Vs\zs) =0, ceq te(0,7), [HI]

)
£+(u-V)u—uAu+vp+Av-(vs@vs) =0, z€Q, te(0,7), [NS1]

div u = 0 x e, te (0,7], [IN1]
% — 0, u=0, zedQ, te0,7T], [BC1]

s(z,0)=s0(x), [so(z)] = 1, u(z,0) = ug(z), divug(z) = 0, z€Q, [IC1]

where € is a bounded and simply connected domain in R? with a Lipschitz boundary
O and ~,v and A are positive constants. The vector s(z,t) € R¥ (K = 2,3)
describes the directions of the molecules of the liquid crystal. The vector u(z,t) € RM
(M = 2,3) and the scalar p(x,t) € R describe the velocity and the pressure of the
fluid, respectively. Each component of the stress term AV - (Vs ® Vs) in [NS1] is

given by (V- (Va ® Vb)), = Zj\il % (%%) fori=1,..,M and a,be RM.
We here note two important properties of the solutions. One is the length pre-

serving property of the directions vector s and the other is the energy law.
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Finite difference scheme for the Ericksen-Leslie equation 27

PROPOSITION 1.1. The solutions of [EL1] satisfy the length-preserving property:

[s(z,t)] =1 x e, te(0,T], (1.1)
and the energy law:
1d 2 2
55 (MIVsOIZ20) + lu®l 720y
. 2
0[5 A (D) |2y + ¥ IVU(B)Brgy = 0. ¢ € (0,1, (12)

Here we use x as follows: axb = aijby — asby for a,b € R? and axb = a x b for
a,b e R>.
We can also obtain the following equivalent form of [EL1].

% — 5@ (sx(u-V)s)+ys® (sxAs) =0, z€Q, te(0,T], [H2]
Ou; A
—AAs - (5® (sk@is)) =0, i=1..M, z€Q, te(0,7T], [NS2]

[IN1], [BC1], [IC1].

Here ® is defined by a ® ¢ = (aze, —arc)’ for a € R?, c € Rand a ® b = a x b for
a,b € R>. Note that ® and x are the same operator as the vector product x in R3.

In this paper we propose structure-preserving finite difference scheme for the
Ericksen-Leslie model in the case where {2 is rectangle and K = M = 2 for simplicity.
The paper is organized as follows: In the next section, we prepare some notation and
definitions. In Section 3, we construct a finite difference scheme for [EL2] and show
that finite difference solution of our proposed scheme inherits the important properties
in proposition 1.1. In Section 4, we show unique solvability of the scheme since the
scheme is implicit and nonlinear. In Section 5, we show numerical experiments. We
finally remark that the convergence will be discussed in a forthcoming paper.

2. Preliminaries. Let @ = (0,L;) x (0,L2). We set At = T/J and Az, =
L/Ny(for k = 1,2) as the time mesh size and the spatial mesh size, respectively,
where J the number of time steps and Nj is the number of spatial meshes. In the
next section, we propose a finite difference scheme for [EL2]. Let us prepare several
mesh domains and boundaries:

First, we introduce the mesh for the spin:

Qa = {n} ] Qon = {na}2} Qa =1 A X Q.

ni=1 "7 na=1 "

and the mesh of the expanded domains:

Da = {2 a = {ng} 0!

ny1=0" ni=—1-"

We define Qg o, Q2.4, Qa and Qa in the same manner as the above.
Next, we introduce the mesh for the staggered grid:

Q1A= {m}ff;oly Q_2a= {nz}ﬁf;()la QA= 1AXQ 24,

and the mesh of the expanded domains and the interior domains:

o _ —
Qo= {m 27, Q_a={n .
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We define Q_ 2 A, ﬁ_,gvA, Q_ A and ﬁ—,A in the same manner as the above. By these
meshes, the domains for the discrete functions are defined as follows:

QP ZQA \ {(070)5(07N2)’(N17O)7(N17N2)}7
O =Qa\{(=1,-1),(=1,No + 1), (N1 +1,-1), (N1 + 1, N + 1)},

—U, — — _P —
Qﬁ h: (Qf,l,A X QQ,A) ; Qa =0 A, on
ﬁAl’ = {’I’Ll + 1/2|’I’L1 S ﬁ—,l,A} X ﬁlA? QA’ :ﬁ_,A, 00A ZQA \QA,

U, = —U,  =U;, (2
90K = (10, Nibx Do,a) U Q8% {0, Ne}), 903" = L\ (0.8 xa).
—Us =Us,h —U. .
QA% Q7 BQXQ and 9Q,” are also similarly defined.
Next we introduce shift and difference operators:
P Xy =Xy a
7—1+Xn1,* - Xn1+1,*a DTan,* - %7 ni € Q—,l,Aa
— — Kng o =Ty Xng,x e}
T1 an,* = an—l,*a D1 an,* = M; ny € 7_1+Q—,1,Aa

Arl
S DX, + Dy X, — .
Dan:%, TLGQLA XQQ’A.
For X" on Y a (777010 ) € Rﬁzl7 mt, Df (77, Dy ) are also defined. 75, 75,
DF, Dy and Dy are similarly defined.

AX, = Dy D} X,, + Dy Df X, n € Qa, DX, = (Dlxn,[)gxn) . neQa,
div (X),, = DYX) gy +DFX) 1 p  nEQa

where X = (X', X"”) € R%" x R%". For X’ on Q_ 1. x Qp.a and X" on Q4 x
Q_ 2 A, A is also defined.
zit 7] UL _ zit 4 71

D7l =" %
b At 2

(for n € 0QA) .

> — (=)™ Dy X,, ne{0,N}xQa,

D X - { — (_1)n2/N2 DQXn, n e Ql,A X {O,NQ},
Dn "

We denote the following boundary operator.

X7,L T +X’:’L — ,n ~
B, (Xl)n _ /1+1/2 2 > 1 —1/2 2 ne {O,Nl} X QQ,A, (for ne 3le> .
Xn1+1/2,n2’ n e Q*,LA X {07 NQ}a

Ba (X"),, is similarly defined.
Finally we introduce the following notation on summations, inner products and

norms. Here, we denote the vector (X', X”) by X.

Nl/

Z v & N-1 ﬁ B Ny N.
k=t Xet 5, (XY)= D0 Y AnAnX.Y,,
k=0 k=1

1 1
2

7L1:0 7L2:0
Ni—1Na—1

-1
XYY = 3T N AR AKX Y1

n1=0 na=1
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(X", Y”>(_’2) is similarly defined.

_ 11 (—,vec)
| X1, = V(X,X), HXH = \/(X',X’>(_’1) + <X”,X”>(_’2)
2
Ni—1 Ny " ) Ny " Ny—1 ) 1/2
DX, = D2 D AmAw [DIXa"+ ) D AwiAx|DfX,| ,
n1:O ’I’LQZO ’I’L1:O ’I’L2:O
HD+ (vec)
Ny "Ny—1 5 Ni—1N>—1 9
=X Y anan DX, pn] + Y Y Andn |DFX, .
’I’L1:O n2:1 n1:0 n2:O
Ni—1 Ny " Ni1—1Ny—1 5 1/2
+ Z Z Az1Axs ‘D"'Xn1 g 1/2‘ + Z Z AmAm‘ n177L2+1/2‘
n1=1nz=0 n1=0 ny=0

3. The proposed scheme. We propose the following finite difference scheme
which inherits the principal properties [EL1]. Here, the approximation for s(z,t),
uy(z,t), up(x,t) are denoted by S7, U/ /2,0 Ug,n17n2+1/2' Note that U; and U,
are defined on the staggered grid.

[DEL1]

DuSj - S5 g (8§95 (TU b, + Ty D )50“73))
[DH1]

= —8it) g (Séj“’j)kASé’“’”) : neQajei't
(]+17]) (4+1,4) A77(+1,75)
DtUl n1+1/2, n2+ Qcon, 1< 1 ,Us . )n1+1/2 nz_ VAUl,]n1+j1/2,n2
—Df— (_P’IJL+1/2 + /\Qst,l ( (H_l’j)) ) - )\Qst II,1 (S(j+1’j))nl+1/2 na
:O TLEQ—IAXQ2A7JE{.7}’O7 [DNS]_]
(5+1.3) 1, 1,
D,U; mrmat1/2 Qeon 2(U2 LU ”AU2(J:1,732)+1/2
nl,n2+1/2
1/2 i1 i+1,5
D (<P 0Qu (S97),) <X (S5,
-0, n€Q1A><Q 2Aa]€{J}/07
div (U9) =0, n€Qa,je{j'}j_y, DINI]
D5 —q, n €, je{i't)
B, (Uf)n =0, nedQl, je{i'tl_. }[DBCI
By (Ug)n:(), n € 90k, je{j’}]{:o,
SO = so(nlel,ngAxg) |so(n1Azy, noAxs)| = 1, n € Qa
U721+1/2,n2 D <I)m+1/2 na—1/27 neQ 1A xa, [DIC1]
Unl,n2+1/2 1 q)nl 1/2,ma+1/20 nec Ql,A X Q—,Q,A,
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SO x{j'} o= R*,  P:OQXx{j'+1/2}/ - R,
—®.h

U 00" x Yo =R, Us: O x {{'}) o — R, 03" =R

and the vector of (Uf , Ug ) is denoted by U7. The function ®° is defined by

39 _ ] 90 ((m +1/2) Az, (no +1/2) Aza), m €Q-a,
n1+1/2,n2+1/2 0, n e ﬁi\ Q- A,

where ¢g is the scalar potentlal function that is given by 1ncompresmb1hty div ug =

0([IC1]) and defined by: ¢o(x) = [3* uo,1(z1,xh) dah — [ uo2(2),0) dol, z € Q.
The notation and terms in [DEL1] are defined as follows:

- )

n — 2 ) n 2

Y Xn1+1/27n2 + Xn1_1/21n2 ? an 7n2+1/2 + XTL1,7L2—1/2 ne §A7

Qcon,1 (X, Y//)n1+1/2,n2 = Qeon,1,1 (X)n1+1/2,n2 + Qcon, 11,1 (X, Y”)n1+1/2,n2 )
n e Qf,l,A X QQ’A,

1 _
QCO”JJ (X)n1+1/2,n2 = iDi_ (X72L) ’ nc Q_alvA X 927A7

1
Qcon,ll,l (X, Y//)n1+1/2,n2 =7 ( Till,ng—l/QD;anth—l + Y ny n2+1/2D an nz)

4
1 _
+ 1 ( 71/1+1,n2—1/2D;Xn1+1,n2 1+ n1+1 n2+1/2D;Xn1+1,n2) , neQ_ 1 axQs A,
1 /= 2 . 2 _
Qst1 (Y), = 3 <‘D1Yn + ’DZYn ) , n € Qa,
Qst.111 Y)po1m + Qst.111 (Y), _
Qst,[[,l (Y)n1+1/2,n2 = 1+1’22 ) ne Qf,l,A X QZ,Au
Qstlll( ) _AY (Yn®(YnXDlYn)>7 neﬁA.

Qeon.2s Qeon.1.2y Qeon.11.2, Qst.11.2, Qst.11.2 are similarly defined.
The next theorem shows that the proposed scheme inherits length-preserving and

energy structures.
THEOREM 3.1. In [DEL1], we have

1S7]=1, ne€0a,j=012,.,/J (3.1)
and
1Dt [)\ ||D+SJ|| + HUJH(* wvee) } Jr)\,yHs(jJrl,j);(AS(jJrLj)Hz

(veo)?
-|—I/HD+U]+1’3)H —0, j=0,1,2,..J—1. (3.2)

Proof. (3.1) is verified by considering the inner product between [DH1] and
SY*T19) By considering [DBC1] and the inner product between [DH1] and ASY ™7,
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we obtain

%Dt {A ||D+SjH§_2} vy HS(J'+1,J‘)>'<AS(J'+1,J‘) z

_ _)\< (G+1, J)7QS (S(j+1,j))> 1\ <U(ZJ+1,J)’Q8t 1 (S(]+1,j))> . (33)

Note that the discretized convection term equals to 0. From [DNS1] and [DBC1] and
by using the summation by parts, we obtain

vec) oy (vec)? 2 o N (=R
foHUJH( ’ +1/HD+U(J“J)H :)\Z<U,§J+1’J),Qst,11,k (S(3+1’7)>>
2 k=1
" "

- Z Z Az1 Az, div (UJ“’J)) (ng+1/2+AQst7, (S(j“’j))n). (3.4)

ny= 0”20

From [DIN1], (3.3) and (3.4), we have (3.2). O

REMARK 1. We can propose a finite difference scheme for the three dimensional
case by the same concept of the discretization and also discuss the uniqueness and
stability of the numerical solution as in the next section.

4. Unique solvability and stability of the proposed scheme.

4.1. Uniqueness. Here, we mention the uniqueness of the solution to the pro-
posed scheme. Fix j € {j’}‘j]/;lo. By replacing S7*! and U7*! in [DEL1] with ©7 and

V7 respectively, we obtain a new problem [DEL2]. Here, V7 stands for (Vlj Vi )
THEOREM 4.1. (Uniqueness) If

1 1 ﬁunil
At( 5+ 2> < o , (4.1)
Ari Awg) = HIU0ET) + §+ 4y

1 1 C (1 — . 1/3
At ( > + 2) S min ﬁum II ;- (ﬁum,H ( 2ﬁum,l)) ’ (42)
Az?  Axj 5v/2 ||U0|| —vec 64\

for Buni1, Buniin€ (0,1), then (@j, Vj) which satisfies [DEL2| is unique.
LEMMA 4.2. If (©7,V7) satisfies [DEL2], then we have

0| =1,  nela je{i't . (4.3)
and
1 (—,vec) 2 12 i (7,vec)2
iz | (D4 V) = (M + o))
O 487 . . 0i+87| LViqud (vec)® . g J—1
+)\7‘ 5 XA 5 2+VHD 2 |, =0, je{/'tj—o- (44)

Proof. By replacing U7t with V7 in proof of Theorem 3.1, we can obtain (4.3)
and (4.4). O
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Proof of Theorem 4.1. Assume that (071, V3(1)) and (073, V7(2)) satisfy
[DEL2]. By the equation, the boundary and initial condition for ©7 in [DEL2] and
Theorem 3.1, we obtain

1 _ 1 . . 2
,(2) _ ,(1) 0 vee) |+ J(2)_ ,(1)
o7~ e Hw(m txmr )| S IOV § 4 o 00|

—,vec)

=2 HVJ',(Q) _ Vj,(l)H2 . (4.5)

Next, we consider the velocity. By the equation, the boundary and initial condition
for V7 in [DEL2] and Theorem 3.1, we have

s v s (i )
2 V2 A2 2

. 2
FOAAL2N? <A -+ Mz) H@J @MUHQ. (4.6)

(—vec) 2

’Vm) _ya@) H
2

From (4.5) and (4.6), the uniqueness is verified.
O

4.2. Stability and solvability. Our scheme which calculates (S7+*, U7+1) from
(S89,U7) is implicit and nonlinear. In this section, we establish the unique solvability
of this method. In this paper, we use the following iteration to get (S7,U7). We set
the following space

05 D
x={(0,V)0c R, =0,=0, ncd,,
Dn
V eR% xR div(V), =0, n € Qa,
By (i), =0, nedQl, By(Va), =0, ned } (4.7)

2 1/2
which is equipped with [[(6, V)], = (H@Hg + VS ) . For some € > 0, we
consider the mapping p’ : X — X is defined by:

[CEL1]
@nA—thL _ n+Sn Q (@ -‘rsﬂ X v, n+U1 n Dl + V2 W+U2 n D ) @)n-z‘rs,{;)
A '_ [CHI1]
_,y@n'l‘ L ® ( n;‘Sn XA ";Sn> , n e QA,
D é) n € 0Qa, [CHBCI]

—Aﬂn:(ﬁv(<an1<V1;U1 V2+U7) an2 (W,Vrglj{)))

R . . A [CP1]
A BQur (S5) —adiv (Quear (952)) . meQa,
D+ﬁn:7Q(,0n 1 (M M) + I/A V1="1+1/27"2+U{,n1+1/2,n2
L . ’ 2 n1+1/2,n9 2
+ADT (Qet I (@JFS ) ) + AQst 11,1 (®+S ) 1/2ms” [CPBC1]
ni ;N2

n e {O,Nl_l}xQQ7A,
D;Hn = the analogy of the 1st component, ...
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V1=7L1+1/21"2_Uf ny+1/2,n9 (Vl—i-ﬁj Vo+ U
2 2 + 17 2)
V; ™ Ul Qeon: 2 2 n1+1/2,n2
A A o Jr n s Mg a A ]
_yALmt1/2me - Lni41/2,ny Df_ (_Hn n /\Qst,l (@;SJ) ) [CNSI]
~ . n
*AQstln(@ES]) =0, n€Q_1aXA,
e ) n1+1/2,n2 T ’
V217L117L2+1/2_U; ny,nof1/2
Y — + the analogy of the 1st component = 0, ...
Bi () =0, meol, B(%) =0, neool [CBC1]

for (©,V) € X.

Setting (070, V39) = (S9,U7) , we use the iteration : (@Fm+1 yim+l) —
p? (©3™, Vi™). Here, we fix j € {]’}j,_:%

For discussing the stability, we take some £ > 0 and restrict the domain of the
mapping p’. We set the following closed subset:

Se={©. V)€ X0 =1, ne O, VI < }. (4.8)

We consider the mapping p’ : S¢ — X

LEMMA 4.3. For © in the definition of p?, we have ‘én = |S’¥L’ forn € ﬁi.

Proof. From [CH1], it is easily verified. O
We define Gpou by

3/2| v2 0| (—>vec) 2 o (—>vec) 8/2
p2 |2 (2|00l )+ 2w (2| U0 ) ,

Bbou = min 12 g 1/2,1/2
2v2 7Y/ SAL?LY

for any n > 0 and any 7" € (0,T]. Hereinafter, we fix n > 0 and T" € (0, T] arbitrarily.

3/2
THEOREM 4.4. If At < T’ and At (ﬁ + ﬁ) < Bpou , then we obtain
1 2
Pl Ser — Sev where £ = HUOH;_’WC) +n
Proof. By [CP1], [CPBC1], [CBC1], [CNS1], Lemma 4.3 and (3.2) in Theorem
3.1, we can conclude that p’/ (0,V) € S¢ for (0,V) € S+ . O

3/2
ThEorEM 4.5. I AL < T, At (5h + 55 ) " < foou
1 2

3 1 1
At — +— | < 4.
4 t <AS€% + Al‘%) =~ ﬁcon,h ( 9)

4 (1 - 6con,1) /BCOH,II
3 )

At < (4.10)
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1 1 \"?
At 2 + Xz
Az Azs
1/3 1/3
3
3 (1 — ﬁcon,l) ﬁg’on,H 9 (1 — ﬁcon,l) ﬂcon,II
3 ) 2
92 (% Beon, 11 + 47) 20482 (\%ﬂconm + 4v)

< min

1/3
ﬂcon,ll 3 (1 - Bcon,l) Bcon,II 1/
2 ’ \89236+6
3256 (1 - ﬂcon,l) <6c20n,IH + 1)

. (4.11)

§*+||UO||(7’VEC) o ]

where Beon1, Beon1 € (0,1) and Beonmn = ———52—— , then p’ is contraction
mapping.

Proof. We set (6(%), V(™)) € S- and (6(®), V() = pi (), V() for a = 1,2.

By (4.9), [CH1], and Lemma 4.3, we obtain

G ew -6
N 6® 6
1 V(k) —i—UJ (—,vec) 2 )
( — ) + 4y H@<2> _@(1>H
=3 af Az 2= 2 2

3 1 1 N ~ (—,vec)

3 @) _ <1>H L H @ _ 1)” , 4.12
+4<Ax§+mg> o7 -9 2+4 v (412)

Next, we can consider the velocity field. By [DBC2], Lemma 4.3, Theorem 4.4,
(4.12), we have

N “ (—,vec)2
Hv(Q) _ V(l)H
2
(= 2
< L02ANAT ( L )4 ! v v (7eC)+4 H@<2>_@<1>H2
= 9(1 = Beons) \Az? = Ax3 2/2 — 2 , Y )
2
1 N2 (1 v i Y g 1v@ i ||y
2 Ly ol 3|V +ur
+ |8At <A2+Aaz2> <4H 5 ) +4H 5 ; +2
512)\2At3 1 ,vec) 2
Ve - V(l)H : 413
9(1 - ﬂcon,l) (A«T% + AI2> H ( )

Here, V() V(@) € Se. (o= 1,2) . Since (4.12), (4.13) hold and (4.10), (4.11) are
assumed, it is verified that p/ : S¢« — S¢+ is contraction. O

5. Numerical experiments. We show the numerical example for the follow-

ing initial data which are expanded from ([3]): so (z) = (sin (04 (z)),cos (6, (x))),

uo( ) =0, € Q, where 0,(x) = cos (2”2‘72“) — cos (2”%71“"1), r € Q with

= (a1,az) for aj,as € {0,£1,42,43,...}. We set as v = 0.1, A = 0.1 and

v = 0.02 and take o = (4,4). We show the result of a numerical calculation for

(S,U, ﬁ) on Q with Azi= Azs= £ At = Li=Ly=20and T =1.0.

20° 5000’
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We compare the proposed scheme with the standard scheme that is discretized
by the fourth order Runge-Kutta’s method in time with standard finite difference
discretization in space.

The comparison of two methods is in Table 5.1. Here, we look into the length of
spin and the energy of numerical solution which is defined by:

; 5 —, Vi 2 .
R P L P A

N = N

.

j—1
[A |D*s7|7, + \\Uj]];_’vec)z] Y {M [0 +19% a0 419
3’=0
‘(vec)2

4 HD+U(j’+17j’)

2

It is verified that our proposed scheme gives good results on preserving length and
energy law.

standard scheme | proposed scheme
max_max HSﬁL| — 1’ ~ 1073 ~ 10716
0<j<J neQa
max E(S7U)j — E(S, U)O‘/E(S, U)O ~ 10 ~ 10716
0<j<J
TABLE 5.1

Comparison between the standard scheme and the proposed scheme
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