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Abstract. The phase-field method has appeared in the context of diffuse interfaces. It has been

applied to the three major materials processes: solidification, solid-state phase transformation, and

grain growth and coarsening. Very recently, a number of new phase-field models have been developed

for modelling thin films and surfaces (see [3]). The first part of this contribution is concerned with

the phase-field model of spiral crystal growth [5] described by the Burton-Cabrera-Frank theory [2].

We then present computational studies related to the pattern formation and to the dependence on

model parameters. The second part is concerned with the phase-field model [4, 6] of heteroepitaxial

growth. Finally, we present our latest results.
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1. Spiral Crystal Growth. Classically epitaxial crystal growth is modelled
using Burton-Cabrera-Frank (BCF) theory [2]. According to that theory, atoms are
first adsorbed to the crystalline surface. Such atoms are called adatoms. They then
diffuse freely along the surface and they can either desorb from the surface with a
probability 1/τS per unit time, or they are incorporated into the crystal at one of the
three sites: ledge site, step site or kink site. Incorporation at a kink site will be the
most energetically favourable.

Deposition

Diffusion

Fig. 1.1: Atomistic view of the basic processes in epitaxy.

The basic equations in the phase-field formulation of BCF model [2, 5] are

∂tc = DΔc −
c

τS
+ F − Ω−1∂tΦ, (1.1)

α∂tΦ = ξ2ΔΦ + sin(2π(Φ − ΦS)) + λc(1 + cos(2π(Φ − ΦS))), (1.2)

where c is the adatom density, D is the surface diffusion coefficient, τS is the mean
time for the desorption of adatoms from the surface, F is the deposition rate, Ω is
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the atomic area, Φ is the surface height in units of atoms, α is the time relaxation
parameter, ξ is the width of steps between terraces, ΦS is the height of the initial
substrate surface and λ is the coupling constant.

The boundary conditions are given by

∂c

∂n
(t,x) =

∂Φ
∂n

(t,x) = 0, t ∈ (0, T ). (1.3)

The initial conditions are given by

c(0,x) = 0, (1.4)
Φ(0,x) = ΦS(x). (1.5)

1.1. Numerical Scheme. We use an explicit scheme of the finite difference
method to solve the free boundary problem of spiral crystal growth. The first step in
the discretization is to divide the computational domain into a two-dimensional grid
and then derivatives are replaced with equivalent finite differences.

We consider the computational domain S to be a rectangle (0, L1)× (0, L2) which
is to be discretized. We partition the domain S using a grid of internal nodes ωh =
{(ih1, jh2)|i = 1, ..., N1 − 1, j = 1, ..., N2 − 1}, where h1 = L1

N1
, h2 = L2

N2
are the

mesh sizes in S. We discretize the time interval using a mesh [0, T ] : Tτ = {kτ |k =
0, ..., NT }, where τ = T

NT
is a time step. Then we can consider a grid function

u : Tτ × ωh → R for which uk
ij = u(ih1, jh2, kτ).

The time derivative is approximated by forward difference

∂tu
k
ij ≈

uk+1
ij

−uk
ij

τ ,
and the space derivatives are approximated by second-order central differences:

∂xxuk
ij ≈

uk
i+1,j−2uk

ij+uk
i−1,j

h2
1

,

∂yyuk
ij ≈

uk
i,j+1−2uk

ij+uk
i,j−1

h2
2

.

Then the discrete Laplace operator in two dimensions is given by

Δhuk
ij = uk

i+1,j−2uk
ij+uk

i−1,j

h2
1

+ uk
i,j+1−2uk

ij+uk
i,j−1

h2
2

.

The explicit scheme has the form

α
Φk+1

ij − Φk
ij

τ
= ξ2ΔhΦk

ij + sin(2π(Φk
ij − Φk

Sij
))

+ λck
ij(1 + cos(2π(Φk

ij − Φk
Sij

))), (1.6)

ck+1
ij − ck

ij

τ
= DΔhck

ij −
ck
ij

τS
+ F − Ω−1

Φk+1
ij − Φk

ij

τ
(1.7)

for i = 1, ..., N1 − 1, j = 1, ..., N2 − 1, k = 0, ..., NT .
Discretization of the spiral crystal growth problem leads to a system of equations
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Φk+1
ij = Φk

ij +
τξ2

α

Φk
i+1,j + Φk

i,j+1 − 4Φk
ij + Φk

i,j−1 + Φk
i−1,j

h2

+
τ

α
sin(2π(Φk

ij − Φk
Sij

))

+
τλ

α
ck
ij(1 + cos(2π(Φk

ij − Φk
Sij

))), (1.8)

ck+1
ij = ck

ij + τD
ck
i+1,j + ck

i,j+1 − 4ck
ij + ck

i,j−1 + ck
i−1,j

h2

−
τ

τS
ck
ij + τF −

Φk+1
ij − Φk

ij

Ω
(1.9)

for i = 1, ..., N1 − 1, j = 1, ..., N2 − 1, k = 0, ..., NT . That means we can obtain the
values at time k + 1 from the corresponding ones at time k.

For h = h1 = h2, we expect this explicit method is numerically stable and con-
vergent whenever ξ2τ

αh2 ≤ 1
4 and τ( 4D

h2 + 1
τS

) ≤ 1.
The boundary conditions are treated by mirroring the values in the inner nodes

across the boundary.
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Fig. 1.2: Comparison of transient dynamics for different desorption times. Top line:
the surface width changes slowly in time. Bottom line: the surface width quickly
levels off and remains constant.

1.2. Numerical Results. The purpose of this section is to show the relation
between the model parameter τS and growth pattern. The other parameters are set
up as follows: Ω = 2.0, α = 1.0, ξ = 1.0, λ = 10.0, DS = 2.0, F = 3.0, τ = 0.00025,
NT = 100000, so that T = 25. The dimensions of ωh are 100 × 100, the spatial step
size is set to 50/99, and L = 50. The initial height of the substrate ΦS is formed by
arctan(y/x)

2π for the dislocation. First, transient dynamics (see Fig. 1.2) is quantified
by defining the so called surface width w(t) which represents the mean fluctuation of
the surface height

w(t) =
1
2
〈Φ(x, t)2 − 〈Φ(x, t)〉2〉1/2,

where 〈f〉 = L−2
∫

S
fdx.
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(a) (b)

(c) (d)

Fig. 1.3: Spiral ridge at different times t for τS = 0.1. Colour palette represents the
surface height.

In the numerical experiments, we observed two distinguished growth regimes. As
can be seen in Fig. 1.3 for small τS , the spiral finds its final step spacing l essentially
after a single rotation. In contrast, for very large τS the transient spiral ridge evolves
slowly towards a spiral with a constant l. This surface evolution is demonstrated in
Fig. 1.4.

2. Heteroepitaxial Growth. Epitaxy refers to the oriented growth of crys-
talline material onto the single crystal surface. The orientation is determined by the
underlying crystal. In general, we distinguish two cases:

• Homoepitaxy – the growth layers of the material and the substrate are of the
same chemical composition.

• Heteroepitaxy – the growth layers of the material and the substrate are of
the different chemical compositions.

Our aim is to study heteroepitaxial growth which is under misfit stress. This
leads to morphological instability (known as the Asaro-Tiller-Grinfeld instability [1]).
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(a) (b)

(c) (d)

Fig. 1.4: Spiral ridge at different times t for large τS . Colour palette represents the
surface height.

We consider a system Ω consisting of two regions – a solid epitaxial film Ωe(t) and
vapour phase Ωv(t). The solid-vapour interface is denoted Γ(t), which is a function
of time t (see Fig. 2.1). We introduce an extensive scalar quantity Φ, called the
phase-field,

Φ(t,x)

⎧⎨
⎩

= 0 x ∈ Ωv

= 1 x ∈ Ωe

∈ (0, 1) x ∈ Γ(t)
.

This quantity takes a value Φ = 0 in the vapour and Φ = 1 in the solid. It varies
rapidly in the interface.

Here, the linear elastic theory is used. The stress tensor σ
(v)
ij in the vapour is

given by Hooke’s law
σ

(v)
ij = 2μ(v)εij + λ(v)εkkδij ,

where Einstein summation convention is implied.
Following [8] the stress tensor σ

(e)
ij in the epitaxial film is given by
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V apour Ω
v

Interface Γ

Epitaxial film Ω
e

Fig. 2.1: Model.

σ
(e)
ij = 2μ(e)εij + λ(e)εkkδij − εm{ 1+ν(e)

1−2ν(e) }δij .
μ(∗), λ(∗) are the Lamé constants, ν(∗) is the Poisson’s ratio, where ∗ ∈ {e, v}.
εm = ae−as

as
is the misfit strain, where ae, as are lattice constants of epitaxial film

or substrate. The strain tensor is given by εij = 1
2

(
∂ui

∂xj
+ ∂uj

∂xi

)
, where ui is the ith

component of the displacement vector.
The stress tensor in the system is determined from

0 =
∂

∂xj
{h(Φ)σ(e)

ij − [1 − h(Φ)]σ(v)
ij }, (2.1)

where h(Φ) = Φ2(3 − 2Φ) is the weight function for the epitaxial layer (see [6]).
The equation of motion is

ξ∂tΦ = AξΔΦ +
B

ξ
g′(Φ)

+ Ch′(Φ){(μ(e) − μ(v))εijεij +
λ(e) − λ(v)

2
(εii)2 (2.2)

−
1 + ν(e)

1 − 2ν(e)
(εm)2},

where ξ is the width of the transition region, A,B,C are constants, g′(Φ) = 2Φ(1 −
Φ)(1 − 2Φ), and h′(Φ) = 6Φ(1 − Φ).

2.1. Numerical Results. We implemented the model using the explicit scheme
based on finite difference method for the phase-field equation (2.2). In the numerical
experiments, we used the rectangular domain Ω ≡ (0, 2)×(0, 1) with the grid 200×100.
The spatial step size in x-direction is set to h1 = 2/199 and the spatial step size in y-
direction is set to h2 = 1/99 . The other model parameters are as follows: A = 0.005,
B = −0.01, C = −0.00333, ξ = 0.015, and time step τ = A ∗ h1 ∗ h1/8. The initial
conditions for the phase-field variable are given by

Φ(x, y) = 0.5
(

tanh

(
1
h1

(0.1cos(3πx) − y)
)

+ 1
)

.

For the elastic problem, we used FreeFem++ [7] based on FEM. Material di-
mensionless parameters are taken as follows: E(v) = 1, ν(v) = 0, E(e) = 1 × 107,
ν(v) = 0.278, εm = 0.05, μ = E/(2.0(1.0 + ν)), λ = Eν/((1.0 + ν)(1.0 − 2.0 ∗ ν)).
Computations of stress field were very time consuming. Fig. 2.2b shows x-component
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of normal strain at t = 0.00038. Here, we can see that misfit stress relaxes at the tops
of islands.

Finally, Fig. 2.2a displays the evolution of the interface. We observe the valleys
of the surface profile deepen under stress. However, the tops deepen as well, even at
higher speed.

t = 0
t = 0.00038
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(a) Evolution of the interface. ζ is the interface position,

given by its z coordinate.
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(b) Normal strain in x-direction at t = 0.00038.

Fig. 2.2: Numerical results.

3. Conclusion. Our major conclusions are as follows. In the context of spiral
growth, we conclude that step spacing is dependent on desorption time. The larger
desorption time is, the smaller the step spacing is. In the second part of the contri-
bution, the phase-field model for heteroepitaxial growth seems to describe the nature
of the ATG instability. However, our study is at early stage and it is not obvious
from the experiments whether it can lead to fracture or it evolves towards the planar
interface. We also found that numerical noise avoid us to simulate the problem in
longer time. Therefore, it is necessary to develop better numerical schemes suitable
for modelling heteroepitaxial growth.
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