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Abstract

Instability of plane Poiseuille flow in viscous compressible gas is investigated.
A condition for the Reynolds and Mach numbers is given in order for plane
Poiseuille flow to be unstable. It turns out that plane Poiseuille flow is un-
stable for Reynolds numbers much less than the critical Reynolds number for
the incompressible flow when the Mach number is suitably large. It is proved
by the analytic perturbation theory that the linearized operator around plane
Poiseuille flow has eigenvalues with positive real part when the instability
condition for the Reynolds and Mach numbers is satisfied.
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1 Introduction

This paper is concerned with the stability of plane Poiseuille flow of the compressible
Navier-Stokes equation. We consider the following system of equations

∂t̃ρ̃+ div (ρ̃ṽ) = 0, (1.1)

ρ̃(∂t̃ṽ + ṽ · ∇ṽ)− µ∆ṽ − (µ+ µ′)∇div ṽ +∇P̃ (ρ̃) = ρ̃g̃ (1.2)

in a 3-dimensional infinite layer Ωℓ = R2 × (0, ℓ):

Ωℓ = {x̃ = (x̃′, x̃3) : x̃′ = (x̃1, x̃2) ∈ R2, 0 < x̃3 < ℓ}.
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Here ρ̃ = ρ̃(x̃, t̃) and ṽ = ⊤(ṽ1(x̃, t̃), ṽ2(x̃, t̃), ṽ3(x̃, t̃)) denote the density and velocity
at time t̃ ≥ 0 and position x̃ ∈ Ωℓ, respectively; P̃ = P̃ (ρ̃) is the pressure that is
assumed to be a smooth function of ρ̃ satisfying

P̃ ′(ρ∗) > 0

for a given constant ρ∗ > 0; µ and µ′ are the viscosity and the second viscosity
coefficients, respectively, that are assumed to be constants and satisfy

µ > 0,
2

3
µ+ µ′ ≥ 0;

div , ∇ and ∆ denote the usual divergence, gradient and Laplacian with respect
to x̃; and g̃ is a given external force. Here and in what follows ⊤· stands for the
transposition.

We assume that the external force g̃ takes the form

g̃ = ge1,

where g is a positive constant and e1 =
⊤(1, 0, 0) ∈ R3.

The system (1.1)–(1.2) is considered under the boundary condition

ṽ|x̃3=0,ℓ = 0. (1.3)

It is easily seen that (1.1)–(1.3) has a stationary solution ũs =
⊤(ϕ̃s, ṽs) satisfying

ϕ̃s = ρ∗, ṽs =
ρ∗g

2µ
x̃3(ℓ− x̃3)e1,

that is the so-called plane Poiseuille flow.
The aim of this paper is to give a condition for the Reynolds and Mach numbers

in order for plane Poiseuille flow to be unstable.
The function ũs is also a stationary solution of the incompressible Navier-Stokes

equation
div ṽ = 0, (1.4)

ρ∗(∂t̃ṽ + ṽ · ∇ṽ)− µ∆ṽ +∇p̃ = 0, (1.5)

ṽ|x̃3=0,ℓ = 0 (1.6)

with p̃ = ρ∗gx̃1.
It is well known that stationary parallel flow of the incompressible Navier-Stokes

equation is in general stable under arbitrary size of initial perturbations in L2 if
the Reynolds number R is sufficiently small. Furthermore, plane Poiseuille flow is
stable under sufficiently small initial perturbations if R < Rc for a critical number
Rc ∼ 5772, and unstable if R > Rc.

In the case of the compressible Navier-Stokes equation, Iooss-Padula [1] investi-
gated the linearized stability of stationary parallel flow in a cylindrical domain under
perturbations that are periodic in the unbounded direction of the domain. It was
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shown in [1] that stationary parallel flow is linearly stable for suitably small Reynolds
number. In [2] (cf., [3]), nonlinear stability of parallel flow in the infinite layer Ωℓ

was studied; and it was proved that parallel flow is asymptotically stable under per-
turbations sufficiently small in some Sobolev space over Ωℓ if the Reynolds and Mach
numbers are sufficiently small. In this paper we will show that plane Poiseuille flow of
(1.1)–(1.2) is linearly unstable if (3/Re+1/Re′)/Re ≤ 30(1/280−1/Ma2)/Ma2, pro-
vided that Ma2 > 280. Here Re, Re′ and Ma are the numbers given by Re = 16R,
Re′ = 16R′ and Ma = M/8 with the Reynolds number R, second Reynolds number
R′ and Mach number M defined by

R =
ρ∗ℓV0

2µ
, R′ =

ρ∗ℓV0

2µ′ , M =

√
P ′(ρ∗)

V0

.

Here V0 is the maximum velocity ρ∗gℓ2

8µ
of plane Poiseuille flow. In particular, this

result shows that there appears an instability even when R ≪ Rc in the case of
compressible flows.

To prove our result, we consider the spectrum of the linearized operator under
periodic boundary condition in x′ = (x1, x2) to find eigenvalues with positive real
part. As in the case of cylindrical domain analyzed in [1], the linearized operator
generates a C0-semigroup on L2

per(Pα1,α2 × (0, 1)). Here Pα1,α2 denotes the basic
period cell [− π

α1
, π
α1
)× [− π

α2
, π
α2
) with α1, α2 > 0. We will investigate the spectrum

of the linearized operator on L2
per(Pα1,α2 × (0, 1)) for sufficiently small α1 and α2 by

using the analytic perturbation theory to obtain our instability criterion mentioned
above.

This paper is organized as follows. In section 2 we deduce a non-dimensional form
of system (1.1)–(1.2) and rewrite it into the system of equations for perturbations.
We also introduce notations used in this paper. In section 3 we state the main result
of this paper precisely. Sections 4–6 are devoted to the proof of the main result. In
section 4 we consider the Fourier series expansion in x′ = (x1, x2) ∈ Pα1,α2 and reduce
the spectral analysis of the linearized operator to the one for the Fourier coefficients
that are functions of x3. Section 5 is devoted to the study of the spectrum of the zero
frequency part of the linearized operator. In section 6 we investigate the spectrum
of the low frequency part of the linearized operator by the analytic perturbation
theory and complete the proof of our instability result.

2 Preliminaries

In this section we first deduce a non-dimensional form of system (1.1)–(1.2) and
then give the system of equations for perturbations. In the end of this section we
introduce function spaces used in this paper.

We introduce the following non-dimensional variables:

x̃ = ℓx, t̃ =
ℓ

V
t, ṽ = V v, ρ̃ = ρ∗ρ, P̃ = ρ∗V

2P
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with

V =
ρ∗gℓ

2

µ
.

Under this transformation, Ωℓ is transformed into Ω = Ω1:

Ω = {x = (x′, x3) : x′ = (x1, x2) ∈ R2, 0 < x3 < 1}.

Using the relations ∂x̃ = 1
ℓ
∂x, ∂t̃ =

V
ℓ
∂t, we see that (1.1) and (1.2) are trans-

formed into
∂tρ+ div (ρv) = 0, (2.1)

ρ(∂tv + v · ∇v)− ν∆v − (ν + ν ′)∇div v +∇P (ρ) = νρe1. (2.2)

Here, div , ∇ and ∆ denote the divergence, gradient and Laplacian with respect to
x; and ν and ν ′ are the non-dimensional parameters given by

ν =
µ

ρ∗ℓV
, ν ′ =

µ′

ρ∗ℓV
.

To derive (2.2) we have used the relation ℓg
V 2 = ν. The assumption P̃ ′(ρ∗) > 0 is

restated as
P ′(1) > 0.

We next introduce plane Poiseuille flow. Let us consider the stationary problem

div (ρv) = 0, (2.3)

ρv · ∇v − ν∆v − (ν + ν ′)∇div v +∇P (ρ) = νρe1 (2.4)

in Ω under the boundary condition

v|x3=0,1 = 0. (2.5)

Proposition 2.1. Problem (2.3)–(2.5) has a stationary solution (plane Poiseuille
flow) us =

⊤(ρs, vs), where

ρs = 1, vs =
⊤(v1s(x3), 0, 0), v1s(x3) =

1

2
(−x2

3 + x3).

Proof. Set ρ = 1 and v = ⊤(v1(x3), 0, 0) in (2.3) and (2.4). Then, since

div v = ∂x1v
1(x3) = 0, v · ∇v1 = v1∂x1v

1(x3) = 0,

together with (2.5), we have −∂2
x3
v1 = 1 and v1|x3=0,1 = 0, from which we obtain

v1(x3) =
1
2
(−x2

3 + x3). This completes the proof. □

We next derive the system of equations for perturbations. We substitute u(t) =
⊤(ϕ(t), w(t)) ≡ ⊤(γ2(ρ(t) − ρs), v(t) − vs) into (2.1) and (2.2), where γ is the non-
dimensional number given by

γ =
√

P ′(1) =

√
P̃ ′(ρ∗)

V
.
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Noting that ρs = 1, vs = ⊤(v1s(x3), 0, 0) and −∆vs = e1, we obtain the following
system of equations

∂tϕ+ v1s∂x1ϕ+ γ2divw = f 0, (2.6)

∂tw − ν∆w − ν̃∇divw +∇ϕ− ν

γ2
ϕe1 + v1s∂x1w + (∂x3v

1
s)w

3e1 = f . (2.7)

Here e1 =
⊤(1, 0, 0) ∈ R3; and f 0 and f = ⊤(f ′, f 3) with f ′ = ⊤(f 1, f 2) denote the

nonlinearities:
f 0 = −div (ϕw),

f = −w · ∇w − ϕ
γ2+ϕ

(
ν∆w + ν

γ2ϕe1 + ν̃∇divw
)

+ ϕ
γ4∇

(
P (1)(γ−2ϕ)ϕ

)
+ ϕ2

γ2(γ2+ϕ)
∇ (P (1 + γ−2ϕ)) + 1

γ4∇
(
P (2)(γ−2ϕ)ϕ2)

)
,

where

P (1)(γ−2ϕ) =

∫ 1

0

P ′(1 + θγ−2ϕ) dθ

and

P (2)(γ−2ϕ) =

∫ 1

0

(1− θ)P ′′(1 + θγ−2ϕ) dθ.

We consider (2.6)–(2.7) under the boundary conditions

w|x3=0,1 = 0, ϕ, w: 2π
αj
-periodic in xj (j = 1, 2), (2.8)

and the initial condition
u|t=0 = u0 =

⊤(ϕ0, w0). (2.9)

Here α1 and α2 are given positive numbers.

We are interested in the instability of plane Poiseuille flow. We will thus consider
the linearized problem for problem (2.6)–(2.9), i.e., with f 0 = 0 and f = 0.

In the remaining of this section we introduce some notations used in this paper.
For given α1, α2 > 0, we denote the basic period cell by

Pα1,α2 =
[
− π

α1
, π
α1

)
×
[
− π

α2
, π
α2

)
.

We set
Ωα1,α2 = Pα1,α2 × (0, 1).

We denote by C∞
0,per(Ωα1,α2) the space of restrictions of functions in C∞(Ω) which

are Pα1,α2-periodic in x′ = (x1, x2) and vanish near x3 = 0, 1. We set

L2
per(Ωα1,α2) = the L2(Ωα1,α2)-closure of C∞

0,per(Ωα1,α2),

H1
0,per(Ωα1,α2) = the H1(Ωα1,α2)-closure of C∞

0,per(Ωα1,α2).

We note that if f ∈ H1
0,per(Ωα1,α2), then f |xj=−π/αj

= f |xj=π/αj
(j = 1, 2) and

f |x3=0,1 = 0.
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For simplicity the set of all vector fields whose components are in L2
per(Ωα1,α2)

(resp. H1
0,per(Ωα1,α2)) is also denoted by L2

per(Ωα1,α2) (resp. H1
0,per(Ωα1,α2)) if no

confusion will occur.
We also use notation L2

per(Ωα1,α2) for the set of all u = ⊤(ϕ,w) with ϕ ∈
L2

per(Ωα1,α2) and w = ⊤(w1, w2, w3) ∈ L2
per(Ωα1,α2) if no confusion will occur. The

inner product of uj =
⊤(ϕj, wj) ∈ L2

per(Ωα1,α2) (j = 1, 2) is defined by

(u1, u2) =
1

γ2

∫
Ωα1,α2

ϕ1(x)ϕ2(x) dx+

∫
Ωα1,α2

w1(x) · w2(x) dx,

where z denotes the complex conjugate of z.
We denote by L2(0, 1) the usual L2 space on (0, 1) with norm | · |L2 , and, likewise,

by Hk(0, 1) the k th order L2-Sobolev space on (0, 1) with norm | · |Hk . The H1-
closure of C∞

0 (0, 1) is denoted by H1
0 (0, 1). As in the case of functions on Ωα1,α2 ,

function spaces of vector fields w = ⊤(w1, w2, w3) and, also, those of u = ⊤(ϕ,w),
are simply denoted by L2(0, 1), H1

0 (0, 1), and so on, if no confusion will occur. We
define an inner product ⟨u1, u2⟩ of uj =

⊤(ϕj, wj) ∈ L2(0, 1) (j = 1, 2), by

⟨u1, u2⟩ =
1

γ2

∫ 1

0

ϕ1(x3)ϕ2(x3) dx3 +

∫ 1

0

w1(x3) · w2(x3) dx3.

The mean value of a function ϕ(x3) over (0, 1) is denoted by ⟨ϕ⟩:

⟨ϕ⟩ =
∫ 1

0

ϕ(x3) dx3.

The set of all ϕ ∈ L2(0, 1) with ⟨ϕ⟩ = 0 is denoted by L2
∗(0, 1), i.e.,

L2
∗(0, 1) = {ϕ ∈ L2(0, 1) : ⟨ϕ⟩ = 0}.

We define 4× 4 diagonal matrices Q0 and Q̃ by

Q0 = diag (1, 0, 0, 0), Q̃ = diag (0, 1, 1, 1).

Note that
Q0u = ⊤(ϕ, 0), Q̃u = ⊤(0, w) for u = ⊤(ϕ,w).

We denote the resolvent set of a closed operator A by ρ(A) and the spectrum
of A by σ(A). The kernel and the range of A are denoted by KerA and R(A),
respectively.

3 Main result

In this section we state our main result of this paper.
The linearized problem is written as

∂tϕ+ v1s∂x1ϕ+ γ2divw = 0, (3.1)
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∂tw − ν∆w − ν̃∇divw +∇ϕ− ν

γ2
ϕe1 + v1s∂x1w + (∂x3v

1
s)w

3e1 = 0, (3.2)

w|x3=0,1 = 0, ϕ, w : Pα1,α2-periodic in x′, (3.3)

u|t=0 = u0 =
⊤(ϕ0, w0). (3.4)

We define the operator L on L2
per(Ωα1,α2) by

D(L) =
{
u = ⊤(ϕ,w) ∈ L2

per(Ωα1,α2) : w ∈ H1
0,per(Ωα1,α2), Lu ∈ L2

per(Ωα1,α2)
}
,

L =

(
v1s∂x1 γ2div

∇ −ν∆− ν̃∇div

)
+

 0 0

− ν
γ2 v1s∂x1 + (∂x3v

1
s)e1

⊤e3

 .

As in [1] one can see that −L generates a C0-semigroup in L2
per(Ωα1,α2).

We now state our main result of this paper. For α′ = (α1, α2) with α1, α2 > 0
and (m1,m2) ∈ Z2, we introduce the notations |α′| and α′

m1,m2
by

|α′| = (α2
1 + α2

2)
1
2 and α′

m1,m2
= (α1m1, α2m2).

Theorem 3.1. There exist constants r0 > 0 and η0 > 0 such that if |α′| ≤ r0, then

σ(−L) ∩
{
λ ∈ C : |λ| ≤ η0

}
= {λm1,m2 : |m1| = 0, 1, · · · , k1, |m2| = 0, 1, · · · , k2}

for some k1, k2 ∈ N, where λm1,m2 are eigenvalues of −L that satisfies

λm1,m2 = − i

6
(α1m1) + κ0(α1m1)

2 − γ2

12ν
(α2m2)

2 +O(|α′
m1,m2

|3)

as |α′
m1,m2

| → 0. Here κ0 is the number given by

κ0 =
1

12ν

(
1

280
− γ2 − ν2

15γ2
− νν̃

30γ2

)
.

As a consequence, if γ2 < 1
280

and 2ν2 + νν̃ ≤ 30γ2
(

1
280

− γ2
)
, then κ0 > 0 and

plane Poiseuille flow us =
⊤(ϕs, vs) is linearly unstable.

Remark 3.2. Let, for example, γ = 0.05, ν = 1/173 and ν ′ = −2ν/3. Then
κ0 > 0 and thus plane Poiseuille flow is unstable. In this case, the Reynolds number
R = 1/(16ν) ∼ 10.81 and the Mach number M = 8/γ = 160.

We will prove Theorem 3.1 in the subsequent sections. In section 4 we consider
the Fourier series expansion in x′ = (x1, x2) ∈ Pα1,α2 and reduce the problem to
the ones for the Fourier coefficients û(α′

m1,m2
, x3). In section 5 we investigate the

spectrum for the case α′
m1,m2

= 0. In section 6 we complete the proof of Theorem 3.1
by applying the analytic perturbation theory for small α′

m1,m2
based on the analysis

in section 5.
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4 Fourier series expansion in x′ ∈ Pα1,α2

In this section we consider the Fourier series expansion in x′ = (x1, x2) ∈ Pα1,α2 and
reduce the problem to the ones for the Fourier coefficients û(α′

m1,m2
).

To investigate the spectrum of −L, we consider the Fourier series expansion of
(3.1)–(3.4) in x′ ∈ Pα1,α2 :

∂tϕ̂+ iξ1v
1
s ϕ̂+ iγ2ξ′ · ŵ′ + γ2∂x3ŵ

3 = 0, (4.1)

∂tŵ
′ + ν(|ξ′|2 − ∂2

xn
)ŵ′ − iν̃ξ′(iξ′ · ŵ′ + ∂x3ŵ

3) + iξ′ϕ̂

− ν
γ2 ϕ̂e

′
1 + iξ1v

1
sŵ

′ + (∂x3v
1
s)ŵ

3e′
1 = 0,

(4.2)

∂tŵ
3 + ν(|ξ′|2 − ∂2

xn
)ŵ3 − ν̃∂x3(iξ

′ · ŵ′ + ∂x3ŵ
3) + ∂x3ϕ̂+ iξ1v

1
sŵ

3 = 0, (4.3)

ŵ|xn=0,1 = 0, (4.4)

û|t=0 = û0 =
⊤(ϕ̂0, ŵ0). (4.5)

Here and in what follows we simply write α′
m1,m2

= (α1m1, α2m2) ((m1,m2) ∈ Z2)

as ξ′ = (ξ1, ξ2); ϕ̂ = ϕ̂(ξ′, x3, t) and ŵj = ŵj(ξ′, x3, t) (j = 1, 2, 3) are the Fourier
coefficients of ϕ = ϕ(x′, x3, t) and wj = wj(x′, x3, t) (j = 1, 2, 3) with respect to
x′ = (x1, x2) ∈ Pα1,α2 , respectively, with w′ = ⊤(w1, w2); and e′

1 =
⊤(1, 0) ∈ R2.

We thus arrive at the following problem

∂tu+ L̂ξ′u = 0, u|t=0 = u0 (4.6)

with a parameter ξ′ = (ξ1, ξ2) ∈ R2, where L̂ξ′ is the operator on L2(0, 1) of the
form

L̂ξ′ = Âξ′ + B̂ξ′ + Ĉ0

with domain

D(L̂ξ′) = {u = ⊤(ϕ,w) ∈ L2(0, 1) : w ∈ H1
0 (0, 1), L̂ξ′u ∈ L2(0, 1)}.

Here

Âξ′ =


0 0 0

0 ν(|ξ′|2 − ∂2
x3
)I2 + ν̃ξ′⊤ξ′ −iν̃ξ′∂x3

0 −iν̃⊤ξ′∂x3 ν(|ξ′|2 − ∂2
x3
)− ν̃∂2

x3

 ,

where I2 denotes the 2× 2 identity matrix,

B̂ξ′ =


iξ1v

1
s iγ2 ⊤ξ′ γ2∂x3

iξ′ iξ1v
1
sI2 0

∂x3 0 iξ1v
1
s

 ,
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and

Ĉ0 =

 0 0 0

− ν
γ2e

′
1 0 (∂x3v

1
s)e

′
1

0 0 0

 .

Note that D(L̂ξ′) = D(L̂0) for all ξ
′ ∈ R2.

5 Spectrum of −L̂0

To prove Theorem 3.1, we first consider the spectrum of −L̂0, i.e., −L̂ξ′ with ξ′ = 0:

L̂0 =


0 0 γ2∂x3

− ν
γ2e

′
1 −ν∂2

x3
I2 (∂x3v

1
s)e

′
1

∂x3 0 −(ν + ν̃)∂2
x3

 .

Let us introduce the adjoint operator L̂∗
ξ′ of L̂ξ′ with respect to the inner product

⟨·, ·⟩:
L̂∗

ξ′ = Âξ′ − B̂ξ′ + Ĉ∗
0 ,

where

Ĉ∗
0 =


0 −ν⊤e′

1 0

0 0 0

0 (∂x3v
1
s)

⊤e′
1 0

 .

We consider L̂∗
ξ′ as an operator on L2(0, 1) with domain

D(L̂∗
ξ′) = {u = ⊤(ϕ,w) ∈ L2(0, 1) : w ∈ H1

0 (0, 1), L̂
∗
ξ′u ∈ L2(0, 1)}.

Note that

L̂∗
0 =


0 −ν⊤e′

1 −γ2∂x3

0 −ν∂2
x3
I2 0

−∂x3 (∂x3v
1
s)

⊤e′
1 −(ν + ν̃)∂2

x3

 .

In this paper we only consider the spectrum near the origin since we focus on
the instability of plane Poiseuille flow.

Lemma 5.1. The following assertions hold true.

(i) There is a positive number η1 = η1(ν, ν̃, γ) such that {λ ∈ C : |λ| < η1}\{0} ⊂
ρ(−L̂0). Furthermore, the following estimate holds uniformly for λ ∈ {λ ∈ C : |λ| ≤
η1/2} \ {0}: ∣∣(λ+ L̂0)

−1f
∣∣
L2 +

∣∣∂x3Q̃(λ+ L̂0)
−1f
∣∣
2
≤ C

|λ|
|f |L2 .
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The same assertion holds with L̂0 replaced by L̂∗
0.

(ii) λ = 0 is a simple eigenvalue of −L̂0, i.e., R(L̂0) is closed and

L2(0, 1) = Ker L̂0 ⊕R(L̂0) with dimKer L̂0 = 1.

The same assertion holds with L̂0 replaced by L̂∗
0.

(iii) The eigenspaces for λ = 0 of L̂0 and L̂∗
0 are spanned by u(0) and u(0)∗

respectively, where

u(0) = ⊤(ϕ(0), w(0)), w(0) = ⊤(w(0),1, 0, 0)

and
u(0)∗ = ⊤(ϕ(0)∗, w(0)∗), w(0)∗ = ⊤(0, 0, 0)

with

ϕ(0)(x3) = 1, w(0),1(x3) =
1

2γ2
(−x2

3 + x3), ϕ(0)∗(x3) = γ2.

(iv) The eigenprojections Π̂ (0) and Π̂ (0)∗ for λ = 0 of −L̂0 and −L̂∗
0 are given by

Π̂ (0)u = ⟨u, u(0)∗⟩u(0) = ⟨ϕ⟩u(0),

and
Π̂ (0)∗u = ⟨u, u(0)⟩u(0)∗

for u = ⊤(ϕ,w), respectively. In particular, it holds that

u = ⊤(ϕ,w) ∈ R(I − Π̂ (0)) if and only if ⟨ϕ⟩ = ⟨u, u(0)∗⟩ = 0.

To prove Lemma 5.1, we introduce some operators. We define 2 × 2 matrix
operators L̃0, L̃

∗
0 on L2(0, 1)2 = L2(0, 1)× L2(0, 1), and A, C̃0, C̃

∗
0 on L2(0, 1)2 by

L̃0 =

(
0 γ2∂x3

∂x3 −(ν + ν̃)∂2
x3

)
,

L̃∗
0 =

(
0 −γ2∂x3

−∂x3 −(ν + ν̃)∂2
x3

)
with domain

D(L̃0) = {ũ = ⊤(ϕ,w3) ∈ L2(0, 1)2 : w ∈ H1
0 (0, 1), L̃0u ∈ L2(0, 1)2},

D(L̃∗
0) = {u = ⊤(ϕ,w3) ∈ L2(0, 1)2 : w ∈ H1

0 (0, 1), L̃
∗
0u ∈ L2(0, 1)2},

and

A =

( −ν∂2
x3

0

0 −ν∂2
x3

)
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with domain D(A) = [H2(0, 1) ∩H1
0 (0, 1)]

2, and

C̃0 =

( − ν
γ2 (∂x3v

1
s)

0 0

)
,

C̃∗
0 =

( −ν 0

(∂x3v
1
s) 0

)
with domain D(C̃0) = D(C̃∗

0) = L2(0, 1)2.

Lemma 5.2. (i) It holds that

σ(−L̃0) ∩ {λ ∈ C : |λ| < η̃0} = {0}, {λ ∈ C : |λ| < νπ} ⊂ ρ(−A),

for some constant η̃0 = η̃0(ν, ν̃, γ
2) > 0. Furthermore,

L2(0, 1)2 = Ker L̃0 ⊕R(L̃0)

with
Ker L̃0 = span {ũ(0)}, ũ(0) = ⊤(1, 0),

R(L̃0) = L2
∗(0, 1)× L2(0, 1).

In particular, 0 is a simple eigenvalue of −L̃0 with eigenprojection Π̃0 given by
Π̃0ũ = ⟨ϕ⟩ũ(0) (ũ = ⊤(ϕ,w3)).

(ii) There hold the estimates∣∣∣(λ+ L̃0)
−1g
∣∣∣
L2

+
∣∣∣∂x3Q̃2(λ+ L̃0)

−1g
∣∣∣
L2

≤ C
( 1

|λ|
+

1

η̃0 − |λ|
)
|g|L2

uniformly for λ ∈ {λ ∈ C : |λ| < η̃0} \ {0} and g = ⊤(f 0, f 3) ∈ L2(0, 1)2, and∣∣∂l
x3
(λ+ A)−1f ′∣∣

L2 ≤
1

νπ2 − |λ|
|f ′|L2 , l = 0, 1.

uniformly for λ ∈ {λ ∈ C : |λ| < νπ2} and f ′ ∈ L2(0, 1)2. Here Q̃2 = diag (0, 1).

(iii) The assertions in (i) and (ii) also hold with L̃0 replaced by L̃∗
0.

Proof. The assertions for A is well-known, and so we here omit the proof for A.
As for L̃0, let us consider the problem to find ũ satisfying

L̃0ũ = g, ũ = ⊤(ϕ,w3) ∈ D(L̃0) (5.1)

for a given g = ⊤(f 0, f 3) ∈ L2(0, 1)2.
To solve this problem, we expand ϕ and w3 into the Fourier cosine and sine series

respectively:

ϕ =
∞∑
n=0

ϕn cosnπx3, w3 =
∞∑
n=1

w3
n sinnπx3,
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and likewise,

f 0 =
∞∑
n=0

f 0
n cosnπx3, f 3 =

∞∑
n=1

f 3
n sinnπx3.

It then follows from (5.1) that
f 0
0 = 0,

and, for n ≥ 1,

w3
n =

1

γ2

1

nπ
f 0
n,

ϕn =
ν + ν̃

γ2
f 0
n − 1

nπ
f 3
n.

We thus see that problem (5.1) is uniquely solvable if and only if ⟨f 0⟩ = f 0
0 = 0 and

⟨ϕ⟩ = ϕ0 = 0; and in this case, the unique solution is given by

ϕ =
ν + ν̃

γ2
f 0 + F 3, w3 =

1

γ2

∫ x3

0

f 0(y) dy, (5.2)

where F 3 = −
∑∞

n=1
1
nπ
f 3
n cosnπx3. Furthermore, it holds that

|ũ|L2 ≤ η̃−1
0 |g|L2 , |∂x3w

3|L2 ≤ 1

γ2
|f 0|L2 , (5.3)

where η̃0 =
[
max{ν+ν̃

γ2 , 1
γ2π

, 1
π
}
]−1

. Therefore, we see that R(L̃0) = L2
∗(0, 1) ×

L2(0, 1). Moreover, we find that Ker L̃0 = span {ũ(0)} with ũ(0) = ⊤(1, 0) and
L2(0, 1)2 = Ker L̃0 ⊕ R(L̃0). It then follows that 0 is a simple eigenvalue of −L̃0

and the eigenspace for 0 is spanned by ũ(0). The eigenprojection Π̃0 for 0 is given
by Π̃0ũ = ⟨ϕ⟩ũ(0) for ũ = ⊤(ϕ,w3) ∈ L2(0, 1).

We decompose L2(0, 1)2 as L2(0, 1)2 = X0 ⊕ X1, where X0 = Π̃0L
2(0, 1)2 =

Ker L̃0 and X1 = Π̃1L
2(0, 1)2 = R(L̃0) with Π̃1 = I − Π̃0.

Let us consider the resolvent problem

λũ+ L̃0ũ = g, ũ ∈ D(L̃0). (5.4)

This is equivalent to
λũ = g, ũ ∈ X0 (5.5)

for g ∈ X0 and
λũ+ L̃0ũ = g, ũ ∈ X1 ∩D(L̃0) (5.6)

for g ∈ X1.
We see from (5.3) that if |λ| < η̃0, then λ ∈ ρ(−L̃0|X1) and

|((λ+ L̃0)|X1)
−1g|L2 ≤ 1

η̃0 − |λ|
|g|L2 ,

|∂x3Q̃2((λ+ L̃0)|X1)
−1g|L2 ≤ 1

γ2

η̃0
η̃0 − |λ|

|g|L2
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for |λ| < η̃0 and g ∈ X1. On the other hand, it follows from (5.5) that if λ ̸= 0, then

Π̃0ũ =
1

λ
Π̃0g.

As a result, we see that

(λ+ L̃0)
−1g =

1

λ
Π̃0g + ((λ+ L̃0)|X1)

−1Π̃1g

for λ ̸= 0 with |λ| < η̃0 and g ∈ L2(0, 1)2. The desired estimate for L̃0 now follows.
The assertion for L̃∗

0 can be shown in a similar manner. This completes the proof.
□

We now give a proof of Lemma 5.1.

Proof of Lemma 5.1. For u = ⊤(ϕ,w), w = ⊤(w1, w2, w3), we write

ũ = ⊤(ϕ,w3), w′ = ⊤(w1, w2).

Then the resolvent problem
(λ+ L̂0)u = f (5.7)

is written as

(λ+ L̃0)ũ = g, (5.8)

(λ+ A)w′ = f ′ − C̃0ũ. (5.9)

Here f = ⊤(f 0, f 1, f 2, f 3), g = ⊤(f 0, f 3) and f ′ = ⊤(f 1, f 2).
Set η1 = min{η̃0, νπ2}. Since |C̃0ũ|L2 ≤ C|ũ|L2 , we see from Lemma 5.2 that

{λ ∈ C : |λ| < η1}\{0} ⊂ ρ(−L̂0). Furthermore, if λ ∈ {λ ∈ C : |λ| < η1}\{0}, then
the ũ- and w′-components of u = (λ+L̂0)

−1f are given by ũ = ⊤(ϕ,w3) = (λ+L̃0)
−1g

and w′ = ⊤(w1, w2) = (λ+ A)−1[f ′ − C̃0ũ], respectively, and it holds that

|ũ|L2 +
∣∣∂x3w

3
∣∣
L2 ≤ C

( 1

|λ|
+

1

η̃0 − |λ|
)
|g|L2

and ∣∣∂l
x3
w′∣∣

L2 ≤
C

(νπ2 − |λ|)

(
|f ′|L2 +

( 1

|λ|
+

1

η̃0 − |λ|
)
|g|L2

)
, l = 0, 1.

We thus find that if |λ| ≤ η1
2
, then∣∣∣(λ+ L̂0)

−1f
∣∣∣
L2

+
∣∣∣∂x3Q̃(λ+ L̂0)

−1f
∣∣∣
L2

≤ C

|λ|
|f |L2 .

This proves (i) for L̂0.
We next prove assertions (ii)–(iv) for L̂0. We first prove Ker L̂0 = span {u0}.

Let L̂0u = 0. Then L̃0ũ = 0 and Aw′ = −C̃0ũ. It follows from Lemma 5.2 that
u = αu(0) (α: constant) and, hence, Ker L̂0 = span {u0}.
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Let us show that R(L̂0) is closed and L2(0, 1) = Ker L̂0 ⊕ R(L̂0). Set Π (0)u =
⟨u, u(0)∗⟩u(0) = ⟨ϕ⟩u(0) for u = ⊤(ϕ,w) ∈ L2(0, 1). It then follows that Π (0) is a
projection onto Ker L̂0 with property Π (0)L̂0 ⊂ L̂0Π

(0). Furthermore, it holds that
f = ⊤(f 0, f ′, f 3) ∈ R(I − Π (0)) if and only if ⟨f, u(0)∗⟩ = ⟨f 0⟩ = 0.

Let ⟨f, u(0)∗⟩ = ⟨f 0⟩ = 0. Then (5.7) with λ = 0 is written in the form of
(5.8)–(5.9) with λ = 0 and g = ⊤(f 0, f 3) ∈ L2

∗(0, 1)× L2(0, 1). It then follows from
Lemma 5.2 that (5.8) with λ = 0 has a unique solution ũ ∈ D(L̃0) and, hence, (5.9)
with λ = 0 has a unique solution w′ ∈ D(A). As a result, (5.7) with λ = 0 has a
unique solution u = ⊤(ϕ,w′, w3) that is given by

ũ = ⊤(ϕ,w3) = (L̃0|X1)
−1g, g = ⊤(f 0, f 3),

w′ = A−1[f ′ − C̃0ũ].

We thus find that R(I − Π (0)) ⊂ R(L̂0). On the other hand, if f = ⊤(f 0, f ′, f 3) ∈
R(L̂0), then it is easy to see that ⟨f, u(0)∗⟩ = ⟨f 0⟩ = 0, and, hence, f ∈ R(I −Π (0)).
We thus find that R(I − Π (0)) = R(L̂0). Consequently, we see that R(L̂0) is closed
and L2(0, 1) = Ker L̂0 ⊕R(L̂0). This proves (ii)–(iv) for L̂0.

The assertions for L̂∗
0 can be obtained similarly and we omit the details. This

completes the proof. □

6 Perturbation argument

In this section we investigate σ(−L̂ξ′) ∩ {|λ| ≤ η1/2} for |ξ′| ≪ 1.

Let L̂ξ′ be denoted by

L̂ξ = L̂0 +
2∑

j=1

ξjL̂
(1)
j +

2∑
j,k=1

ξjξkL̂
(2)
jk ,

where

L̂0 =


0 0 γ2∂x3

− ν
γ2e

′
1 −ν∂2

x3
I2 (∂x3v

1
s)e

′
1

∂x3 0 −(ν + ν̃)∂2
x3

 ,

L̂
(1)
j =


iδ1jv

1
s iγ2⊤e′

j 0

ie′
j iv1sδ1jI2 −iν̃e′

j∂x3

0 −iν̃⊤e′
j∂x3 iv1sδ1j

 , j = 1, 2,

L̂
(2)
jk =


0 0 0

0 νδjkI2 + ν̃e′
j
⊤e′

k 0

0 0 νδjk

 , j, k = 1, 2.

14



Here e′
1 =

⊤(1, 0) and e′
2 =

⊤(0, 1).

We will apply the analytic perturbation theory to prove Theorem 3.1. To do so,
we prepare the following estimates.

Lemma 6.1. There hold the following estimates uniformly for λ with |λ| = η1
2
and

f ∈ L2(0, 1): ∣∣∣L̂(1)
j (λ+ L̂0)

−1f
∣∣∣
L2

≤ C|f |L2 , j = 1, 2,∣∣∣L̂(2)
jk (λ+ L̂0)

−1f
∣∣∣
L2

≤ C|f |L2 , j, k = 1, 2.

Proof. Let λ satisfy |λ| = η1
2
. It then follows from Lemma 5.1 that∣∣∣L̂(1)

j (λ+ L̂0)
−1f
∣∣∣
L2

≤ C
∣∣∣(λ+ L̂0)

−1f
∣∣∣
L2×H1

≤ C|f |L2

and ∣∣∣L̂(2)
jk (λ+ L̂0)

−1f
∣∣∣
L2

≤ C
∣∣∣(λ+ L̂0)

−1f
∣∣∣
L2

≤ C|f |L2 .

This completes the proof. □

Theorem 3.1 follows from the following result on the spectrum of −L̂ξ′ .

Theorem 6.2. There exists a positive number r1 = r1(ν, ν̃, γ) such that if |ξ′| ≤ r1,
then it holds

σ(−L̂ξ′) ∩
{
λ ∈ C : |λ| ≤ η0

2

}
= {λξ′},

where λξ′ is a simple eigenvalue of −L̂ξ′ and it satisfies

λξ′ = − i

6
ξ1 + κ0ξ

2
1 −

γ2

12ν
ξ22 +O(|ξ′|3)

as ξ′ → 0. Here

κ0 =
1

12ν

(
1

280
− γ2 − ν2

15γ2
− νν̃

30γ2

)
.

Therefore, if γ2 < 1
280

and 2ν2 + νν̃ ≤ 30γ2
(

1
280

− γ2
)
, then κ0 > 0.

Proof of Theorem 6.2. Based on Lemma 5.1 and Lemma 6.1 we can apply the
analytic perturbation theory (see, e.g., [4, Chap VII], [5, Chap. XII]) to see that if
|ξ′| ≪ 1, then

σ(−L̂ξ′) ∩
{
λ ∈ C : |λ| ≤ η1

2

}
= {λξ′},

where λξ′ is a simple eigenvalue. Furthermore, λξ′ is given by

λξ′ = λ0 +
2∑

j=1

ξjλ
(1)
j +

2∑
j,k=1

ξjξkλ
(2)
jk +O(|ξ′|3).
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Here λ
(2)
jk = λ

(2)
kj ,

λ0 = 0,

λ
(1)
j = −⟨L̂(1)

j u(0), u(0)∗⟩,

λ
(2)
jk = −⟨1

2
(L̂

(2)
jk + L̂

(2)
kj )u

(0), u(0)∗⟩+ ⟨1
2
(L̂

(1)
j ŜL̂

(1)
k + L̂

(1)
k ŜL̂

(1)
j )u(0), u(0)∗⟩,

where Ŝ = [(I − Π (0))L̂0(I − Π (0))]−1.

The proof of Theorem 6.2 will be completed if we compute λ
(1)
j and λ

(2)
jk . We will

compute them in the following propositions.

Proposition 6.3. λ
(1)
j = − i

6
δ1j, j = 1, 2.

Proof. We have

L̂
(1)
1 u(0) = i


v1s + γ2w(0),1

(1 + v1sw
(0),1)e′

1

−ν̃∂x3w
(0),1

 = i



−x2
3 + x3

1 + 1
4γ2 (−x2

3 + x3)
2

0

− ν̃
2γ2 (−2x3 + 1)

 , (6.1)

L̂
(1)
2 u(0) = i


0

e′
2

0

 = i



0

0

1

0

 . (6.2)

It then follows that

λ
(1)
1 = −⟨L̂(1)

1 u(0), u(0)∗⟩ = −i⟨v1s + γ2w(0),1⟩ = −i

∫ 1

0

(−y2 + y) dy = − i

6

and λ
(1)
2 = 0. This completes the proof. □

Proposition 6.4. λ
(2)
22 = − γ2

12ν
.

Proof. Since L̂
(2)
jk u

(0) = ⊤(0, ∗, ∗, ∗), we have

⟨L̂(2)
jk u

(0), u(0)∗⟩ = 0 for j, k = 1, 2. (6.3)

Let us compute L̂
(1)
j ŜL̂

(1)
2 u(0). We see from (6.2) that ⟨L̂(1)

2 u(0), u(0)∗⟩ = 0. There-

fore, L̂
(1)
2 u(0) ∈ R(I − Π̂ (0)), and so, ŜL̂

(1)
2 u(0) is a unique solution u = ⊤(ϕ,w) of

L̂0u = L̂
(1)
2 u(0), ⟨ϕ⟩ = 0.
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By (6.2), we see that the solution u of this problem is given by ϕ = w1 = w3 = 0
and w2 that satisfies −ν∂2

x3
w2 = i and w2|x3=0,1 = 0. We thus obtain

ŜL̂
(1)
2 u(0) = ⊤(0, 0,

i

2ν
(−x2

3 + x3), 0).

This implies that
L̂
(1)
1 ŜL̂

(1)
2 u(0) = 0 (6.4)

and

L̂
(1)
2 ŜL̂

(1)
2 u(0) = ⊤(−γ2

2ν
(−x2

3 + x3), ∗, ∗, ∗). (6.5)

It then follows from (6.3) and (6.5) that

λ
(2)
22 = −γ2

2ν
⟨ − x2

3 + x3⟩ = − γ2

12ν
.

This completes the proof. □

To obtain λ
(2)
j1 (= λ

(2)
1j ), we compute ŜL̂

(1)
1 u(0).

Proposition 6.5. ŜL̂
(1)
1 u(0) is given by

ŜL̂
(1)
1 u(0) = u

(1)
1 ,

where u
(1)
1 = ⊤(ϕ

(1)
1 , w

(1),1
1 , w

(1),2
1 , w

(1),3
1 ) with

ϕ
(1)
1 (x3) = i

(
ν
γ2 +

ν̃
2γ2

) (
−x2

3 + x3 − 1
6

)
,

w
(1),1
1 (x3) = i

(
ν
γ4 +

ν̃
2γ4

) (
1
12
x4
3 − 1

6
x3
3 +

1
12
x2
3

)
+ i

12νγ2

(
1
30
x6
3 − 1

10
x5
3 +

1
12
x4
3 − 1

60
x3

)
+ i

2ν
(−x2

3 + x3),

w
(1),2
1 (x3) = 0,

w
(1),3
1 (x3) = i

γ2

(
−1

3
x3
3 +

1
2
x2
3 − 1

6
x3

)
.

Proof. We set f = ⊤(f 0, f 1, f 2, f 3) = (I− Π̂ (0))L̂
(1)
1 u(0). Then ŜL̂

(1)
1 u(0) is a unique

solution u of
L̂0u = f, ⟨ϕ⟩ = 0,

namely, u = ⊤(ϕ,w1, w2, w3) is a solution of

γ2∂x3w
3 = f 0, (6.6)

− ν

γ2
ϕ− ν∂2

x3
w1 + (∂x3v

1
s)w

3 = f 1, (6.7)

−ν∂2
x3
w2 = f 2, (6.8)
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∂x3ϕ− (ν + ν̃)∂2
x3
w3 = f 3, (6.9)

w|x3=0,1 = 0, (6.10)

⟨ϕ⟩ = 0. (6.11)

To solve (6.6)–(6.11), let us first compute f . Since

Π̂ (0)L̂
(1)
1 u(0) = ⟨L̂(1)

1 u(0), u(0)∗⟩u(0) = −λ
(1)
1 u(0) =

i

6
u(0),

we have
f = L̂

(1)
1 u(0) − i

6
u(0)

= i



v1s + γ2w(0),1 − 1
6
ϕ(0)

1 + v1sw
(0),1 − 1

6
w(0),1

0

−ν̃∂x3w
(0),1



= i



−x2
3 + x3 − 1

6

1
12γ2 (3x

4
3 − 6x3

3 + 4x2
3 − x3) + 1

0

ν̃
2γ2 (2x3 − 1)

 .

(6.12)

Computation of w2: It follows from (6.8), (6.10) and (6.12) that w2 = 0.

Computation of w3: Integrating (6.6), we have

w3(x3) =

∫ x3

0

f 0(y) dy =
i

γ2

(
−1

3
x3
3 +

1

2
x2
3 −

1

6
x3

)
. (6.13)

Note that this w3 also satisfies (6.10) since ⟨f 0⟩ = 0.

Computation of ϕ: We see from (6.9)–(6.11), (6.12) and (6.13) that

ϕ(x3) = i

(
ν

γ2
+

ν̃

2γ2

)(
−x2

3 + x3 −
1

6

)
. (6.14)

Computation of w1: From (6.7), we have

∂2
x3
w1 = − 1

γ2
ϕ+

1

ν
(∂x3v

1
s)w

3 − 1

ν
f 1,

which, together with (6.12)–(6.14), gives

w1(x3) = c0 + c1x3 − i
(

ν
γ4 +

ν̃
2γ4

) (
− 1

12
x4
3 +

1
6
x3
3 − 1

12
x2
3

)
+ i

12νγ2

(
1
30
x6
3 − 1

10
x5
3 +

1
12
x4
3

)
− i

2ν
x2
3.
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Here c0 and c1 are some constants. Since w1(0) = w1(1) = 0, we see that c0 = 0 and
c1 = − i

12νγ2 · 1
60

+ i
2ν
. We thus find that

w1(x3) = −i
(

ν
γ4 +

ν̃
2γ4

) (
− 1

12
x4
3 +

1
6
x3
3 − 1

12
x2
3

)
+ i

12νγ2

(
1
30
x6
3 − 1

10
x5
3 +

1
12
x4
3 − 1

60
x3

)
+ i

2ν
(−x2

3 + x3).
(6.15)

This completes the proof. □

Proposition 6.6. λ
(2)
j1 = λ

(2)
1j = κ0δj1, j = 1, 2. Here κ0 is given by

κ0 =
1

12ν

(
1

280
− γ2 − ν2

15γ2
− νν̃

30γ2

)
.

Proof. Since w
(1),2
1 = 0 by Proposition 6.5, we have L̂

(1)
2 ŜL̂

(1)
1 u(0) = ⊤(0, ∗, ∗, ∗).

It then follows that ⟨L̂(1)
2 ŜL̂

(1)
1 u(0), u(0)∗⟩ = 0. This, together with (6.3) and (6.4),

implies λ
(2)
21 = λ

(2)
12 = 0.

We next compute λ
(2)
11 . Since

v1sϕ
(1)
1 + γ2w

(1),1
1 = i

12

(
ν
γ2 +

ν̃
2γ2

)
(7x4

3 − 14x3
3 + 8x2

3 − x3)

+ i
12ν

(
1
30
x6
3 − 1

10
x5
3 +

1
12
x4
3 − 1

60
x3

)
+ iγ2

2ν
(−x2

3 + x3),

we have
λ
(2)
11 = ⟨L̂(1)

1 ŜL̂
(1)
1 u(0), u(0)∗⟩

= i⟨v1sϕ
(1)
1 + γ2w

(1),1
1 ⟩

= − 1
12

(
ν
γ2 +

ν̃
2γ2

)
· 1
15

+ 1
12ν

· 1
280

− γ2

2ν
· 1
6
= κ0.

This completes the proof. □

The proof of Theorem 6.2 is now completed in view of Propositions 6.3, 6.4 and
6.6. □
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