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Abstract

The existence of a time periodic solution of the compressible Navier-Stokes equation
on the whole space is proved for sufficiently small time periodic external force when
the space dimension is greater than or equal to 3. The proof is based on the spectral
properties of the time-T-map associated with the linearized problem around the
motionless state with constant density in some weighted L* and Sobolev spaces.
The time periodic solution is shown to be asymptotically stable under sufficiently
small initial perturbations and the L* norm of the perturbation decays as time
goes to infinity.

1 Introduction

We consider time periodic problem of the following compressible Navier-Stokes equation
for barotropic flow in R™ (n > 3):

{ op+ V- (pv) =0, (11)
p(Ov + (v - V)v) — pAv — (u+ ' )V(V - v) + Vp(p) = pg. '

Here p = p(z,t) and v = (vi(x,t), -+ ,v,(x,t)) denote the unknown density and the
unknown velocity field, respectively, at time ¢ > 0 and position x € R"; p = p(p) is the
pressure that is assumed to be a smooth function of p satisfying

P(ps) >0
for a given positive constant p,; pu and p' are the viscosity coefficients that are assumed
to be constants satisfying
p>0, %/Hu’ > 0;
and g = g(x,t) is a given external force periodic in t. We assume that g = g(x, t) satisfies

the condition
gz, t+T) = g(z,t) (zeR" teR) (1.2)
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for some constant T" > 0.

Time periodic flow is one of basic phenomena in fluid mechanics, and thus, time
periodic problems for fluid dynamical equations have been extensively studied. We refer,
e.g., to [8, 9, 12, 17] for the incompressible Navier-Stokes case, and to [1, 2, 3, 6, 15, 16]
for the compressible case. In this paper we are interested in time periodic problem for
the compressible Navier-Stokes equation on unbounded domains. Ma, Ukai, and Yang
[15] proved the existence and stability of time periodic solutions on the whole space R".
They showed that if n > 5, there exists a time periodic solution (pper, Vper) around (p., 0)
for a sufficiently small g € CO(R; HY=' N L') with g(z,t + T) = g(x,t), where N € Z
satisfying N > n + 2. Furthermore, the time periodic solution is stable under sufficiently
small perturbations and there holds the estimate

1(o(t), v(t)) = (pper(t), vper (D)l w1 < C(L+ )7 (po, v0) = (pper(to), vper (to)) =111,

where t; is a certain initial time and (p, v)|;—¢, = (po,vo). Here H* denotes the L?-Sobolev
space on R" of order k.

On the other hand, it was shown in [6] that, for n > 3, if the external force g satisfies
the oddness condition

g(—z,t) = —g(x,t) (xr €R" t €R) (1.3)

and if g is small enough in some weighted Sobolev space, then there exists a time periodic
solution (pper, Vper) for (1.1) around (ps, 0) and wpe, (1) = (pper(t) — pu; Vper (t)) satisfies

sup (||tper ()| 22 + (|2 Vtuper (t)] 22)
te[0,T

< C{lI(U+ [zDglleqorieracz + 11+ 2DgllL2oram-)}- (1.4)

Furthermore, the time periodic solution (pper, Uper) is asymptotically stable under suffi-
ciently small initial perturbations, and the perturbation satisfies

1(p(2), 0(1)) = (Pper (t), vper (1)) |22 = O(t™%) as t — 0. (1.5)

In this paper we will show the existence of a time periodic solution for (1.1) without
assuming the oddness condition (1.3) for n > 3. It will be proved that if n > 3 and if g
satisfies (1.2) and

lglleqoryzny + I+ 12" glloqoaur=) + (L + 2" Dgll2orm—) < 1

with an integer s > [n/2] + 1, then there exists a time periodic solution (pper, Vper) €
C([0,T]; H?) with period T for (1.1), and upe,(t) = (pper(t) — ps, Vper (t)) satisfies

1

sup (|(1+ |e" ™) pper (Dl + D I+ 7> A vper (8)| =)

t€[0,T] =0

< Clgllcqoryseyy + 11+ 2] gllLeo,rizoy + 11+ 2" gl r20mm5-1))- (1.6)



Furthermore, if g satisfies

lgllcqoryzn + 11+ [2[)glleqoryee) + 111+ 2" gl < 1,

then the time periodic solution (pper, Uper) is asymptotically stable under sufficiently small
initial perturbations, and the perturbation satisfies

H(p(t)vv<t>> - (pper<t)7vper<t))”L°° — 0

as t — o0o. We expect that the decay estimate such as (1.5) would also hold for this
case and it would be desirable to derive the optimal decay estimate of L? norm for the
perturbations. The precise statements of our existence and stability results are given in
Theorem 3.1 and Theorem 3.2 below.

We will prove the existence of a time periodic solution around (p,,0) by an iteration
argument by using the time-7T-map associated with the linearized problem at (p.,0). As
in [6] we formulate the time periodic problem as a system of equations for low frequency
part and high frequency part of the solution. (Cf., [7, 11].) In the proof of the existence
of a time periodic solution without assuming the oddness condition (1.3), there are two
key observations. One is concerned with the spectrum of the time-7-map for the low
frequency part. Another one is concerned with the convection term v - Vu. As for the
former matter, we need to investigate (I — S1(7))~%, where S1(T) = =74 with A being
the linearized operator around (p,,0) which acts on functions whose Fourier transforms
have their supports in {{ € R™;|¢] < ry} for some ro, > 0. (See (4.21) and (4.22)
bellow.) We will show that the leading part of (I — S;(T))~! coincides with the solution
operator for the linearized stationary problem used by Shibata-Tanaka in [14]. In fact,
the Fourier transform of (I — S;(T))™'F takes the form (I — e_TAﬁ)_IF’, where F' is the
Fourier transform of F' and

e S )
¢ e vl€)Pn, + ETE
By using the spectral resolution, we see that

1 1% o iTe
2 2 2
(I- 6—TA5)—1 o~ 72 Y1l

_ _&'¢
T = e (I |§\2>

The right-hand side is the solution operator for the linearized stationary problem in the
Fourier space. This motivates us to introduce a weighted L* space for the low frequency
part employed in the study of the stationary problem in [14].

As for the high frequency part, we will employ the weighted energy estimates estab-
lished in [6].

Another point in our analysis is concerned with the convection term v - Vuv. Due to
the slow decay of v(z,t) as |z| — oo, there appears some difficulty in estimating v - V.
To overcome this, we will use the momentum formulation for the low frequency part,
which takes a form of a conservation lows, and the velocity formulation for the high

T

as & — 0.

A
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frequency part, for which the energy method works well. We also note that, in estimating
the high frequency part of v - Vv, we will use the fact that a Poincaré type inequality
I fllz2 < C|IV f]|2 holds for the high frequency part.

The asymptotic stability of the time periodic solution (pper, Uper) can be proved as
in the argument in Kagei and Kawashima [4] by using the Hardy inequality. It seems,
however, that a perturbation argument for the linearized problem as in [6, 11] does not
work well to derive the optimal decay estimate because of the slow decay of vpe.(z,t) as
|z| — oo; and a more refined perturbation analysis would be needed.

This paper is organized as follows. In section 2, we introduce notations and auxiliary
lemmas used in this paper. In section 3, we state main results of this paper. Section 4 is
devoted to the reformulation of the problem. We will use the equation of the conservation
of momentum for the low frequency part and the equation of motion for the high frequency
part; and we will then rewrite the system for the low and high frequency parts into a
system of integral equations in terms of the time-7T-map. In section 5, we study the
low frequency part and derive the necessary estimates for the time-7T-map of the low
frequency part. In section 6, we state some spectral properties of the time-T-map of the
high frequency part. In section 7, we estimate nonlinear terms and then give a proof of

the existence of a time periodic solution by the iteration argument.
00

2 Preliminaries

In this section we first introduce some notations which will be used throughout this paper.
We then introduce some auxiliary lemmas which will be useful in the proof of the main
results.

For a given Banach space X, the norm on X is denoted by || - || x-

Let 1 < p < 0o. We denote by LP the usual L? space over R". The inner product of L?
is denoted by (-,-). For a nonnegative integer k, we denote by H* the usual L?-Sobolev
space of order k. (As usual, H® = L?.)

We simply denote by LP the set of all vector fields w = " (wy,--- ,w,) on R" with
wj € LP (j = 1,---,n), ie, (L))" and the norm || - |[(zs)= on it is denoted by || - ||z»
if no confusion will occur. Similarly, for a function space X, the set of all vector fields
w="(wy, - ,w,) on R" with w; € X (j =1,---,n), i.e., X", is simply denoted by X;

and the norm || - || x» on it is denoted by || - || x if no confusion will occur. (For example,
(H*)™ is simply denoted by H* and the norm || - || s is denoted by || - || )
Let u = "(¢,w) with ¢ € H* and w = "(wy, -+ ,w,) € H™. we denote the norm of

won HY x H™ by ||u|| gk pgm:

1
lall s = (1M1 + Nl ) -

When m = k, the space H* x (H*)" is simply denoted by H* and, also, the norm



||| ke rrwyn DY ||| e if nO confusion will occur :
H* o= HEx (Y, ulls = Nullmerye (0= T (6, 0).

Similarly, for u = T(¢,w) € X x Y with w = T(wy, -+ ,w,) , we denote its norm ||ul|xxy
by [Jullxy 1
lullxxy = (6% + lwli)®  (uw="(6,w)).

If Y = X™ we simply denote X x X" by X, and, its norm ||ul|xxx» by ||ul|x:
X=X x X" lullx = [lullxxxs (w="(¢,0)).

We will work on function spaces with spatial weight. For a nonnegative integer ¢ and
1 < p < oo, we denote by LY the weighted L? space defined by

Ly = {u € L Jlullp = |1+ |2])ull o < o0}

We denote the Fourier transform of f by f or F [f]:

fO) = FIA©) = | f)ettar (€ c®).

The inverse Fourier transform of f is denoted by F~1[f]:

FoA) = @m [ @ (@ eRY.

Let k£ be a nonnegative integer and let r; and r,, be positive constants satisfying

r1 < roo. We denote by H(koo) the set of all u € H* satisfying supp @ C {|¢| > 71}, and by
L%l) the set of all u € L? satisfying supp f C {|¢| < re}. Note that H* N L%l) = L%l) for
any nonnegative integer k. (Cf., Lemma 4.1 (ii) bellow.)

Let k and ¢ be nonnegative integers. We define the spaces H} and H, (’“00)76 by

HE = {u € Y Jull s < +o0},

where
1
V4 2
||U”H§ = (ZM%) )
=0
3
ulge = | D I al0gu 3= |
lor| <k
and

H(koo),g ={ue H(koo); ||uHH§ < +o0}.
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Let ¢ be a nonnegative integer. We denote L%l),é by

L?l),é ={fel}fe L%l)}‘

For —0co < a < b < oo, we denote by C*([a,b]; X) the set of all C* functions on
la,b] with values in X. We denote the Bochner space on (a,b) by LP(a,b; X) and the
L2-Bochner-Sobolev space of order k by H*(a,b; X).

We define the space 271y b

Zay={¢€ L, Ve Lisupp ¢ C {[¢] < 1o} loll 2, < +oo}
where
19 27, =19l 27, . +19ll2, .
ol 2, o = I+ 1) Gllees Mol g, = 1+ @)V 2.
The space %y is defined by

- {w € Ln Z,VU} € Hl;supp wC {|§| S rOO}v ”wH@(l) < +OO}7
where
lellgy, = ol .. + el

1 2
R n—2+7 j L i1 .
lwlla, .= I+ [ V| e, lwllgy = D N+ [z Vw2

j=0 j=1

The space Z1)(a,b) is defined by

Zay(a,b) = C([a, b]; X)) % [C([Cub]%@(l)) NH'(a,b; 5”(1))]

Let ¢ be a nonnegative integer and let s be a nonnegative integer satisfying s > [%} +1.
For k = s — 1, s, the space QPI(COO)’E(CL, b) is defined by

Zsoye(a,b) = [C([a, b]; HEyy ) N CH([a, b]; LT)]
x [L2(a,bs; HEL ) 0 C([a, b Hisy ) N H (a0, HE )]

Let s be a nonnegative integer satisfying s > [%] + 1. and let £ = s —1,s. The space
X*(a,b) is defined by
X*(a,b)
= {{ul,uoo} u € Zay(a,b),us € E»’f(oo ) (a,b),
0o € C([a,0]; L), uj = (5, w5) (j = 1,00) },
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equipped with the norm

{wrs too Ml xk @y =llwnll 2, 0 + Huwuﬂ;m_l(a,b)
+ 000l olaprz) + 10wl eabizz) + 10 Vurllogamn;c2)-

We also introduce function spaces of T-periodic functions in t. We denote by Cp., (R; X)
the set of all T-periodic continuous functions with values in X equipped with the norm
I [leo.r):x); and we denote by L2,.(R; X) the set of all T-periodic locally square integrable
functions with values in X equipped with the norm || - ||z2¢07,x). Similarly, H}, . (R; X)
and X (R), and so on, are defined.

For a bounded linear operator L on a Banach space X, we denote by rx (L) the spectral

radius of P.
For operators Ly and Lo, [L1, Ls] denotes the commutator of L; and Ls:

(L1, Lo]f = Li(Laf) — Lao(L1 f).

We next state some lemmas which will be used in the proof of the main results.

We begin with the well-known Sobolev type inequality.
Lemma 2.1. Letn > 3 and let s > [%] + 1. Then there holds the inequality

[fllze < CIV f]

Hs—1

for f € H®.

We next state some inequalities concerned with composite functions.

Lemma 2.2. Assume n > 2 and let s be an integer satisfying s > [g} + 1. Let s; and
pi (3 =1,---,0) satisfy 0 < |ps| < s5 < s+ ||, p=p+-+pp, s=51 4+ 5>
(¢ —1)s + |u|. Then there holds

Fow - 0p felle< & T N llwes -

1<j<t

See, e.g., [5], for the proof of Lemma 2.2.

Lemma 2.3. Let n > 2 and let s be an integer satisfying s > [%} + 1. Suppose that F
is a smooth function on I, where I is a compact interval of R. Then for a multi-inder «
with 1 < |a| < s, there hold the estimates

162, (R felle < Ol Pl {1+ IV A1 Y19
for fi € H® with fi(x) € I for all x € R™ and f, € H®!; and
1102, F(flfollzz < CIFllgion {1+ IV AIET Y IV A

for fi € H* with fi(x) € I for all x € R™ and f, € Hl*I71,

HS‘IHfQHHla\

HS

fall gial-1.

See, e.g., [4], for the proof of Lemma 2.3.
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3 Main results

In this section, we state our results on the existence and stability of a time-periodic
solution for system (1.1).
We formulate (1.1) as follows. Substituting ¢ = Efand w = 2 with v = P (p«)

gl
into (1.1), we see that (1.1) is rewritten as

Owu + Au = —Blu]u + G(u, g), (3.1)
where
[0 ydiv u
A= (VV —VvA — DVdiV) V= 0 = ps (3.2)
Bliju = (7)) for u=T(00). 1= T(60) (3.3
and
0 u
Gug) = (Fou): 3.4
Flu) = —vy¢divw, (3.5)
Flug) = =91+ 0)(u- Vu) = 00w - VeI @) + 09 30

1

@) = 2 [+ so)i,

We next introduce operators which decompose a function into its low and high fre-
quency parts. Operators P; and Py, on L? are defined by

Pif = F ' FIfl (fel?j=1,00),
where
X;(§) € CF(R")
> _ 1 (’6‘ < 7“1),
wo-{o ({575

0<r <rs.

(]ZLOC))? OSngl (j21,00)7

We fix 0 < 1) < 1o < % in such a way that the estimate (5.6) in Lemma 5.3 below
holds for |£] < 7e.

Our result on the existence of a time periodic solution is stated as follows.

8



Theorem 3.1. Let n > 3 and let s be an integer satisfying s > [%} + 1. Assume that
g(z,t) satisfies (1.2) and g(x,t) € Cpe, (R; L' N L2) N L2, (R; H3Z}). Set

9l = lgllcqorpzronz) + gl 2o sy

Then there exist constants § > 0 and C' > 0 such that if [g]s < 0§, then the system
(3.1) has a time-periodic solution u = u; + Uy satisfying {ui,us} € Xy, (R™) with
{11, Uso | xs0,r) < Clgls.  Furthermore, the uniqueness of time periodic solutions of
(3.1) holds in the class {u = " (¢, w); { Pru, Pxu} € X350 (R), [[{u1, oo }H|x200m) < C6}.

We next consider the stability of the time-periodic solution obtained in Theorem 3.1.

Let " (pper; Uper) be the periodic solution given in Theorem 3.1. We denote the pertur-
bation by u = T (¢, w), where ¢ = p — pper, W = vV — Vpe,. Substituting p = ¢ + pper and
v = W + Uper into (1.1), we see that the perturbation u = (¢, w) is governed by

0P + Vper - Vo + ¢divue, + pperdiviw +w - Vppe, = 1o,
0w + Vper - VW + w - VUpe, — =Aw — B 7 divap (3.7)

Pper per

- (B + (4 ) Vidivey,) + V(H2lg) = f,

Pper

__ ¢
Pper(Pper + @)
A 6oy

A r o Vd per
pper(pperJrqS)(pper“ Uper + P (1 + 1) Vdivoye,)
¢ ¢2

\Y @ er -V er = \Y ®) er 27
+P;2>er (e ¢>¢)+p12767’(pp67"+¢) (#ley +¢))+pper (P per 9)67)

1
p(2) (pper> ¢) = / p/(pper + 9¢)d9:
0

(pAw + (p+ p')Vdivw)

1
PO ersd) = [ (1= O s+ 0010
0
We consider the initial value problem for (3.7) under the initial condition
uli=o = up = T(<Z50, wy). (3.8)
Our result on the stability of the time-periodic solution is stated as follows.

Theorem 3.2. Let n > 3 and let s be an integer satisfying s > [%} + 1. Assume that
g(x,t) satisfies (1.2) and g(x,t) € Cper(R; L* N LX) N L2, (R; HE_}). Let (ppers Vper) be

per
the time-periodic solution obtained in Theorem 3.1, and let ug € H®. Then there exist

constants €, > 0 and €5 > 0 such that if

[9)s+1 < €1, |uollms < e,
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there exists a unique global solution u = " (¢, w) of (3.7)-(3.8) satisfying
u € C([0, 00); H),

()2 + / IVu(r)]

|lu(®)||ge — 0 (t — 0).

i1 AT < Clluollfs (¢ € [0, 00)),

It is not difficult to see that Theorem 3.2 can be proved by the energy method ([4], [10]),
since the Hardy inequality works well to deal with the linear terms including (pper, Vper)
due to the estimate for (ppe,, Uper) in Theorem 3.1; and so the proof is omitted here.

4 Reformulation of the problem

In this section, we reformulate problem (3.1). As in [6], to solve the time periodic problem
for (3.1), we decompose u into a low frequency part u; and a high frequency part u,, and
then, we rewrite the problem into a system of equations for u; and uq,.

As in [6], we set
U = Plu, us = Pyu.
Applying the operators P; and P, to (3.1), we obtain,
Opur + Auy = Fi(uy + Uoo, 9), (4.1)
Oplloo + Al + Poo(Blug + tso|tine) = Foo(U1 + Uno, g)-
Here
Fl(ul + uooag) = Pl[_B[ul =+ uOO](ul + uOO) + G<u1 =+ uoovg)]a
Foo(ul + uooag) = Poo[_B[ul + uoo]ul + G(ul + uooag)]'
Suppose that (4.1) and (4.2) are satisfied by some functions u; and us. Then by adding
(4.1) to (4.2), we obtain
815(“1 + uoo) + A(ul + uoo) = _Poo<B[u1 + Uoo]uoo) + (Pl + Poo)F(ul + uooag)
= —Bluj + tueo)(u1 + ts) + G(ug + U, g)-
Set u = 11 + U, then we have

Owu + Au + Blulu = G(u, g).

Consequently, if we show the existence of a pair of functions {u, us } satisfying (4.1)-(4.2),
then we can obtain a solution u of (3.1).

In this paper, we consider the low frequency part u; in a weighted L* space. To do so,
the velocity formulation is not suitable, and, instead, we use the momentum formulation
for the low frequency part.

Before introducing the momentum formulation, we prepare some inequalities for the
low frequency part. We first derive some properties of P;.

10



Lemma 4.1. (i) Let k be a nonnegative integer. Then Py is a bounded linear operator
from L? to H*. In fact, it holds that

IV*Pufllze < Cllfllze - (f € L7).

As a result, for any 2 < p < 0o, P, is bounded from L? to LP.

(ii) Let k be a nonnegative integer. Then there hold the estimates

IV  fillze + 1fillze < Cllfllze (f € L),

where 2 < p < o0.

The proofs of estimates (i) and (ii) are given in [6, Lemma 4.3].

The following inequality is concerned with the estimates of the weighted L? norm for
the low frequency part.

Lemma 4.2. Let x be a function which belongs to the Schwartz space on R™. Then for a
nonnegative integer £ and 1 < p < oo, there holds

2 Ocx Hllee < LU Xzl e + Iz 2 fllee} (f € 7).

Here C' is a positive constant depending only on .

Proof. Let x be a function which belongs to the Schwartz space on R™. Then
et I < el [ xte =) f)ldy

< O e —yl'Ix@—IfW)ldy+C | |x(@—y)llyllf(y)|dy.

Rn R™

Therefore, the Young inequality gives

2 Ccx Hllee < LU Xzl e + Iz 2l fllee} (F € LD).

This completes the proof. O

Applying Lemma 4.2, we have the following inequality for the weighted LP norm of
the low frequency part.

Lemma 4.3. Let k and ¢ be nonnegative integers and let 1 < p < oo. Then there holds
the estimate
2|V fulle < Clll2l* fill e (f € Ly 0 LY).

11



Proof. We define a cut-off function yo = F~1xo with Y, satisfying
Xo € CF(R"), 0<xo<1, Xo=1 on {[¢]<re} and suppxo C {[¢] < 2re}. (4.3)

Since f; € L%l), we see that V¥, = (VFxo) * fi (k > 0). Therefore, by Lemma 4.2, we
obtain the desired estimate. This completes the proof. O

Since n > 3, applying the Hardy inequality and Lemma 4.3, we have the following
inequality for the weighted L? norm of the low frequency part.

Lemma 4.4. Let ¢ € 2y and wy € #(1). Then, it holds that
||P1(¢w1)||@(1) o SOl IV 2.

Here C' > 0 is a constant depending only on n.

Proof. By Lemma 4.3, we see that

1Pl , < Cllowiz (4.4
Since n > 3, by the Hardy inequality, we find that

[ow: 2 < Cllollee , [Vwrllre. (4.5)
By (4.4) and (4.5), we obtain the desired estimate. This completes the proof. O

Let us now reformulate the system (4.1)-(4.2) by using the momentum. We set m;
and uy ,, by

mp = w —+ P1(¢W), ul,m = T(¢17 ml), (46)
where ¢ = ¢1 + ¢oo, and w = wy + Weo. Then, we see that {uy m, us} defined by (4.6)

satisfies the following system of equations.

Lemma 4.5. Assume that {u,us} satisfies the system (4.1)-(4.2). Then, {usm, too}
satisfies the following system.:

atul,m + Aul,m = Fl,m(ul + u007g)7 (47)
Oplloe + Ao + Poo (Blug + tso|tiee) = Foo(U1 + Uso, g)-
Here
Fl,m(ul + uooag) = T(O> Fl,m(ul + uooaQ)):
Fi(us + tseyg) = —P{pA(pw) + iVdiv (pw) + %v<p<1><¢>¢2>
. 1
+div ((1 + d)w @ w) — ;((1+¢)9)}- (4.8)

12



Proof. If {u;, us } satisfies the system (4.1)-(4.2), then u = uy +uo, satisfies (1.4). Hence,
we see that

(1+¢)w-Vw = div((1+ ¢)w ®@w) — wdiv ((1 + ¢)w)
= div((1+d)wew)+ %@gb. (4.9)

Therefore, substituting (4.9) into (4.1), we obtain the equation (4.7). This completes the
proof. O

Conversely, one can see that the momentum formulation (4.2), (4.6) and (4.7) gives
the solution {uy, ux} of (4.1)-(4.2) if ¢ = ¢1 + ¢ is sufficiently small. In fact, we have
the following Lemma.

Lemma 4.6. (i) Let s be an integer satisfying s > [%] + 1 and let uy,, = "(¢1,my)
and oo = " (Poo, Weo) SAtISFY {U1m, Uso} € X*(a,b). Then there exists a positive constant
do such that if ¢ = ¢1 + doo satisfies supepe ) 9llee, < do, then there uniquely ewists
wy € C([a,b]; Z1y) N H' (a,b; %)) that satisfies

wy = my — Pi(d(w + we)) (4.10)
where ¢ = 1 + ¢oo. Furthermore, there hold the estimates

leHC([a,b];@(l)) < C(”m1||c([a7b];@(l))+HwOOHC([a,b];B))v (4.11)

| loanr)liy, i

IA

C((HatV%H?J([a,b];L%) + ||at¢oo||?1([a,b];L§))Hw1||20([a,b];Lg°_2)
,Loo))
= [ (10m (), + 100 usan ()

+H8twoo(7)]|%2>d7. (4.12)

+Hat¢H%’([a,b];L2) [[wr ||?;([a7b};gz/(l)

2
Hy

(ii) Let s be an integer satisfying s > [%] + 1 and let ui,, = " (¢1,m1) and us =

T (Goos Woo) satisfy {1 m, oo} € X3(a,b). Assume that ¢ = ¢1+¢o satisfies SUD e o, ol | <
do and {uy m, us} satisfies

Oty m + At = Fip (g + Ueo, 9),
my — Pi(ow),

wq

Here w = w + we, with wy defined by (4.10). Then {u1, us } with uy = (g1, w,) satisfies
(4.1)-(4.2).
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Proof. (i) Let uy, = "(¢1,m1) and tp, = " (Goo, Woo) satisfy {u1m,us} € X5(a,b).
For F} € %), we set & [p|F; := P(¢F;). By Lemma 4.3 and Lemma 4.4, we see that
@[Qﬁ]Fl S @(1) and

|2 0Filla, < Col|Filli + [V Fi 12},
Hence, if dy < £, then (I+22[¢]) is boundary invertible on &y and (I+ 2 [¢]) ! satisfies
I+ 2[6) " Filla, <ClRlg,. (4.13)
By Lemma 2.1 and Lemma 4.3, we see that m; — P (¢ws) € #(1) and
Jims - Prlgwsllar, < Clllmilg,, + sl (4.14)

We define w; by
wy = (I + 2[¢]) " mi — Pi(dwa)].

Then, by (4.13) and (4.14), wy € #(y) satisfies (4.10) and
lwillgy,, < Clllmallgy, + llwellz2)- (4.15)

It directly follows from (4.15) that wy € C([a, b]; %)) and w; satisfies (4.11).

We next show that dyw; € L*(a,b;% (1)) and Qyw, satisfies (4.12). We set K; =
my — Pi(¢ws). By Lemma 2.1 and Lemma 4.3, we see that —Z [0,p|lwy + 0,/ € #
and

|- P0dlun+0Killg, < Cl1Bmmlg, +100lzluly,

+(19:Voullzz + 10r¢ocl 2) [wrll e,
Ol 2 lwool sy, + |Gt [ £2)-

Therefore,

(I + @[gb])@twl == —32[8,@]@@ + 8tK1

and hence, dywy = (I + 2[¢]) -2 [0plwr + 0, K] € L*(a,b; (1)) and dyw; satisfies
(4.12).

(ii) We see from (i) that there uniquely exists wy € C([a,b]; Z(1)) N H'(a,b; Z 1))
satisfying (4.10). Then substituting (4.10) into (4.7), we see that

01 + ywy = —y P (div (pw)). (4.16)
On the other hand, by (4.2);, we have
Ot Poo + YWoo = —YPro(div (pw)). (4.17)
Hence, by adding (4.16) to (4.17), we see that
0+ vdiv (1 + 9)w) =0 (4.18)
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where ¢ = ¢1 + ¢ and w = wy + We, Substituting (4.10) into (4.7), and by using a
similar computation as (4.9) based on (4.18), we see that u; = (¢, w;) satisfies (4.1).
This completes the proof. O

By Lemma 4.6, if we show the existence of a pair of functions {uy ,, us} € X*(a,b)
satisfying (4.2), (4.7) and (4.10), then we can obtain a solution {u;,u~} € X*(a,b)
satisfying (4.1)-(4.2). Therefore, we will consider (4.2), (4.7) and (4.10) instead of (4.1)-
(4.2).

We look for a time periodic solution u for the system (4.2), (4.7) and (4.10). To solve
the time periodic problem for (4.2), (4.7) and (4.10), we introduce solution operators for
the following linear problems:

Ot gy + Aty = Fi iy, (4.19)
uLm\t:o = Up1,m, '
and
{ Ortloo + Atley + Poo(Blil|tne) = Fuo, (4.20)
Uoo|t:0 = UQoo) |

where @ = (¢, W), U1.m; Uooo, F1.m and Fu, are given functions.

To formulate the time periodic problem, we denote by S;(t) the solution operator for
(4.19) with F,, = 0, and by .#1(t) the solution operator for (4.19) with wug;,, = 0. We
also denote by Sy 4(t) the solution operator for (4.20) with Fi, = 0 and by . 4(t) the
solution operator for (4.20) with uge = 0. (The precise definition of these operators will
be given later.)

As in [6], we will look for a {1, u} satisfying

ul,m(t) = Sl(t>u01,m + yl(t)[FLm(u’ g)L
{ Uoo () = Soou(t) oo + 7 oou(t)[Foo(u, )], (4.21)

where

oo = (I = Soou(T)) 1 o0 uT) [Foc(u, 9)], (4.22)

u = T(¢,w) is a function given by w1, = ' (¢1,m1) and Uy = ' (Peo, Weo) through the
relation

{ uorm = (I = S1(T)) S 1(T)[Fam(u, g)],

O =1+ Doy W=+ We, wy=m — P(pw).

Let us explain the relation between (4.21)-(4.22) and the time periodic problem (4.2),
(4.7) and (4.10) for the reader’s convenience.

If {u1m,us} satisfies (4.2), (4.7) and (4.10), then uy,,(t) and u(t) satisfy (4.21).
Suppose that {ug,, us} is a T-time periodic solution of (4.21). Then, since uy,,(T") =
U1,,(0) and e (T") = use(0), we see that

{ (I = S1(1))urm(0) = F1(T)[Frm(u, g)],
(I = Soou(T) s (0) = F 0 u(T) [Fo(u, 9)],
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where u = T (¢, w) is a function given by uy,, = "(¢1,m1) and Uy = " (Poo, Weo) through
the relation
O =1+ Oooy, W=wW1+ Weo, Wy =m1—P1(¢w)-

Therefore if (I — S;(T)) and (I — Soou(T)) are invertible in a suitable sense, then one
obtains (4.21)-(4.22). So, to obtain a T-time periodic solution of (4.2), (4.7) and (4.10),
we look for a pair of functions {uy ., s} satisfying (4.21)-(4.22). We will investigate the
solution operators S;(t) and .%1(t) in section 5; and we state some properties of Se (%)
and .% ., (t) in section 6.

In the remaining of this section we introduce some lemmas which will be used in the
proof of Theorem 3.1.

For the analysis of the low frequency part, we will use the following well-known in-
equalities.
Lemma 4.7. Let a and B be positive numbers satisfying n < o+ . Then there holds the

following estimate.

, (1+ |x|)”_(.°‘+5) (max{a, B} < n),
/ A+l —y) (A +y?) 2dy <C S 1+ [z]) ™ og ] (max{a, 5} = n),
" (14 |z|)~ ™8 (max{a, B} > n)

for x € R"

The following lemma is related to the estimates for the integral kernels which will
appear in the analysis of the low frequency part.

Lemma 4.8. Let { be a nonnegative integer and let E(r) = F ', (x € R™), where
Oy € C°(R™ —{0}) is a function satisfying

080, e L' (la] <n—3+0),
0/, < Clg72 P (€40, 18] > 0).

Then the following estimate holds for x # 0.
|B(z)] < Cla|~"2+0,

Lemma 4.8 easily follows from a direct application of [13, Theorem 2.3]; and we omit
the proof.

We will also use the following lemma for the analysis of the low frequency part.
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Lemma 4.9. (i) Let E(x) (x € R™) be a scalar function satisfying

C
(1 + [z])leltn—2

0°E(z)| < (Jo| = 0,1,2). (4.23)

Assume that f is a scalar function satisfying | f||peenzr < oo. Then there holds the
following estimate for |a| =0, 1.

07 E + fl(2)] <

C
1 ez o

(i) Let E(x) (x € R™) be a scalar function satisfying (4.23). Assume that f is a scalar
function of the form: f = 0., f1 for some 1 < j < n satisfying ||0y, f1llree + || f1llzee , < 00,
Then there holds the following estimate for |a| =0, 1.

C
T+ a2

[0 E  f](z)] < 10z, f1

ree + | fillze )

(iii) Let E(z) (z € R™) be a scalar function satisfying

C

~ <
|8mE(x)| — (1 + |I|)|a\+n—1

(la] =0,1).

Assume that f is a scalar function satisfying || f||L < 0o. Then there holds the following
estimate for |a| =0, 1.

C'log ||

[0 £ * fl(z)] < (1 + |a[)lel+n—1

fllzee-

Lemma 4.9 (i) and (ii) is given in [14, Lemma 2.5] for n = 3 and the case n > 4 can
be proved similarly; the assertion (iii) can be proved by a direct computation based on
based on Lemma 4.7; and so the details are omitted here.

The following inequalities will be used to estimate the low frequency part of nonlinear
terms.

Lemma 4.10. (i) Let ¢ be a nonnegative integer satisfying ¢ > n—1 and E(x) be a scaler

function satisfying that
C

W fOT’ x € R™

|E(x)] <
Then for f € L2_,, it holds that
1E fllrge, < CUQ+ D™ NeallFllez, + 1F1lez -

n—1 — n—1

(ii) Let E(x) be a scaler function satisfying that
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C

|E(7)] < At

for x € R™

Then for f € L., it holds that

1B fllzee, < Cllfllz:_,

Lemma 4.10 easily follows from direct computations; and we omit the proof.

The following Lemma is related to the weighted L> estimate for the low frequency
part.

Lemma 4.11.
IFillg, , <ClFl

— (1),n—1"

for Fy € L%1),n71'
Proof. We see that Fl = yo * Fi, where xo = F X0, Xo is the cut-off function defined
by (4.3). Since yo € .7, we find that

02 x0(z)| < C(1+[z])~0 D for |af > 0. (4.24)

Therefore, applying Lemma 4.3 and Lemma 4.10, we obtain the desired estimate. This
completes the proof. O

As for the high frequency part, we have the following inequalities given in [6, Lemma
4.4].

Lemma 4.12. (i) Let k be a nonnegative integer. Then Py, is a bounded linear operator
on H*.

(ii) There hold the inequalities

1Pcfllze < ClIVSllze (f € HY),

Ifocllze < ClVEsllie (f € Hix))-

Lemma 4.13. Let ¢ € N. Then there exists a positive constant C' depending only on £
such that

||Poof||L§ < CHV]CHLj-
Lemma 4.13 follows from the inequalities
2
7" —
2% faolZe = Ll facllZe — O[] foolZe (k=1,---,0)
2
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for foo € H (loo),lf which are proved in [6, Lemma 4.7] by using the Plancherel theorem.

(1) (2)

To estimate nonlinear and inhomogeneous terms, we need to estimate w; ’ — w;” in
therms of ¢§1> — 52), O — 533, mgl) — m?) and wl) — w®.
Let s be an integer satisfying s > [5] + 1. Let ugk,zl = T(¢§’“),m§’“)) and ul) =

T éi),wé’é)) satisfy {u§’?n,u£’?} € X*(a,b). Assume that ¢*) = ¢§’“> + ¢¥) satisfies
SUDye0,4] [¢")|| = < &g, which dp is the one used in Lemma 4.6 for (k = 1,2). Then
by Lemma 4.6 (i), There uniquely exist wgk) € C(la,b); %)) N H(a,b; # 1)) satisfying

wgk) _ mgk) + P (™ w®)
where w*) = w§k) +wl for k = 1,2 . Then w%l) — wf) satisfies
w’ —wi? = mi? = m? = P~ w®)) = Pw® (6 - o). (4.25)

We obtain the following estimate for wgl) - w?).

Lemma 4.14. [t holds that
[ R R
C([a,b}, (1))OH (avbv (1))

2
k 1 2
< C (1 + 3 {ul,, ug'?}nxs(a,b)) {ul), = uf? al) — u@Y | xe-1(ap).
k=1

Lemma 4.14 directly follows from Lemma 2.1, Lemma 2.2, Lemma 4.3, Lemma 4.11
and (4.25); and we omit the proof.

5 Properties of Si(t) and .7(t)

In this section we investigate S;(t) and .#(t) and establish estimates for a solution u; of
Oyuy + Auy = Fy (5.1)

satisfying u; (0) = uy(T) where Fy = (0, ).

We denote by A; the restriction of A on 271y X #(y).

Proposition 5.1. (i) A; is a bounded linear operator on 2’1y X ¥ 1y and Si(t) = e~ 4

is a uniformly continuous semigroup on X 1y X #1). Furthermore, Sy (t) satisfies
Si(t)ur € CH(0,T); Z iy x D)), 0:S1(-)wa € C([0,T7]; L?)
for each v € Z'qy x #Zny and all T" > 0,

8t51(t)u1 = —AlSl(t)ul (: —AS1(t>U1), Sl(O)Ul = Uy f07° Uy € 3{‘(1) X @(1),
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k
Hat Sl(')ulHC([O,T’];%(U,LOO X%l),LOO) < C”ulua%(l),LooX@(l),LOO’
k
10, Sl(')wHC([O,T’];%@,LZ)x@(lmz) < CHUl”%(l),L?X@(n,L?
foru, € %(1) X @(1), k=0,1,
10651 (E)ua |l e (o,r7);22) < C||U1H3{<1)X@m7

and
189S Bellogorran < Cllall 2, a7,

for vy € Z'qy x #y, where T" > 0 is any given positive number and C' is a positive
constant depending on T".

(ii) Let the operator #1(t) be defined by

yl(t)Fl = /t Sl(t — T)Fl(T) dT

for Fy € C([0,T); 2 wy) x L*0,T; #y). Then
SAVE € CH0T); Zy) x [C(0.T): P ) x H(0,T; %))
for each Fy € C([0,T); 2 y) x L*0,T: %) and
0.\ (t)F) + AL () F, = Fi(t), S1(0)F, =0,

”yl(')Fl“cqo,ﬂ;%m,mx%m) < C“Fl”c([o,T}s%n,Lp)xL?(O,T;%wLP)’
”atyl(')plHC([O,T};%@),MxLZ(o,T;%),Lm < CHFl”c<[o,T};<%”<1),Lp)xL?(O,T;%),Lm’

for p = 2,00, where C' is a positive constant depending on T. If, in addition, F; €
C([0,T); L?), then 0,.%1(-)F, € C([0,T); L?), 0,V.#1(-)Fy € C([0,T]; L?),

10:-71(-) F1llco,:02) < CllFLleqo,m;22)

and
10:VZ1C) Fillcomiez) < CllFleo,ry;e2),

where C' is a positive constant depending on T'.
(iii) It holds that

S1() () Fy = Z1 () [S1 (1) 1]
for any t >0, ¢ €[0,T] and Fy € C([0,T]; Zqy) x L*(0,T; % 1)).
Proof of Proposition 5.1. Let
A 0 Z’yTg n
Ac = (w& VIERT, + ﬂfo) (€< RY.
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Then, F(Auy) = Agtiy. Hence, if supp iy C {&;]€] < roo }, then supp Agﬁl CH{& el < rot
Furthermore, we see from Lemma 4.3 that

”AulH%(l),pr@(l),Lp S CHU].HL%(U,LPX@(U,LP

for p = 2, 00. Therefore, A; is a bounded linear operator on 21y X #(3). It then follows
that —A; generates a uniformly continuous semigroup S;(t) = e~ that is given by

Sl(t)ul = .F_le_tA5FU1 (Ul € %(1) X @(1)).

Furthermore, Si(t) satisfies Si(-)us € C'([0,T"]; Z 1) X Z 1) for each u € 21y x X1y ,
and

8t51(t)u1 = —A1S1<t)ul (: —AS1<t)U1), Sl(O)ul = U for Uy € t%'(l) X @(1)
It easily follows from the definition of S;(¢) that
Hsl(')ul||C([O,T’];=%'(1>’LpXJJ(D’L;;) < C||U1||%(1),LPX%1),LP (p = 2, OO) for up € %(1) X @(1),
and hence, by the relation that 0,51(t)u; = —A;151(t)u; and Lemma 4.3,

Hat51<-)u1”C([OvTI];‘%-(l),LPXg(l),LP) < CHUlH%(l),LPXg(l),LP (p=2,00) for ui € Zayx ¥,

where T > 0 is any given positive number and C' is a positive constant depending on 7”. In
addition, we see from the relation 9,5 (t)u; = —A; Sy (t)u; that 9,9, (-)u; € C([0,T"]; L?),
OV S (Jur € C([0,T7; L),

19651 () lloqoryezy < Cllwll 2, w9,
and
18:V 51 (wlloqornezy < Cllull 2, v, -

The assertion (ii) follows from Lemma 4.3, the assertion (i) and the relation 0,.%; (t)[F1] =
—A1.71(t)[F1] + Fi(t). The assertion (iii) easily follows from the definitions of S (¢) and
1(t). This completes the proof. O

We next investigate invertibility of I — S;(7).

Proposition 5.2. If F| satisfies the conditions given in (i)-(iil), then, there uniquely
exists u € X' (1) X Xy that satisfies (I — S1(T))u = Fy and u satisfies the estimates in
each case of (1)-(iii).

(i) 1€ Ly, nL=N LY

[l 2 iy < OB + 1B}, (52)
lull 2, o, o < CUF + 1 Filzp) (53)
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(i) Fy = 0§F1(1) eLxXn L%l)’l with Fl(l) € L?l) N L, for some « satisfying |of = 1;

lull @, oy o < CUIF N + IF Pl 3

(1
lull 2, w0 < CUF Iz + [ Fillz):

(iii) £y = 8§F1( € L(l) with F ) e L(l) L N L2 for some a satisfying |o| > 1;

||“||3@V(1>,LM@(1>,LOO_CI|F g, (5.4)
<
g, e, 0 < CHFPlz (5.5)

To prove Proposition 5.2, we prepare some lemmas.

Lemma 5.3. ([10]) (i) The set of all eigenvalues of —A¢ consists of \;(€) (j = 1,4),
where

{ Ai(§) = _V’fP
Ai(§) = =5 (v + D)) £ 54/ (v + 0)2IE[ — 492

If |¢] < =%, then

Re)\i:_;( D)l ImAi—ivlfl\/l— f) €12

et has the spectral resolution

e_tA§ — Z et)‘j(g)]:[j(é')7

j=1,%£

(i) For €| < =L

1/+1/ ’

where 11;(€) is eigenprojections for X\;(§) (7 =1,%), and I1;(€) (j = 1, £) satisfy

0 0
H1(§)=<O I ig)

B 1 —Ax —iy'¢
Hi(g) ==+ ( Z’}/g )\:I: |£2> .

Furthermore, if 0 < ro < then there exist a constant C' > 0 such that the estimates

1/+1/ ?

ML <0G =1,%) (5.6)

hold for |€] < reo.
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Hereafter we fix 0 < 7] < rog < Vl-‘:/; so that (5.6) in Lemma 5.3 holds for || < ry.

Lemma 5.4. Let a be a multi-index. Then the following estimates hold true uniformly
for & with |§] < rs and t € [0,T].

(i) [0 N] < Cle1ol, 19| < Clel1 (ja] > 0).
(i) |0PTL)A| < Clel IR, (9210 By] < Clel £ (o] > 0), where Fy = T(FY, ).
(i) [9g (M)] < CIEl> (Jo] > 1)
(iv) (08 (e*1)] < Cle1o! (Ja] > 1).
() 1@ge=4) Er| < C(EIFD] + [P E)) (Ja] > 1), where Fy = T(FY, F).
() (98 (T — )| < Clel-2 ! (ja] 2 0).
(vii) [9£(7 — &)~ < Cle] 1ol (ja] > 0).

Lemma 5.4 can be verified by direct computations based on Lemma 5.3.

Lemma 5.5. Set
By j(x) = F (oI —eM")7'L) (j=1,4), (z€R)

where g 18 the cut-off function defined by (4.3). Let a be a multi-index satisfying |a| > 0.
Then the following estimates hold true uniformly for x € R™.

(i) |02 Evi(z)] < C(1+ |o])~(r=2Hled,
(i) [09 By s(x)] < C(1+ |af)~ (=1,

Proof. It follows from Lemma 5.4 that

Z|a Fuj(a)] < o/ €]-2de (z € R"),

|§1<2rco

Since flé\<r |€]72d¢ < oo for n > 3, we see that

Z 0°F, ()] < C (z € RY), (5.7)

where C' > 0 is a constant depending on «, T" and n. By Lemma 5.4, we have

192((1€)°Ro(I — MT) ML) < Cle724el- for |5 > 0,
102((1€)*%o(I — )7 MLy)| < Cle)~ =P for |5] > 0.
3
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It then follows from Lemma 4.8 that
00 Fy1 ()] < C|z|~ =2+l and |02 Ey ()] < C|x|~(1tlel), (5.8)

From (5.7) and (5.8), we obtain the desired estimates. This completes the proof. O

Let us now prove Proposition 5.2.

Proof of Proposition 5.2. We define a function u by
u=F I — e_TAE)_lﬁl.
(i) By using Lemma 5.4, one can easily obtain (5.3). As for (5.2), note that

w=F NI —eTAe)" ZElj*Fl,

where Ej ; is the ones defined in Lemma 5.5. Then by Lemma 5.5, we see that > Ey ;
satisfies

IaaZEu )| < C(1 + Jz)~ 2D (|| > 0).

Therefore, applying Lemma 4.9 (i), we obtain (5.2).
The assertion (ii) similarly follows from Lemma 4.9 (ii), Lemma 5.4 and Lemma 5.5.

(iii) By using Lemma 5.4, one can easily obtain (5.5). As for (5.4), if there exists a
function Fl(l) € L%l) N Ly° satistying Fy = E);}Fl(l) for some « satisfying |a| > 1, then

u= <Z agELj> x F.,
J
Lemma 5.5 yields

|28Q+BE1] )| < C(1+ |y~ 118D

for x € R", |a| > 1 and |B| > 0. It then follows from Lemma 4.9 (iii) that

(1)
lull @, oy < CIED e

This completes the proof. 0

In view of Proposition 5.2 (i), I — S1(T') has a bounded inverse (I —Sy(T))~": L, N
LN L' = Z 1) x % and it holds that

0= SUD) Bl 22y o < CUP sz + 1AL,
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-1
I = ST Rl e, o < ORI + 1 Filsy)

If i = ijFl(l) e LN L%l)’l with Fl(l) € L?l) N Lg°, for some « satistying |a] = 1,

then (I — Sl<T))_1F1 c %(1) X @(1) and

(L — Sl(T)ylFlH%(D,Looxg(n,mo < CllA e + 17" v

- 1
1= ST Fillg, g, < COE e+ 1Fillz).
Furthermore, if F} = 8§F1(1) € L%l) with Fl(l) € L%1),1 N Lg° for some o satisfying
la| > 1, then (I — Si(T)) 'Fi € Z 1) x %1y and
_ 1
I =Sy D) Fill g ety e < O lize,

I(7 = Su(T)) " Fill g

oYy S ClIF" 2.

We next estimate Sy (t)1(T)(I — Si(T)) "' F, and 71 (t)Fy. Let Ey(t,0) and Ey(t,7)
be defined by

El (t’ 0') = f_l{Xoe_tAé (I - e—TAS)—Ie—(T—J)Ag}’
Eq(t, 1) = F‘l{)“(oe_(t—T)As}

for o € [0,7],0 <7 <

t < T, where X is the cut-off function defined by (4.9). Then
Z1(t)Fy and Sy (t)1(T)(L — S1(T

))"LF} are given by
T
S (). (T — Sy(T)"'Fy = / By(t,0)  Fy(0)do (5.9)
0
t t
SOF = / S\(t — 7)Fy(r)dr = / Bo(t, ) % Fy(r)dr. (5.10)
0 0
We have the following estimates for Fi(t,0) % I} and Es(t,7) % F.

Lemma 5.6. If I} satisfies the conditions given in (i)-(iii), then, Ei(t,0) * F1 € (1) X
@(1), EQ(t,T) * Fl € %(1) X @(1) (t,O’,’T € [O,T],] = 1,2) and El(t,O') * Fl,Eg(t,T) * F1
satisfy the estimates in each case of (i)-(iii).

(i) e Ly, NL=N LY
|Bi(to)* Fillgr, ooy o BT < Billgr, o < CAIR s + 1 Fillu}
and

IB(t,0) < Fill g, e, + W67 < Fill g, o, < CUIR I+ [1Fill)

uniformly for o € [0,T) and 0 <7 <t <T.
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i) F} = 9oFY e Lo L2, with FY e L2, N L® for some « satisfying |a| = 1;
1 n (1),1 1 (1) n—1

|Bv(to) il g, oy e HIBET) ¥Rl o < CUIR s + 1Pz, )
and

|Eilt o)« Fil g,

uniformly for o € [0,T) and 0 <7 <t <T.
iii) Fy = 9o e 12 with FY € L2, N L for some a satisfying || > 1;
zt1 (1) 1 (1),1 n

o TIEED) * Bl g < OUF 12+ |Fill)

|B (o)« By, o, o IE6 ) * Bl g < CIFO s
and

IB:(t.0) < Fill g, o, + BT < Fillg, o, < CIFPl;

1),L2

uniformly for o € [0,T] and 0 <7<t <T.

Proof of Lemma 5.6. By Lemmas 5.3 and 5.4, we see that
9 (Ro(i€) e Ae(1 — 7o) ~tem T e)| < (g2 Hlelle),
107 (o (i€)e==74)| < Clg]el-1
for c € [0,7],0 <7<t <T and || > 0. It then follows from Lemma 4.8 that
05 Ev(2)] < C(1+ |z)~0=2HeD |02 By ()] < C(1 + Jaf) =0 H1D (5.11)

for || > 0. Therefore, in a similarly manner to the proof of Proposition 5.2, we obtain
the desired estimate by using Lemma 4.9 and Lemma 5.5. This completes the proof. [J

We see from Proposition 5.1 (i), (ii) and Lemma 5.6 that the following estimates hold
for S1(t)1(T)(I — Si(T))~" and .71(¢).

Proposition 5.7. Let I'y and I's be defined by

LAY = S0 -s@) (3 LA =20(5) 612

If Iy satisfies the conditions given in (i)-(iii), then, T;[F1] € C*([0,T]; 2 1)) x[C([0, T]; #1))N
HY(0,T;%w)] (j = 1,2) and T;[F1] satisfy the estimates in each case of (i)-(iii) for
j=1,2.

(i) Fy € L*(0,T; L?
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HFI{FI}Hc([oﬂ;%mx%l)) < CHFIHL%O,T;LgolemL%)a
Hatrl[ﬁl]||C([0,T];3£”(1>)xL%O,T;@(l)) < C||F1||L2(O,T;L$L°lemLf)
and
||F2[F1]||C ([0,7); %(DXQZ/I) C||F1||L2(0TL°°mL1mL2)v
Hatr2[Fl]Hc([o’T};3{(1))XL2(0,T;@(1)) < C(”FIHLQ(O,T;L;;%LWL%) + HFIHLz(QT;Q/(l)))'

(ii) Fy = 0°F" e L2(0,T; L N L2

2 NPy with FY € LX0,T:L2, N L) for

1)
some « satisfying |a| = 1;

n r- 1
T Al eqoz 200 x 0y < CUE 2 075050002) + IF 20z ),

freas [ ]||C(OT] X 1)) xL? OT@(U <||F1HL2 (0,T;L5enL2) T ||F ||L2 0,T;L52. 1mL2))
and
B I 1
IPolBlogory 20y < CURNomzzrns + I lzomee nes).
~ ~ 1
10T2lFill ooy 2 perzor iy S CUF20rmgenmy + IF o

+||F1||L2(O,T;g/(1)))'

(iii) 7, = 0oFY € L2(0,T; Ly N %) with FY e L2(0,T; LYy, N LY) for some o
satisfying o] > 1;

||F1[F1]||c ([0,7); %UX@U CHF ||L2(0TLoomL2)

”at [ ]”C(OT] 5{(1) « L2 OTQ/(D C“F HL2 (0,T;L2NL2)

and

HF2[F1]||C(0T] 3{(1)@/(1) CHF ||L2 (0,T;LeNL3)»
HatFQ[Fl]HC[QT] %(1) < L2 OT@(I) (HF HLQOTLOOHL2 + HF1HL2 QT@(D))

As for ||F1||L2(0 =Y 1) (p = 2,00), we have the following proposition.

Proposition 5.8. If FY satisfies the conditions given in (i)-(iii), then, Fy € L*(0,T; )

and Fy satisfies the estimates in each case of (i)-(iii).
(i) Fr e L*(0,T; Ly, N L¥ N LY);

||F1||L2(07T;@(1)’L00) < CHFIHLQ(O,T;L;’SOLl)y
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HF1HL2 OT@D 12) S CHFlHLQ(o,T;LImLf)-

(i) Fy = 00" € L2(0,T; Ly N L2 ) with F{Y € L*(0,T; L3, N L) for some o
satisfying |a| =1 ;

ad ad 1
1B 2002, 1oy < CUB 0050 + IF 2025 1),

1Al 2, ) < CUE lzomias) + |1 Bilzra):

(iii) Fy = 9°F™" € L*(0,T; L2

(1)) with Fl(l) e L*0,T; L%l) LNLY) for some « satisfying
o] > 1;

1£2 < O 2,

Iz 0.1:% 1y 1) =

HFl”ngT@ 2)_CHF ”LQOTL%)

Proof of Proposition 5.8. We see that Fy, = yo * Fy, where yo = F X0, Xo is the
cut-off function defined by (4.3) satisfying (4.24). Therefore, in a similar manner to the
proof of Proposition 5.2, we obtain the desired estimates. This completes the proof. [J

We will also need another type of estimates for I'; and I';. We set

To[F)] = (I — Sy(T))"! (g) .

Pr0p0s1t10n 5.9. (i) Let a be a multi-index satisfying |a| > 0. Suppose that Iy €
Ly N L}y Then To[09F)] € Z 1) x Xy and it holds that

IIFo[@ﬁﬁl]II%UX%) <C|IFp
If Fy € L*(0,T; Ly, N LY,), then, for j = 1,2, T;[09F1] € Z1)(0,T) and it holds that

T8 RO 2, 0y < CllEillizoray

(ii) Let o be a multi-index satisfying |a| > 1. Suppose that Iy € L%l)m_l. Then
To[09F)] € Z 1) x Xy and it holds that

[Tl Al g, .y, < ClFilzs,
IfF e L*(0,T; L%l)yn_l), then, for j =1,2, Fj[agﬁl] € Z1(0,T) and it holds that

IT; 2 R0 22, 0y < CllFlzoaz
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Proof of Proposition 5.9. (i) We have already obtained the estimate for ||[o[02 F}]]| LW, o
1),L 1),L
in (5.3). We see from Lemma 5.5 and Lemma 4.10 (ii) that

ITo[05 Flll e, < ClIF Iz,
Therefore, by Lemma 4.3, we find that
Tl Il 97,y s e < ClIE -

Similarly, the estimates of I'; (j = 1, 2) follow from (4.24), Lemma 4.10 (ii), Proposition
5.1, (5.9), (5.10) and (5.11).

The assertion (ii) can be proved similarly from (4.24), Lemma 4.10 (i), Proposition
5.1, (5.9), (5.10) and (5.11). This completes the proof. O

We are now in a position to give estimates for a solution of (5.1) satisfying u(0) =
Ul(T) N
For Fy = T(0, F}) we set

L[F] = S1(t).Z1(T)(I — Sy(T)) " Fy 4+ .71 (t) Fy.
Then I'[F}] is written as
T[Fy](t) = Ty [Fy] + Ty Fy, (5.13)
where I'; and I'y are the ones defined by (5.12).

Proposition 5.10. If ]*:] satisfies the conditions given in (i)-(v), then, T[F] is a solution
of (5.1) with Fy = (0, F1) in Z1)(0,T) satisfying T'[F1](0) = D[Fi](T) and T[F}] satisfies
the estimate in each case of (1)-(v).

(i) Fy € L*(0,T; L3y, N L= N LY,

HF[F‘l]Hf(I)(o,T) < C“FluL?(QT;L;L'OlemL%)- (5'14)

(ii) F, = 0°F" € L*(0,T; L N LY ,) with FY e L2(0,T; Ly N L2y) for some a

satisfying |o| =1 ;

r- r- 1
ITE 2, o2 < CUF 20 renrs) + I iz oe): (5.15)

(i) Fy = 8§F1(1) e L*0,T; L?l)) with Fl(l) e L*(0,T; L?l)’lﬁL;’f) for some o satisfying
la] > 1;

- 1
TP Eel) L F—— (5.10
(iv) Fy =0°F" € L2(0,T; L:_, n L) for some a satisfying |a| > 0;

P 1
ITIEI 2, o < CIE lleons_ - (5.17)
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(v) Fy = Qﬁ‘Fl(l) € L2(0,T;L%1)’n71) for some « satisfying |a] > 1;

- 1
ITIEI 2, o) < CHR lleoiaz_ - (5.18)

Proof. We find from Proposition 5.1 (iii), Proposition 5.2 and Proposition 5.9 that T'[F}]
is a solution of (5.1) with Fy = T(0, F}) satisfying T[F1](0) = T[F,](T). The estimates of
I'[Fy] in (i)-(iii) follow from Proposition 5.7 and Proposition 5.8. We obtain the estimates
of T[] in (iv) and (v) by Proposition 5.9. This completes the proof. O

6 Properties of Sy ;(t) and 7 4(%)

In this section we state some properties of S 4(t) and .7 4(t) in weighted Sobolev spaces
which were obtained in [6].

Let us consider the following initial value problem (4.20). Concerning the solvability
of (4.20), we have the following

Proposition 6.1. ([6, Proposition 6.4]) Let n > 3 and let s be an integer satisfying
s >[5+ 1. Setk=s—1 ors. Assume that

va € C([0,T'); 1Y) N L*(0, T'; H?),
Upoo = T(¢0007w000) € H(koo)a
Foo = T(FY,, F) € L*(0,T'; Hiy x HIL ).

(o0

Here T' is a given positive number. Then there exists a unique solution s, = ' (oo, Woo)
of (4.20) satisfying

¢oo € C([0,T']; Hiy), weo € C([0,T']; Hisey) N L2(0, T HEL) 0 HY0, T HEL).-

Remark 6.2. Concerning the condition for @, it is assumed in [6, Proposition 6.4] that
w € C([0,T']; H¥) N L*(0, T"; H**1). However, by taking a look at the proof of [6, Propo-
sition 6.4], it can be replaced by the condition that Vw € C([0,T"]); H*~') N L*(0,T"; H*).

In view of Proposition 6.1, Sea(t) (t > 0) and L 4(t) (t € [0,T]) are defined as
follows.

We fix an integer s satisfying s > [3] 4+ 1 and a function @ = T(¢,w) satisfying

¢ € Coer(R; H®), Vb € Cper(R; HH) N L2, (R; H?) (6.1)

per
Let k =s—1or s. The operator S (%) : H(koo) — Hg‘;o) (t > 0) is defined by
uoo(t) - Soo,ﬁ(t)UOOO for Upoo = T(¢Ooo7w000) S H(koo)a
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where w4, (t) is the solution of (4.20) with F,, = 0; and the operator ., 4(t) : L*(0,T; HF_,x

(c0)
H(ko;)l) — H(koo) (t € [0,T]) is defined by

Uoo(t) = S soa(t)[Foo] for Foo = T(F, Fio) € L*(0,T; Hf) % H(’f;)l),

where 1y (t) is the solution of (4.20) with uge = 0.
The operators Se 4(t) and .7« z(t) have the following properties.

Proposition 6.3. ([6, Proposition 6.5]) Let n > 3 and let s be a nonnegative integer
satisfying s > [5] +1. Let k = s —1 or s and let  be a nonnegative inleger. Assume that

U = T((E,u?) satisfies (6.1). Then there exists a constant 6 > 0 such that the following
assertions hold true if ||Vl c o,z )nr2(0,mm7) < 0.

(i) It holds that Se.a(+)uos € C([0, oo);H(koo)’g) for each ugss = " (Poso, Wooo) € H(koo),e
and there exist constants a > 0 and C' > 0 such that Sy 4(t) satisfies the estimate
IS a(rtocllns_ | < Ce e

(00),¢

for all t > 0 and upss € HFOO)J'

(ii) It holds that . « a(-) Fs € C([0,TY; H(koo),e) for each Fyy = T(FO, Fy) € L*(0,T; H(koo),zx
Hé;)lé) and .« u(t) satisfies the estimate

: !
| s Felliy, <O [Ny s i)
= 0 (00),¢ ¢

i (c0),

fort €[0,T] and F, € L*(0,T; H(koo),e X H(ko;)ll) with a positive constant C' depending on
T.

(iii) 1t holds that ") )[(SOOﬂ(T)) < 1.

(iv) I — Se.a(T) has a bounded inverse (I — Saoa(T))™" on H(k )0 and (I —Soa(T))™!

o0
satisfies

10 = SocaT) ullue, < Cllullue,, Jor ue Hig,

Remark 6.4. In [6, Proposition 6.5] , it is assumed that

@ (om0 15)nL2 0,1 15+1) < 6.

However, by taking a look at the proof of [6, Proposition 6.5, Proposition 7.1], it can be
replaced by the condition that

V|| cqo,1): 15 1)nL20,m5015) < 6.
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Applying Proposition 6.3, we easily obtain the following estimate for a solution u., of
(4.20) satisfying us(0) = us(T).

Proposition 6.5. Let n > 3 and let s be a nonnegative integer satisfying s > [5] + 1.

Assume that .
Foo = "(FY, Foo) € L*(0,T; Hisoy 1 X Hi) )

(00),n—1

with k = s —1 or s. Assume also that i = | (¢, W) satisfies (6.1) . Then there exists a
positive constant § such that the following assertion holds true if

V|| o1y, m5-1)nL2 0,715 < 6.
The function
Uoo (1) 1= Sooa(t) (I = Ssoi(T) 'L 0.a(T)[Foo] + -7 0. (t) [Fic] (6.2)
is a solution of (4.20) in 2% (0,7T) satisfying ueo(0) = use(T) and the estimate

(c0),n—1

Hu"ouf&@,n_l(o,m < OWFsllizormy,, xn

(00), (0o)m—1)"

7 Proof of Theorem 3.1

In this section we give a proof of Theorem 3.1.

We first establish the estimates for the nonlinear and inhomogeneous terms F} ,,(u, g)
and Fuo(u, g):

Fim(u,9) = (Fl,m(()wg)) ’

)= ()

where Fy,,(u,g), FO(u) and F(u,g) are the same ones defined in (4.8), (3.5) and (3.6),
respectively, u = (¢, w) is a function given by uy,, = "(d1,m1) and e = " (oo, Weo)
through the relation

Foo(u, 9) = P (

¢:¢1+¢007 W = W1 + Wee, wlzml—Pl(wa).

We first state the estimates for Fj(u, g) and F(u, g).
For the estimates of the low frequency part, we recall that

LR](¢) = Su(B)A1(T)(I = Si(T))™ <£> T (13)

We first show the estimate of | I'[Fy.(u, g)] Hﬁp(o Ty
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Proposition 7.1. Let u1,, = " (¢1,m1) and te, = " (¢, Woo) satisfy

1
sup ||ugm(t + sup ||us(t)||gs . + su t)|| L~ < min{dg, =},
OgthH 2, <2, OgthH (), OSé)THgb( )z {60, 5}

where dq is the one in Lemma 4.6 (1) and ¢ = ¢1 + ¢oo. Then it holds that

I o ) g3 < Ol s oy + O (1 ot o 0l
uniformly for uy ,, and us.
Proof. For ul) = T(¢W w0)) (j =1, 00), we set
Gi(uM u?) = —P(ydivew @ w?),
Go(u,u®) = =Py (pA(6Mw®) + pVdiv (¢ w®)),
Gafo.u ) = =y (TP ()000) 4 div (o0 & w) ).

Hk(u(l),u@)) — Gk(u(l) 2)+Gk< (2) (1))7 (k_1’2),
H3(¢,U(1),u(2)) = G3(¢,U( ),U )+G3(¢U (1))

Then, T[F} (u, g)] is written as

C[Fim(u,g)] = (P[Gx(ur, ua)] + T[H (ur, too)] + TG (thoo, o))

wa

+F[G3(¢7 Uy, ul)] + F[H3<¢7 Uy, uOO)] + F[Gg((f), Uoo, uOO)]
+I [1 (1+ gbl)g] +T [lgboog} :
gl Y
Applying (5.15) to I'[G;(uq, u1)], we have

TG (ur, )l 2, o) < Cll{u, tocH 0,9

As for I'[Ga(u1,u1)] and T'[G3(¢, uy,uy)], we apply (5.16) with Fl(l) = gwy (la| = 2),
FY = PO($)¢? (|a] = 1), and FY = ¢w;, @ wy (Ja] = 1) to obtain

IT[Go(ur, un)lll 7, o7y < ClHu, oo s 0,1
HF[G3(¢7 Uy, ul)] “g(l)(O,T) < CH{ula uoo}| :

X5(0,T)"
By (5.17), we have

2
1> TGk (us, uso)lll 27, 0.0y < Cll{wr us} |z 0.1y

k=1
||F[G3(¢v Uoo, uOO)]||QF(1>(07T) < C’||{u1, uoo}| :

X5(0,T)"
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By (5.18), we also have

2

I3 TGk )l 2, oy < €l e} Besor
k=1
P16, w1, use)]ll 22, iy < Ol woc} som

Concerning I'[(1 4 ¢1)g] and I'[¢og], we see from (5.14) and (5.17) that

ITUL+ 62)all 2, o)+ P00 2, iy < O+ [tn, w0 gl
Therefore, we find that
P00 g 3y < Ot} oy + € (1 1, w0 ) 91

Applying Lemma 4.6 (i), we obtain the desired estimate. This completes the proof. [
We next show the estimates for the nonlinear and inhomogeneous terms of the high
frequency part.

Proposition 7.2. Let uy,, = " (¢1,m1) and te, = " (¢, Weo) satisfy

1
sup ||u1m,(t + sup ||uso(t)||gs . + su t)|| L < min{dg, =},
p (110 27, 0, + S o), + sp [9(8)]1 < min{o. )

0 2

where &g is the one in Lemma 4.6 (1) and ¢ = ¢1 + ¢oo. Then it holds that

| Foo (1, 9) ||L2(0,T;H;_1 xH; 1)

< Clleurm oo} znom) + C (14 [t ms s}

XS(O,T)> [Q]s

uniformly for wy , and ts.

Proof. We here estimate only Py (w - Vw), since the computation is not straightforward
due to the slow decay of w; as |z] — co. By Lemma 4.13, we see that

[Poo(w - Vw)l[rz_ < [[V(w- V)

n—1

< CVw-Vuwl  +|lw- V%}HLZ_

< CUA+[a))" Vel o [ Vel e
HIL A+ )" 2wl |1+ [2]) V]l e). (7.1)

1

For 1 < |a| < s—1, by Lemma 2.1, Lemma 2.3, Lemma 4.3 and Lemma 4.12, we see that

[ Poc O (w - Vw)| 2

n—1

< w-07Vwllzz | + 1107, w] - Vwllzz_,
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1
{Z H 1+ ‘33" n 2+]V]w1HLoo =+ HwOOHHfL 1)}
7=0

2
X{Z 1L+ |2 W | g2 + [Jwoolars 1)}. (7.2)
7j=1

It follows from (7.1) and (7.2) that

s—1
n—1

|| Poo (w - Vw)

1
< I+ o) Vo

=0

}{ZH ) i)}

Similarly to (7.2), the remaining terms can be estimated by a straightforward application
of Lemma 2.1, Lemma 2.3, Lemma 4.3 and Lemma 4.12. We thus arrive at

IF2 (w)las
< C{U+ 2" il + 1VP1l 22 + [[boollars )
X1+ |2))" " V][ zee + |V [|z2 + [[weo | grs+1)
F(I A+ [2)" 2w || oo + [V |l 22 + [[woolas )
X([(U41z))" onllpee + (1 + |2) V| 2)},

and

1 Foc (11, 9)) 4751

1
< (N +laly = Voo
j=0

2

) (10 + fely v

=1

(1L + J2))" bullze + l|dool

;) IV Ol + [[Ocw] s + IIQHHs—l)}
Integrating these inequalities on (0,7") and applying Lemma 4.6 (i), we obtain the desired
estimate. This completes the proof. 0

We next estimate Fy,,(uV), g) — Fy . (u®, g).

(k) T( (k) (K)

Proposition 7.3. Let u;,, = (¢; ,my ) and ul) = (gboo ,wéo)) satisfy

1
k .
sw (e (Ol 27, + s @l + sup 6001 < min{o, 3},

0<t<T
where & is the one in Lemma 4.6 (i) and %) = ¢§k) + %) (k=1,2). Then it holds that

HF[Fl,m(u(l)a g) - Fl,m(u@)u g)] Ho@f(l)(O,T)
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xeom|l{uly, — ul), ul) —u@}|

Xs=10,T)

2
k
< O IHuih u®}
k=1

1 2
+O[gls{ul), — ut), ull) — u@}]

(e 9]

Xs=1(0,T)

(k)

1,m

)

uniformly for uy, and uld.

Proposition 7.3 can be proved in a similar manner to the proof of Proposition 7.1; and
we omit the proof.

We next estimate Foo(u(l), g) — Foo(u(z)a q).

Proposition 7.4. Let ugk) =T( gk),mgk)) and ul) = T(¢g§),wg§)) satisfy

t t s u (b t o < 1 1 5 -
iltlf ||u1’m( )H%Q)X@u) Oiltlf ||u()0 ( )| anl Oitf || ( )“L = 1 { 05 2}7

0
where &y is the one in Lemma 4.6 (i) and ¢ = ¢§’“) + o (k=1,2). Then it holds that
1Foe (@, g) = Fao(u?, 9)]”L2(0,T;H;ij;j)
< O3 MU A oIl — o = e s
k=1

1 2
+O[gl{ut), — ul) ull) — uP}|

[e.9]

Xs=1(0,T)

k)

uniformly for ugm and ul).

Proposition 7.4 directly follows from Lemmas 2.1-2.3, Lemma 4.3, Lemma 4.12 and
Lemma 4.13 in a similar manner to the proof of Proposition 7.2.

We next show the following estimate which will be used in the proof of Proposition
7.6.

Proposition 7.5. (i) Let u1, = " (¢1,m1) and te = " (G0, Weo) salisfy

P
S urm W 2,52, + S92 ool + sup [l6(t)]|z < min{do, 53,

0<t<T

where g is the one in Lemma 4.6 (1) and ¢ = ¢1 + ¢oo. Then it holds that

VPt 9) leqorms) < ClHums tioe ey + € (14 It ms oot )

untformly for uy , and ts.
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(ii) Let b = T(qﬁgk),mgk)) and ul) = (ngoo ,wgo)) satisfy

1,m

() (*) *) |
sup ||uy . (t + sup ||lu (t)||gs . + su )| re < min{dg, =},
OgthH @l 27«2, ogthH s (Ol ogthW (1))l < min{dy, 3}

where &y is the one in Lemma 4.6 (i) and ¢*) = (1’“) + o (k=1,2). Then it holds that
(| F i (w )79) Flm(u@)ag)HL%

1 2
xsom|[{ulh, = uf) ul) —u@Y]

Xs—1(0,T)

1 2
+ [gm{ul)n —ul? ) — u@Y |1 0m)

(k) K.

m and ulf

uniformly for uy

Proof. As for (i), we here estimate ¢g. By using the Hardy inequality, since n > 3, we
see that

¢ ne -
Ipgllzz < C||mHL2H(1 +12))" gl < CIVlall(1+ [2))" gl .

Similarly, we can estimate the remaining terms by using Lemma 2.1, Lemma 4.3 and the
Hardy inequality to obtain

v m (s, 9) 12
< C{(H(l + 1)) Bllzee + 11+ |2 )willzoe + lwoollm) (IVewrllze + [ Vv 22)

HIVll2(I(X + )" [l

LI ) g l) + Dz |-

Applying Lemma 4.6 (i), we obtain the desired estimate (i).
The desired estimate in (ii) can be similarly obtained by applying Lemma 2.1, Lemma
2.2, Lemma 4.3 and the Hardy inequality. This completes the proof. 0

To prove Theorem 3.1, we next show the existence of a solution {uy ,, us} of (4.2),
(4.7) and (4.10) on [0, T'] satisfying uy ,,(0) = 11, (T) and ue(0) = us(T') by an iteration
argument.

For N = 0, we define ul T\, m{) and v = T2, w?) by

u) (1) = Si (LD — S1(T)) "G + 71(1)[Gy),
Wl =l - P (sOw®), (7.3)
U () = San()I = S o(1)) T 000 (T)[Go] + o 0(1)[Gucl,

where ¢ € [0,7], G = T(0,1g(x,1)), G1 = PG , Goo = PxG, ¢ = ¢{” + ¢{ and
w® = w® + w2, Note that ugo,)n(()) = ugogn(T) and w2 (0) = ul2(T).

37



For N > 1, we define uﬂz =T §N),m§N)) and v = (gboo ) i ), inductively, by
uVE) =810 1) — Si(T)) " From (@Y, g)] + L1 () [Frm (N, g)],
w = mi = P (M),

U (1) = S vy () (I = Se uv-) (T)) ™1 o vy (T) [Fos (uN =1, )]

o o1 () [Foo (w71, g)],

(7.4)

where t € [0,7], uN Y = ( )+U((>o 1), u™ Y = T(ngN_l)a W§N_1))a ) = ¢§N) +¢<(>g)
and w®) = (N) +wd, Note that u )(0) Y\;n(T) and uf)g)(O) =y (7).

—

Proposition 7.6. There exists a constant 61 > 0 such that if [g]s < 01, then there holds
the estimates

(i) {uim, ul}]
for all N >0, and

xs0,1) < Chlgls

” H{udTH — uf™ D — uMY | o101y
11
N N N—1
< Culgl | {ut) — uN o Wl — Yy

Xs=1(0,T)
for N > 1. Here C} is a constant independent of g and N.
Proof. If [g]; < ¢; for sufficiently small d;, the estimate (i) easily follows from Proposi-

tions 5.1, 6.5, 7.1, 7.2, and 7.5.
Let us con81der the estlmate the difference {u1 N (V) g (Y )}. For N >0,

Uy ,m?
we set gf)j = ¢§N+1) ng for] =1, 00, mgN) = m(NH) mgN) and Wl = T &,

Then by using (7.3) and (7.4), we see that qu mgN) and ws) (N > 1) satisfy

8,0 + vdiva™ = 0,
™ — v AR — v divin™Y) + 4V elN = Fy (@Y, g), (7.5)
@ =l ~ B alY) - P (w®)

{ 0,8 + vPoo(w“V) Vo) + vdwwoo Fooy (@0, (7.6)

o) — vAw) — pvdivel) + 'ngb M = Foo(aNY ),

where

Fl,m,Q(a(N_l) g) = L1m (U(N)7 g) - FLm(u(N_l)) 9)7
Faor (@ 79) = FL (™) = FL(u™"Y) =y P (0™ — w™) - VoY),
Fan(@N™1, g) = Foo(u™), g) = Foo (™1, ).

The desired inequality (ii) can be obtained by applying Lemma 4.14, Propositions 5.1,
6.5, 7.3, 7.4, 7.5, and 7.6 (i). This completes the proof. O
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Before going further, we introduce a notation. We denote by By, (r) the closed
unit ball of X*(a,b) centered at 0 with radius 7, i.e.,

BXk(a,b)(T) = {{ul,m’uoo} € Xk(av b)§ H{ul,ma uoo}HXk(a,b) < T} .

Proposition 7.7. There exists a constant 05 > 0 such that if [g]s < 0o, then the sys-
tem (4.2), (4.7) and (4.10) has a unique solution {ui m,,usc} on [0,T] in Bxsor)(Cilgls)
satisfying w1, (0) = uym(T) and us(0) = ux(T"). The uniqueness of solutions of (4.2),
(4.7) and (4.10) on [0,T] satisfying u1m(0) = u1m(T) and ux(0) = ux(T) holds in
BXS(O,T)(Ol(SQ).

Proof. Let d; = min{d;, ﬁ} with §; given in Propositions 7.6. By Propositions 7.6,

we see that if [g]; < 0o, then ugAQL = §N> mg )) and uly) = T(qﬁg),wg)) converge to

U = ' (¢1,m1) and U = | (Poo, Woo ), Tespectively, in the sense

(™) w0 = {ugm, us} in X570, T),

1m7 o]

u™) :T(gbg),w(m) — Use = (oo, Woo) *-weakly in L>(0,T; H{ ) e s

oo o0

wl) — we weakly in L*(0,T; H:EY YN HY0,T; HiZ ).

(00),n (00),n—1
It is not difficult to see that {uy m,ux} is a solution of (4.2), (4.7) and (4.10) satisfying
U1 (0) = U1, (T) and ueo(0) = uso(T).
It remains to prove ts, = ' (oo, Woo) € C([0,T); H:_,), which implies {uy,,us} €
Bxs0,1)(Cilgls) with u1,(0) = 1, (T) and us(0) = ue (7). But this can be shown in
the same way as in the proof of [6, Proposition. 8.4]. This completes the proof. 0

By Lemma 4.6 and Proposition 7.7, we can show the existence of the solution of the
system (4.1)-(4.2) satisfying u;(0) = w;(T") (j = 1, 00) in therms of the velocity field w;.

Corollary 7.8. There exists a constant 63 > 0 such that if [g]s < 03, then the system (4.1)-
(4.2) has a unique solution {ui,us} on [0,T] in Bxswor)(Calgls) satisfying u;(0) = u;(T)
(j = 1,00) where u; = "(¢;,w;) (j = 1,00) and Cy is a constant independent of g. The
uniqueness of solutions of (4.1)-(4.2) on [0,T] satisfying u;(0) = u;(T) (j = 1,00) holds
m BXs(07T)(0253).

Proof. Let [g]s < d2. By Proposition 7.7, we see that the system (4.2), (4.7) and (4.10)
has a unique solution {uy m, U} on [0, 7] in Bxs (o, (C1[gls) satisfying uy ,m(0) = w1 m(T)
and s (0) = use(T'). The uniqueness of the solution holds in Bxs(o,r)(C1d2). Therefore, by
Lemma 4.6, the system (4.1)-(4.2) has a solution {u, ux} in X*(0,7") on [0, 7] satisfying

I1{u, [9]s
and u;(0) = u;(T) (j =1, 00).
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We show the uniqueness of the solution. Let {ug ,ugz)} (k = 1,2) be solutions of the

system (4.1)-(4.2) in X*(0,7T) on [0, 7] satisfying
{ut”, u® Y| x01) < Calgls

and u (k) (O) k ( ) (j = 1,00). We set ugk,)n = (qﬁlk ,mgk)) where mgk) = wgk)
Pl(qb(k)w(k ), otk ) ¢§ + qu( and w®) = w( )+ w (k = 1,2). Then by Lemmas 2.1,
4.3, 4.4 and 4.5, {ul m,uoo)} are solutions of the system (4.2), (4.7) and (4.10) on [0, 7]

in Bys(o.r)(CCs[gls) satistying ui’),(0) = u{") (T") and u(0) = ul(T) (k = 1,2). If 63 =

1,m

nlin{%éz,ég} and [g]s < 3, then {ugkgwug]z)} € Bxs(o1)(C102) (k = 1,2). Therefore,
by the uniqueness of the solution of (4.2), (4.7) and (4.10), we see that u(l) u'? and

1m

ul) = uld). Tt follows from Lemma 2.1 and Lemma 4.3 that m!" — (qb(k ¥ e g
(k =1,2), hence,

w = (= 2[W) " " = P wl)]
= (=2 [n® = P(6Puld)
(2)

—_= wl
where & is the one in the proof of Lemma 4.6 (i). Therefore, we see that ugl) = u§2) and
ug? = ugo). This completes the proof. O

We can now construct a time periodic solution of (4.1)-(4.2) in the same argument as
that in [6]. As in [6], based on the estimates in sections 6-8, one can show the following
proposition on the unique existence of solutions of the initial value problem.

Proposition 7.9. Let h € R and let Uy = Uy + Upse with Upy € 21y X %1y and
Upso € Hfoo)m_l. Then there exist constants 64 > 0 and C3 > 0 such that if

M(Uo, Uy, g) = ”U01H%(1> V) + || Uoco || 5 LT [9]s < 44,

(00)m
there ezists a solution {Uy,Ux} of the initial value problem for (4.1)-(4.2) on [h,h + T
in Bxsnn+r)(CsM (Unt, Uoss, 9)) satisfying the initial condition Uj|i—p, = Uy (j = 0, 00).
The uniqueness for this initial value problem holds in Bxspi1)(C364).

By using Corollary 7.8 and Proposition 7.9, one can extend {ui, u } periodically on
R as a time periodic solution of (4.1)-(4.2). Since the argument for extension is the same
as that given in [6], we here omit the details. Consequently, we obtain Theorem 3.1. This
completes the proof.
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