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1 Introduction

In recent years, the multi-fractal formalism has been introduced to describe statistically the
scaling properties of singular measures[1][2][4][7][23][24][33]-[35]. Multi-fractal analysis was first
developed in the study of turbulence, and now we find various applications such as financial time
series analysis. The analysis of origin of multi-fractality is seemed to be much more important
than examining the existence of multi-fractalities, while these phenomena suggest us how to
find anomalities in time series such as stock prices. Several conventional methods are proposed
for generating multi-fractal time series, but there are no discussion about the origin of multi-
fractality and related topics such as feature extractions[23][24].

In this paper, we show the multi-fractality analysis of time series in artificial stock market
generated by multi-agent systems based on the Genetic Programming (GP) and its applica-
tions[23][24]. Despite many works suggesting methods to generate mono-fractal time series,
there are few methods to emulate processes of multi-fractal time series. Riedi et al. proposed a
method to generate multi-fractal time series based on modified wavelet-coefficients by changing
the probability distribution of multipliers using the 3 distributions, but the relation between the
probability distribution and multi-fractality is not shown[35]. Calvet et al. also suggested the
generation of multi-fractal time series based on the multiplicative cascade, however, the rela-
tion between the characteristics of the multi-fractal time series and mathematical descriptions is
not clear[7]. In previous works, we investigated the possibility to synthesize (generate) artificial
fractal time series even chaotic ones based on multi-agent systems[10] [11][20][21]. Then, we
think multi-agent systems are promising to figure out the multi-fractality revealed in artificial
stock prices. In the agent system, there is a wide range of context by changing the member
of agents, and then we examine the origin of multi-fractality arise out from the various simu-
lation studies[10][11][20]]21][23][24]. Moreover, the features of multi-fractal time series can be
extracted by comparing time series with corresponding mono-fractal time series as counterparts.
For the formalism of learning process of agents, we employ the GP which has been successfully
applied to modeling of agents, analysis of chaotic dynamics and fractality, and system optimiza-
tions[9][10][11][18][19][20][21][22][23][24] [30][31][41].

There exit many conventional works related to the artificial stock market such ACE (Agent
based Computational Economics) proposed by Arthur,Holland,LeBaron,Palmer, Taylor [3] [8] [12]
[15] [28] [29] [36]. In contrast to conventional artificial stock markets, we treat a kind of hetero-
geneity of agents to some extent, by introducing five types of agents[10][20][21][23][24]. Agents
are allowed to use forecast equations or decision rules which are improved based on the GP so as
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to ensure reproducibility of markets. Besides independent equations (rules), common ones are
postulated for co-evolutionary GP learning. Within the framework, we demonstrated in previous
works based on simulation studies , time series of stock prices are statistically resemble to real
stock prices[10][20][21]. To investigate the origin of multi-fractality in the artificial stock prices,
we emphasize the composition of agents to emulate the real market. To examine the role of
agents of each type, we define six cases by changing the composition of five types of agents. For
checking the multi-fractality we use an extended method based on the continuous time wavelet
transform. As well as compositions of agents of each type, we investigate the effect of restriction
on the selection of forecast methods. As a result, in several cases we find strict multi-fractality
in artificial stock prices, and we see the relationship between the realizability (reproducibility)
of multi-fractality and the system parameters.

Since there exists no way to define the multi-fractality in the time domain, as an alterna-
tive, we propose a method to extract features from the multi-fractal time series based on the
approximation of mono-fractal time series derived from corresponding original one as counter-
parts[16][17][37][38][39]. After examining the multi-fractal processes in time series, we apply the
method for feature extraction based on the prediction on fractal time series proposed in previ-
ous works. As a result, feature points of multi-fractal time series are effectively detected and
extracted, and are used to figure out the roles of agents to generate multi-fractality. Then, a
backward method is available to estimate the composition of agents who are seemed to be major
members of stock market by examining the features of multi-fractality for stock price time series.
We use conventional Multi-variate Discriminant Analysis by employing statistical package to
identify dominant behavior of agents.

In the following, in Section 2, we propose multi-agent-based architecture based on the GP
for modeling artificial stock market. In Section 3 we show learning of agents using the GP. In
Section 4, results from simulation experiment are analyzed in details to give the condition of
multi-fractality of stock price. In Section 5, feature extraction of multi-fractal time series is
discussed combining with agents’ behavior.

2 Multi-Agent based Modeling of Artificial Stock Markets

2.1 Problem formulation of the paper

The goal of multi-fractality analysis must ultimately be to explain causes of the multi-fractality
in the time series. While many works suggesting methods to generate multi-fractal time series
are valuable for the emulation of multi-fractal time series, but they do not satisfy our need to
explain causes of multi-fractality.

In conventional works, authors proposed methods to generate multi-fractal time series based
on modified wavelet-coefficients by changing the probability distribution of multipliers using
the § distributions, and the multiplicative cascade[7][35]. However, the relation between the
characteristics of the multi-fractal time series and mathematical descriptions is not clear.

We propose that the multi-fractal is a natural feature of models with forward-looking agents.
Our key condition is that agents are not constrained by assumption to agree on a single ex-
pectation. Instead, we apply recent development in evolutionary system description to explain
how forward-looking agents might choose among different forecasts. We assume that information
arrives uniformly over time so that changes in stock price are due entirely to agents’ behavior.
Furthermore, our agents do not set out simply to invent among forecasts based on what they
perceive to be fundamentals.

We focus on the artificial multi-agent systems for the stock market where we can observe
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Figure 1: Schematic diagram of the problem formalization)

multi-fractality based on the agents’ behavior[23][24]. In the agent system, by changing the
member of agents we can examine the origin of multi-fractality. Moreover, the features of multi-
fractal time series can be extracted by comparing time series with corresponding mono-fractal
time series and system optimizations[7][8][11][12][13][15][16] [17][22][23][24][31].

Figure 1 show the schematic diagram of the problem formalization of the paper. At first,
artificial stock price is generated as the result of trades among agents. Then, the time series of
the stock price is analyzed by conventional tools such as wavelet-based multi-fractality analysis,
and the feature extraction based on a prediction method of the mono-fractal time series which
is the counter-part of the original multi-fractal time series. By iterative procedures by changing
the composition of agents, we can accumulate sets of data representing the relation between the
composition of agents and the multi-fractality of generated time series as input-output pairs.
By applying the conventional method of discriminant analysis, we can estimate the discriminant
functions which suggests us who are the dominant agents under the given condition (observed
time series).

2.2 Architecture of Multi-agent System

The market structure is set up to be as simple as possible in terms of its economic components. It
also attempts to use ingredients from existing models wherever possible. The goal of the artificial
agents is to build forecasts of the future price and dividend which they will use in their demand
functions. Agents do this by maintaining a list of several hypothesis, or candidate of forecasting
methods.

In the following, we define the computational architecture of stock market in detail based on
the system consisting of multi-agents each of which acts as a trader[10][20][21][23][24]. Specif-
ically, five types of agents are defined in this architecture. Figure 2 shows the overview of the
architecture of multi-agent system.

2.3 Agents of type 1 and type 2

The agents of both type 1 and type 2 are assumed to build forecast models for stock price and
dividend of the next period by using arithmetic expressions which are called ”forecast equations”
including state variables of the market as operands. For example, an agent has an equation to
estimate the stock price py4+; in the next period as
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Figure 2: Overview of architecture of multi-agent system

price(1)+dividend(1)+(price(1)-price(2))*1.05+(dividend(1)-dividend(2))*1.05

where the variables such as price(1) and dividend(2) are defined by using past trades.

The difference of these two types comes from the way to share the forecast equations among
agents to predict future prices. Agents of type 1 usually use their own forecast equations for
predicting stock price. On the other hand, agents of type 2 only use a common pool of forecast
equations to map state into forecasts without their own forecast equations. We assume that
agents of type 1 are allowed to have individual 50 forecast equations for each, and agents of type
3 share 50 forecast equations.

However, we also assume that besides agents of type 2, the agents of type 1 may also make a
decision to access this the common pool of the forecast equations when they feel unsatisfied with
the performances of their own forecast equations. While they may appreciate common forecast
equations than their own equations if they meet sudden fall of wealth. The agents are allowed
to learn and change their behavior by altering this set of the forecast equations by eliminating
poorly performing equations and adding new ones through the use of GP oriented for the forecast
(arithmetic) equations.

The agent models include the agents’ objectives and their adaptation, and these frameworks
have been used in many conventional researches for artificial stock market, for example, in works
by Chen et al. and LeBaron et al.[8][28]. Now we show the behavior of agents by introducing
their utility functions. For simplicity, we assume that all agents using forecast equations share
the same utility function. More specifically, this function is assumed to be a Constant Absolute
Risk Aversion (CARA) utility function.

U(Wi7t) = —exp(—)\Wi7t)7 (1)

where W, ; is the wealth of agent ¢ at time period ¢, and A is the degree of relative risk aversion.
Agents can accumulate their wealth by making investments. There are two assets available for
agents to invest. One is the riskless interest-bearing asset (money), and the other is the risky
asset (stock). In other words, at each time point, each trader has two way to keep the wealth as

Wit = M; ¢+ Pihiy, (2)

where M;; and h;; denote the money and shares of the stock held by agent 7 at time ¢. Given
this portfolio (M, hi ), the agent’s total wealth W; ;41 is thus

Witt1= A +7)M;++ hi t(Peg1 + Diyr), (3)
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where P; is the price of the stock at time period ¢, D; is per-share cash dividends paid by the
companies issuing the stocks, and r is the riskless interest rate. We assume D; can follow a
stationary stochastic process having i.i.d. normal process which is not known to agents. Here,
we assume that the divided follows to a process defined by itself rather than stock prices, while
the evaluation of another factors such as the profit of firms which is reflected to the stock price
is very difficult in the agent simulation scheme treated here. Given this wealth dynamics, the
goal of each agents is to myopically maximize the one-period expected utility function as

E; ((UWit) = El—exp(=AW; )| i, (4)

subject to the condition shown in equation (3), where E; ;(.) is the conditional expectation of
wealth W; 141 by the agent ¢ under the information up to ¢ (the information set is denoted as
L.

It is well known that under CARA utility and Gaussian distribution for forecast, the desired
demand X ; by the agent ¢ for holding share of risky asset is linear in the expected excess return,
which is derived by Grossman and Stiglizt[14].

E; ((Piy1+ Diyq) — (1 +17)P,

Xig = : 5
it )\0_2'27): ( )

where 0‘1-27,5 is the conditional variance of Pi1 + D11 under the given I;; . The amount X

means the appropriate share estimate by the agent ¢. The formula is also well known, and used
in real trades[5].

Now we address the agents’ expectation Ej;¢(Piy1 + Diy1) and o; ;. It must be noted that
the function E; ;(.) is generated by the GP procedure in the paper. But in this case, the range of
E; +(.) can hardly be held in check, and that can potentially make the price dance. Additionally,
one may be interested in the forecasting increments, instead of level. Therefore, we consider
following specific function form for E; ,(.).

Ei(Piy1 + Dig1) = (Pe+ Dy) (1 + tanh(61 fi4)), (6)

which is also motivated by the martingale hypothesis in finance. The function f; ; generated by
the GP procedure is fed into a hyper-tangent transformation and multiplied by a constant 6.
The equation (6) can be interpreted as a forecast of the growth rare (rate of return) of P; + D;.

The virtue for this function form is that, if f;; = 0, then the agent actually validates the
martingale hypothesis. Since D; follows as i.i.d process with constant mean value, the best
forecast for tomorrow’s price is today’s price which is known as the martingale hypothesis in
finance. Assume that martingale hypothesis is consistent with microbeliefs of agents. Then,
alternatively speaking, on the top of the market is efficient in the martingale sense, and on the
bottom agent i is also believes. Therefore, from the cardinality of set {i|f; ; = 0} denoted by Ny 4,
we can know how well the efficient market hypothesis is accepted among agents. The population
of functions f; 4, (i = 1,2, ..., N) is determined by the GP procedure proposed in the paper. As
to the subjective risk equation, we take a modification of the equation originally used by Arthur
et al [3].

opy = (L= w)o}_y,, +w[(P: + Dy — E;«(P: + Dy))?, (7)
where
nlfl B
Gty = O (Piej = Pyn,)*/(m — 1), (8)
j=0

In other words, o;_1),,, is simply the historical volatility based on the past n; observations.
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Table 1: Table 1-Variables calculated from past stock prices

variables definition
min(t) minimum price in past ¢ periods till now
max(t) maximum price in past ¢ periods till now
av(t) average price in past ¢ periods till now
price(t) stock price at ¢ past time from now
dividend(t) | dividend at ¢ past time from now

Table 2: Table 2-Exampes of forecast equations used by agents

Ji4=1.0089 * sqrt(min(5)) + 1.0018 * av(4)

+ (7.8802 / sqrt(min(5)) - 4.714) / abs(price(7)-price(8)) + price (1)

fi4=1-1.8618 / (price(2) - price(3)) -(3.3443 - 1.7301 * sqrt(dividend(6)))

* dividend(5) + exp(dividend(4)) / max(10) + price(1)

fir=price(1)+ 0.9020* ((dividend(2) + 4.3850) / min(3) - price(3) + price(4)) / min(4)

In the GP, forecast equations are represented in the tree structure (called individual)[9]-
[11][18]-[27][30][31][41]. In the parse tree, the non-terminal node is taken from the function sets,
containing, +,-,+,X, exp, abs ,sqrt.

The operands for these functions (operations) are taken from past stock prices themselves,
constants and variables listed in Table 1 which are obtained by simple arithmetic calculation
for the past stock prices. Table 2 shows examples of forecast equations used by agents of type
1 and 2 when 6; = 1.0. At the end of trading, agents update the accuracy of all matched
forecast equations according to the forecast error. We define the fitness as the accuracy of
forecast equations on historical datum. Specifically, the fitness of a forecast equation is defined
by the inverse of squared forecast error denoted as e; j¢, in which ¢ is the index of agent, j is the
index of forecast model in the pool of individuals of GP, and ¢ accounts for time horizon. As is
previously described, in this paper, this squared forecast error 6227 ;. of selected forecast model as
the variance aiz,t used for the estimation of share demand X;; by agents of type 1 and type 2.

If we have sufficient time of trades for learning, the record of forecast error e; ;¢ is available
for evaluating forecast equation j of agent i. Then, the evolutionary procedure based on the GP
is applied to improve forecast equations in the pool of individuals of type 1 and type 2 agents.

2.4 Agents of type 3 and type 4

Moreover, in reality the complexity of the market forces agents to act inductively by using simple
rules of thumb. Usage of these simple trading rules to guide buy or sell decision seems to be
effective at some time. We assume that agents of type 3 and 4 use the production rules for trading
stocks (called forecast rules). These agents forecast only the rise/fall of stock prices based on the
decision rules, and the volume to be traded is assigned at random. The decision rules are also
represented as individuals, and are referred as condition-action rules and generally represented as
‘4f A then B’, where A is an antecedent (condition part) and B represents a consequence (action
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Table 3: Exampes of forecast rules used by agents

buy if | av(8)< price(2) XOR (dividend(6) > dividend(10)

AND (price(3) < max(6) OR min(8) # price(7)))

buy if | min(9) = price(9)OR (price(8) > av(8)

AND (price(10) > max(10) OR max(2) = max(6)))

sell if | av(10) > av(6)OR (dividend(2) < (price(9)-price(10))

AND (price(6) < max(2) OR dividend(10) # av(6) OR min(5) = price(2)))
sell if | dividend(3) < (price(1)-price(2)) AND min(5) # min(7)

part). For example, an agent may has a forecast rile such as
if price(1) > av(10) and price(2) < max(10) then buy

The difference of these two types exists in the way to use the common decision rules. It is
assumed that the agents of type 3 possess their individual decision rules, but the agents of type
4 only learn from a common pool of decision rules for trading without their own rule bases.
Similarly, agents of type 3 are allowed to access this common decision rules when they feel little
satisfaction with the performances of their own decision rules. We assume that agents of type 3
are allowed to have individual 50 decision rules for each, and agents of type 4 share 50 decision
rules.

Agents of type 3 and 4 are allowed to dynamically decide to sell/buy stocks connected with
decision rules. Agents prefer using simple rules of thumb to decide whether to trade or not.
However, they do not decide optimal quantities to trade exactly, but rather at a stochastic
quantity. These decision rules are identical to conventional production rules where if the condition
is satisfied then the behavior of action part will be implemented.

Similar to the forecast equations, we define the condition part of decision rules as logical
expressions which is represented as a connection of predicates with logical operators, including
AND, OR and XOR(exclusive OR). The predicates can be defined as a combination of two
arithmetic expressions (equations) given by the prefix representations like forecast equations
connected by using comparative operators, including >, >, <, <, =, #. Table 3 shows example of
decision rules used by agents of type 3 and 4. Since the condition parts of decision rules possesses
the same structure as forecast equations (parse tree) by changing the arithmetic operators by
logical operators and operands by predicates, we assume that the logical expressions are also
represented as individuals in the GP. To simplify the system configuration, we assume that the
condition part of a decision rule consists of logical expressions which are represented by a single
logical operator and two predicates (a combination of binomial logical expressions).

The relations between the logical expression and predicates are realized by a hierarchical
data structure with two level of pool of individuals. The overall structure of logical expression is
stored in the first level, and the links to combine the predicates stored in the second level. They
are used to aggregate comprehensive data structure.

In the parse tree, the non-terminal node is taken from the logical function sets, containing
AND,OR,XOR, while the index of a predicate is placed into a terminal node. We also define
the fitness as the accuracy of trading rule on historical datum, specifically the percentage of
successful trades ( increase the wealth) in 10 periods recently.

The crossover and mutation operations for the logical expression are the same as the GP in
arithmetic expression by replacing the operators and operands suitable for logical expressions.
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2.5 Agents of type 5

As another related modeling of agents different from agents of types 1 through 4, we assume
agent of type 5 who make decisions which are less than perfectly rational. Agents of type 5
decide at random when they should sell/buy stocks and how much they should trade. Then,
agents of type 5 have different characteristics, and behave like speculators.
(1) probability of taking behaviors

Agents of type 5 take their behavior in one of three decisions, namely, they sell, buy stocks
and wait (do nothing). The probability of these three decision making is assumed to be same
(at the probability of 1/3).
(2) volume to trade

If agents sell (buy) stocks, then they determine the volume to trade from a random number
uniformly distributed between 1 and 5.
(3) restriction on trades

If agents have not enough money to buy stocks at the volume they wish, then the investments
are restricted less than the money at hand. Similarly, if agents have not enough stocks to sell at
the volume they wish, then the trades are restricted less than the volume at hand.

2.6 Probabilistic decision

It may be general behavior that agents use forecast equations or decision rules with highest
fitness (ability) in their own knowledge bases. However, evidences of volatility persistence in
financial markets suggests us that this kind of deterministic scheme lead agents frequent change
of trades, and it results in poor strategies. Therefore, a kind of restriction is introduced on the
selection of forecast methods. We assume that agents of type 1 through 4 decide their trades
by using one of individuals at random (not deterministic) from the pool which have relatively
larger fitness, and we call the strategy as the probabilistic decision. The probabilistic decision
corresponds to the conventional method of LCS (Learning Classifier System) in which agents
select prediction or rule by activating appropriate clusters promising relatively better results[6].

2.7 Assessing Stock Price

Once agents have settled on forecast equations and rules, they then substitute forecast parameters
into their demands for shares. Generally, there is little possibility that the total number of stocks
demanded by agents will equal the total number of stocks supplied by agents exactly. Now it
is trivial exercise to find a price which clears the markets by balancing the demand to the fixed
supply of shares.

Stock prices to clear the market are set endogenously. Since a stock price to clear the market
can be found by balancing the demand and the supply of stocks, for simplicity we also utilize the
same price adjustment schema as usually used[8]. Let O; be the number of shares which agents
would like to submit at period ¢, and let B; be the number of shares which agents would like to
offer to sell at time ¢. Then, the stock price can be adjusted according to the following equation,
in which the function 5(.) is defined by the difference between total demand and supply.

Piy1 = P[1 + tanh(3(B, — O)))], (9)

where the function 3(B; — O;) means the transformation function of demand into the stock
price, and Py, P,y1 are the stock prices at time ¢, + 1 in the artificial market. For simplicity,
the function has the same form independent from cases where the demand is greater than the
supply or not[8].
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3 GP procedure for learning

3.1 Basics of the GP

The GP is an evolutionary search process to generate structures of arbitrary functions, where
each individual in the population (pool of individuals) is a computer program composed of the
arithmetic operations, standard mathematical expressions and variables rather than binary bits
in the GA (Genetic Algorithm)[6][15]. For simplicity, estimation problems of system equation
generating time series are explained.

In the GP, the system equations are represented in parse tree structures. The prefix represen-
tation corresponding to the parse tree is approved due to simple operational performance rather
than pointer based implementation and the postfix approach. In the parse tree, non-terminal
nodes are taken from some well-defined functions such as binomial operation +, —, X, /, and the
operation taking the square root of variable. Terminal nodes consist of arguments chosen from
set of constant and variable. The pool of variable consists of the variable x; itself and the time
lag of x; such as z4_1.

The prefix representation follows traditional representation by using the Lisp syntax. For
example, if the function is given as x; = (3 X xy—1 — x4—2) X (x4—3 — 4) then, we have the next
prefix representation.

X, =, X, 3, L1, Tp—2, —, Tt_3,4. (10)

The ability (called fitness) of underlying individual corresponding to a forecast equation is
evaluated by comparing the the observation z; with resulting prediction Z; obtained by substi-
tuting lagged values such as z;—1 in the equation. The fitness of individual is defined by the
inverse of prediction error between Z; and x;.

For checking the validity of underlying parse tree (individual), the so-called stack count
(denoted as StackCount in the paper) is useful[25][26][27]. Assume scanning process of a prefix
representation from left to right using the counter. The StackCount is the number of operands
it places on the counter minus the number of operators taken off from it. The cumulative
StackCount never becomes negative until we reach the end at which point the overall sum still
needs to be -1. The StackCount is used for checking syntactical validity of initial population
of individuals. Usually, we generate initial population by using random numbers, and if the
final count is -1, then the individual is acceptable. The StackCount is also available for finding
relevant crosspoints in crossover operations.

Crossover operations

Two genetic operations are used in the reproduction phase: crossover and mutation. The
crossover operation selects two individuals from the population with the probability proportional
to fitness. Then, choose one crosspoint on each individual, and these two subtrees (segments of
individuals) are extracted and swapped with each other reproducing two offsprings. Different
from the operation in GA, the crossover operation in the GP is applied to restricted cases so as
to ensure syntactical validity of offsprings. Then, we can not choose arbitrary loci (crosspoints)
on the individuals in swapping subtrees.

To keep the crossover operation always producing syntactically and semantically valid pro-
grams, we look for the nodes which can be a subtree in the crossover operation and check for no
violation. By using the StackCount already mentioned, we ensure the valid crossover operation.
The basic rule is that any two loci on the two parents genomes can serve as crossover points as
long as the ongoing StackCount just before those points is the same. The crossover operation
creates new offsprings by exchanging sub-trees between two parents.

Mutation
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The goal of the mutation operation is the reintroduction of some diversity in an population.
In the mutation operation, we replace a part of the tree by another element. Select at random a
locus in a parse tree to which the mutation is applied, the we replace the place by another value
(a primitive function or a variable).

3.2 Algorithm of the GP

We iteratively perform the following steps until the termination criterion has been satisfied.
(Step 1)

Generate an initial population of random composition of possible functions and terminals for
the problem at hand. The random tree must be syntactically correct function.
(Step 2)

Evaluate each individual (obtaining value of forecast equation) in population by substituting
values of variable and constants included in the individual. Then, assign resulted fitness value
as a partial credit for getting closer solution to the correct output.

(Step 3)

Select a pair of individuals chosen with a probability p; based on the fitness S;. The proba-

bility p; is defined for ith individual as follows.

N
pi = (Si = Smin)/ Y _(Si = Smin)- (11)
where S,,;, is the minimum value of S;, and N is the population size.

(Step 4)

Then, create new individuals (offsprings) from the selected pair by genetically recombining
randomly chosen parts of two existing individuals using the crossover operation applied at a
randomly chosen crossover point. Then, we gather these new offsprings in the pool P-B which is
different from the initial pool P-A. Iterate the procedure several times, and we gather sufficient
number of new offsprings necessary for the replacement of individuals. Then, we replace indi-
viduals in the pool P-A having lower fitness by individuals in the pool P-B.

(Step 5)

At a certain probability, we apply the mutation operations for the pool of individuals. If the
result designation is obtained by the GP ( the maximum value of the fitness become larger than
the prescribed value), then terminate the algorithm, otherwise go to Step 2.

4 Multi-fractality of Stock Prices

4.1 The multi-fractality formalism

Now, we formalize the multi-fractality by following comprehensive description by Arneodo, Bacry
and Muzy[1][33]. Usually, in dealing with fractal objects on which a measure p is defined, the
dimension D is introduced to describe the increase of the mass p(By(¢€)) with size e. where By(e)
is the ball centered at the time ¢ and of size e.

[ auty~ e, (12)
By (e€)

In general, however, fractal measures display multi-fractal properties in the sense that they scale
differently from point to point. Then we consider a local scaling behavior such as.

u(By(e)) ~ e, (13)
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where the exponent «(t) represents the singularity strength of the measure p at the point ¢.
The smaller the exponent a(t), the more singular the measure around z and the stronger the
singularity. The singularity spectrum f(«) describes the statistical distribution of the singularity
exponent «(t). If we cover the support of the measure p with the balls of size ¢, the number
N, () of such balls that scale like €* for a given «, behaves like

Na(e) ~ e @), (14)

In the limit € — 0, f(«) is defined as the Hausdorff dimension of the set of all points ¢ such that
at) = a.

fla) = dulz € supp p, a(x) = af. (15)
The generalized fractal dimensions Dy, which correspond to scaling exponents for the gth moment
of the measure p, also provide us an alternative description of the singular measures. If we cover
the support of p with the boxes B;(e) of size €, one can define a series of exponents 7(g) from
the scaling behavior of the partition function.

N (e)

Z(q,€) = Z wd(e), (16)

where p; = pu(B;(¢€)). In the limit € — 0, Z(g, €) behaves as a power law.
Z(q,€) ~ D, (17)

The spectrum of generalized fractal dimensions is obtained from the knowledge of the exponents
7(g) by the following relation.

Dy =7(q)/(q —1). (18)
For certain values of ¢ one can recognize well know quantities. Dy corresponds to the capacity
(box) dimension, and D characterizes the information dimension. Moreover, for integer ¢ > 2,
the D, can be related to the scaling behavior of g—point correlation integrals. At the scale € if
we consider that the distribution of the « is of the form p(a)e/(®) and if we use the expression
in equation (16), then it follows.

Z(q,¢€) N/p(a)eq“_f(")da. (19)

In the limit € — 0, this sum is dominated by the term e™(@@=f(®))  Then, from the definition
of 7(q), one obtains

T(q) = m(}'}n(qa — f(a)). (20)

Thus, the 7(¢) spectrum and in turns the Dy is obtained by the Legendre transformation of f(«)
singularity spectrum. If f(a) and D, are smooth functions, then we obtain following relations.

q=df/da, T(q)=qa— f(a). (21)

4.2 Wavelet Transform Modulus Maxima method

In the following discussion, we use the Wavelet Transform Modulus Maxima (WTMM) method
proposed by Muzy, Bacry and Arnedo for finding the multi-fractal processes in time series[1][33].
As shown in previous section, we have a natural generalization of the classical box counting
techniques to fractal signals. Then, the wavelets play the role of generalized boxes, and the
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wavelet transform reveals as a mathematical microscope that can be further used to extract

microscopic information about the scaling properties of the fractal objects. The wavelet transform

of a function consists in decomposing it into elementary space-scale contributions, associated to

the so-called wavelets which are constructed from one single function, the analyzing wavelet.
At first, we calculate the wavelet transform of the time series g(t) as follows.

sha) =1 [ oDt (22)

a

where ¢((t — b)/a) is obtained from the basic wavelet function ¢(¢) by using the dilation index
(or called the scale parameter) a and the translation index (or called the space parameter) b.
The analyzing wavelet ¢(.) is generally chosen to be well localized in both space and frequency.
For particular purpose of tracking singularity interested here, the function ¢(.) is required to be
orthonormal to some lower order polynomials.

/wwwmﬁ:o,ogm<wz (23)

— 00

(N) dV )
(L) = N . (24)

The Holder exponent h(ty) of a function g at ¢y is defined as the largest exponent such that there
exists a polynomial P, (t) of order n that satisfies

|9(t) = Pu(t — to)| = O(|t — to|"), (25)

for t in a neighborhood of 5. The local behavior of g is mirrored by the wavelet transform which
locally behaves like
2(to, a) = O(a?)), (26)

in the limit a — 0, we have N > h(ty) which satisfy the equation (26). The above equation
mainly says that in investigating the local scaling behavior of the wavelet coefficients computed
with an analyzing wavelet whose N first components vanish, then one can generally detect all
the Holder exponents of g that are smaller than N.

The originality of the WTMM method consists in building partition function from the mod-
ulus maxima of the wavelet transform. These maxima are defined at each scale a, as the local
maxima of z(t,a) considered as a function of t. These wavelet transform modulus maxima are
disposed on connected curves called maxima lines. Let us define L(ap) as the set of all the
maxima lines [ that satisfy

An important feature of these maxima lines is that, each time the analyzed signal has a
local Holder exponent h(tp) < N at the point tg, and there is at least one maxima line pointing
towards ¢, along which the equation (26) holds. In the case of fractal signals which are typically
characterized by a hierarchical distribution of singularities, we expect that the number of maxima
lines will diverge in the limit « — 0. The WTMM has an advantage of the space-scale partitioning
given by this skeleton to define the following partition function.

Gla,q) = ) [sup(eanelz(t,a)|]’. (27)

leL(a)

The analyzing wavelet ¢(.) can be seen as a box of a particular shape where the scale a is its
size, while the modulus maxima indicate how to position our special boxes to obtain a partition
at the considered scale.
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After these calculation of maxima, we obtain the exponent 7(¢). In the limit ¢ — 0, one can
again define the exponent 7(¢q) for the power law behavior of the partition function.

Z(a,q) ~a™. (28)
Then, we can compute the singularity spectrum D(h) from the Legendre transform of 7(h).

D(h) = minfgh — 7(g)]- (29)

The singularity spectrum D(h) of the signal is then defined as the function that gives, for a fixed
h, the Hausdorff dimension of the set of points of x where the exponent h(z) is equal to h.

The value h can have also negative values under the extension of definition about the Holder
exponent. Therefore, we depict the graphs also for negative h based on the WTMM. As Muzy
and Bacry showed, to figure out much stronger singularities we need to extend the definition
of D(h) to tempered distributions. Roughly speaking, a distribution f(.) has, at x¢, a Holder
exponent h(xg), if its primitive (in the sense of distributions) has, at the same point, a local
Holder exponent h(xg) + 1, then the Holder exponent can also take on negative values[1][33].

The open software reliable for the WTMM procedure described above is now available through
the Internet, and see[13].

4.3 Simulation scheme

To investigate the origin of multi-fractality in the artificial stock prices, the composition or the
ratio of agents of each type may play an important role. Then we prepare several cases of
combination of the number of agents for each type. Table 4 summarizes these cases depending
on the number of agents where N; denote the number of agents of type i. These cases are used
for the scheme of simulation studies.

Compositions and consistency

Theoretically, we have 32 cases of composition of five types of agents, however, we restricted
ourselves to cases listed in Table 4 based on our previous works[10][11][20]-[22][24]. The main
reason to omit other cases depends on the monotonous characteristics of generated stock price.
If we exclude type 3 and 4 agents from the system, then the stock price becomes to be less
fluctuating and converged to a single price. Similarly, if we use only type 3 and 4 agents, then
the stock price becomes to be unrealistic. For these reasons, we assume that at least one type of
agents must be included from the pool of agents using forecast equations (type 1 and 2), and the
pool of agents using forecast rules (type 3 and 4). Off course, the stock price bearing monotonic
characteristics is also to be discussed, however, we are now mainly interested in the reality of
stock price, and the problem will be treated as another issues. Then, as in Table 4 we choose
the compositions between type 1-type 3 agents, and type 2-type 4 agents, as well as the case
including all types of agents.

As alternatives, we can test the compositions where agents using their own pool of individuals
(self-learning) and the agents using common pool of individuals (social learning). We call these
cases as intermediate cases. In these cases one group of agents consist of agents using forecast
equations, and another group of agents consists of agents using forecast rules. However, it is
also observed that if all agents utilize their own individuals (self-learning) then the stock price
changes abruptly, since they can not improve their decisions (individuals) through social learning.
Then, the social learning using common pool of individuals play a role to mitigate the abrupt
changes of price. From these reasoning, it is seen that these intermediate cases where agents
using self-learning are mixed with agents using social learning are located between extreme cases
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Table 4: Cases depending on the numbers of agents

Casel | Case2 | Case3 | Cased | Case5 | Caseb
Ny 100 100 0 100 0 0
Ny 100 0 100 0 100 0
N3 100 100 0 100 0 0
Ny 100 0 100 0 100 0
Nj 100 100 100 0 0 100

where all agents utilize their own individuals (self learning). In Table 4, these intermediate cases
are located between Case 2 and Case 3, and also between Case 4 and Case 5. The behavior of
agents in these intermediate cases will be estimated from Case 2 through Case 5, and therefore
intermediate cases are excluded from Table 4.

As is seen from Table 4, the total number of agents depends on cases, and it is expected that
the activity of the stock market is different from each other. Roughly speaking, if the number
of agents becomes larger, then the range (difference between the maximum and minimum of the
stock price) becomes larger. As far as we focus on the multi-fractality of the stock price itself,
the difference of the activity of the market is not serious. However, if we use the stock price and
related features for the discriminant analysis to identify the dominant agents in the market, the
range of the stock price may affect the analysis. Therefore, we adjust the range of stock price in
the analysis discussed later, and avoid the direct effect of ranges of stock prices.

Parameters in simulation studies

We assume following parameters for simulation studies.

e number of individuals: agents of type 1,3 have 50 own individuals, agents of type 2 and 4
have 50 shared individuals

e size of array of individual: length of individuals is selected to be 30

e market parameters:A = 0.01, 5 = 0.0005 and r = 0.01

e record of stock prices: 10,000 samples

e random numbers: generated by using the library of computing facility

Agents are allow to make pre-processing and learning for 3,000 time periods where no stock
is delivered prior to entering into the stage of active trades. After learning period, agents trade
stocks based on their own forecasts, however, under the predefined budget restriction. Agents
are also restricted to trade a maximum of 5 shares per trading. Moreover, besides doing trades,
individuals in common forecast equations and decision rules for agents type 2 and 4 are simulta-
neously updated every 10 periods (trades). Similarly, agents of type 1 and type 3 prefer updating
their own individuals more frequently, namely, once per 5 periods.

Besides the composition of agents of each type, we investigate the effect of restriction on the
selection of forecast methods (referred as probabilistic decisions) made by agents. We define pg
as the probability in selecting an individual from the pool. We assume agents of type 1, 2, 3
and 4 use one of the individuals at random for forecast of prices (or decision making) by using
one of Ng individuals having relatively large fitness which are embedded in the whole pool of
individuals. The probability pgs is therefore defined as ps = Ng/N¢g where N¢ is the number of



Multi-fractarity Analysis of Artificial Stock Prices Generated by Multi-agent using Genetic Programming for Learning and its Applications

individuals in the pool. If pg = 1 the method for the usage of individual follows random decision
rather than the probabilistic decision. If Ng = 1,ps = 1/N¢, then the method corresponds to
the exclusion scheme in which agents use only individuals with highest fitness.

4.4 Simulation results

In the following, we show the simulation results for checking the multi-fractality of each case.
Figure 3 and 4 show examples of 7(¢) and D(h) for each case of artificially generated stock price.
Even though these figures are only typical examples for each case, but we have very similar
results for another simulation studies. Therefore, we can reduce several important characteristics
of multi-fractality corresponding to each case.

Since the D(h) corresponds to the Household dimension of the singularity with the exponent
h, and D(h) is evaluated as the fractal dimension of the support of time axis with Holder exponent
h. Then, it is concluded that if the value of D(h) can reach the value one at h = hg, then time
series possesses the singularity with a certain value of hg all through the time axis. Otherwise
the value of D(h) does not reach one.
(1) Existence of multi-fractatily seen from Figure 3

It is well known that if the lines of 7(¢) are composed two straight lines connected around
q = 0 (piecewise linear), then the time series bears multi-fractality. On the other hand, if the
line of 7(q) is straight, then the time series bears mono-fractality. As is seen from Figure 3, for
Case 1 through Case 5 the lines of 7(¢) are composed two straight lines connected around ¢ = 0
(piecewise linear). On the other hand, the line of 7(gq) for Case 6 is almost straight. Then, it
is concluded that stock price time series bear nonlinearity in 7(¢) except for Case 6, and we see
multi-fractality for Case 1 through 5. Additionally, we see the line of 7(q) of case 6 is slightly
curve, and a little deviation from mono-fractality is observed.
(2) Existence of multi-fractatily seen from Figure 4

Similar results about the existence of multi-fractality are obtained from Figure 4 as well as
in Figure 3. In the graphs of D(h) for Case 1 through Case 5 we see relatively spread curves
compared to that of Case 6. If the time series follows the Brownian motion of the fractal
dimension D = 1.5, then the value of D(h) becomes to be one (maximum value) only at h = 0.5
(single point). When we see D(h) for Case 6 in the figure, D(h) becomes to be one (maximum
value) at h & 0.5. The fact implies us that the time series has the singularity with A = 0.5 all
through the time axis, and the time series has characteristics resemble to the Brownian motion.
However, the shape of D(h) for Case 4 and Case 6 is not sharp enough compared to the ideal
(theoretical) shapes of D(h) of Brownian where the shape of D(h) is reduced to a single point.
The restriction comes from the fact that the volume of stock and the assets of agents in the
artificial are limited, and therefore the stock price does not necessarily follow free movement
which is originally expected. But, this kind of limitation is also observed in real markets, and
we see no ideal Brownian motions in stock markets. Then, we can conclude that the stock price
time series for Case 1, 2, 3 and 5 bear strict multi-fractality.
(3) Negative correlation of time series

As is seen from the figure, In Case 6 even though the width of spread of the Holder exponent
hin D(h) is small but still observed, then the time series bears multi-fractality, however it is not
strict. Also for Case 4, D(h) exhibits its maximum value at h = 0.18 , and the spread of D(h)
is limited less than 0.5. The fact implies us that the artificial time series in this case has a kind
of negative correlation with past values.

It is proved if the point of h where the value of D(h) becomes to be maximum is small
enough, then the time series is regarded to have a kind of negative correlation with past values.
By looking corresponding figures of time series generated for Case 1 through Case 5, negative
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Figure 3: An example of 7(q)

correlations are found in each case. One reason for the existence of negative correlations comes
from the agents’ behavior where agents using forecasts tend to expect future prices in inverse
direction. With respect to current movement, namely, current rise (fall) of price induces agents’
forecasts of fall (rise) of price. Additionally, if the system includes agents of type 2 and 4 who
use common forecast equations (rules), then there are many agents taking a similar decision and
behavior.
(4) Multi-fractality and agents’ behavior

In summary, in Case 6 where agents take random decision for sell/buy decision the stock
price even bears multi-fractality, however it is not strict, and is resemble to a Brownian motion.
Similarly, this kind of deviation form multi-fractality is also observed in stock prices of Case
4 where all agents make decision by using the prediction functions. The fact means that even
though agents follow a kind of "rational” decision and behavior, but the randomness of stock
prices is also found as a result of interactions among agents. Then, these rational behaviors also
contribute to reproducibility of artificial stock prices which are statistically resemble to real ones
(following Brownian motions).

4.5 Multi-fractality under probabilistic decision

Now, we explain the simulation results for checking the multi-fractality for the cases of proba-
bilistic decision within the Case 1.

As is referred as probabilistic decision made by agents, we define pg as a probability in
selecting an individual from the pool. We assume agents of type 1,2,3.4 use one of the individual
at random from Ng individuals which are selected from Ng members in the pool. The probability
ps is therefore defined as ps = Ng/Ng. If ps = 1 the method for the usage of individual
is a random decision. If Ng = 1,ps = 1/Ng, then the method corresponds to the exclusion
scheme in which agents use only individuals with highest fitness. We consider the cases for
ps =1/N¢,0.1,0.2,0.3,0.4,0.5.

Figure 5 and 6 show examples of 7(¢) and D(h) for each case of artificially generated stock
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Figure 4: An example of D(h)

price. Even though these figures are only typical examples for the cases, but we have very
similar results for another simulation studies[23][24]. Therefore, we can reduce several important
characteristics of multi-fractality corresponding to each case.
(1) Existence of multi-fractatily seen from Figure 5

As is seen from Figure 5, for each case the lines of 7(¢) is composed two straight lines
connected around ¢ = 0 (piecewise linear). Then, it is formally concluded that stock price time
series bear multi-fractality.
(2) Existence of multi-fractatily seen from Figure 4

In the graphs of D(h) for each case we see relatively spread curve. However, according to
the analysis based on the MTMM, if the curve of D(h) does not reach to the value one as the
maximum, it is concluded that the time series is characterized as the nonsingular one. Therefore,
if Ps = 1/N¢g,0.1,0.2,0.3 the agents’ behavior is restricted in some range, and the generated
time series bears no more fractality (multi-fractality as well as mono-fractaility).
(3) negative correlations of time series

The time series generated for cases ps > 0.3 have a kind of negative correlations. However,
the spread of corresponding curve of D(h) is not large, then it is concluded that even though
the time series are regarded as a multi-fractal time series, but they deviate from strict multi-
fractality.
(4) Multi-fractality and agents’ behavior

In summary, even though we assume the random behavior of agents, for small pg where
the range of decision making of agents is restricted, the time series becomes to be unusual
pattern. Then, the simulation scheme in these cases are not relevant to examine the artificial
market. Additionally, since agents make their decision on a deterministic prediction function
or production rules for pg < 0.2, the time series reveals as a monotonic trend or the periodical
change. On the other hand, if we choose large pg, then the agents’ behavior become to be random
enough and the time series is still mono-fractal, but they deviate from strict multi-fractality. In
this case there is no meaning to organize artificial market.
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5 Feature extraction of multi-fractal time series

5.1 Feature extraction using prediction

Contrast to the WTMM, there exists no way to define the multi-fractality in the time domain
while the origin of multi-fractality is still unknown. It is seen from conventional works related
to the multi-fractality of the time series, there exit no definition of the multi-fractality in the
time domain itself. As an alternative, we propose here a method to extract features from the
multi-fractal time series based on the approximation of mono-fractal time series derived from
corresponding original one[16][17][37][38][39]. As is seen in conventional works, slight changes
of parameters in generating fractal time series show fluctuations and sometime jumps in the
time series[7][35]. Therefore, we relay on the assumption that we can approximately estimate
mono-fractal counterpart from the original multi-fractal time series. Then, the difference between
multi-fractal and corresponding mono-fractal time series result in feature extraction [28]-[30].

At first, we show the prediction (smoothing) method of mono-fractal time series by specifying
scaling of time axis.
Model Fitting

Assume a general linear input-output system

y(t) = /0 i h(t,t — 7)x(T)dT, t > to. (30)

whereby, we treat the case of system identification of the time series having the same input and
output expressed as y(t) = x(t).

Then, we specify the model by introducing the impulse response function h(¢,7) of linear
time-variant system represented by using a set of scaling functions ¢(t) as follows.

h(t,7) = Zzhij¢Ni(t)¢Nj(T)v (31)

i=0 j=0
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where ‘
Gij(t) = $(2t — j). (32)
1, 0<t<1,
ot) = {O, otherwise. (33)

Since the coefficients h;; of the impulse response function are unknown, then they are determined
so that the mean square error F; = (y(t)—xz(t))? between observed value z(t) and fitted value y(t)
obtained by using equation (30) is minimized. Since the derivatives of the evaluating function
with respect to h;; are easily estimated by using the property of scaling function, the minimization
task using steepest descent algorithm is not hard.
Prediction

Let T4(T.) be defined as the beginning (end) of the time period where the time series is
observed (Ty < t < T,). For simplicity we set Ty, = 0,7y = T,. Then, the time series y(t) is
predicted in the period 0 < t < T,, T5 > T} by using the time scale expansion. Letting

b=d?, a=TyT,, Tp>T. (34)

where, the constant D is the mono-fractal dimension of the time series :(¢). The fractal dimension
D is limited in a range so that the time series bear the fractal geometry.

1<D<2, H=2-D. (35)

where H is the Hurst parameter.
Then, by using the property of fractality embedded in z(t), the following equation is approx-
imately held in 0 < t < T.

bto .
y(#) = b /0 h(%,t T e(r)d. (36)
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In this formulation, if we expand the time axis by a times, then we observe b pieces of segments
(fractal geometry) in 0 < ¢ < Ty .

In other words, the same relation of linear prediction is held in the period 0 < t < Ty, if we
use h(t,7) estimated in 0 < ¢t < T, which is b times expanded in the time scale.

The geometry included in equation (36) is explained by using the self-similarity in the Koch
curve. In the Koch curve the curve spread in two-dimensional direction, we find b pieces of basic
pattern if we expand the abscissa by a times . Since we have no enough space to explain the
prediction method, please see[16][17][37]-[39].

It is approved to take the range of prediction 77 < t < Ty comparable to the observation
period 0 < t < T7.

5.2 Estimating mono-fractal counterpart

Salient property of mono-fractal time series exists in small number of parameters for reproduc-
tions. Even though no universal framework for characterizing the spectrum of mono-fractal time
series, we find that measured spectra are roughly of the following form over several frequency
decades.

S(w) =c*w™, y=5-2D, (37)

where D and o2 are the mono-fractal dimension and variance of the time series, respectively. We
only need these two parameters for reproduction and prediction of time series as is described in
pervious section.

It is demonstrated that orthonormal Wavelet basis expansions in terms of collections of uncor-
related wavelet coefficients lead us to much simpler formula for fractality measure [16][17][37]-[40].
Assuming that the time series is represented by using the orthogonal Wavelet transform.

a(t) =) alyr(t). (38)

o= [ attera (39)
where ¥ (t) is defined by using the scale and shift transform of the basic function ¢(¢). The
numbers n, m mean the indices of the scale and shift transform (dilation and transform), respec-
tively. Then, we obtain following relation for coeflicient z] derived from the characteristics of
the Wavelet function.

var(z!") = 0?27, (40)

By taking the logarithm of equation (40), we have a linear regression of log[var(z]'")] with respect
to the index m. Then, theoretically we have

log[var(z]")] = 20 — ymlog 2. (41)

If we adopt a linear regression to the logarithm of variance log[var(z)] calculated from the time
series, then we can estimate mono-fractal dimension D and variance o2.

The salient property, however, is not direct applicable to the multi-fractal time series where
we need various parameters for reproducing time series. Fortunately, in almost all cases in our
simulation studies, the spectrum of multi-fractal time series is seem to be resemble to that of
mono-fractal time series. The curve log[var(z!")] along m obtained from multi-fractal time series
still follows smooth decay from m = 0 to the maximum index of m.

Then, it would appear reasonable to neglect the deviation of log[var(z*)] from a regression
line so that we can estimate approximated parameters (D and o) of corresponding mono-fractal.
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For simplicity, we depict a straight regression line on the data log[var(z]")] obtained from the
original time series to get parameters of mono-fractal counterparts[27]-[30].

5.3 Simulation results

In this section, we present simulation results for feature extraction based on the validity and
functionality of prediction (smoothing) of mono-fractal counterparts corresponding the original
multi-fractal time series. Since our main interest exists in finding the features of multi-fractal
time series in the time domain, then we skip the process to compare and validate the results of
feature extraction using obtainable results by other conventional methods.

Figure 7, 8 and 9 show examples of feature extraction for artificial stock price of Case 1, Case
5 and Case 6, respectively by depicting original time series, prediction and mean square error of
detected features. These figures consist of two parts. In the upper part, the original time series
is depicted by the solid line, and the prediction is depicted by the dashed line. In the lower part
of figures, the mean square error corresponding to detected features is depicted by the solid line.
In these figures, the left vertical axis denotes the scale for the original and predicted stock prices,
and the scale for the square error of detected features.

There are a variety of characteristics of artificially generated stock prices in each simulation
scenarios considered in studies, then extracted features may be affected by the time series them-
selves. A kind of categorization of time series may lead us to a comprehensive investigation. As
approved in the recognition of real world stock prices, it is helpful to categorize generated stock
prices by distinguishing the ranges of prices, fluctuations (whether various changes of prices are
observed), and trends (whether monotonic increase of decrease of prices like salient regression
lines are observed). Then, artificially generated stock prices are categorized into following three
groups.

Group V: Various changes of patterns

In Case 1 and Case 2, we see relatively large range of prices, and also various changes of
patterns. Then, these prices are seemed to be resemble to real stock prices. Especially, in Case
1 there are many fluctuation and changes in prices.

Group M: Monotonic trend and small changes

In Case 3,4 and 5, we find dominant increasing or decreasing trends on the all region of time
axis. Then, even though there are various and small-sized changes in a short period of time,
these fluctuation are not regarded to be dominating whole of stock prices.

Group S: Small range and small-sized variations

In Case 6, there are many changes (fluctuations) of prices but they are small-sized, and prices
move upward and then downward in a limited range. Moreover, we find no dominant trends.

Even though there exist still others which cannot be addressed so directly, but characteristics
above are representative and dominant in these groups. Then, we summarize the result of feature
description in the time domain along the categorization of these groups. In Group V, there are
many feature points where a kind of small spikes are observed. At the same time, we see several
time points where relatively large spikes are found, but the total number of feature points are
not large. By examining the original time series, it is found that these feature correspond to
rapid changes of prices in a short time period.

In Group M, there are many feature points with small spikes having similar amplitude, and
these time points are relatively dense. At the same time, we observe relatively small number
of large spikes. Originally, the time series of Group M have dominant and monotonic trends in
prices, and then it is imagined that the time series is hard to be approximated by a mono-fractal
time series. As a result, the approximation error reveals as a large spike. These phenomena
correspond to large jumps of real stock prices under stagnated trades. These fluctuations and
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Figure 7: An example of stock price of Case 1: Group V (original, prediction and detected)

jumps are also characterized in conventional works as typical shapes of stock prices exhibiting
multi-fractality.

In Group S, there are few time points of features with large square of errors, and small number
of features with large amplitude are observed. The fact reflects that the approximated mono-
fractal time series is very resemble to the original multi-fractal time series. It is also found in the
analysis of 7(¢) and D(h) for Case 6 where the time series is considered to bear multi-fractality,
however, they deviate from strict multi-fracatility.

5.4 Estimation of agents’ behavior using Discriminant Analysis

We can see various characteristics of multi-fractality for each cases of composition of agents in
artificial stock market through 7(¢q), D(h) and other features obtained from prediction for mono-
fractal time series which is the counterpart of multi-fractal time series. Then, it is possible to
estimate composition of dominant agents based on the analysis of features obtained from results
such as 7(¢), D(h). As is shown in Fig.1, our final purpose of the method is the estimation of
composition of agents who are seemed to be major members of stock market and to contribute to
generate stock prices. If we can formalize the estimation of the composition of dominant agents
(traders) in the market by the multi-fractality analysis of the stock price, then it helps us to
improve studies in real market for further investments.

In the following, we use conventional Multi-variate Discriminant Analysis (MDA) by employ-
ing statistical package to identify classes. The inputs (discriminant variables) for the MDA are
composed of following observations. So as to clarify the definition of these variables, the outlines
of definitions are depicted in Figure 10.

(1) value of h = hy where D(h) reaches its maximum (p).

(2) spread of D(h) by defining dy, dy for which D(hg — dy) = D(ho + d3) = 0.5

(3) statistics (histogram having 4 same ranges) of spikes observed in extracted features (pre-
diction error) obtained by fitting mono-fractal counter parts to the original multi-fractal time
series.
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Figure 8: An example of stock price of Case 5: Group M (original, prediction and detected)

Table 5: Result of classification by MDA for Case 1 through 6.

Casel | Case2 | Case3 | Cased | Caseb | Caseb
Case 1 1.0 0 0 0 0 0
Case 2 0 0.90 0 0 0.05 0.05
Case 3 0.1 0 0.9 0 0 0
Case 4 0.1 0 0 0.9 0 0
Case 5 0.2 0 0 0 0.80 0
Case 5 0 0 0.05 0 0 0.95

We simply prepare 20 samples of generated time series for each group (cases) under the same
conditions of simulation studies, and we obtain 120 samples as a whole. And we use leave-one-
out cross-validation ,that is, a discrimination function is created by 119 samples in 120 samples
by considering the variable described in the above as an input, and it applies using the one
remaining samples as test data. This is applied to all 120 samples.

Table 5 shows the result of the classification (recognition) by the MDA for Case 1 through 6
by showing the rate of recognition. Vertical and the horizontal column correspond to the original
cases (classes) and estimated cases, and the number in each lattice means the rate of recognition.
As is seen from the result, we can identify the cases of composition of agents at the rate about
90.8%. The fact means that the estimation of more accurate composition of agents dominating
the market may be possible by using the method proposed by the paper.
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Figure 9: An example of stock price of Case 6: Group S (original, prediction and detected)

6 Conclusion

This paper treated the multi-fractality analysis of time series in artificial stock market gener-
ated by multi-agent systems based on the GP and its applications. We assumed five types of
agents partly preferring forecast equations or forecast rules to support their decision making,
and another type agents with random behavior. We defined six cases by changing the compo-
sition of agents. Then, the time series of artificial stock price revealed as a multi-fractal signal
for these cases. By applying prediction method for mono-fractal time series, the features of the
multi-fractal time series were extracted, and the origin of multi-fractal processes in artificial was
discussed. Then, a backward method was applied to estimate the composition of agents who are
seemed to be major members of stock market by examining the features of multi-fractality for
stock price time series. As a result, the effect agents of each type on stock prices was compre-
hensively discussed using 7(¢) and D(h) which are common tools to investigate multi-fractality.
Different from conventional works, our work will contribute to figure out the behavior of insti-
tutional investors whose activities are well reflected to stock prices through markets.

For future works, it is necessary to apply the method of the paper to real stock prices. More-
over, the cases where nonsingularity is observed in D(h) and the stock price bearing monotonic
characteristics also will be examined. Further works by the authors will be continued.

Acknowledgement

This research was partly supported by the Japan Society for the Promption of Science under
the grant number (B)19310099, and authors would like to thank the organization.

References

[1] J.Alvarez-Ramirez,M.Cisneros,C.Ibarra-Valdez and A.Soriano: Multifractal Husrt analysis
of crude oil prices. Physica A,312 (2002),651-670.



2]

3]

Multi-fractarity Analysis of Artificial Stock Prices Generated by Multi-agent using Genetic Programming for Learning and its Applications

Feature Points

‘HHHH

Figure 10: Outline of definition of discriminant variables

ho

Arneodo,A.,Bacry,E., and Muzy,J.F.:The thermodynamics of fractals revisited with
wavelets,Physica A,213,(1995),232-275.

W.B.Arthur,J.Holland.,B.LeBaron,R.Palmer and P.Taylor: Asset pricing under endogenous
expectations in an artificial stock market, in Authur,W.B et.al (eds) The Economy as a
Evolving Complex System II, Addison-Wesley, Reading MA pp.15-44,1997.

E.Barcy,J.Delour and J.F.Muzy: Modeling financial time series using multifractal random
walks. Physica A,299 (2001),84-92.

R. A. Brealey, An introduction to risk and return from common stocks, Addison-Wesley,
1986. 1989.5

L. B. Brooker, D. E. Goldberg and J. H. Holland: Classifier system and genetic algorithm.
Artificial Intelligence , 40 (1989), 235-282.

L. Calvet and A. Fisher: Forecasting multifractal volatility. Journal of Econometrics, 115
(2001), 27-58.

S. H. Chen and C. H. Yeh: Evolving traders and the business school with genetic program-
ming: A new architecture of the agent-based artificial stock market. Journal of Economic
Dynamic and Control, 25 (2001), 363-393.

X. Chen and S. Tokinaga: Approximation of chaotic dynamics for input pricing at service
facilities based on the GP and the control of chaos. IEICE Trans.Fundamentals, E85—A
(2002), 2107-2117.

X. Chen and S. Tokinaga: Synthesis of multi-agent systems based on the co-evolutionary
Genetic Programming and its applications to the analysis of artificial market. IEICE
Trans. Fundamentals, J86—A (2003), 1038-1048.

X. Chen and S. Tokinaga: Multi-agent-based modeling of artificial stock markets by using
the co-evolutionary GP approach. Journal of Operations Research Society of Japan , 47
(2004), 163-181.



[12]

(13]

[14]

[15]

[16]

[17]

[18]

(19]

[20]

21]

[22]

23]

24]

[25]

[26]

afn

& W B BTE B4

J. D. Farmer and S. Joshi: The price dynamics of common trading strategies. Journal of
Economic Behavior & Organization, 49 (2002), 149-171.

A. L. Goldberger, L. A. n. Amaral, L. Glass, J. M. Hausdorff, P. C. Ivanov, R. G. Mark, J.
E. Moody, C. K. Peng and H. E. Stanley: PhysioBank, PhysioToolkit, and PhysioNet: Com-
ponents of a New Research Resource for Complex Physiologic Signals. Circulation 101(23):
€215-e220 http://www.physionet.org/physiotools/multifractal /

S. J. Grossman and J. Stiglitz: On the impossibility of informationally efficiency markets.
American Economic Review, 70 (1980), 393—408.

J. H. Holland and J. H. Miller: Artificial adaptive agents in economic theory, Learning and
Adaptive Economic Behavior, 81 (1992), 365-370.

Y. Ikeda and S. Tokinaga: An estimation method for fractal surfaces by using scale expansion
and its application(in Japanese). IEICE Trans. Fundamentals, J81-A (1998), 1127-1133.

Y. Ikeda and S. Tokinaga: Evaluation of stock option prices by using the prediction of fractal
time-series (in Japanese). Journal of Operations Research Society of Japan, 42 (1999), 18-31.

Y. Ikeda and S. Tokinaga: Approximation of chaotic dynamics by using smaller number
of data based upon the genetic programming. IEICE Trans.Fundamentals, E83—A (2000),
1599-1607.

Y. Ikeda and S. Tokinaga: Controlling the chaotic dynamics by using approximated system
equations obtained by the genetic programming. IEICE Trans. Fundamentals, E84—A (2001),
2118-2127.

Y. Ikeda and S. Tokinaga: Synthesis of multi-agent systems based on the co-evolutionary
Genetic Programming by considering social learning and its applications to the analysis of
artificial stock market. Journal of the Japan Society for Management Information, Vol.12,
No.3, (2003), 17-35.

Y. TIkeda and S. Tokinaga: Chaoticity and fractality analysis of an artificial stock market
by the multi-agent systems based on the co-evolutionary Genetic Programming. IFICE
Trans. Fundamentals, E87-A (2004), 2387-2394.

Y. Ikeda, X. Chen and S. Tokinaga: Analysis of chaotic behavior of input pricing realized
by the multi-agents systems based on the Co-evolutionary Genetic Programming and its
applications (in Japanese). IEICE Trans. Fundamentals, J89—A (2006), 298-307.

Y. Ikeda and S. Tokinaga: On the multifractal processes of stock prices in artificial markets
consisting of multi-agents with GP-learning. Technical Report of IEICE , CAS2005-118
(2006), 7-12.

Y. Ikeda and S. Tokinaga: Analysis of multi-fractal signals in artificial markets generated
by multi-agents using the Genetic Programming for learning and its applications. Proc. of
NOLTA2006 (2006), 135-138.

M. J. Keith and M. C. Martin:Genetic programming in C++: Implementation issues. in
(ed) K. E. Kinnerar, Jr., Advance in Genetic Programming (MIT Press, 1994).

J. R. Koza: Genetic Programming, MIT Press, 1992.



[27]

(28]

[29]

[30]

[31]

[32]

Multi-fractarity Analysis of Artificial Stock Prices Generated by Multi-agent using Genetic Programming for Learning and its Applications

J. R. Koza: Genetic Programming I1: Automatic Discovery of Reusable Programs, MIT Press,
1994.

B. LeBaron, W. B. Arthur and R. Palmer: Time series properties of an artificial stock
market, Journal of Economic Dynamic and Control, Vol.23, pp.1487-1526, 1999.

B. LeBaron: Agent-based computational finance:suggested readings and earlyresearch. Jour-
nal of Economic Dynamic & Control, 24 (2002), 679-702.

J. Lu, S. Tokinaga and Y. Ikeda: Explanatory rule extraction based on the trained neural
network and the genetic programming. Journal of Operations Research Society of Japan, 43
(2006), 66-82.

J. Lu and S. Tokinaga: An Aggregated Approximation for modeling of time series based
on the Genetic Programming and its application to Clustering (in Japanese). IEICE
Trans. Fundamentals, J88—A (2005), 803-813.

J. Lu and S. Tokinaga: Two-stage recognition method of time series based on symbolic rep-
resentation of categories obtained by segment classification using the Genetic Programming
and its applications to prediction(in Japanese). IEICE Trans. Fundamentals, J88—A (2005),
803-813.

J. F. Muzy, E. Barcy and A. Arneodo: Multifractal formalisum for fractal signals:The
structure function approach versus the wavelet-transform modulus-maxima method. Physi-
cal Review E (1993), 47 875-884.

R. Pastor-Satorras: Multifractal properties of power-law time sequences: Application to rice
piles. Physical Review E, 56 (1997), 5284-5294.

R. H. Riedi, M. S. Crouse, V. J. Ribeiro and R. G. Baraniuk: A multifractal wavelet model
with application to network traffic. IEEE Trans. IT, 45 (1999), 992-1018.

N. S. P. Tay and S. C. Linn: Fuzzy inductive reasoning, expectation formation and the
behavior of security prices. Journal of Economic Dynamic and Control, 25 (201), 321-361.

S. Tokinaga: Fractal theory and its applications to the prediction of economic time series.
Communications of the Operations Research Society of Japan, 46 (2001), 640-645.

S. Tokinaga, H. Moriyasu, A. Miyazaki and T. Shimazu: A forecasting method for time series
bearing fractal geometry and its application(in Japanese). IEICE Trans. Fundamentals, J79—
A (1996), 1793-1800.

S. Tokinaga, H. Moriyasu, A. Miyazaki and T. Shimazu: A forecasting method for time series
bearing fractal geometry and its application(in Japanese). IEICE Trans. Fundamentals, J79—
A (1996), 1793-1800.

G. W. Wornell and A. V. Oppenheim: Estimation of fractal signals from noisy measurement
using Wavelets. IEEE Trans. Signal Processing, 40 (1992), 611-623.

M. Yababe and S. Tokinaga: Applying the genetic Programming to modeling of diffusion
processes by using the CNN and its applications to the synchronization (in Japanese). IEICE
Trans. Fundamentals , J85—A (2002), 548-559.

Shozo Tokinaga [Professor, Graduate School of Economics, Kyushu University]
Seigo Matsuno [Associate Professor, Department of Business Administration,

Ube National College Technology)



