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Abstract

The linearized problem for the compressible Navier-Stokes equation around a
given constant state is considered in a periodic layer of Rn with n ≥ 2, and
spectral properties of the linearized semigroup is investigated. It is shown
that the linearized operator generates a C0-semigroup in L2 over the periodic
layer and the time-asymptotic leading part of the semigroup is given by a C0-
semigroup generated by an n− 1 dimensional elliptic operator with constant
coefficients that are determined by solutions of a Stokes system over the basic
period domain.

1 Introduction

This paper is concerned with the initial boundary value problem for the following
compressible Navier-Stokes equation in a periodic layer Ω:

∂tρ+ div (ρu) = 0,

ρ(∂tv + v · ∇v)− µ∆v − (µ+ µ′)∇div v +∇(P (ρ)) = 0,

v|∂Ω = 0,

(ρ, v)|t=0 = (ρ0, v0).

(1.1)

Here ρ = ρ(x, t) and v = ⊤(v1(x, t), · · · , vn(x, t)) denote the unknown density and
velocity, respectively, at time t and position x; Ω is a periodic layer defined by:

Ω :=
{
x = (x′, xn) ; x

′ ∈ Rn−1, ω1(x
′) < xn < ω2(x

′)
}
,
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where ω1 and ω2 are nonconstant and smooth functions of x′ satisfying the period-
icity conditions ωj(x

′ + 2π
αk
e′
k) = ωj(x

′) (j = 1, 2 ; k = 1, · · · , n− 1) with constants

αk > 0 and e′
k = ⊤(0, · · · ,

k

1, · · · , 0) ∈ Rn−1; µ and µ′ are the viscosity coefficients
that are constants satisfying

µ > 0,
2

n
µ+ µ′ ≥ 0;

P is the pressure for which we assume that P is a smooth function of ρ that satisfies

P ′(ρ∗) > 0

for a given positive constant ρ∗. Here and in what follows, ⊤· stands for the trans-
position.

We are interested in the large time behavior of solutions to (1.1) around the
constant equilibrium us = ⊤(ρ∗, 0). To establish a detailed asymptotic description
of large time behavior, we here study spectral properties of the linearized semigroup
for (1.1) around us as a first step of the analysis.

The system of equations for the perturbation is written as

∂tϕ+ γdivw = f 0,

∂tw − ν∆w − ν̃∇divw + γ∇ϕ = f,

w|∂Ω = 0,

u|t=0 = u0 = (ϕ0, w0).

(1.2)

Here u = ⊤(ϕ,w) with ϕ = 1
ρ∗
(ρ−ρ∗) and w = 1

γ
v denotes the (scaled) perturbation

from us =
⊤(ρ∗, 0); ν, ν̃ and γ are parameters given by

ν =
µ

ρ∗
, ν̃ =

µ+ µ′

ρ∗
, γ =

√
P ′(ρ∗);

and f 0 and f denote the nonlinearities

f 0 = −γdiv (ϕw),

f =
γϕ

ρ∗(1 + ϕ)
{ν∆w + ν̃∇divw}−γ2w·∇w−

{
1

ρ∗(1 + ϕ)
∇(P (ρ∗(1 + ϕ)))− P ′(ρ∗)

ρ∗
∇ϕ
}
.

Large time behavior of solutions to the compressible Navier-Stokes equations has
been extensively studied since the pioneering works by Matsumura-Nishida [16, 17,
18]. See, e.g., [5, 10, 11, 13, 14, 15, 20] and references therein. In [7, 8, 9], the
stability of us was studied when the underlying domain is an n dimensional infinite
layer:

Rn−1 × (0, 1) = {x = (x′, xn) ; x
′ = (x1, · · · , xn−1) ∈ Rn−1, 0 < xn < 1}.

It was proved that us is stable under sufficiently small initial perturbations and the
L2 norm of the perturbation decays in the order t−

n−1
4 as t → ∞. Furthermore, it
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was shown that the perturbation behaves like a solution of an n − 1 dimensional
heat equation. In this paper we extend the results on the asymptotic behavior of
the linearized semigroup for (1.2) obtained in [7, 8] to the case of the periodic layer
Ω. We will prove that the linearized semigroup behaves as t→ ∞ like a semigroup
generated by an n−1 dimensional elliptic operator with constant coefficients. More
precisely, we consider the linear problem

∂tu+ Lu = 0, u|t=0 = u0, (1.3)

where u = ⊤(ϕ,w) is the unknown; u0 =
⊤(ϕ0, w0) is a given initial datum; and L is

the operator of the form

L =

(
0 γdiv

γ∇ −ν∆− ν̃∇div

)
.

It is shown that −L generates a contraction C0-semigroup e−tL on L2(Ω) and e−tL

is decomposed as
e−tL = e−tLΠ+ e−tL(I − Π).

Here Π is a bounded projection on L2(Ω); and it holds that

∥e−tLΠu0∥L2(Ω) ≤ C(1 + t)−
n−1
4 ∥u0∥L1(Ω),

∥e−tL(I − Π)u0∥L2(Ω) ≤ Ce−βt∥u0∥L2(Ω)

and
∥e−tLΠu0 − [e−tHσ0]u

(0)∥L2(Ω) ≤ Ct−
n−1
4

− 1
2∥u0∥L1(Ω), (1.4)

where β is a positive constant; and e−tH is a C0-semigroup in L2(Rn−1) generated
by the operator −H:

Hσ = −γ
2

ν

n−1∑
i,j=1

aij∂xi
∂xj

σ.

Here (aij) is a positive definite symmetric matrix with constant components; and σ0
and u(0) are given by

σ0 =
|Q|
|Ωper|

∫ ω2(x′)

ω1(x′)

ϕ0(x
′, xn)dxn, u(0) = ⊤(1, 0),

where Ωper is the basic period domain given by

Ωper = {x = (x′, xn) ; x
′ ∈ Q, ω1(x

′) < xn < ω2(x
′)}

with the basic period cell Q =
∏n−1

j=1 [−
π
αj
, π
αj
). Here and in what follows, for a

bounded domain D, |D| denotes the volume of D. We note that the matrix (aij) is
given by

aij =
1

|Ωper|
(∇w(i),∇w(j))L2(Ωper),

3



where w(k) (k = 1, · · · , n− 1) are functions Q-periodic in x′ satisfying the following
Stokes system: 

divw(k) = 0,

−∆w(k) +∇ϕ(k) = ek,

w(k)|xn=ω1(x′),ω2(x′) = 0

for some ϕ(k) = ϕ(k)(x′, xn) being Q-periodic in x′. Here ek = ⊤(0, · · · ,
k

1, · · · , 0) ∈
Rn.

We will prove our results as follows. In the case of infinite layers analyzed in
[7, 8, 9], the spectral properties of the linearized semigroup were investigated by
using the Fourier transform in x′ ∈ Rn−1. In the case of the periodic layer Ω, the
Fourier transform does not work well any longer, instead, we employ the Bloch wave
decomposition which transforms the linearized problem (1.3) on Ω to the problem
∂tu+ Lη′u = 0 on Ωper under Q-periodic boundary conditions in x′. Here Lη′ is the
linear operator obtained by replacing the partial derivatives ∂xj

(j = 1, · · · , n − 1)
in L by ∂xj

+ iηj with parameter η′ = (η1, · · · , ηn−1) ∈ Q∗, where Q∗ is the dual cell

defined by Q∗ =
∏n−1

j=1 [−
αj

2
,
αj

2
).

When |η′| ≪ 1, the operator Lη′ can be regarded as a perturbation of L0; and
the analytic perturbation theory is applied to show that

ρ(−Lη′) ⊃ {Reλ > −β0} \ {λη′} for some β0 > 0,

σ(−Lη′) ∩ {|λ| < β0
2
} = {λη′},

where

λη′ = −γ
2

ν

n−1∑
i,j=1

aijηiηj +O(|η′|3)

as η′ → 0. It then follows that this part of e−tL behaves as in (1.4). As for the
remaining part of η′, we establish some estimates for a modified Stokes system (see
section 4.3); and based on the established estimates we prove by an energy method
that if |η′| ≥ r0 (η′ ∈ Q∗), then

ρ(−Lη′) ⊃ {Reλ ≥ −β1} for some β1 > 0,

and hence, this part of e−tL decays exponentially. We note that we consider the
linearized operator L as an operator on L2 as in [6], which is in contrast to [7, 8]
where the underlying space for the linearized operator isH1×L2. The L2 setting will
be useful for the stability analysis of stationary flows with nonzero velocity fields.

This paper is organized as follows. In section 2 we introduce some notations,
function spaces and state some properties of the Bloch wave decomposition. In
section 3 we state the main result of this paper. The proof of the main result is
given in sections 4–5. In section 6 we give an outline of the proof of a lemma used
in section 4.3.
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2 Preliminaries

In this section we introduce the notations, function spaces and operators which will
be used in this paper.

For a domain D and 1 ≤ p ≤ ∞, the Lebesgue space over D is denoted by Lp(D)
and its norm is denoted by ∥ · ∥Lp(D). The symbol W l,p(D) stands for the l th order
Lp Sobolev space and its norm is denoted by ∥ · ∥W l,p(D). When p = 2, we denote
W l,2(D) by H l(D) and its norm is denoted by∥ · ∥Hl(D). We denote by C l

0(D) the
set of all C l function whose support is compact in D. The completion of C l

0(D) in
W l,p(D) is denoted by W l,p

0 (D). In particular, we write W l,2
0 (D) as H l

0(D).
We simply denote by Lp(D) the set of all vector fields W = ⊤(w1, · · · , wn) on D

whose components wj (j = 1, · · · , n) belong to Lp(D) and the norm is also denoted
by ∥ · ∥Lp(D) if no confusion will occur. Similarly, the symbols W l,p(D) and H l(D)
are used for vector fields.

For u = ⊤(ϕ,w) with ϕ ∈ W k,p(D) and w = ⊤(w1, · · · , wn) ∈ W l,q(D), we define
the norm ∥u∥Wk,p(D)×W l,q(D) by

∥u∥Wk,p(D)×W l,q(D) = ∥ϕ∥Wk,p(D) + ∥w∥W l,q(D).

We define the sets Q, Q∗, Ωper, Σj,± (j = 1, · · · , n− 1) and Σn as follows:

Q :=
∏n−1

i=1

[
− π

αi
, π
αi

)
, Q∗ :=

∏n−1
i=1

[
−αi

2
, αi

2

)
,

Ωper := {x = (x′, xn) ; x
′ ∈ Q, ω1(x

′) < xn < ω2(x
′)} ,

Σj,± :=
{
x ∈ Ωper ; xj = ± π

αj

}
,

Σn := {x ∈ ∂Ω ; x′ ∈ Q, xn = ωj(x
′) j = 1, 2} .

In the case D = Ωper, we simply write Lp(Ωper) as L
p, and likewise, W k,p(Ωper),

H l(Ωper) as W k,p, H l, respectively. Similarly, the norms are also abbreviated to
∥ · ∥Hl , ∥ · ∥Wk,p , and, in particular, we write ∥ · ∥Lp(Ωper) as ∥ · ∥p.

The inner product of L2(D) is defined by

(f, g)L2(D) =

∫
D

f(x)g(x)dx, f, g ∈ L2(D).

When D = Ωper, we abbreviate it to (f, g). The dual space of H1
0 (D) is denoted

by H−1(D), and the pairing between H−1(D) and H1
0 (D) is written as [·, ·]. For

f ∈ L2(Ωper), its mean value over Ωper is denoted by < f >, i.e.,

< f >= (f, 1) =
1

|Ωper|

∫
Ωper

f(x)dx.

We often write x ∈ Ω as x = ⊤(x′, xn), x
′ = ⊤(x1, · · · , xn−1) ∈ Rn−1. The partial

derivatives of a function u are denoted by ∂xj
, ∂xj

∂xk
, and so on.

We will work in spaces of functions Q-periodic in x′, and so, we introduce the
function spaces L2

per(Ωper), C
∞
per(Ωper), C

∞
0,per(Ωper), H

l
per(Ωper), H

l
0,per(Ωper) that are

defined by

L2
per(Ωper) = {u|Ωper ; u ∈ L2

loc(Ω), u(x
′+2π

αj
e′
j, xn) = u(x′, xn), (x

′, xn) ∈ Ω, 1 ≤ j ≤ n−1},
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C∞
per(Ωper) = {u|Ωper

; u ∈ C∞(Ω), u(x′+2π
αj
e′
j, xn) = u(x′, xn), (x

′, xn) ∈ Ω, 1 ≤ j ≤ n−1},

C∞
0,per(Ωper) = {u ∈ C∞

per(Ωper) ; u = 0 in a neighborhood of ∂Ω},

H l
per(Ωper) = the closure of C∞

per(Ωper) in H
l(Ωper),

H l
0,per(Ωper) = the closure of C∞

0,per(Ωper) in H
l(Ωper).

Observe that L2
per(Ωper) can be identified with L2(Ωper), and that

H l
per(Ωper) = {u ∈ H l(Ωper) ; ∂

β
x′u|Σj,− = ∂βx′u|Σj,+

1 ≤ j ≤ n− 1, |β| ≤ l − 1},

H1
0,per(Ωper) = {u ∈ H1

per(Ωper) ; u|Σn = 0}.

We also set
L2
∗,per(Ωper) = {f ∈ L2

per(Ωper) ; < f >= 0}

and
H l

∗,per(Ωper) = H l
per(Ωper) ∩ L2

∗,per(Ωper).

For η′ ∈ Rn−1 we denote
η̃′ = ⊤(η′, 0) ∈ Rn,

and ∇η′ is defined by
∇η′ = ∇+ iη̃′.

We further introduce the following notations

∇′
η′ = ∇′ + iη′, ∆η′ = ∇η′ · ∇η′ , div η′w = ∇η′ · w − i < η̃′ · w > .

Here ∇′ denotes the gradient with respect to x′ = (x1, · · · , xn−1) ∈ Rn−1. We note
that ∆η′ = ∇′

η′ · ∇′
η′ + ∂2xn

.

We next introduce some operators. We denote by P0 and P̃ the following (n +
1)× (n+ 1) diagonal matrices:

P0 = diag (1, 0, · · · , 0), P̃ = diag (0, 1, · · · , 1).

Note that P0 u = ⊤(ϕ, 0) and P̃u = ⊤(0, w) for u = ⊤(ϕ,w) with w = ⊤(w1, · · · , wn).

We denote the kernel and range of an operatorA by KerA andR(A), respectively.

For a function f = f(x′) (x′ ∈ Rn−1), we denote its Fourier transform by f̂ or
F [f ]:

f̂(ξ′) = F [f ](ξ′) =

∫
Rn−1

f(x′)e−iξ′·x′
dx′ (ξ′ ∈ Rn−1).

The inverse Fourier transform F−1 is defined by

F−1[f ](x′) = (2π)−(n−1)

∫
Rn−1

f(ξ′)eiξ
′·x′
dξ′ (x′ ∈ Rn−1).

We next introduce the Bloch wave decomposition. Let S(Rn−1) denote the
Schwartz space on Rn−1.
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Definition 2.1. We define the operator T by (Tφ)(x′, η′) (x′ ∈ Rn−1, η′ ∈ Rn−1)
for φ ∈ S(Rn−1), where

(Tφ)(x′, η′)

=
1

(2π)
n−1
2 |Q| 12

∑
(k1,··· ,kn−1)∈Zn−1

φ̂(η′ +
n−1∑
j=1

kjαje
′
j) e

i
∑n−1

j=1 kjαjxj

=
1

|Q∗| 12
∑

(l1,··· ,ln−1)∈Zn−1

φ(x′ +
n−1∑
j=1

lj
2π

αj

e′
j) e

−iη′·(x′+
∑n−1

j=1 lj
2π
αj
e′

j).

(2.1)

We also define the operator U as follows. For a function φ(x′, η′) ∈ C∞(Rn−1×Rn−1)
such that φ(x′, η′) is Q-periodic in x′ and φ(x′, η′)eiη

′·x′
is Q∗-periodic in η′, we define

(Uφ)(x′) (x′ ∈ Rn−1) by

(Uφ)(x′) =
1

|Q∗| 12

∫
Q∗
φ(η′, x′)eiη

′·x′
dη′. (2.2)

Note that φ(x, η′ + αje
′
j) = φ(x′, η′)e−iαje′

j ·x′
(j = 1, · · · , n− 1).

The operators T and U have the following properties. See, e.g., [21] for the
details.

Proposition 2.2. (i) (Tφ)(x′, η′) is Q-periodic in x′ and (Tφ)(x′, η′)eiη
′·x′

is Q∗-
periodic in η′.

(ii) T is uniquely extended to an isometric operator from L2(Rn−1) to L2(Q∗;L2(Q)).

(iii) U is the inverse operator of T .

(iv) Let ψ be Q-periodic in x′. Then it holds that T (ψφ) = ψT (φ).

(v) T (∂xj
φ) = (∂xj

+iηj)Tφ (j = 1, · · · , n−1) and T defines an isomorphism from
H l(Rn−1) to L2(Q∗;H l

per(Q)). (Here H l
per(Q) denotes the space of Q-periodic

functions belonging to H l(Q), as in the case of H l
per(Ωper).)

We next consider T as an operator acting on functions in H l(Ω). Let y = Φ(x)
be the following transformation{

y′ = x′,

yn = 1
ω2(x′)−ω1(x′)

(xn − ω1(x
′)).

Then Φ is a diffeomorphism from Ω to Rn−1 × (0, 1) and Φ transforms Q-periodic
functions on Ω to those on Rn−1 × (0, 1). We denote the inverse transform of Φ by
Ψ and we define the operators Φ∗ and Ψ∗ by [Φ∗u](x) = u(Φ(x)) and [Ψ∗u](y) =
u(Ψ(y)), respectively. Then Φ∗ is an isomorphism from H l(Ω) to H l(Rn−1 × (0, 1)),
and likewise, from H l

per(Ωper) to H
l
per(Q× (0, 1)), where H l

per(Q× (0, 1)) denotes the
space of Q-periodic functions belonging to H l(Q× (0, 1)).
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It is not difficult to see that Proposition 2.2 holds with H l(Rn−1) replaced by
H l(Rn−1 × (0, 1)), and likewise, with H l

per(Q) replaced by H l
per(Q× (0, 1)). It then

follows that Φ∗TΨ∗ is an isomorphism from H l(Ω) to L2(Q∗;H l
per(Ωper)). Using the

second expression of T in Definition 2.1 and the periodicity of ωj (j = 1, 2), one can
see that Φ∗TΨ∗u = Tu for functions u on Ω. Therefore, we will write Φ∗TΨ∗u as
Tu if no confusion will occur.

3 Main results

In this section we state the main results of this paper.

Let us consider the following linear problem

∂tu+ Lu = 0, u = ⊤(ϕ,w). (3.1)

Here L is the operator on L2(Ω) given by

L =

(
0 γdiv

γ∇ −ν∆− ν̃∇div

)
(3.2)

with domain

D(L) =
{
u = ⊤(ϕ,w) ∈ L2(Ω);w ∈ H1

0 (Ω), Lu ∈ L2(Ω)
}
. (3.3)

Our main issue is to investigate the spectral properties of the semigroup gener-
ated by −L. We first state that it generates a contraction semigroup.

Theorem 3.1. The operator −L generates a contraction C0-semigroup e−tL on
L2(Ω) and it holds that

∥e−tLu0∥L2(Ω) ≤ ∥u0∥L2(Ω) (u0 ∈ L2(Ω)).

The semigroup e−tL has the following properties.

Theorem 3.2. There is a bounded projection Π : L2(Ω) → L2(Ω) satisfying ΠL ⊂
LΠ and Πe−tL = e−tLΠ, and there hold the following estimates uniformly for t > 0
and u0 ∈ L1(Ω) ∩ L2(Ω):

(i) ∥e−tLΠu0∥L2(Ω) ≤ C(1 + t)−
n−1
4 ∥u0∥L1(Ω),

(ii) ∥e−tL(I − Π)u0∥L2(Ω) ≤ Ce−βt∥u0∥L2(Ω),

(iii) ∥e−tLΠu0 − [e−tHσ0]u
(0)∥L2(Ω) ≤ Ct−

n−1
4

− 1
2∥u0∥L1(Ω).

Here β is a positive constant; e−tH is the C0-semigroup in L2(Rn−1) generated by
the operator −H defined by

Hσ = −γ
2

ν

n−1∑
i,j=1

aij∂xi
∂xj

σ (σ ∈ D(H))
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with domain D(H) = H2(Rn−1); and σ0 and u(0) are given as follows:

σ0 =
|Q|
|Ωper|

∫ ω2(x′)

ω1(x′)

ϕ0(x
′, xn)dxn, u(0) = ⊤(1, 0).

Here aij satisfies that

n−1∑
i,j=1

aijξiξj ≥ κ0|ξ′|2 (ξ′ = (ξ1, · · · , ξn−1) ∈ Rn−1)

with a constant κ0 > 0 independent of ξ′. Furthermore, aij is given as aij =
(∇w(i),∇w(j))L2(Ωper) with ⊤(ϕ(k), w(k)) (k = 1, · · · , n − 1) satisfying the following
Stokes system in Ωper:

divw(k) = 0,

−∆w(k) +∇ϕ(k) = e′
k,

w(k)|Σj,+
= w(k)|Σj,− , ϕ

(k)|Σj,+
= ϕ(k)|Σj,− , w

(k)|Σn = 0, < ϕ(k) >= 0

(3.4)

for some ϕ(k).

The proof of Theorem 3.2 will be given in sections 4 and 5. To prove Theorem 3.2,
we will consider the resolvent problem λu+ Lη′u = f on L2

per(Ωper) with parameter
η′ ∈ Q∗. In the case of |η′| ≤ r0 for some small r0 > 0, we regard Lη′ as a perturbation
of L0 and apply the analytic perturbation theory to study the spectrum of −Lη′ .
For η′ ∈ Q∗ with |η′| ≥ r0, we establish estimates for a modified Stokes system
and apply an energy method. Based on the analysis for −Lη′ , we give a proof of
Theorem 3.2.

4 Spectral properties of Lη′

In this section we investigate spectral properties of Lη′ .

4.1 Formulation

Let us consider the resolvent problem for (3.1)

(λ+ L)u = f, u ∈ D(L). (4.1)

Here λ ∈ C is a resolvent parameter.
Applying Ψ∗ to (4.1), we have

(λ+Ψ∗L)Ψ∗u = Ψ∗f in Rn−1 × (0, 1). (4.2)

Here Ψ∗L is the differential operator of the form

Ψ∗L =

(
0

∑n
j=1 l

j
12(y

′, yn)∂yj∑n
j=1 l

j
21(y

′, yn)∂yj
∑n

j,k=1 l
j,k
22 (y

′, yn)∂yj∂yk +
∑n

j=1 l
j
22(y

′, yn)∂yj

)

9



with some ljpq and l
jk
pq (p, q = 1, 2) being Q-periodic in y′. We next apply T to (4.2).

It then follows from Proposition 2.2 (i), (iv) and (v) that (4.2) is transformed into
the following problem on Q× (0, 1):

(λ+Ψ∗Lη′)TΨ
∗u = TΨ∗f (η′ ∈ Q∗) (4.3)

with Q-periodic boundary condition in y′. Applying Φ∗ to (4.3) we arrive at

(λ+ Lη′)Tu = Tf on Ωper (4.4)

with the dual parameter η′ ∈ Q∗, where Lη′ is the operator on L
2
per(Ωper) of the form

Lη′ :=

(
0 γ⊤∇η′

γ∇η′ −ν∆η′ − ν̃∇η′
⊤∇η′

)

with domain D(Lη′)

D(Lη′) = {u = ⊤(ϕ,w) ∈ L2
per(Ωper) ; Lη′u ∈ L2

per(Ωper), w ∈ H1
0,per(Ωper)}.

It is not difficult to see that D(Lη′) = D(L0) for all η
′ ∈ Q∗ and that Lη′ is a closed

operator on L2
per(Ωper).

If λ ∈ ρ(−Lη′), then, by (4.4), u is written as

u = U(λ+ Lη′)
−1Tf.

Therefore, to investigate the resolvent of −L, we will consider the problem for −Lη′ :

λu+ Lη′u = f, u ∈ D(L0). (4.5)

Before going further, we also introduce the adjoint operator of Lη′ . We define
the operator L∗

η′ by

Lη′ :=

(
0 −γ⊤∇η′

−γ∇η′ −ν∆η′ − ν̃∇η′
⊤∇η′

)

with domain

D(L∗
η′) = {u = ⊤(ϕ,w) ∈ L2

per(Ωper) ; L
∗
η′u ∈ L2

per(Ωper), w ∈ H1
0,per(Ωper)}.

One can see that D(L∗
η′) = D(L∗

0) for all η
′ ∈ Q∗ and that L∗

η′ is the adjoint operator
of Lη′ .

4.2 The case |η′| ≤ r0

In this subsection we consider (4.5) with |η′| ≤ r0 for some sufficiently small r0 > 0.
It is convenient to write Lη′ in the form

Lη′ := L0 +
n−1∑
j=1

ηjL
(1)
j +

n−1∑
j,k=1

ηjηkL
(2)
jk ,

10



where

L0 :=

(
0 γdiv

γ∇ −ν∆− ν̃∇div

)
,

L
(1)
j := i

(
0 γ⊤ej

γej −2ν∂xj
− ν̃ejdiv − ν̃∇(⊤ej)

)
,

L
(2)
jk :=

(
0 0

0 −νδjk − ν̃eT
j ek

)
.

We also set

Mη′ =
n−1∑
j=1

ηjL
(1)
j +

n−1∑
j,k=1

ηjηkL
(2)
jk ,

namely,

Mη′ :=

(
0 iγ⊤η̃′

iγη̃′ ν(|η′|2 − 2iη̃′ · ∇)− iν̃η̃′⊤(∇+ iη̃′)− iν̃∇⊤η̃′

)
.

Similarly, we write L∗
η′ as

L∗
η′ := L∗

0 +
n−1∑
j=1

ηjL
(1)∗
j +

n−1∑
j,k=1

ηjηkL
(2)∗
jk ,

where

L∗
0 :=

(
0 −γdiv

−γ∇ −ν∆− ν̃∇div

)
,

L
(1)∗
j := i

(
0 −γ⊤ej

−γej −2ν∂xj
− ν̃ejdiv − ν̃∇(⊤ej)

)
,

L
(2)∗
jk :=

(
0 0

0 −νδjk − ν̃eT
j ek

)
.

We begin with the resolvent estimates for the case η′ = 0 which implies the
generation of a contraction semigroup e−tL0 .

In what follows we write
X = L2

per(Ωper)

for simplicity of notation.

Proposition 4.1. It holds that {λ; Reλ > 0} ⊂ ρ(−L0), and if Reλ > 0, then

∥(λ+ L0)
−1f∥2 ≤

1

Reλ
∥f∥2,

∥∇P̃ (λ+ L0)
−1f∥2 ≤

1

(νReλ)
1
2

∥f∥2.

The same conclusion also holds for the adjoint operator L∗
0.

11



Proof. Let Reλ > 0. Since

Re((λ+ L0)u, u) = ν∥∇w∥22 + ν̃∥divw∥22 +Reλ∥u∥22, (4.6)

we see that if (λ+ L0)u = 0, then u = 0, and so, λ+ L0 is injective when Reλ > 0.
Observe also that if Reλ > 0, then

∥u∥2 ≤
1

Reλ
∥(λ+ L0)u∥2, (4.7)

∥∇w∥2 ≤
1

(νReλ)
1
2

∥(λ+ L0)u∥2. (4.8)

It follows from (4.7) that R(λ + L0) is a closed subspace of X. We note that these
inequalities also holds with L0 replaced by L∗

0. Let v ∈ R(λ + L0)
⊥. Then, since

((λ+L0)u, v) = 0 for all u ∈ D(L0), we see that v ∈ D(L∗
0) and (λ+L∗

0)v = 0. This,
together with (4.7) with L0 replaced by L∗

0, implies that v = 0. We thus conclude
that R(λ+ L0) = X and, hence, λ+ L0 is surjective. This completes the proof. □

The following estimates show that −Lη′ also generates a contraction semigroup.

Proposition 4.2. It holds that {λ : Reλ > 0} ⊂ ρ(−Lη′) and the following esti-
mates hold for Reλ > 0:

∥(λ+ Lη′)
−1f∥2 ≤

1

Reλ
∥f∥2,

∥∇P̃ (λ+ Lη′)
−1f∥2 ≤

C

(ν)
1
2

(
1

(Reλ)
1
2

+
1

Reλ

)
∥f∥2.

The same conclusion also holds for the adjoint operator L∗
η′

Proof. We have

Re((λ+ Lη′)u, u) = Reλ∥u∥22 + ν∥∇η′w∥22 + ν̃∥∇η′ · w∥22.

It then follows that if Reλ > 0, then

∥u∥2 ≤
1

Reλ
∥(λ+ Lη′)u∥2.

We also have
Re((λ+ Lη′)u, u) ≥ ν∥∇w∥22 + (Reλ− C)∥u∥22

for a constant C > 0 uniformly for η′ ∈ Q∗. Therefore, we deduce that

ν∥∇w∥22 ≤ ∥(λ+ Lη′)u∥2∥u∥2 + C∥u∥22 ≤ C

(
1

Reλ
+

1

(Reλ)2

)
∥(λ+ Lη′)u∥22,

which gives

∥∇w∥2 ≤
C

ν
1
2

(
1

(Reλ)
1
2

+
1

Reλ

)
∥(λ+ Lη′)u∥2.

As in the proof of Proposition 4.1, one can now obtain the desired results. This
completes the proof. □
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We next show that λ = 0 is a simple eigenvalue of −L0.

Proposition 4.3. There exists a constant β0 > 0 such that ρ(−L0) ⊃ {λ; Reλ >
−β0, λ ̸= 0}. Furthermore, λ = 0 is a simple eigenvalue of −L0 and it holds that
for λ satisfying Reλ > −β0 and λ ̸= 0,

(λ+ L0)
−1f =

1

λ
Π(0)f + Sλ(I − Π(0))f,

and there hold the following estimates uniformly for λ satisfying Reλ > −β0:

∥Sλ(I − Π(0))f∥2 ≤
C

Reλ+ β0
∥f∥2,

∥∇P̃Sλ(I − Π(0))f∥2 ≤
C

(Reλ+ β0)
1
2

∥f∥2.

Here Π(0) is the eigenprojection for the eigenvalue λ = 0 defined by

Π(0)u = (u, u(0)∗)u(0) =< ϕ > u(0), u = ⊤(ϕ,w),

where

u(0) = ⊤(1, 0), u(0)∗ =
1

|Ωper|
⊤(1, 0),

and Sλ is the operator defined by

Sλ := [(I − Π(0))(λ+ L0)(I − Π(0))]−1.

The same conclusion also holds with L0, Sλ, Π(0) replaced by L∗
0, S

∗
λ, Π(0)∗,

respectively where

S∗
λ := [(I − Π(0)∗)(λ+ L∗

0)(I − Π(0)∗)]−1, Π(0)∗u = (u, u(0))u(0)∗.

We give a proof of Proposition 4.3 only for L0 since the case of L
∗
0 can be treated

similarly. To prove Proposition 4.3, we prepare the following two lemmas.

Lemma 4.4. It holds that KerL0 = span{u(0)} and Π(0) is a bounded projection on
L2(Ωper) that satisfies Π(0)X = KerL0, Π

(0)L0 ⊂ L0Π
(0) = 0.

Proof of Lemma4.4. Let L0u = 0. It then follows from (4.6) that ∇w = 0,
and hence, ∇ϕ = 0. This implies that w = 0 and ϕ = constant. This shows
that KerL0 = span{u(0)}. Clearly, Π(0) is a bounded projection onto KerL0. For
u = ⊤(ϕ,w), we have L0Π

(0)u = ⊤(0, γ∇ < ϕ >) = 0. On the other hand, for
u ∈ D(L0), we have Π(0)L0u =< γdivw > u(0) = 0. We thus conclude that
Π(0)L0 ⊂ LΠ(0) = 0. This completes the proof. □

Lemma 4.5. It holds that ρ(−L0|(I−Π(0))X) ⊃ {λ; Reλ > −β0} with a positive
constant β0, and the estimates for Sλ in Proposition 4.3 hold true.
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Proof of Lemma 4.5. In the proof we set A = −L0|(I−Π(0))X . Let us consider
λu+Au = f . It is known that there exists a bounded linear operator B : L2

∗(Ωper) →
H1

0,per(Ωper) such that for any g ∈ L2
∗,per(Ωper) it holds that divBg = g and ∥∇Bg∥2 ≤

c0∥g∥2 for some constant c0 > 0. See [1, 2, 4] for the details.
We follow the argument in [6]. We introduce a new inner product

((u1, u2)) = (u1, u2)− δ{(w1,Bϕ2) + (Bϕ1, w2)}

for uj = ⊤(ϕj, wj) (j = 1, 2) with a constant δ > 0 to be determined later. This
pairing ((u1, u2)) defines an inner product on L2

∗,per(Ωper) × L2(Ωper) if δ > 0 is
sufficiently small. In fact, using the Poincaré inequality: ∥w∥2 ≤ c1∥∇w∥2, we see
that there exists a constant C > 0 such that

((u, u)) = ∥u∥22 − δ{(w,Bϕ) + (Bϕ,w)} ≥ (1− δc0c1)∥u∥22

and ((u, u)) ≤ (1 + δc0c1)∥u∥22. Therefore, ((·, ·)) is an inner product and the norm
defined by ((·, ·)) is equivalent to the norm ∥ · ∥2 if δ > 0 is taken sufficiently small.

We denote Au = ⊤(A1u,A2u). Note that
∫
Ωper

A1udx = 0. We see that

((Au, u)) = (L0u, u)− δ{(A2u,Bϕ) + (B(A1u), w)}

≥ ν∥∇w∥22 + ν̃∥divw∥22 +
1

2
δγ∥ϕ∥22 − δ{(ν

2c20
γ

+ γc21)∥∇w∥22 +
ν̃2

γ
∥divw∥22}

≥ 1

2
ν∥∇w∥22 +

1

2
ν̃∥divw∥22 +

1

2
δγ∥ϕ∥22

if δ > 0 is taken suitably small. Therefore, we have

(1−δc0c1)Reλ∥u∥2+
1

2
ν∥∇w∥22+

1

2
ν̃∥divw∥22+

1

2
δγ∥ϕ∥22 ≤ Re((f, u)) ≤ C∥f∥2∥u∥2.

Setting β0 =
1

2(1−δc0c1)
min{δγ, ν

2c21
} we find by the Poincaré inequality that

(Reλ+ β0)∥u∥2 ≤ C∥f∥2.

We thus conclude that if Reλ+ β0 > 0, then

∥u∥ ≤ C

Reλ+ β0
∥f∥2

and

∥∇w∥2 ≤
C

(Reλ+ β0)
1
2

∥f∥2.

These estimates, together with Proposition 4.1, yield the desired results. This com-
pletes the proof. □

We are now in a position to prove Proposition 4.3.
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Proof of Proposition 4.3. We set X0 = Π(0)X and X1 = (I−Π(0))X. By Lemma
4.4, we have X = X0 ⊕ X1 and ρ(−L0|X0) = {λ : λ ̸= 0}. This, together with
Lemma 4.5, shows that {λ ; Reλ > −β0, λ ̸= 0} ⊂ ρ(−L0),

(λ+ L0)
−1f =

1

λ
Π(0)f + Sλ(I − Π(0))f,

and Sλ satisfies the desired estimates. This completes the proof. □

We next derive the resolvent estimates for −Lη′ with |η′| ≤ r0.

Theorem 4.6. There exists a constant r0 > 0 such that if η′ ∈ Q∗ satisfies |η′| ≤ r0,
then

Σ1 := {λ ; Reλ ≥ −3

4
β0} ∩ {λ ; |λ| ≥ β0

2
} ⊂ ρ(−Lη′),

and the following estimates hold uniformly for λ ∈ Σ1:

∥(λ+ Lη′)
−1f∥2 ≤

C

Reλ+ β0
∥f∥2,

∥∇P̃ (λ+ Lη′)
−1f∥2 ≤

C

(Reλ+ β0)
1
2

∥f∥2.

The same conclusion also holds with Lη′ replaced by L∗
η′.

Proof. Let λ ∈ Σ1. By Proposition 4.3, we see that

∥(λ+ L0)
−1f∥2 + ∥∇P̃ (λ+ L0)

−1f∥2 ≤ C1∥f∥2 (4.9)

uniformly for λ ∈ Σ1. Here C1 is a constant depending only on β0. It then follows
that

∥L(1)
j u∥2 ≤ C{∥w∥2 + ∥∇w∥2 + ∥ϕ∥2} ≤ CC1∥(λ+ L0)u∥2, (4.10)

∥L(2)
jk u∥2 ≤ C∥w∥2 ≤ CC1∥(λ+ L0)u∥2 (4.11)

uniformly for λ ∈ Σ1 and u ∈ D(L0). We thus obtain

∥Mη′(λ+ L0)
−1f∥2 ≤ CC1|η′|∥f∥2 (λ ∈ Σ1)

uniformly for λ ∈ Σ1 and f ∈ X. Therefore, if r0 > 0 is a constant satisfying
r0 <

1
CC1

, then λ ∈ ρ(−Lη′) for |η′| ≤ r0 and it holds that

(λ+ Lη′)
−1 = (λ+ L0)

−1

∞∑
N=0

(−1)N(Mη′(λ+ L0)
−1)N ,

∥(λ+ Lη′)
−1f∥2 ≤

C

Reλ+ β0

∞∑
N=0

∥Mη′(λ+ L0)
−1∥N∥f∥2 ≤

C

Reλ+ β0
∥f∥2.

Similarly, ∥∇P̃ (λ+ Lη′)
−1f∥2 can be estimated as

∥∇P̃ (λ+ Lη′)
−1f∥2 ≤

C

(Reλ+ β0)
1
2

∥f∥2.

The case of L∗
η′ can be proved similarly. This completes the proof. □
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We now show that σ(−Lη′)∩ {λ; |λ| < β0

2
} consists of a simple eigenvalue whose

real part is negative and of order O(|η′|2) as η′ → 0.

Theorem 4.7. There exists a constant r0 > 0 such that if |η′| ≤ r0, then σ(−Lη′)∩
{λ; |λ| < β0

2
} = {λη′}. Here λη′ is a simple eigenvalue that satisfies

λη′ = −γ
2

ν
κ(η′) +O(|η′|3) (η′ → 0),

where

κ(η′) =
n−1∑
j,k=1

ajkηjηk, ajk =
1

|Ωper|
(∇w(j)

1 ,∇w(k)
1 ).

Here w
(k)
1 (k = 1, · · · , n − 1) satisfy the Stokes system (3.4) for some ϕ

(k)
1 ; and

κ(η′) satisfies κ(η′) ≥ κ0|η′|2 with some constant κ0 > 0. As a result, it holds that

Reλη′ ≤ −κ0

2
γ2

ν
|η′|2.

Remark 4.8. A similar result holds for L∗
η′ with simple eigenvalue λ∗η′ = λη′ .

Remark 4.9. Since λη′ → 0 as η′ → 0, we see that for any β ∈ (0, β0

2
), there exists

a constant r = r(β) > 0 such that if |η′| ≤ r(β), then |λη′| < β and {λ ; Reλ ≥
−3

4
β0} ∩ {λ ; |λ| ≥ β} ⊂ ρ(−Lη′).

Proof of Theorem 4.7. In view of Proposition 4.3, (4.10) and (4.11), we can apply
the analytic perturbation theory to see that σ(−Lη′) ∩ {λ; |λ| < β0

2
} consists of a

simple eigenvalue, say λη′ , for sufficiently small η′, and that λη′ is expanded as

λη′ =
n−1∑
j=0

λ
(1)
j ηj +

n−1∑
j,k=0

λ
(2)
jk ηjηk +O(|η′|3)

with
λ
(1)
j = −(L

(1)
j u(0), u(0)∗),

λ
(2)
jk = −1

2
((L

(2)
jk + L

(2)
kj )u

(0), u(0)∗) +
1

2
((L

(1)
j SL

(1)
k + L

(1)
k SL

(1)
j )u(0), u(0)∗).

Here S = Sλ|λ=0. See, e.g., [12, Chap. VII], [21, Chap. XII].

Let us compute λ
(1)
j . Since (u, u(0)∗) =< ϕ > for u = ⊤(ϕ,w) and L

(1)
j u(0) =

⊤(0, iγej), we have λ
(1)
j = 0.

As for λ
(2)
jk , since L

(2)
jk u

(0) = 0, we have < L
(2)
jk u

(0) >= 0. Furthermore,

1

2
((L

(1)
j SL

(1)
k + L

(1)
j SL

(1)
k )u(0), u(0)∗) = (L

(1)
j SL

(1)
k u(0), u(0)∗) =< L

(1)
j SL

(1)
k u(0) > .

We compute < L
(1)
j SL

(1)
k u(0) >. Set u1 =

⊤(ϕ1, w1) = SL
(1)
k u0. Then u1 is a solution

of
L0u1 = (I − Π(0))L

(1)
k u(0) = L

(1)
k u(0), < ϕ1 >= 0,
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that is, 
γdivw1 = 0,

−ν∆w1 + γ∇ϕ1 = iγek,

w1|Σj,+
= w1|Σj,− , ϕ1|Σj,+

= ϕ1|Σj,− , w1|Σn = 0, < ϕ1 >= 0.

Lemma 4.5 implies that for each k = 1, · · · , n − 1, there exists a unique solution
ũ
(k)
1 = ⊤(ϕ̃

(k)
1 , w̃

(k)
1 ) of this system. Let u

(k)
1 = ⊤(ϕ

(k)
1 , w

(k)
1 ) be a unique solution of

(3.4) Then ϕ̃
(k)
1 = iϕ

(k)
1 and w̃

(k)
1 = iγ

ν
w

(k)
1 , and hence,

L
(1)
j SL

(1)
k u(0) = i

(
0 γ⊤ej

γej −2ν∂xj
− ν̃ejdiv − ν̃∇(⊤ej)

)ϕ̃(k)
1

w̃
(k)
1


= −γ

2

ν

(
ej · w(k)

1

∗

)
.

It then follows that

λ
(2)
jk =< L

(1)
j SL

(1)
k u(0) >= −γ

2

ν
< ej · w(k)

1 >

= −γ
2

ν
< (−∆w

(j)
1 +∇ϕ(j)

1 ) · w(k)
1 >= −γ

2

ν

1

|Ωper|
(∇w(j)

1 ,∇w(k)
1 ).

Let us show that the matrix ((∇w(j)
1 ,∇w(k)

1 )) is positive definite. We first ob-

serve that w
(1)
1 , · · · , w(n−1)

1 are linearly independent. In fact, suppose that w1 =∑n−1
j=1 cjw

(j)
1 = 0. Then ϕ1 =

∑n−1
j=1 cjϕ

(j)
1 satisfies ∇ϕ1 =

∑n−1
j=1 cjej. Therefore, ϕ1

is written as ϕ1 = c +
∑n−1

j=1 cjxj with some constant c. Since ϕ1 is Q-periodic in
x′ = (x1, · · · , xn−1) and < ϕ1 >= 0, we see that c = c1 = · · · = cn−1 = 0. We thus

conclude that w
(1)
1 , · · · , w(n−1)

1 are linearly independent.

Set V = span {w(1)
1 , · · · , w(n−1)

1 } and take an orthonormal basis {f1, · · · , fn−1}
of V as a subspace of H1

0,per(Ωper) with respect to the inner product (w, v)H1
0,per

=

(∇w,∇v). Then w
(m)
1 is written as w

(m)
1 =

∑n−1
k=1 bmkfk for m = 1, · · · , n − 1, and

thus, (w
(1)
1 , · · · , w(n−1)

1 ) = (f1, · · · , fn−1)B, where B = (b1, · · · , bn−1) with bm =
⊤(bm1, · · · , bmn−1). It then follows that b1, · · · , bn−1 are linearly independent. We

have (∇w(m)
1 ,∇w(l)

1 ) = (w
(m)
1 , w

(l)
1 )H1

0,per
= (BB∗)ml. Since BB∗ is positive definite,

so is the matrix ((∇w(m)
1 ,∇w(l)

1 )). It then follows that there is a constant κ0 > 0
such that

n−1∑
j,k=1

λ
(2)
jk ηjηk = −

n−1∑
j,k=1

γ2

ν

1

|Ωper|
(∇w(j)

1 ,∇w(k)
1 )ηjηk = −γ

2

ν
|B∗η′|2 ≤ −κ0

γ2

ν
|η′|2

for all η′ ∈ Rn−1. Therefore, there exists r0 > 0 such that if |η′| ≤ r0 , then

Reλη′ ≤ −κ0

2
γ2

ν
|η′|2. This completes the proof. □
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Let Πη′ be the eigenprojection for the eigenvalue λη′ . Since Πη′e
−tL
η′ = eλη′ tΠη′ ,

we have the following estimate.

Theorem 4.10. If |η′| ≤ r0, then it holds that

∥e−tLη′u0 − eλη′ tΠη′u0∥2 ≤ Ce−
β0
2
t∥u0∥2.

Theorem 4.10 follows from Theorems 4.6 and 4.7. See, e.g., [3, Chap. V, Theorem
1.11], [23].

We close this subsection with the estimates for the eigenprojections Πη′ and Π∗
η′

for the eigenvalues λη′ and λ
∗
η′(= λη′) of −Lη′ and −L∗

η′ , respectively.

Theorem 4.11. For any nonnegative integer k, there exists a constant rk > 0 such
that the following estimates hold uniformly for |η′| ≤ rk:

(i) ∥Πη′u∥Hk ≤ C∥u∥1.

(ii) ∥(Πη′ − Π(0))u∥Hk ≤ C|η′|∥u∥1.

The same conclusion holds with Πη′ replaced by Π∗
η′.

Proof. By Theorem 4.6 we have

Πη′ =
1

2πi

∫
|λ|=β0

2

(λ+ Lη′)
−1dλ, Π∗

η′ =
1

2πi

∫
|λ|=β0

2

(λ+ L∗
η′)

−1dλ.

Furthermore, uη′ = Πη′u
(0) and u∗η′ = Π∗

η′u
(0)∗ are eigenfunctions of −Lη′ and −L∗

η′

for the eigenvalues λη′ and λ
∗
η′ = λη′ , respectively; and it holds that

Πη′u =
(u, u∗η′)

(uη′ , u∗η′)
uη′ .

Note that uη′|η′=0 = Π(0)u(0) = u(0) and u∗η′|η′=0 = Π(0)∗u(0)∗ = u(0)∗.
In view of (4.9), (4.10) and (4.11), we see that (λ+ Lη′)

−1 is expanded as

(λ+ Lη′)
−1 = (λ+ L0)

−1 − (λ+ L0)
−1

n−1∑
j=1

ηjL
(1)
j (λ+ L0)

−1 +Rη′(λ)

and Rη′(λ) is estimated as

∥Rη′(λ)f∥2 ≤ C|η′|2∥f∥2, ∥∇P̃Rη′(λ)f∥2 ≤ C|η′|2∥f∥2
uniformly for |η′| ≤ r0 and |λ| = β0

2
. We write uη′ as

uη′ = u(0) +
1

2πi

∫
|λ|=β0

2

(
−

n−1∑
j=1

ηj(λ+ L0)
−1L

(1)
j (λ+ L0)

−1u(0)
)
dλ

+
1

2πi

∫
|λ|=β0

2

Rη′(λ)u
(0) dλ

=: u(0) +
n−1∑
j=1

ηju
(1)
j + u(2).
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Using (4.9), (4.10) and (4.11), we have

∥u(1)j ∥2 + ∥∇P̃u(1)j ∥2 ≤ C, ∥u(2)∥2 + ∥∇P̃u(2)∥2 ≤ C|η′|2.

Similarly, we have the expression for u∗η′ :

u∗η′ = u(0)∗ +
n−1∑
j=1

ηju
(1)∗
j + u(2)∗,

with estimates

∥u(1)∗j ∥2 + ∥∇P̃u(1)∗j ∥2 ≤ C, ∥u(2)∗∥2 + ∥∇P̃u(2)∗∥2 ≤ C|η′|2.

It then follows that

(uη′ , u
∗
η′) = (u(0), u(0)∗) + (uη′ − u(0), u∗η′) + (u(0), u∗η′ − u(0)∗) ≥ 1− C|η′| ≥ 1

2

for |η′| ≤ r0 with r0 > 0 replaced by a smaller one if necessary.
If we could have the estimates ∥u∗η′∥∞ ≤ C and ∥∂αxuη′∥2 ≤ C, then it would hold

that ∥∂αxΠη′u∥2 ≤ C∥u∥1∥u∗η′∥∞∥∂αxuη′∥2 ≤ C∥u∥1. So we will deduce the estimates

for uη′ and u
∗
η′ , in other words, for (λ+ Lη′)

−1u(0) and (λ+ L∗
η′)

−1u(0).

In the remaining we consider only (λ + Lη′)
−1u(0) since (λ + L∗

η′)
−1u(0) can be

estimated similarly. We also observe that the integral path of uη′ =
1

2πi

∫
|λ|=β0

2

(λ +

Lη′)
−1u(0)dλ can be deformed into {|λ| = β} ⊂ ρ(−Lη′).
We claim the following

Proposition 4.12. Let m be a nonnegative integer. Then there exist constants
rm > 0 and βm > 0 such that if |η′| ≤ rm and βm

2
≤ |λ| ≤ βm, then it holds that

(λ+ Lη′)
−1u(0) ∈ Hm+1

per (Ωper)× (Hm+2
per ∩H1

0,per)(Ωper) and

∥(λ+ Lη′)
−1u(0)∥Hm+1×Hm+2 ≤ C

uniformly for |η′| ≤ rm and βm

2
≤ |λ| ≤ βm.

To prove Proposition 4.12, we employ the following lemma.

Lemma 4.13. Let m be a nonnegative integer. Then there exists β̃m > 0 such that
if |λ| ≤ β̃m, then it holds that Sλf ∈ Hm+1

∗,per(Ωper) × (Hm+2
per ∩ H1

0,per)(Ωper) for any
f ∈ Hm+1

∗,per(Ωper)×Hm
per(Ωper) and Sλf satisfies the estimates

∥Sλf∥Hm+1×Hm+2 ≤ C∥f∥Hm+1×Hm .

uniformly for λ with |λ| ≤ β̃m.

The proof of Lemma 4.13 will be given later.

Proof of Proposition 4.12. We prove by induction on m. We set u := (λ +
Lη′)

−1u(0). By Theorems 4.6 and 4.7, we have ∥u∥L2×H1 ≤ C uniformly for |η′| ≤ r0
and β0

4
≤ |λ| ≤ β0

2
with r0 replaced by a smaller one if necessary.
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We write (λ + L0)u = u(0) −Mη′u and decompose u = ⊤(ϕ,w) as u =< ϕ >
u(0) + u1, where Π(0)u =< ϕ > u(0) and u1 = (I − Π(0))u. Then we have

< ϕ >=
1

λ
{1− iγ < η′ · w′ >},

(λ+ L0)u1 = −(Mη′u1+ < ϕ > Mη′u
(0) − Π(0)Mη′u).

It then follows that

| < ϕ > | = 1

|λ|
{1 + γr0∥w∥2} ≤ C (4.12)

uniformly for |η′| ≤ r0 and β1

2
≤ |λ| ≤ β1 with β1 > 0 to be determined later. On

the other hand, we have

∥Mη′u1+ < ϕ > Mη′u
(0) − Π(0)Mη′u∥H1×L2 ≤ C∥u∥L2×H1 ≤ C

uniformly for |η′| ≤ r0 and β0

4
≤ |λ| ≤ β0

2
. It then follows from Remark 4.9 and

Lemma 4.13 that, with a suitable choice of r1 > 0 and β1 > 0, the estimate
∥u1∥H1×H2 ≤ C holds uniformly for |η′| ≤ r1 and β1

2
≤ |λ| ≤ β1. This, together

with (4.12), proves Proposition 4.12 for m = 0.
Assume that the proposition holds for m = k. We will show that the proposition

holds for m = k + 1. By the inductive assumption, we have

∥Mη′u1+ < ϕ > Mη′u
(0) − Π(0)Mη′u∥Hk+2×Hk+1 ≤ C∥u∥Hk+1×Hk+2 ≤ C

uniformly for |η′| ≤ rk and βk

2
≤ |λ| ≤ βk. It then follows from Remark 4.9 and

Lemma 4.13 that the estimate ∥u1∥Hk+2×Hk+3 ≤ C holds uniformly for |η′| ≤ rk+1

and βk+1

2
≤ |λ| ≤ βk+1. Combining this with (4.12), we conclude that the proposition

holds for m = k + 1. This completes the proof. □

We continue the proof of Theorem 4.11. Let m be a nonnegative integer. By
Proposition 4.12, we see that

(λ+ Lη′)
−1u(0) ∈ Hm+1

per (Ωper)× (Hm+2
per ∩H1

0,per)(Ωper),

∥(λ+ Lη′)
−1u(0)∥Hm+1×Hm+2 ≤ C

uniformly for |η′| ≤ rm and |λ| = βm. Deforming the integral path into {|λ| = βm},
we thus deduce that uη′ ∈ Hm+1

per (Ωper)×Hm+2
per (Ωper) and

∥uη′∥Hm+1×Hm+2 =

∥∥∥∥∥ 1

2πi

∫
|λ|=βm

2

(λ+ Lη′)
−1u(0)dλ

∥∥∥∥∥
Hm+1×Hm+2

≤ C. (4.13)

Taking m = k − 1, we have ∥∂αxuη′∥L2 ≤ C for |α| ≤ k and |η′| ≤ rk. Similarly we
can obtain (4.13) with uη′ replaced by u∗η′ , and hence, ∥u∗η′∥∞ ≤ C∥u∗η′∥H[n2 ]+1 ≤ C.
It then follows that

∥∂αxΠη′u∥2 ≤ C∥u∗η′∥∞∥∂αxuη′∥2∥u∥1 ≤ C∥u∥1.

This proves (i).
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Let us next consider (ii). We write Πη′u− Π(0)u as

Πη′u− Π(0)u =
( 1

(uη′ , u∗η′)
− 1
)
(u, u(0)∗)u(0) +

1

(uη′ , u∗η′)

{
(u, u∗η′)uη′ − (u, u(0)∗)u(0)

}
=: I1 + I2.

As for I1, we have

|(uη′ , u∗η′)− 1| = |(uη′ − u(0), u∗η′) + (u(0), u∗η′ − u(0)∗)|

≤ C{∥uη′ − u(0)∥2 + ∥u∗η′ − u(0)∗∥2}.

Since

uη′ − u(0) =
1

2πi

∫
|λ|=βm

(λ+ L0)
−1

∞∑
N=1

(−1)N [Mη′(λ+ L0)
−1]Nu(0) dλ,

we have ∥uη′ − u(0)∥2 ≤ C|η′|, and likewise, ∥u∗η′ − u(0)∗∥2 ≤ C|η′|. We thus obtain

∥∂αx I1∥2 ≤ C|η′||(u, u(0)∗)∂αxu(0)| ≤ C|η′|∥u∥1∥u(0)∗∥∞∥∂αxu(0)∥∞ ≤ C|η′|∥u∥1.

As for I2, we have

∥∂αx
{
(u, u∗η′)uη′ − (u, u(0)∗)u(0)

}
∥2

= ∥(u, u∗η′ − u(0)∗)∂αxuη′ + (u, u(0)∗)∂αx (uη′ − u(0))∥2

≤ ∥u∥1∥u∗η′ − u(0)∗∥∞∥∂αxuη′∥2 + ∥u∥1∥u(0)∗∥∞∥∂αx (uη′ − u(0))∥2

≤ C∥u∥1{∥u∗η′ − u(0)∗∥
H[n2 ]+1∥uη′∥Hk + ∥uη′ − u(0)∥Hk}.

Since ∥Mη′u∥Hk×Hk−1 ≤ C|η′|∥u∥Hk−1×Hk , with the aid of Lemma 4.13, we see that

∥(λ+ L0)
−1[Mη′(λ+ L0)

−1]Nu(0)∥Hk×Hk ≤ (C|η′|)N

uniformly for |η′| ≤ rk and |λ| = βk. Taking rk > 0 smaller if necessary, we obtain
∥uη′ − u(0)∥Hk ≤ C|η′|. Similarly, we can obtain ∥u∗η′ − u(0)∗∥

H[n2 ]+1 ≤ C|η′|. It then
follows that ∥∂αx I2∥2 ≤ C|η′|∥u∥1 for |α| ≤ k. We thus conclude that

∥∂αx (Πη′ − Π(0))u∥2 ≤ C|η′|∥u∥1

for |α| ≤ k. This completes the proof. □

In the remaining of this subsection we give a proof of Lemma 4.13.

Proof of Lemma 4.13. We set ǔ = Sλf . Then

L0ǔ = f − λǔ,

which is regarded as an inhomogeneous Stokes system. This can be solved for ǔ
if |λ| is suitably small. In fact, let f ∈ Hm+1

∗,per(Ωper) × Hm
per(Ωper). Then, for each
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v̌ ∈ Hm+1
∗,per(Ωper) × (Hm+2

per ∩ H1
0,per)(Ωper), there uniquely exists ǔ ∈ Hm+1

∗,per(Ωper) ×
(Hm+2

per ∩H1
0,per)(Ωper) such that L0ǔ = f − λv̌ and

∥ǔ∥Hm+1×Hm+2 ≤ C|λ|∥v̌∥Hm+1×Hm+2 + C∥f∥Hm+1×Hm .

See, e.g., [22, Chap. III, Theorem 1.5.3]. This estimate shows that the map v̌ 7→ ǔ
is a contraction on Hm+1

∗,per(Ωper)× (Hm+2
per ∩H1

0,per)(Ωper) when |λ| ≤ β̃m with suitably

small β̃m. This completes the proof. □

4.3 The case |η′| ≥ r0

In this subsection we investigate the spectrum of−Lη′ for η
′ ∈ Q∗ satisfying |η′| ≥ r0.

We have already shown in Proposition 4.2 that −Lη′ generates a contraction semi-
group e−tLη′ . We will show that e−tLη′ has an exponential decay estimate uniformly
for η′ ∈ Q∗ with |η′| ≥ r0.

We first introduce an inner product of H1
0,per(Ωper) in terms of ∇η′ .

Proposition 4.14. Let η′ ∈ Q∗. Then (∇η′w,∇η′v) defines an inner product of
H1

0,per(Ωper). Furthermore, ∥∇η′w∥2 is equivalent to ∥w∥H1 for w ∈ H1
0,per(Ωper) and

there holds the estimate

C−1∥w∥H1 ≤ ∥∇η′w∥2 ≤ C∥w∥H1

uniformly for η′ ∈ Q∗ and w ∈ H1
0,per(Ωper).

Proof. It suffices to show that ∥∇η′w∥2 = (∇η′w,∇η′w) is equivalent to ∥w∥H1 for
w ∈ H1

0,per(Ωper). Let w ∈ H1
0,per(Ωper). Then by using the Poincaré inequality, we

see that

∥w∥H1 ≤ C∥∇w∥2 ≤ C ′(∥∇′
η′w∥22 + ∥∂xnw∥22)

1
2 = C ′∥∇η′w∥2 ≤ C ′′∥w∥H1 .

This completes the proof. □

Before going further, we introduce some notations. We define Dη′(w) by

Dη′(w) := ν∥∇η′w∥22 + ν̃∥∇η′ · w∥22
= ν∥∇′

η′w∥22 + ν∥∂xnw∥22 + ν̃∥∇′
η′ · w′∥22 + ν̃∥∂xnw

n∥22.

In what follows we denote the projection I − Π(0) by Π1:

Π1 := I − Π(0).

To study problem (4.5) for η′ ∈ Q∗ with |η′| ≥ r0, we decompose u into its
Π(0)-part and Π1-part in X, namely,

u = σu(0) + u1, (4.14)

where σ = (u, u(0)∗) =< ϕ >∈ C, u(0) = ⊤(1, 0) and u1 = ⊤(ϕ1, w1) ∈ X1. We note
that

< ϕ1 >= 0. (4.15)
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It is easy to see that problem (4.5) is reduced to the following system{
λσ + iγ < η̃′ · w1 >=< f 0 >,

λu1 + Lη′u1 − Π(0)Mη′u1 +Mη′(σu
(0)) = f1,

(4.16)

where σ ∈ C, u1 = ⊤(ϕ1, w1) ∈ D(Lη′) ∩ X1 and f1 = Π1f := ⊤(f 0
1 , f̃1) ∈ X1. We

observe that

Π(0)Mη′u1 = iγ < η̃′ · w1 > u(0), Mη′(σu
(0)) = ⊤(0, iγη̃′σ).

We begin with the following

Proposition 4.15. It holds that

Reλ(|σ|2 + |u1|2) +Dη′(w1) = Re{< f 0 > σ + (f1, u1)}. (4.17)

Proof. Multiplying the first equation of (4.16) by σ, we have

λ|σ|2 + iγ < η̃′ · w1 > σ =< f 0 > σ.

Taking the inner product of the second equation of (4.16) with u1, we have

λ∥u1∥22 + (Lη′u1, u1) + (Mη′(σu
(0)), u1)− (Π(0)Mη′u1, u1) = (f1, u1).

We add these two equations to obtain

λ(|σ|2 + ∥u1∥22) + (Lη′u1, u1) + iγ < η̃′ · w1 > σ

+ (Mη′(σu
(0)), u1)− (Π(0)Mη′u1, u1) =< f (0) > σ + (f1, u1).

Since Re (Lη′u1, u1) = Dη′(w1),

Re {iγ < η̃′ · w1 > σ + (Mη′(σu
(0)), u1)} = Re {2iIm (iγ < η̃′ · w1 > σ)} = 0

and
(Π(0)Mη′u1, u1) = (iγ < η̃′ · w1 >, ϕ1) = iγ < η̃′ · w1 >< ϕ1 >= 0,

we obtain

Reλ(|σ|2 + |u1|2) +Dη′(w1) = Re{< f 0 > σ + (f, u1)}.

This completes the proof. □

For later use, we next derive the estimate for λw1.

Proposition 4.16. It holds that

ReλDη′(w1) + |λ|2∥w1∥22 ≤ C{∥f1∥22 + ∥w1∥22 + | < f 0 > |2 + ∥∇η′w1∥22}. (4.18)
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Proof. We write the second equation of (4.16) as

λϕ1 + γdiv η′w1 = f 0
1 , (4.19)

λw1 − ν∆η′w1 − ν̃∇η′(∇η′ · w1) + γ∇η′ϕ1 + iγση̃′ = f̃1. (4.20)

We take the inner product of (4.20) with λw1. Then the real part of the resulting
equation yields

|λ|2∥w1∥22 +ReλDη′(w1) = Re {γλ(ϕ1,∇η′ · w1)− iλγσ < η̃′ · w1 > +λ(f̃1, w1)}.

The equation (4.19) gives that ϕ = 1
λ
f 0
1 − γ

λ
div η′w1, and hence,

Re |λ|2∥w1∥22 +ReλDη′(w1) = Re
{γλ
λ
(f 0

1 ,∇η′ · w1)−
λ

λ
γ2(div η′w1,∇η′ · w1)

−iλγσ < η̃′ · w1 > +λ(f̃1, w1)
}
.

(4.21)
By the first equation of (4.16), we have σ = 1

λ
< f 0 > − iγ

λ
< η̃′, w1 >. Therefore,

the right-hand side of (4.21) is estimated as

R.H.S. of (4.21)

= Re
{γλ
λ
(f 0

1 ,∇η′ · w1)−
λ

λ
γ2(div η′w1,∇η′ · w1)− iγ

λ

λ
< f 0 >< η̃′ · w1 >

− λ

λ
γ2| < η̃′ · w1 > |2 + λ(f̃1, w1)

}
≤ ϵ|λ|2∥w1∥22 + C{∥∇η′w1∥22 + | < f 0 > |2 + ∥f 0

1∥22 +
1

ϵ
∥f̃1∥22}

for any ϵ > 0, where C is a positive constant independent of ϵ. Taking ϵ suitably
small, we see that

|λ|2∥w1∥22 +ReλDη′(w1) ≤ C1{∥f1∥22 + | < f 0 > |2 + ∥∇η′w1∥22}.

This completes the proof. □
We next derive the coercive estimate for σ.

Proposition 4.17. It holds that

Reλ|σ|2 + c2γ
2

2ν
|η′|2|σ|2 ≤ C{(1 + 1

|η′|2
)| < f 0 > |2 + ∥f̃1∥22 + |λ|2∥w1∥22 +Dη′(w1)},

(4.22)
where c2 is a positive constant independent of γ, ν and η′ ∈ Q∗.

To prove Proposition 4.17, we prepare several lemmas.

Lemma 4.18. Let f 0 ∈ L2
∗,per(Ωper) and let f̃ ∈ H−1

per(Ωper). Then there uniquely
exists ⊤(ϕ,w) ∈ L2

∗,per(Ωper)×H1
0,per(Ωper) satisfying

div η′w = f 0,

−∆η′w +∇η′ϕ = f̃ ,

ϕ|Σj,+
= ϕ|Σj,− , w|Σj,+

= w|Σj,− , w|Σn = 0.

(4.23)

24



Furthermore, it holds that

∥ϕ∥2 + ∥∇η′w∥2 ≤ C{∥f 0∥2 + ∥f̃∥H−1
per(Ωper)

}.

Lemma 4.18 can be proved in a similar manner to the proof of [22, Chap. III,
Theorem 1.4.1]. An outline of the proof of Lemma 4.18 will be given in section 6.

Setting f 0 = 0 and f̃ = ek in Lemma 4.18, we have the following

Lemma 4.19. Let ⊤(ϕ
(1)
1,k,η′ , w

(1)
1,k,η′) ∈ L2

∗,per(Ωper)×H1
0,per(Ωper) be the pair of func-

tions satisfying
div η′w

(1)
1,k,η′ = 0,

−∆η′w
(1)
1,k,η′ +∇η′ϕ

(1)
1,k,η′ = ek,

ϕ1,k,η′|Σj,+
= ϕ1,k,η′ |Σj,− , w

(1)
1,k,η′ |Σj,+

= w
(1)
1,k,η′|Σj,− , w1,k,η′|Σn = 0.

(4.24)

Then there exists a constant C > 0 such that the following inequalities

∥w(1)
1,k,η′∥H1 + ∥ϕ(1)

1,k,η′∥2 ≤ C (k = 1, · · · , n− 1)

hold uniformly for η′ ∈ Q∗ with |η′| ≥ r0.

Lemma 4.20. For each k = 1, · · · , n − 1, let ⊤(ϕ
(1)
1,k,η′ , w

(1)
1,k,η′) ∈ L2

∗,per(Ωper) ×
H1

0,per(Ωper) be the pair of functions satisfying (4.24). Then w
(1)
1,1,η′ , · · · , , w

(1)
1,n−1,η′

are linearly independent.

Proof. Let w := c1w
(1)
1,1,η′ + · · ·+ cn−1w

(1)
1,n−1,η′ = 0. It then follows from (4.24) that

∇η′ϕ̃ =
∑n−1

j=1 cjej. Here ϕ̃ = c1ϕ
(1)
1,1,η′+· · ·+cn−1ϕ

(1)
1,n−1,η′ . Since |η′| ≥ r0, there exists

j such that ηj ̸= 0. For this ηj, since (∂xj
+iηj)ϕ̃ = cj, we have ∂xj

(eiηjxj ϕ̃) = cje
iηjxj .

This implies that there exists a function a(x̌j) (x̌j = (x1, · · · , xj−1, xj+1, · · · , xn−1))
such that

eiηjxj ϕ̃ = a(x̌j) +
cj
iηj

eiηjxj ,

namely,

ϕ̃ = a(x̌j)e
−iηjxj +

cj
iηj

.

Since ϕ̃ is Q-periodic in x′, we see that a(x̌j) is Q-periodic and a(x̌j)e
−i π

αj
ηj

=

a(x̌j)e
i π
αj

ηj
. Since 0 < |ηj| ≤ αj

2
, we have a(x̌j) = 0, and hence, ϕ̃ =

cj
iηj

. But, since

< ϕ̃ >= 0, we have cj = 0, and so ϕ̃ = 0. This implies that Σn−1
j=1 cjej = 0. We thus

conclude that cj = 0 (j = 1, · · · , n− 1). This completes the proof. □

We are now in a position to prove Proposition 4.17.

Proof of Proposition 4.17. We multiply the first equation of (4.16) by σ̄ and
take the real part of the resulting equation to obtain

Reλ|σ|2 +Re{iγ < η̃′ · w1 > σ} = Re {< f 0 > σ}. (4.25)
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Let us estimate Re{iγ < η̃′ · w1 > σ} on the left-hand side of (4.25). To do so, we
decompose w1 in the following way. In (4.19) and (4.20) we decompose ϕ1 and w1

as follows:
ϕ1 = ϕ

(1)
1 + ϕ

(2)
1 , w1 = w

(1)
1 + w

(2)
1 ,

where ⊤(ϕ
(1)
1 , w

(1)
1 ) and ⊤(ϕ

(2)
1 , w

(2)
1 ) satisfy the following systems, respectively:

div η′w
(1)
1 = 0,

−∆η′w
(1)
1 + γ

ν
∇η′ϕ

(1)
1 = − iγσ

ν
η̃′,

ϕ
(1)
1 |Σj,+

= ϕ
(1)
1 |Σj,− , w

(1)
1 |Σj,+

= w
(1)
1 |Σj,− , w

(1)
1 |Σn = 0,

< ϕ
(1)
1 >= 0

(4.26)

and 

γdiv η′w
(2)
1 = f 0

1 − λϕ1,

−ν∆η′w
(2)
1 + γ∇η′ϕ

(2)
1 = f̃1 − λw1 + ν̃∇η′(∇η′ · w1),

ϕ
(2)
1 |Σj,+

= ϕ
(2)
1 |Σj,− , w

(2)
1 |Σj,+

= w
(2)
1 |Σj,− , w

(1)
1 |Σn = 0,

< ϕ
(2)
1 >= 0.

(4.27)

Let us estimate i < η̃′ ·w(1)
1 >. We see from (4.26) that ⊤(ϕ

(1)
1 , w

(1)
1 ) is written asϕ(1)

1

w
(1)
1

 = − iγ
ν
σ

n−1∑
k=1

ηk

 ν
γ
ϕ
(1)
1,k,η′

w
(1)
1,k,η′

 .

Since < ϕ
(1)
1,k,η′ >= 0, we see that 0 = i < η̃′ · w(1)

1,k,η′ >< ϕ
(1)
1,k,η′ >= (i < η̃′ · w(1)

1,k,η′ >

, ϕ
(1)
1,k,η′), which implies that (w

(1)
1,k,η′ ,∇η′ϕ

(1)
1,k,η′) = −(div η′w

(1)
1,k,η′ , ϕ

(1)
1,k,η′) = 0. Taking

this into account, we have

i < η̃′ · w(1)
1 > =

γ

ν
σ

n−1∑
j,k=1

ηjηk(w
(1)
1,j,η′ , ek) =

γ

ν
σ

n−1∑
j,k=1

ηjηk(w
(1)
1,j,η′ ,−∆η′w

(1)
1,k,η′ +∇η′ϕ

(1)
1,k,η′)

=
γ

ν
σ

n−1∑
j,k=1

ηjηk(∇η′w
(1)
1,k,η′ ,∇η′w

(1)
1,j,η′).

Let {f1,η′ , · · · , fn−1,η′} be an orthonormal basis of span {w(1)
1,k,η′}

n−1
k=1 in H1

0,per(Ωper).

Then w
(1)
1,k,η′ is written as w

(1)
1,k,η′ =

∑n−1
m=1 bkm,η′fm,η′ , and therefore,

(∇η′w
(1)
1,j,η′ ,∇η′w

(1)
1,k,η′) =

∑
l,m

bjm,η′bkl,η′(∇η′fm,η′ ,∇η′fl,η′) = (Bη′B
∗
η′)jk.

Here Bη′ is the (n− 1)× (n− 1) matrix given by Bη′ = (bjk,η′)
n−1
j,k=1. Note that Bη′

is nonsingular since {w(1)
1,k,η′}

n−1
k=1 are linearly independent by Lemma 4.20. We thus

find that Bη′B
∗
η′ is positive definite for each η′, and

i < η̃′ · w(1)
1 >=

γ

ν
σ|B∗

η′η
′|2, (4.28)
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|B∗
η′η

′|2 ≥ c2|η′|2 (4.29)

uniformly for η′ ∈ Q∗ with |η′| ≥ r0. Here c2 is the number given by

c2 = inf
η′∈Q∗,|η′|≥r0

c2,η′

with
c2,η′ = min{λ ; λ is an eigenvalue of Bη′B

∗
η′} > 0.

Let us show that c2 > 0. To do so, we first show that, for each j, k = 1, · · · , n−1,
bjk,η′ = (∇η′w

(1)
1,j,η′ ,∇η′w

(1)
1,k,η′) is continuous in η′. If this could be shown, then, by

the continuity of the eigenvalue with respect to the components of matrix, we would
have c2 > 0.

Set u
(1)
1,k,η′ =

⊤(ϕ
(1)
1,k,η′ , w

(1)
1,k,η′). Then u

(1)
1,k,η′ satisfies u

(1)
1,k,η′ ∈ D(L0)∩X1 and (L0+

Π1Mη′)u
(1)
1,k,η′ = f1,k with f1,k = ⊤(0, ek). By Lemma 4.18, we see that L0 + Π1Mη′

has a bounded inverse (L0 +Π1Mη′)
−1 on X1 and it holds that

∥(L0 +Π1Mη′)
−1f∥L2×H1 ≤ C∥f∥2 (4.30)

uniformly for η′ ∈ Q∗ and f ∈ X1. On the other hand, we see from (4.10) and (4.11)
that

∥Π1(Mη′+h′ −Mη′)u∥2 ≤ C|h′|∥(L0 +Π1Mη′)u∥2
for u ∈ D(L0) ∩ X1 and h′ ∈ Rn−1 with |h′| ≤ 1. This, together with (4.30),
implies that for each fixed f ∈ X1, (L0 + Π1Mη′)

−1f is analytic in η′ ∈ Q∗ in

L2
∗,per(Ωper)×H1

0,per(Ωper). Since u
(1)
1,k,η′ = (L0 +Π1Mη′)

−1f1,k, we find that w
(1)
1,k,η′ is

analytic in η′ ∈ Q∗ in H1
0,per(Ωper). We thus see that bjk,η′ = (∇η′w

(1)
1,j,η′ ,∇η′w

(1)
1,k,η′)

is continuous in η′, and hence, the eigenvalues of Bη′B
∗
η′ are continuous in η′. Since

c2,η′ is positive for each η′ and is continuous in η′, we deduce that

c2 = inf
η′∈Q∗,|η′|≥r0

c2,η′ > 0.

By (4.28) and (4.29), we have

Re {iγ < η̃′ · w(1)
1 > σ̄} = Re {γ

2

ν
|B∗

η′η
′|2σσ̄} ≥ c2

γ2

ν
|η′|2|σ|2.

As for Re{iγ < η̃′ · w(2)
1 > σ}, by Proposition 4.14, we have

Re {iγ < η̃′ · w(2)
1 > σ̄} ≤ ϵ

γ2

ν
|η′|2|σ|2 + Cν

ϵ
∥∇η′w

(2)
1 ∥22

for all ϵ > 0 with C > 0 independent of ϵ. On the other hand, using Lemma 4.18,
we see from (4.27) that

∥∇η′w
(2)
1 ∥2 ≤ C{∥div η′w1∥2 + ∥f̃1 − λw1 + ν̃∇η′(∇η′ · w1)∥H−1

per(Ωper)
}

≤ C{Dη′(w1) + ∥λw1∥2 + ∥f̃1∥2},
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and hence,

Re{iγ < η̃′ · w1 > σ} ≤ ϵ
γ2

ε
|σ|2 + C

ϵ
{Dη′(w1) + ∥λw1∥2 + ∥f̃1∥2}.

Taking ϵ = 1
4
c2, we arrive at

Re |σ|2 + 3

4

γ2c2
ν

|σ|2|η′|2 ≤ C3{| < f 0 > ||σ|+ ∥f̃1∥22 + |λ|2∥w1∥22 +Dη′(w1)},

which yields

Reλ|σ|2 + c0γ
2

2ν
|η′|2|σ|2 ≤ C2{(1 +

1

|η′|2
)| < f 0 > |2 + ∥f̃1∥22 + |λ|2∥w1∥22 +Dη′(w1)}.

This completes the proof. □

We now establish the resolvent estimate for −Lη′ with |η′| ≥ r0.

Theorem 4.21. Let η′ ∈ Q∗ satisfy |η′| ≥ r0. Then there exists a constant β1 > 0
such that {λ; Reλ > −β1} ⊂ ρ(−Lη′) and if Reλ > −β1, then

∥(λ+ Lη′)
−1f∥2 + ∥∇P̃ (λ+ Lη′)

−1f∥2 ≤
C

(Reλ+ β1)
1
2

∥f∥2.

The same conclusion holds with Lη′ replaced by L∗
η′.

Proof. Set E[u] = (1 + b2)|σ|2 + ∥u1∥22 + b1Dη′(w1) with constants b1, b2 > 0 to be
determined later. It suffices to show that

E[u] ≤ C

Reλ+ β1
{| < f 0 > |2 + ∥f 0

1∥22 + ∥f̃1∥22}.

Consider (4.17) + (4.18)× b1. Then taking b1 > 0 suitably small, we have

Reλ(|σ|2 + ∥u1∥22 + b1Dη′(w1)) +
1

4
Dη′(w1) + b1|λ|2∥w1∥22

≤ C{| < f 0 > ||σ|+ |(f 0
1 , ϕ1)|+ ∥f1∥22 + | < f 0 > |2}.

(4.31)

We next consider (4.22)× b2 + (4.31). Then with a suitably small b2 > 0, we have

ReλE[u] +
1

4
Dη′(w1) +

b1
2
|λ|2∥w1∥22 +

b2
4

c0γ
2

ν
|η′|2|σ|2

≤ C{
(
1 + 1

|η′|2
)
| < f 0 > |2 + |(f 0

1 , ϕ1)|+ ∥f1∥22}.
(4.32)

Since ⊤(ϕ1, w1) satisfies
⊤(ϕ1, w1) ∈ L2

∗,per(Ωper)×H1
0,per(Ωper) and{

−∆η′w1 +∇η′(
γ
ν
ϕ1) =

1
ν
f̃1 − 1

ν
{λw1 − ν̃∇η′(∇η′ · w1) + iγση̃′},

div η′w1 =
1
γ
{f 0

1 − λϕ1},
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we see from Lemma 4.18 that

∥ϕ1∥22 ≤ C ν2

γ2{∥div η′w1∥22 + 1
ν2
∥f̃1∥22 + 1

ν2
|λ|2∥w1∥22

+ ν̃2

ν2
∥∇η′(∇η′ · w1)∥2H−1

per(Ωper)
+ γ2

ν2
|η′|2|σ|2}

≤ C
{ (ν+ν̃)2

γ2 ∥∇η′w1∥22 + 1
γ2∥f̃1∥22 + 1

γ2 |λ|2∥w1∥22 + |η′|2|σ|2
}
.

(4.33)

We consider (4.33)× b3 + (4.32). Taking b3 > 0 suitably small, we have

ReλE[u] + 1
8
Dη′(w1) +

b1
4
|λ|∥w1∥22 + b3

2
∥ϕ1∥22 + b2c2

8
γ2

ν
|η′|2|σ|2

≤ C{
(
1 + 1

|η′|2
)
| < f 0 > |2 + ∥f 0

1∥22 + ∥f̃1∥22 + |(f 0
1 , ϕ1)|}

≤ b3
4
∥ϕ1∥22 + C{(1 + 1

|η′|2 )| < f 0 > |2 + ∥f 0
1∥22 + ∥f̃1∥22},

and hence,

ReλE[u] + 1
8
Dη′(w1) +

b1
4
|λ|∥w1∥22 + b3

4
∥ϕ1∥22 + b2c2

8
γ2

ν
|η′|2|σ|2

≤ C{
(
1 + 1

|η′|2
)
| < f 0 > |2 + ∥f 0

1∥22 + ∥f̃1∥22}.

Using the Poincaré inequality, we have 1
16
Dη′(w1) +

b3
4
∥ϕ1∥22 + b2c2

8
|η′|2|σ|2 ≥ β1E[u]

for some constant β1 = β1(r0) > 0. We thus obtain

(Reλ+ β1)E[u] +
1

16
Dη′(w1) ≤ C{| < f 0 > |2 + ∥f 0

1∥22 + ∥f̃1∥22}

for η′ with |η′| ≥ r0. This completes the proof. □

We have already shown in Proposition 4.2 that −Lη′ generates a contraction
semigroup e−tLη′ . Theorem 4.21 implies that e−tLη′ decays exponentially for η′ ∈ Q∗

with |η′| ≥ r0.

Theorem 4.22. There holds the estimate

∥e−tLη′u0∥2 ≤ Ce−
β1
2
t∥u0∥2

uniformly for η′ ∈ Q∗ satisfying |η′| ≥ r0.

Theorem 4.22 follows from Theorem 4.21 and [3, Chap. V, Theorem 1.11].

5 Proof of Theorems 3.1 and 3.2

In this section we give proofs of Theorem 3.1 and 3.2.

Proof of Theorem 3.1. As in the proof of Proposition 4.1, one can show that
{λ ; Reλ > 0} ⊂ ρ(−L) and if Reλ > 0, then

∥(λ+ L)−1f∥L2(Ω) ≤ 1
Reλ

∥f∥L2(Ω),

∥∇P̃ |(λ+ L)−1f∥L2(Ω) ≤ 1

(νReλ)
1
2
∥f∥L2(Ω).

(5.1)
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Therefore, −L generates a contraction semigroup e−tL on L2(Ω). This completes
the proof. □

Proof of Theorem 3.2. We set

Π := Uχ0Πη′T, χ0(η
′) =

{
1 |η′| ≤ r0,

0 |η′| ≥ r0.

It then follows from Proposition 2.2 that Π2 = Π. Furthermore, by Theorem 4.7,
we have

e−tLΠu0 = Uχ0e
−tLη′Πη′Tu0 = Uχ0e

λη′ tΠη′Tu0.

Since
sup
η′∈Q∗

∥Tu0∥1 ≤ C∥u0∥L1(Ω),

we see from Theorems 4.7 and 4.11 that

∥e−tLΠu0∥2L2(Ω) ≤ C

∫
η′∈Q∗

∥χ0e
−tLη′Πη′Tu0∥22 dη′ ≤ C

∫
|η′|≤r0

e−
κ0
2

γ2

ν
|η′|2t∥Πη′Tu0∥22 dη′

≤ C

∫
|η′|≤r0

e−
κ0
2

γ2

ν
|η′|2t∥Tu0∥21 dη′ ≤ Ct−

n−1
2 ∥u0∥2L1(Ω).

On the other hand, we have

∥e−tLΠu0∥2L2(Ω) ≤ C

∫
|η′|≤r0

dη′∥u0∥2L1(Ω) ≤ C∥u0∥2L1(Ω).

We thus obtain
∥e−tLΠu0∥L2(Ω) ≤ C(1 + t)−

n−1
4 ∥u0∥L1(Ω).

This proves (i) of Theorem 3.2.
As for the estimate for e−tL(I − Π)u0, we write it as

e−tL(I − Π)u0 = Uχ0e
−tLη′ (I − Πη′)T + U(1− χ0)e

−tLη′T

= Uχ0(e
−tLη′ − eλη′ tΠη′)T + U(1− χ0)e

−tLη′T.

It follows from Theorems 4.10 and 4.22 that

∥e−tL(I − Π)u0∥L2(Ω) ≤ Ce−βt∥u∥L2(Ω),

where β = 1
2
min{β0, β1}. This proves (ii) of Theorem 3.2.

Let us prove (iii) of Theorem 3.2. We write e−tLΠu0 as

e−tLΠu0 = Uχ0e
λη′tΠ(0)Tu0 + Uχ0e

λη′t(Πη′ − Π(0))Tu0 =: J1 + J2.
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For ℓ′ = (ℓ1, · · · , ℓn−1) ∈ Zn−1, we denote by Ωper,ℓ′ the set {(x′+
∑n−1

j=1
2π
αj
e′
j, xn, ; (x

′, xn) ∈
Ωper}. By the definition of T , we have

Π(0)Tu0 =

[∫
Ωper

< (Tϕ0)(x
′, ·) > dx

]
u(0)

=

[
1

|Ωper||Q∗| 12
∑
ℓ′∈Z

∫
Ωper,ℓ′

ϕ0(x)e
−iη′·x′

dx

]
u(0)

=

[
1

|Ωper||Q∗| 12

∫
Ω

ϕ0(x)e
−iη′·x′

dx

]
u(0) =

1

(2π)
n−1
2 |Q| 12

σ̂0(η
′)u(0),

where

σ0(x
′) =

|Q|
|Ωper|

∫ ω2(x′)

ω1(x′)

ϕ0(x
′, xn) dxn.

It then follows that J1 is written as

J1 =

[
1

(2π)n−1

∫
Q∗
χ0e

λη′tσ̂0(η
′)eiη

′·x′
dη′
]
u(0) = [e−tHσ0(x

′)]u(0) + J
(1)
1 + J

(2)
1 .

Here

J
(1)
1 = F−1

[
(χ0 − 1)e−

γ2

ν
κ(η′)tσ̂0(η

′)

]
u(0),

J
(2)
1 =

[
1

(2π)n−1

∫
Q∗
χ0(e

λη′ t − e−
γ2

ν
κ(η′)t)σ̂0(η

′)eiη
′·x′
dη′
]
u(0).

By the Plancherel Theorem, J
(1)
1 is estimated as

∥J (1)
1 ∥2L2(Ω) ≤ d̄∥F−1[(χ0 − 1)e−

γ2

ν
κ(η′)tσ̂0]u

(0)∥2L2(Rn−1)

= (2π)−(n−1)d̄∥(χ0 − 1)e−
γ2

ν
κ(η′)tσ̂0∥2L2(Rn−1)

with d̄ > 0 given by d̄ = maxx′∈Rn−1{ω2(x
′)− ω1(x

′)}. Since supp (χ0 − 1) = {|η′| ≥
r0}, we see that

∥(χ0 − 1)e−
γ2

ν
κ(η′)tσ̂0∥2L2(Rn−1) ≤ Ct−

n−1
2 e−

γ2

ν
r20t∥ϕ0∥2L1(Ω),

and hence,

∥J (1)
1 ∥2 ≤ Ct−

n−1
4 e−

γ2

2ν
r20t∥ϕ0∥L1(Ω).

As for J
(2)
1 , we have

eλη′ t − e−κ(η′)t = (λη′ + κ(η′))t

∫ 1

0

e−κ(η′)t+θ(λη′+κ(η′))tdθ.
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Since λη′ = −γ2

ν
κ(η′) +O(|η′|3), we obtain

|eλη′ t − e−
γ2

ν
κ(η′)t| ≤ C|η′|3te−

κ0
2

γ2

ν
|η′|2t ≤ C|η′|e−

κ0
4

γ2

ν
|η′|2t,

and hence,

∥J (2)
1 ∥2L2(Ω) ≤ C

∫
|η′|≤r0

|η′|2e−
κ0
2

γ2

ν
|η′|2t dη′

(
sup

η′∈Rn−1

|σ̂0(η′)|

)2

≤ Ct−
n−1
2

−1∥ϕ0∥2L1(Ω).

Concerning J2, we see from Theorem 4.11 that

∥J2∥L2(Ω) ≤ C∥χ0e
λη′ t(Πη′ − Π(0))Tu0∥L2(Q∗;L2(Ωper))

≤ C∥χ0|η′|eλη′ t∥Tu0∥1∥L2(Q∗) ≤ C(1 + t)−
n−1
4

− 1
2∥u0∥L1(Ω).

We thus obtain the desired estimate. This completes the proof. □

6 Outline of proof of Lemma 4.18

In this section we give an outline of the proof of Lemma 4.18. We here only give
several lemmas necessary for the proof since Lemma 4.18 can be proved by an
argument similar to the proof of [22, Chap. III, Theorem 1.4.1], where the proof for
the Stokes system (i.e., η′ = 0) is given.

We begin by

Lemma 6.1. There holds the estimate

∥u∥2 ≤ C{∥∇η′u∥H−1
per(Ωper)

+ ∥u∥H−1
per(Ωper)

}

for u ∈ L2(Ωper).

Lemma 6.1 can be proved in a similar manner to that of [19, Chap. 3, Lemma
7.1]. (Cf., [22, Chap. II, Lemma 1.1.3].)

Lemma 6.2. There hold the following inequalities for u ∈ L2
∗,per(Ωper):

∥u∥2 ≤ C1∥∇η′u∥H−1
per(Ωper)

≤ C1C2∥u∥2.

Lemma 6.2 follows from Lemma 6.1 as in the proof of [22, Chap. II, Lemma
1.5.4].

Lemma 6.3. (i) For every g ∈ L2
∗,per(Ωper), there exists w ∈ H1

0,per(Ωper) satisfying

div η′w = g, ∥∇η′w∥2 ≤ C∥g∥2.

(ii) For every f ∈ H−1
per(Ωper) satisfying

[f, w] = 0, for all w ∈ H1
0,per(Ωper) with div η′w = 0,

there uniquely exists p ∈ L2
∗,per(Ωper) such that

∇η′p = f, ∥p∥2 ≤ C∥f∥H−1
per(Ωper)

.
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One can prove Lemma 6.3 by using Lemma 6.2 as in the proof of [22, Chap. II,
Lemma 2.1.1].

We define H1
0,σ(Ωper) by

H1
0,σ(Ωper) = {w ∈ H1

0,per(Ωper) ; div η′w = 0}.

Lemma 6.4. For every f ∈ H−1
0,per(Ωper), there uniquely exists w ∈ H1

0,σ(Ωper)
satisfying

(∇η′w,∇η′v) = [f, v]

for all v ∈ H1
0,σ(Ωper), and

∥∇η′w∥2 ≤ C∥f∥H−1
per(Ωper)

.

Furthermore, there uniquely exists ϕ ∈ L2
∗,per(Ωper) such that

−∆η′w − f = −∇η′ϕ

and
∥ϕ∥2 ≤ C∥f∥H−1

per(Ωper)
.

Lemma 6.4 can be proved in a similar manner to the proof of [22, Chap. III,
Theorem 1.3.1].

Lemma 4.18 follows from Lemmas 6.3 and 6.4 as in the proof of [22, Chap. III,
Theorem 1.4.1]. □
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Semi-discrete finite difference multiscale scheme for a concrete corrosion model: ap-
proximation estimates and convergence

MI2011-14 Jun-ichi INOGUCHI, Kenji KAJIWARA, Nozomu MATSUURA & Yasuhiro OHTA
Explicit solutions to the semi-discrete modified KdV equation and motion of discrete
plane curves

MI2011-15 Hiroshi INOUE
A generalization of restricted isometry property and applications to compressed sens-
ing

MI2011-16 Yu KAWAKAMI
A ramification theorem for the ratio of canonical forms of flat surfaces in hyperbolic
three-space

MI2011-17 Naoyuki KAMIYAMA
Matroid intersection with priority constraints

MI2012-1 Kazufumi KIMOTO & Masato WAKAYAMA
Spectrum of non-commutative harmonic oscillators and residual modular forms

MI2012-2 Hiroki MASUDA
Mighty convergence of the Gaussian quasi-likelihood random fields for ergodic Levy
driven SDE observed at high frequency



MI2012-3 Hiroshi INOUE
A Weak RIP of theory of compressed sensing and LASSO

MI2012-4 Yasuhide FUKUMOTO & Youich MIE
Hamiltonian bifurcation theory for a rotating flow subject to elliptic straining field

MI2012-5 Yu KAWAKAMI
On the maximal number of exceptional values of Gauss maps for various classes of
surfaces

MI2012-6 Marcio GAMEIRO, Yasuaki HIRAOKA, Shunsuke IZUMI, Miroslav KRAMAR,
Konstantin MISCHAIKOW & Vidit NANDA
Topological Measurement of Protein Compressibility via Persistence Diagrams

MI2012-7 Nobutaka NAKAZONO & Seiji NISHIOKA

Solutions to a q-analog of Painlevé III equation of type D
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(1)

MI2009-35 Yosuke MIZUYAMA, Takamasa SHINDE, Masahisa TABATA & Daisuke TAGAMI
Finite element computation for scattering problems of micro-hologram using DtN
map

MI2009-36 Reiichiro KAWAI & Hiroki MASUDA
Exact simulation of finite variation tempered stable Ornstein-Uhlenbeck processes

MI2009-37 Hiroki MASUDA
On statistical aspects in calibrating a geometric skewed stable asset price model

MI2010-1 Hiroki MASUDA
Approximate self-weighted LAD estimation of discretely observed ergodic Ornstein-
Uhlenbeck processes

MI2010-2 Reiichiro KAWAI & Hiroki MASUDA
Infinite variation tempered stable Ornstein-Uhlenbeck processes with discrete obser-
vations

MI2010-3 Kei HIROSE, Shuichi KAWANO, Daisuke MIIKE & Sadanori KONISHI
Hyper-parameter selection in Bayesian structural equation models

MI2010-4 Nobuyuki IKEDA & Setsuo TANIGUCHI
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