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Application of Transient Eddy Current Analysis to Rotating Machines

Hiroshi Kanayama*(Kyushu University), Shin-ichiro Sugimoto (The University of Tokyo),
Kouhei Murotani (The University of Tokyo), Seigo Terada (Kyushu University), Seiya Kuramoto (Kyushu University)

Transient eddy current analysis of rotating machines is considered. NEXST_Magnetic is mainly used in this
study. Cases without and with rotor rotation are considered. The accuracy of a simple model is confirmed and a

three-phase induction motor is analyzed.
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1. Introduction

Various methods have been considered for three-dimensional time-harmonic eddy
current problems and effective numerical calculations have been performed to obtain

many results. The 4 method in which the magnetic vector potential 4 is the

unknown function and the A-¢ method in which both 4 and the electric scalar

potential ¢ are unknown functions have both been demonstrated to be effective for

these types of problems. In a previous study, we applied hierarchical domain
decomposition to these methods and demonstrated that accurate numerical results for
large-scale problems could be obtained by parallel computations [1,2]. However, it is

necessary to treat the problem as non-stationary for many real-world phenomena. For

time-harmonic three-dimensional eddy current problems, we used the A-9 method,

which exhibits favorable performance from a computation-time perspective. Using the
same technique for the space approximation, we now introduce a backward Euler
method for time stepping to study transient three-dimensional eddy-current problems
[3]. For this purpose, we employed and improved the NEXST Magnetic software [4].
This software provides a single-processor module for finite-element analysis and allows
analysis of nonlinear magnetostatic fields and non-stationary eddy-current analysis for
up to tens of millions of degrees of freedom. In this study, we extend this software by
adding functionality to consider the B—H characteristics of materials [S] and we present
computational results obtained using this new functionality. Finally, we discuss a

method for addressing the rotation of rotors [6].

2. Eddy Current Problems

2.1 Basic equations and boundary conditions

We consider a polyhedral domain €2 with boundary OQ  The domain © consists
of two non-overlapping polyhedral subregions: a conducting region R and a
non-conducting region S. Let I' denote the common portion of the boundaries of

R and S and let ” be the outward unit normal vector to the boundary surfaces.

The magnetic vector potential 4 [Wb/m] and the electric scalar potential ¢ [V] are

unknown functions. From Maxwell’s equations, we can derive the following equations

for the magnetic field in three-dimensional non-stationary eddy current problems; here,
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v is the magnetic reluctivity and ¢ is the conductivity.

rot(vrotA)+aaa—Ij+agrad¢=J in Q x(0,T)

; (1)
—diV(aaAﬂIgradqﬁ]:O in Rx(0,T)
o : (1b)
—[aaA+agrad¢j -n=0onI'x(0,T)

o : (1¢)
Axn=0 on aQX(O,T) (ld)
4 _,=4°inQ 19

- . e

2
The excitation current density J [A/ m ] satisfies the following continuity equation:

divJ=0 in Qx(0,T) @)

2.2 The weak form and finite element approximation
2
Let L ©) be a space of functions defined in €2 and square summable in € with
1 2
its inner product ( . , . ) and let H (Q) L (Q)

be a space of functions in with

derivatives up to the first order. We define V.U and W by
V= {ve(Lz(Q))3;rotve(LZ(Q))B,vxnzo on GQ}
U={ueH'(R)|

w

{weHl(Q);w=0 on 8(2}.

The weak form of equation (1) may be expressed as follows. Here A4,¢ are unknown

functions (with(4,¢)eV xU) and A* ¢* are arbitrary test functions (again with
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(4*,p*)eV xU).

(vrot 4, rot 4 *)+(0%3,A *)+(0 grad g, 4*)=(J, 4%), (3a)

(agrad¢, grad¢*)+(a%j,grad¢*)=0. (3b)

We next divide the domain Q into union of tetrahedra and discretize space. We
approximate the magnetic vector potential using first-order Nedelec elements and we
approximate the electric scalar potential and other quantities using the conventional
first-order tetrahedral elements. Let V,,U,,W, respectively denote the finite element
spaces corresponding to V,U,W . Introducing the backward Euler method for time
discretization (A7 : a time increment) allows us to write the finite element equation in
the following form:

s

(v rot A}, rot A,j)+ (Zt A, A;j+ (o— grad ¢/, A;): (7,;”1, A, )+ (ZI A, Ahj . (4a)
(Zt A, grad ¢h) + (U grad "', grad ¢, ): (Zt Ay, grad %j . (4b)
Here, for actual calculations, we use the conventional first-order tetrahedral element for
J !, For a correction obtained by considering Eq. (2), we approximate J"*' and

perform a pre-calculation as follows:

(grad[,‘,‘”,grad I, ): (J;*‘,gradl;). (5)
After obtaining /"' by Eq. (5), we find the corrected approximate current density
J' from the relation :

Jr =g —grad I (6)

Note that 1,1, eW,.

2.3 Transient analysis considering the B—H characteristics
The magnetic reluctivity ¥ exhibits a material-dependent nonlinearity. In transient

analysis, the values of V are obtained at each time step from the H-B curve (Fig. 1)
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obtained from measured data [5]. Denoting the magnetic reluctivity v at the n-th time

step by v, and substituting into Eq. (4a) yields
(VZ rot A", rot A4, )+ [Zt A, A;j + (0 gradg", 4, ): (jh““ A, )+ [Zt A, A, ) )

Thus, the value of the magnetic reluctivity v, obtained from the calculation for time
step n is used in the computation for time stepn+ 1. We have

[H|=v, QB\—\BI.\)HH,
Bl+(H,|-v,|B])

:{v, +QH’_;"B")}B

-V

=V, i|Bi

b

from which it follows that

o))y, + 1= 0E ®)
8]
In these equations, B,.‘S‘B‘S‘BM‘ . If, in addition, |B,|<|B|<|B,| , then the following
result holds:
v(|Bl)=v, - ©)
- H|[Alm]
| |HH]|
|H]--

lvll {
o Bi|  [Bif |B|[T)

Fig.1. H-B curve

If we simply use the magnetic reluctivity at the time step for Eq. (8), it is not possible to
obtain stable results. However, by introducing a weighting factor w(0< wsl), it is
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possible to obtain stable values for the magnetic reluctivity [5]. The values of ‘B;‘ at
the centroids of the elements are obtained from the solution 4, at time step n and

v, is determined by the following relations:

n n n
bl
VHB:vi + ‘B" s
g
n n n-1
v, :wvHB+(1—w)vh . (10)

The value of v, obtained from Eq. (10) is used in the computation for time step n+1.

2.4 Transient analysis in the presence of rotation

If we work in a moving coordinate system fixed within a rotating body, then the basic
equations (1) may still be valid. Thus, in the following treatment of rotating bodies, we
consider Eq. (1) as holding within a moving coordinate system fixed within the rotating
body and we subsequently transform this equation system back to a coordinate system
fixed in space to apply Eq. (4) in the context of the finite element method. In this case,

o D4

the time derivatives O in Eq. (1) become Lagrange derivatives D! . On discretizing
space into finite elements [6], we use the following approximate relation for the

Lagrange derivative term at a point p in the rotating body at time (n + I)At :

DA, (x,(n+1)Ar) _ A, (x,(n+1)Ar)- 4, (x—vAz,nAz) (11)
Dt - At ’

here, x denotes the coordinates of the point p and v is a given velocity vector

(assumed to be constant here for simplicity). The quantity A4, (x—vAt,nAt) is known
and 4, (x,(n+1)Ar) is the unknown quantity for which we wish to solve. Using

superscripts nand n+1to denote time steps, the approximate values are written

respectively as 4; and A)*'. Ultimately, the finite element equations simply recover
Egs. (4a) and (4b), but some ingenuity is needed to obtain A, .

Thus, we now consider the determination of A4, . As shown in Fig. 2, due to the
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rotation of the body, edge a—b is — at a time At s previously — at the position of edge a’—
b’. As indicated in the figure, in most cases edge a’—b’ is not defined at the edge of the

finite element mesh. Consequently, we must use an interpolation scheme to estimate
values of 4, . In accordance with the definition of the Nedelec element, we evaluate
line integrals over all elements containing edge a’—b’ as follows:

;
Ayl =] 47 sdl

¢ d' b' (12)
= [ 4y -sdi+ [4)-sdi+ [ 47 -sdl.
a' c d'

Here, A, ,. corresponds to the component of A, on edge a’-b’ and in the direction

of that edge, /,—1 denotes the length of edge a’-b’, and s denotes the unit tangent
vector to each edge. By evaluating line integrals for each element in this way, we obtain

avalue for 4, .

Fig. 2. Movement of an edge during A¢

3. Numerical Examples

3.1 Comparison with ADVENTURE Magnetic for frequency response analysis
We confirm the validity of our procedure by comparing the results of a non-stationary
eddy current analysis conducted using NEXST Magnetic with the results of a frequency
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response analysis conducted using ADVENTURE Magnetic. By comparing with
ADVENTURE_ Magnetic, which has a proven track record for frequency response
analysis, we can assess the accuracy of NEXST Magnetic and obtain a thorough
understanding of the real and imaginary parts of the frequency response analysis results
obtained from ADVENTURE Magnetic.

Frequency response analyses conducted using ADVENTURE Magnetic return two
types of results: real and imaginary parts. These agree with the results obtained using
NEXST_ Magnetic when the current density is maximum and 0, respectively.

Our computational model obtained eddy current analysis results for the infinite-length
solenoidal coil in Fig. 3 [3]. The radius of the conductor was taken to be 0.1 m. The
magnetic reluctivity v was taken to be 1/(47)x 107 [m/H], while the conductivity o
of the conductor was taken to be 7.7x10°[S/m]. The frequency @ was 27x60
[rad/s]. The excitation current density J flowing through the coil was an AC current in

the form J, cos ot [A/mz] with ‘JO‘:5O[A/m2]. The NEXST Magnetic analysis was

conducted with all initial values 4, set equal to 0 and At taken to be 1/(60x40). A total of

250 time steps were used, corresponding to 6.25 full cycles. The results of
NEXST Magnetic agree with the real parts of the ADVENTURE Magnetic results at
time steps 40, 80, 120, 160, 200, and 240 and they agree with the imaginary parts of the
ADVENTURE Magnetic results at time steps 50, 90, 130, 170, 210, 250. In this cake
model, the magnetic flux density arises solely in the direction of the z axis, so we

consider only the z component.
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Fig.3. Solenoidal coil with unlimited length

Figure 4 compares the magnitude and direction of the magnetic flux density for points
at which the excitation current density applied to the coil is a maximum (corresponding
to the real part of the solution). To compute the relative error in each of these values, we
compute the actual value using ADVENTURE Magnetic and compare it with the
results of NEXST Magnetic.

Figure 4 shows the relative error for the magnetic flux density throughout the entire

model. A relative error of between 1% and 2% is apparent at each time step.

Relathve Error
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Fig.4. Magnetic flux densities in z direction

(Comparison of real part)

Figure 5 compares the magnitude and direction of the magnetic flux density for points
at which the excitation current density applied to the coil is zero (corresponding to the

imaginary part of the solution). As with the results shown in Fig. 4, there is a relative

error of between 6% and 7% at each time step.
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Fig. 5. Magnetic flux densities in z direction

(Comparison of imaginary part)

These results demonstrate that the results of transient analysis conducted using
NEXST Magnetic may be considered equivalent to the results of frequency response

analysis.

3.2 A first analysis neglecting the B—H characteristics

As a numerical example, we consider the results of an eddy current analysis
conducted for a rotating machine of the type shown in Fig. 6. This machine is composed
of one fixed component and one rotating component and consists of 36 primary
conductors and 44 secondary conductors. The model considered in this section does not

account for the air gap between the fixed and rotating components. The magnetic

47)x10* [m/H]

reluctivity V is 1/ ( for both the fixed and rotating components and

,
1/(47)x107 [m/H] for both the primary and secondary conductors. The conductivity &

3.0x107 [Q/m] w=27x50([rad/s]

of the conductor regions is and the frequency is .

The excitation current density 7 flowing in the coil is an AC signal with the form

[Jo|=6.61x10°

Jy cos w1 [A/m?] where [A/m?]. Tt goes without saying that phase

change of the excitation current density is suitably considered in our model.
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Fig. 6. A rotating machine

We considered computational models with 152,336 elements. The initial values A,

were all set to zero. We chose a time step Az equal to 1/(50%24) s and ran the
computation for 72 time steps (three cycles as in Fig.7). The computation was executed

on a desktop workstation having an Intel Core i7 920 CPU (2.66 GHz) and 24 GB of
RAM.

J = Jocoswt

1

1 eycle=1/50s]
[———p|

Fig. 7. Excitation current density

Figure 8 presents results for the magnetic flux density distribution on a cross-sectional
slice through the center of the rotating machine at a time corresponding to point A in Fig
7. Figure 9 presents similar results at a time corresponding to point B in Fig. 7.

Comparison of these two plots reveals that the regions near the fixed primary conductor
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in which the magnetic flux density is high are moving.

Fig. 8. Magnetic flux density for point A in Fig. 7

Fig. 9. Magnetic flux density for point B in Fig. 7

3.3 A second analysis accounting for the B—H characteristics
As in Section 3.2, we consider the results of an eddy current analysis conducted on a
rotating machine. However, we now enhance our analysis by considering the B—H

characteristics of the fixed and rotating components of the machine. Here, we use a

w=0.112

weighting constant of value and set the initial magnetic reluctivity V equal

4
to the same values used in Section 3.2, namely, 1/ (4” )><10 [m/ H] for both the fixed

and rotating components. The remaining analysis conditions are the same as those in
Section 3.2.
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In comparison with the computational results obtained without considering the B—H
characteristics, Figs. 10 and 11 exhibit lower values in the magnetic flux density. In both
figures, the maximum value becomes about 1/5. The color bars do not match those of
Figs. 8 and 9.

Fig. 10. Magnetic flux density for point A in Fig. 7

Fig. 11. Magnetic flux density for point B in Fig. 7

3.4 A computational model of a rotating machine with an air gap
The previous rotating machine model discussed in Section 3.2 does not account for
the air gap. In addition, the shape of the coil is approximated as rectangular. We next

consider a frequency response analysis (neglecting the B—H characteristics) conducted
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using ADVENTURE Magnetic on a new model, indicated in Fig. 12, based on the two

points considered above.

Fig. 12. A rotating machine model with an air gap

We used the same computational conditions as in Section 3.2 and analyzed a model
with 4,850,700 elements using a domain decomposition method. With a total of 80
parts, the computation time was approximately 12.25 h.

Figures 13 and 14 show the results. Comparison of these plots reveals that the regions
of large magnetic flux density around the fixed primary conductor are moving, as in
Section 3.2. It is also noted that there are regions with high magnetic flux densities near
the air gap.
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Fig. 13. Result of ADVENTURE_Magnetic (real part)

Fig. 14. Result of ADVENTURE Magnetic
(imaginary part)

3.5 Consideration of rotation for a simplified rotating machine with an air gap

The previous rotating machine model discussed in Section 3.4 does not account for the
movement of rotation. We finally consider a transient analysis considering the rotation
(neglecting the B—H characteristics) conducted using NEXST Magnetic on a simplified
model, indicated in Fig. 15. The fixed component has 4 primary conductors and the

rotating component also has 4 secondary conductors. The air gap is considered between
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the fixed component and the rotating component. 20 kinds of meshes have been

prepared for one cycle rotation and we are using different meshes for each time step.

Fig. 15. A simplified rotating machine

Figure 16 shows the magnetic flux densities from the time step 1081 to 1084. As
mentioned before, the previous position of the edge within the rotating component is
searched for each time step. The conjugate gradient solver uses the previous step result

for the initial value of each time step iteration.

Fig. 16. The 4 step results of magnetic flux densities
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4. Conclusions

We have used the A-¢ method to analyze non-stationary eddy current problems. In

near future, we plan to extend our computational models to larger-scale problems.
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