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Abstract

An iterative domain decomposition method is applied to eddy current problems. In our
previous methods the gauge condition is neglected, then the magnetic vector potential is only
one unknown function. On the other hand, in case of magnetostatic problems, it has been
well-known that some theoretical results has been introduced, where a mixed formulation
with the Lagrange multiplier is introduced in order to impose the gauge condition. Therefore,
in this paper, we formulate again an iterative domain decomposition method based on a
mixed formulation of eddy current problem, and discuss relations with the previous one.
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1 Introduction

We have introduced an iterative domain decomposition method to solve quite large scale electro-
magnetic field problems; see, for example, Kanayama et al. [10]. In our previous methods the
gauge condition is neglected, then the magnetic vector potential is only one unknown function.
These previous results focus themselves on the engineering points of view: the previous formula-
tion enables us to reduce computational consts in practical large scale simulations. However this
formulation yields an indeterminate linear system, it is difficult to mathematically justify numer-
ical results, for example unique solvability of the problems and convergency of the approximate
solution.

On the other hand, in case of the magnetostatic problem, some theoretical results has been
introduced by, for example, Kikuchi [8], [9], where a mixed formulation with the Lagrange
multiplier is introduced in order to impose the gauge condition. These results focus themselves
on the mathematical point of view: owing to the introduction of the Lagrange multiplier, their
mixed formulation enable us to prove unique solvability of the problems and convergency of the
approximate solution. However, this formulation yields an indefinite linear system, it is difficult
to find an appropriate iterative solver, which is efficient enough to reduce computational costs for
practical large scale problems.
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At first in this paper, we formulate again an iterative domain decomposition method based
on a mixed formulation of eddy current problem. Seconed, to reduce computational costs, we
simplify our iterative domain decomposition method into another one, and we discuss relations
between the reduced formulation and the previous one.

2 Formulation of eddy current problems

Let Q be a convex polyhedoral domain with its boundary I". Assume that the domain 2 consists
of two non-overlapping subdomains, a conducting part Qx and a non-conducting one Qg, with
the interface I'rg between two subdomains. Let n be the outward unit normal of Qg. In this
paper, for simplicity, assume that the conducting part £y is also a convex polyhedral domain,
and that the part Q is strictly included in Q.

Let u denote the magnetic vector potential, f an excitation current density, v the magnetic
reluctivity, o the conductivity, w the angular frequency, and i the imaginary unit. Then, we
consider the three-dimensional eddy current problem with the Coulomb gauge condition:

rot(vrotu) — iwou = f in Q, (1a)

divu =0 in Qs, (1b)

uxn=0 on I, (1o

f w-nds =0 (1d)
I'gs

for some results of the related equations, for example, see Alonso and Valli [2]. Throughout this
paper, assume that v is a piecewise positive constant, that o is a positive constant in £, while is
equal to 0 in Qy, and that the divergence of f vanishes in Q:

divf =0 in Q. (2)

As usual, let L*(Q) be the space of complex functions defined in 2 and 2nd power summable
in Q, and let (., .) be its inner product; let H'(£) be the space of functions in L*(2) with
derivatives up to the 1st order and set functional spaces X, M, V, and Q by

X = e (LX(Q); rotv € (LXQ))’), Vi={peX;vxn=0on T}

M := H(Q), Q:={geM; g=0onT, Ac e Cs.t. g =c in Qg},
respectively; set bilinear forms a(., .) and b(., .) by
a(u, v) := (vrotu,rotv) — i (wo u,v) Y(u,v) € X X X,
b q) = (v, gradq) V(r.q) € (L(Q) x M,

respectively.
Now, by introducing the Lagrange multiplier p, we obtain a mixed weak formulation of (1)
as follows: given f € (LZ(Q))3, find (u, p) € V x Q such that

{ a(, v) + b, p) = (f,v), (3a)
b(u, q) =0, Y, q) e VxQ. (3b)
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Remark 1 As in case of the magnetstatic problem in Kikuchi [8], if f satisfies that div f = 0 in
Q, then p = 0. This property plays a key role in the forthcoming section.

3 Domain decomposition method

For simplicity, the domain Q2 is assumed to be decomposed into two non-overlapping subdomains
QM and QP with their boundaries 92" and dQ®, respectively:

Q20 (=12, 0=0"vd” abno? =y,

. —(1) —(2) .
and let vy, be the interface between Q" and Q® defined by y;, := Q@ N Q ; see Fig. 1.
For i = 1,2, the outward unit normal of Q¥ is denoted by n”, and set n = n'V(= —n®) on
the interface yy,. Moreover, the subdomain Qy is assumed to be decomposed into two non-

500D 002

Fig. 1: Two non-overlapping subdomains of Q.

overlapping subdomains Qﬁ;) and .Qg) with the same assumptions as in the domain Q.

Instead of the complex functions defined in ©, we associate this decomposition to function
spaces, bilinear forms, and inner product: let L*(Q”) and H'(2") be the space of real functions
defined in Q, which are corresponding to L*(€2) and H'(£2); set function spaces X, M®, V" |

0, VO and Q¥by
X0 = {y e (LAQD))’; rotv € (LA(QD))’),
M? = H'(QY),

V;?z = {v eX? yxn=0on 6Q(i)\712},

05, = {q eM?; g=0on 9Q"\y;,Ic€ Cst.g=c in Qﬁ?},
V(’) = {v e X(l)’ yXn= 0 on G.Q(l)}7
0" = {q eM?; g=0 on &Q(i)},
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respectively; and set bilinear forms and inner product a®(., .), b(., .), and (., .)on by the
integrals over 7, respectively. Moreover, set function spaces A and = by

A= {/1:')’12 —-R*» A= (v xn)y,, ve V}, = {éf vy 2R E=4l,,, g€ Q},

and set E(i)(q) by any extension operator from A to V;’l)z such that p = (ﬁ(i)(n)x n)l,,,, and ﬁ(i)(f )
by any extension operator from = to Q;il)z such that £ = p({)l,,,. A characterization of tangential
trace spaces A and an fangential extension operator on ﬁ(i)(l]) has been given in Alonso—Valli [1],
Buffa—Ciarlet [3], [4], Buffa, et al. [5], and Quarteroni—Valli [11].

Now, a two-subdomain problem is introduced by the followings: for i = 1,2, find (u®, p©) €

V;?z X Q(yifz such that

@ v Dy + B py = (FO, p D)y, (4a)
b(i)(u(i), q(i)) =0, V(v (i)’ q(i)) c VOx Q(i) (4b)
uVxn=uPxn on i, (4¢)
pP=p? on yiz, (4d)

a(2)(u(2)7 ﬁ(Z)(n)) +b(2)(ﬁ(2)(n)7 p(Z))
= (" 7P + (2 #Pa)ge —aP @, V) - bV @ V), pM), (de)
PP@®, p?) = bV@®, V), V@, O e AXE. (4f)

If {@, p), @®, p®)} is a pair of the solutions of two-subdomain problem (4), then the
solution of the one-domain problem (3) could be constructed by

@, p)y  in Q) (52)

(ll, p) = { (u(Z)’ p(Z)) in Q(Z). (Sb)

On the other hand, if (u, p) is a solution of the one-domain problem (3), then a pair of the
solutions {(@”, pM), @®, p®)} of the two-subdomain problem (4) could be constructed by

@, p) := (ulgo, plon)  in QV. (6)
Therefore, the equivalency between both formulations could be obtained as follows:

Theorem 1 The one-domain problem (3) and the two-subdomain problem (4) are equivalent.

For i = 1,2, let &0(f, A, & an extention operator from (L*(Q))’ x A x = to Vi, x Q)
defined by £O(f, 4, &) := @, p?), where (u'”, p?) is the solution of the following eddy current
problem:

a(i)(u(i)’ v(i)) + b(i)(v (i), p(i)) — (f(i), V(i))g(i), (7a)
b(i)(u(i), q(i)) =0, V(@ q(i)) e Vx QW (7b)
u?xn=2 on i, (7¢)
p= & on yis. (7d)
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Then, a Steklov—Poincaré operator &7 from A X 5 to (A X £’ is set by

(A, 6), ,0)),,

2
=) (a®@? )+ 00D pYY 4 0P(@?, g ™)), VA peA VELeE (8)
P
where (", p7) 1= £9(0,4, &) and (¥, §7) := &9(0,n, 0); and an interface source y €
(A X Z) is set by

s m.0),,,

2
=AU ¥ g0 @ ¥ -G P - p0@0, g, Ve CeE )
i=1

where (7@, p) := £0(f9,0,0) and (¥, §¥) := £9(0, 5, £). Now we introduce the following
interface problem on 7y ,:

(A, M. Oy, = X .0, Y O eAXE. (10)

By using the solution (u®, p) of two-subdomain problem (4), let us set (4, &) by A := u" x
n(= u?Pxn)and £ := pP(= p®). Then, because of (4c)—(4f), (A, &) satisfies the interface
problem (10). On the other hand, once the solution (4, ¢) is obtained by solving the interface
problem (10), for i = 1,2, each pair (u®, p?) € V3! x O\ could be found from the problem (4a)
and (4b) in the corresponding subdomain Q) where the solution (4, £) is regarded as the Dirichlet
boundary on the interface: u”x n = A and p = & on y,,. Finally, from (5), we can obtain the
solution (u, p) of the one-domain problem (3).

The interface problem (10) complex-symmetric. Therefore, as the solver, the BiConjugate
Gradient method (BiCG) is used; see Freund [6]. Then, by choosing an appropriate dual initial
residual, BiCG is formally the same as the conjugate gradient method for real valued matrices;
see Van der Vorst and Melissen [12]. Using these facts, we can now describe the following
biconjugate gradient method of the linear system derived from the interface problem (10) as in
Glowinski et al [7] (at least formally):

Choose (4o, &);

Compute (g, do) by (11);

(Wo, wo) := (8o, 00);

fork=0,1,...;
Compute o7 (w;, wy) by (12);
@ = (8 01), (8ks 01)) /(A Wi, i), Wi, wi));
(15 Err1) = (A, &) — ar (Wi, wi);
(8k+1>0k41) = (&> O1) — A F (W, Wy);
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Br := ((8k+15Oks1)s (815 0k+1))/ (81> 01), (8k» Ok));
If ((k+150k+1)s (8ks1-0k41))/((€0, 00), (€0, 00)) < &, break;
(Wis 1 Wie1) = (8kr15 O1) + Br Wi, wi);

end;

where (., .) is a just multiplication of complex numbers, and & is a positive constant for the
criterion of the convergence. In the above biconjugate gradient algorythm, (go,do) could be
computed by the extentions (" 17(()’)) and (v, ) as follow:

0

((80.60), 1, 0)),,,

2

i=1

where (

and (17(i),

(A W, w), M, 0)),, = Z{a“)(ﬁf), 70y 4 pO(50 f’\;fi)) + b(i)('u\]ii)’ R

where (

la

Q)
uo ,

70
u.,

’lzéi)’ v(i)) + b(i)(l_)(i), ﬁéi)) _ (f(i)’ v(i))gi) + b(z’)(’,;(()i)7 é(i))},

=0

P

2

i=1

= &9(0, wi, wi). The extentions (~éi),}7(§

i))’ (E(i) -

o0 > Po

Y, H) e AxE, (11)

%), and (

‘—)(i)7

Py = EV(f?, A, &); and o (wy, wy) could be computed by the extentions (ﬁéi), ﬁé”)
g as follow:

V@, ) e AXE,

(12)

77 in (11)

and (12) could be computed in @V and Q@ independently. Therefore, the above biconjugate
gradient algorythm is familiar with parallel computations.

Moreover, as mentioned in Remark 1, if f@ satisfies that div f@ = 0 in Q?, then p"” van-
ishes. This implies that we can neglect the components corresponding to the Lagrange multiplier
in the biconjugate gradient algorythm. Therefore we can get the reduced biconjugate gradient
algorythm as follows:

Choose A;
Compute g, by (13);

Wo = 8o

fork=0,1,..

(3]

Compute <7 (w;, 0) by (14);
= (g g1)/ (1 (Wi, 0), wi,)s

Air1 = A — apwis

81 1= 8k — ax (W, 0);
Br = (8r+15 8ke1)/(8ks 81);
If (gi+1, 8k+1)/(80- 80) < &, break;
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Wisl = kel + B Wi
end;

In the reduced biconjugate gradient algorythm, g, could be computed by the first component of
the following equation:

((80.60), (1, 0)),,,

2
{a(i)(’l;(()l)’ v(l)) + b(i)(l_)(’), ﬁél)) _ (f(i), v(l))gi) + b(i)(ﬁél), q(l))}’ V(i], é«) eAXE, (13)

i=1

where (Eéi), ﬁé”) = EO(fD 2y,0); and o7 (wy, 0) could be computed by the first component of
the following equation:
2 - - - - - -
(Wi, 0), .0)),, = Z{“(i)(ﬁ/?)’ 5O+ 05D 5O+ p0@? G)), Y, ) € AXE,
=1

(14)

where (", p") 1= £D(0,wy, 0).
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