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Abstract 
We present the physics-based theoretical analysis of the mechanisms and the properties of Rayleigh-

Taylor turbulent mixing, and focus on the consideration of correlations and fluctuations of the 

statistically unsteady turbulent mixing dynamics. The analysis extends to non-canonical 

circumstances the ideas of Kolmogorov theory on symmetries of turbulent dynamics, accounts for the 

essentially multi-scale character of the flow evolution, and identifies the transport of momentum as a 

better indicator of turbulent mixing dynamics than the transport of energy. The invariance of the rate 

of momentum loss leads to essentially non-Kolmogorov invariant, scaling and spectral properties of 

turbulent mixing flow. Rayleigh-Taylor turbulent mixing exhibits more order compared to isotropic 

turbulence. Its viscous and dissipation scales are finite and set by the flow acceleration. We discuss 

the outcomes of theoretical results for practical applications and for the methods of flow mitigation 

and control. 

 

Keywords 
Turbulent mixing, Rayleigh-Taylor instability, invariants and scaling and symmetries, statistically 

unsteady process, stochastic modeling 

 

 

I. Introduction 

Turbulence is common to consider as the last unresolved problem of classical physics [1-16]. 

For years its complexity and universality assisted engineers and practitioners, nourished enthusiasm 

of scientists, and fascinated mathematicians [1-16]. Similarity and isotropy are fundamental 

hypotheses that advanced our understanding of turbulent processes. Still the problem withstands the 

efforts applied thus indicating a need in new concepts to better control the irregular dynamics [3,4]. 

Turbulent motions of realistic fluids are often characterized by non-equilibrium heat transport, sharp 

changes of density and pressure, and may be a subject to spatially varying and time-dependent 

acceleration and rotation [1-16]. Turbulent mixing induced by the Rayleigh-Taylor instability (RTI) is 

generic problem, which we encounter when trying to extend our knowledge of turbulent processes 

beyond the limit of idealized consideration [3,4]. 

Rayleigh-Taylor (RT) turbulent mixing is an extensive interfacial mixing process which 

develops when fluids of different densities are accelerated against a density gradient [1,2]. It governs 

a broad variety of natural phenomena spanning macroscopic to atomistic scales and high to low 

energy density regimes, and plays an important role in technological applications in aerodynamics 

and aeronautics [5-13]. Examples include instabilities of plasmas, light-material interaction, material 

transformation under high strain rate, atmospheric flows, shock-turbulence interaction, non-canonical 

wall-bounded flows, scramjet combustors, liquid atomization and free-space optical 

telecommunications [5-13]. Rayleigh-Taylor mixing is a multi-scale, heterogeneous, anisotropic and 

statistically unsteady turbulent process with non-local interactions among the many scales [3,4]. Its 
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development is usually associated with the conditions of strong gradients of pressure and density and 

may also include spatially varying and time-dependent acceleration, diffusion of species, heat release, 

and chemical reactions [17-28,29-39]. These conditions depart from those under which canonical 

Kolmogorov turbulence is expected to occur [14-16,40]. Capturing the properties of Rayleigh-Taylor 

mixing can enable a better understanding of realistic turbulent flows and can further improve the 

methods of their mitigation and control [40]. Here we discuss the influence of momentum transport 

on fundamental properties of turbulent mixing, and outline some new ideas that may help to better 

control the mixing process in the applications [5-13]. 

Arising in a variety of diverse circumstances, RT flows exhibit some similar features of their 

evolution [3,4]. The mixing starts to develop when the fluid interface is slightly perturbed near its 

equilibrium state. The flow transitions from an initial stage, where the perturbation amplitude grows 

relatively quickly [e.g. exponentially in time, if the fluids are incompressible and immiscible and are 

to sustained acceleration or gravity g ], to a nonlinear stage, where the growth-rate slows and the 

interface is transformed into a composition of a large-scale coherent structure and small-scale 

irregular structures driven by shear, and then finally to a stage of turbulent mixing, whose dynamics is 

believed to be self-similar [41-58]. 

The large-scale coherent structure in RT flows is a periodic array of bubbles and spikes, with 

light (heavy) fluid with density ( )hlρ  penetrating the heavy (light) fluid in bubbles (spikes) [3,4]. The 

dynamics of the structure is governed by two, in general independent, length scales: the amplitude h~  

in the direction of gravity and the spatial period λ  in the normal plane [3,4,59-62]. The horizontal 

scale λ  is set by the mode of fastest-growth or by the initial conditions [3,4]. It may increase, if the 

flow is two-dimensional and the initial perturbation is broad-band and incoherent [43-49]. The 

vertical scale h~  grows as power-law with time, and it is believed that in the mixing regime 2~
~ gth , 

g=g  [41-58]. This scale can be regarded as an integral scale, which represents cumulative 

contributions of small-scale structures in the flow dynamics [3,4,59-62]. The small-scale vortical 

structures are produced by the Kelvin Helmholtz instabilities at the fluid interface [17-39]. In miscible 

fluids, the small-scale structures diffuse from the interface into the bulk, and the mixing process is 

slowing down. Some other features are induced in the dynamics by compressibility, high energy 

density conditions and non-uniform acceleration [5-13]. 

To quantify RT mixing flow the observations were focused on diagnostics of the coarsest 

scales h~  and ascertainment of dependency 2~ Agth α=  where α  is a constant and 

( ) ( )lhlhA ρ+ρρ−ρ=  is the Atwood number [17-39]. RT dynamics was characterized by period 

λ , and growth of this scale with 2~
~

~ gthλ  was suggested as a primary mechanism of the mixing 

development [43-49]. To account for the time-dependence of the integral scale 2~
~ gth  and interpret 

experimental and numerical data in RTI in terms of turbulent power-laws, some modifications were 

applied to Kolmogorov theory, including an introduction of a virtual origin and a time-scale for 

transition to turbulence, a substitution of time-dependencies in Kolmogorov invariants, and a 

description of RTI by analogy with passive scalar mixing [50-57]. Some quantitative agreements 
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were found between the observations data that spanned relatively short dynamic range and the models 

that used adjustable parameters [43-57]. Some qualitative features of the turbulent process still remain 

unclear, e.g. a relatively ordered character of RT flow at high Reynolds numbers [56]. To date, 

experiments and simulations did not provide a trustworthy guidance on whether the concepts of 

classical turbulence are applicable to an accelerating RT flow and whether the scaling 2~ gth  and 
2gtλ  are indeed universal. 

We refer the reader to recent reviews [3,4,28,40] for a detailed discussion of the state of the 

art in theoretical, experimental, numerical and computational studies of Rayleigh-Taylor flows. This 

paper presents the physics-based analysis of the mechanisms and the properties of RT mixing 

suggested by the studies [3,4,59-62] and focuses on the consideration of correlations and fluctuations 

of the statistically unsteady turbulent dynamics. We extend to non-canonical circumstances of 

unsteady turbulent mixing the ideas of Kolmogorov theory [14-16] on symmetries of turbulent 

dynamics. Our consideration accounts for the essentially multi-scale character of RT evolution, and 

identifies the transport of momentum as a better indicator of RT mixing flow than the transport of 

energy [3,4,59-62]. The invariance of the rate of momentum loss leads to essentially non-

Kolmogorov invariant, scaling and spectral properties of the turbulent mixing. The RT mixing 

exhibits more order compared to isotropic turbulence. Its viscous and dissipation scales are finite and 

set by the flow acceleration [3,59-62]. We discuss the outcomes of theoretical results for practical 

applications and for the methods of flow mitigation and control. 

 

 

II. Mechanisms, symmetries, and invariants measures of turbulent processes. 
As in any natural process, turbulent transports are governed by the conservations principles 

[14]. The conservations of mass and momentum have the form 

0=ρ⋅∇+ρ V& , ( )( ) 0=+∇+−∇⋅+ρ SgVVV p& ,  (1) 

where ρ , V  and p  are the fluid density, velocity and pressure, S  denotes terms induced by viscous 

stress and other effects, and dot marks the partial derivative in time t . In RT flow the fluid interface 

is a discontinuity, and equations (1) yield also the boundary conditions at the interface which balance 

the transports of mass, momentum and energy of the fluids [14]. The system is spatially extended and 

has no mass sources. 

 

2.1 Symmetries of turbulent processes. 
A cornerstone of Kolmogorov theory is that the isotropic and homogeneous turbulent flow 

has a number of symmetries in statistical sense [15]. Indeed, for a homogeneous fluid with 

const=ρ , with neglected effects of gravity, viscous stress and other terms, 0== Sg , and 

asymptotically in time, system (1) describes canonical turbulent flow [15] that is invariant to Galilean 

transformation, to temporal translations, and to spatial translations, and spatial inversions and 

rotations. It is also scale-invariant with LKL → , ntKt −→ 1  and nVKV →  for any n , where 
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V=V , and L  is a characteristic length scale [14-16]. Kolmogorov [15] found that for isotropic 

homogeneous turbulence 31=n , and that the measure of the scaling symmetry is the rate of change 

of specific kinetic energy LV 3~ε . Later it was shown that the arbitrariness of n  reflects in 

turbulence multi-scaling and intermittency, see Refs [16,63-67] and references therein. 

Similarly to Kolmogorov turbulence, Rayleigh-Taylor turbulent mixing has a number of 

symmetries [3,4,59-61]. Due to the presence of gravity, 0≠g , and non-inertial character of the 

dynamics, these symmetries are distinct from those of Kolmogorov turbulence. Rayleigh-Taylor 

mixing flow is invariant with respect to translations, inversions and rotations in the plane normal to 

g , and to scaling transformation LKL → , ntKt −→ 1  and nKvv→  with 21=n . The measure 

of this scaling symmetry L2v  has the same dimension as g  and quantifies the rate of change of 

specific momentum, Table 1. 

 

Table 1: Symmetries of turbulent processes 

Kolmogorov 

turbulence 

Kolmogorov turbulence is inertial and is invariant with respect to Galilean 

transformation, translations in time and 3D space, and spatial rotations and inversions. It 

is scale-invariant, LKL → , nTKT −→ 1 , nKvv→  with 31=n . 

RT turbulent 

mixing 

Rayleigh-Taylor turbulent mixing is non-inertial and is invariant with respect to 

translation, rotations and inversions in the plane normal to gravity g . It is scale 

invariant, LKL → , nTKT −→ 1 , nKvv→  with 21=n . 

 

 

2.2 Momentum-based consideration of turbulent mixing. 
In RT mixing flow, the specific momentum is gained due to buoyancy and is lost due to 

dissipation. The dynamics of a parcel of fluid is governed by a balance per unit mass of the rate of 

momentum gain μ~  and the rate of momentum loss μ  as 

v=h& ,  μ−μ= ~v&      (2) 

Here h  is the vertical length scale, e.g. position of the center of mass of the fluid parcel, v  is the 

corresponding velocity, and μ~  and μ  are the absolute values of vectors pointed in opposite directions 

along the gravity g  [3,4,59-62]. Eqs. (2) represent in a simplified dimensional-grounds-based form 

the conservation of mass and momentum (1). 

The rate of momentum gain is the rate of change of specific momentum which can be gained 

due to buoyancy (e.g. the specific buoyant force), and vε=μ ~~ , where ε~  is the rate of energy gain 

(e.g. the rate of change of specific potential energy). The value ( )Afg=μ~  with ( )Af  being a 

function on the Atwood number, and it is rescaled hereafter as ( ) gAfg → . The rate of momentum 

loss is the rate of change of specific momentum which is lost due to dissipation, and vε=μ , where 

ε  is the rate of change of specific kinetic energy. In the limit of vanishing viscosity on the basis of 

dimensional grounds LvC 3=ε , where L  is the characteristic length scale and constC =  [3,59-
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62]. The ratio between εμ ~,~  as well as εμ,  are the standard relations between the (specific) power 

and force [14]. 

As discussed in [59], asymptotic solutions for model (2) depend on whether the characteristic 

length scale of the flow is horizontal or vertical. If the characteristic length scale is horizontal, λ~L , 

then Eqs. (2) has steady solution with λg~v  and λgth ~ , and the rates of momentum and 

energy are balanced: g=μ=μ~  and ( ) Cg λλ=ε=ε 2/3~ . If the characteristic scale is vertical, 

hL ~ , then asymptotically in time, 22gtah =  and gta=v  with ( ) 121 −+= Ca . The rates of 

energy gain and dissipation are time-dependent, tga 2~ =ε  and ( ) tgaa 21−=ε , and the rates of 

momentum gain and loss are time- and scale-invariant, g=μ~  and hC 2v=μ  [59-62]. As found in 

many observations, the values of a  are rather small, 15.005.0~ −a  [17-39]. Thus, in the mixing 

flow almost all energy induced by the buoyancy dissipates, ε≈ε~  with ( )a−=εε 1~ , and the rates of 

momentum gain and loss slightly imbalance one another, μ≈μ~  with ( ) a=μμ−μ ~~ . Self-similar 

mixing may develop when horizontal scale λ  grows with time as 2~~ gthλ  [43-49], and when the 

vertical scale h , hh ~
~ , is the characteristic scale for energy dissipation that occur in the small-scale 

structures at the fluid interface [3,59-62]. 

 

2.3 Mechanisms of development of RT mixing. 
Agreeing in certain limiting cases with principal results of the heuristic models [41-57], 

momentum consideration (2) identifies some new properties of the mixing flow [59-62]. It suggests 

that the accelerated turbulent mixing develops due the imbalance of gain and loss of specific 

momentum, μ≠μ ~ . This imbalance may occur when (i) the horizontal scale grows as 2~ gtλ , and/or 

when (ii) the vertical scale h  is a characteristic scale for energy dissipation, LC 3v=ε  with hL ~ , 

and when it represents cumulative contributions of small-scale structures into the flow dynamics. 

Existence of two distinct mechanisms of the mixing development reconciles with one another the 

models [41-59]. It also agrees with results of theoretical studies [4], which found that the amplitude 

h~  and period λ  provide independent contributions to the nonlinear RT dynamics and that for highly 

coherent large-scale coherent structures the growth of horizontal scales may not occur. 

 

2.4 Energy budget, transports of energy and momentum, position of the center of mass. 
Turbulence is a property of dissipative systems and it decays unless it is driven [14-16,63-67]. 

Kolmogorov turbulence is driven by an external energy source, which supplies energy to the flow at a 

constant rate ε : Energy is injected at large scales by an external source, and then it is transferred 

without loss through the inertial interval and dissipates at small scales [14-16,63-67]. According to the 

momentum consideration [3,59-62], for Rayleigh-Taylor turbulent mixing an external energy source 

(other than gravity) is not required, and the specific momentum is gained due to buoyancy and is lost 

due to dissipation. In accelerated flow at any scale μ≠μ ~  and ε≠ε ~ , and this imbalance indicates 

that the mean velocity of the center of mass of the fluid entrained in the motion is time-dependent, 

whereas in statistically steady turbulent flow it is invariable, Table 2. 
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Table 2: Energy source, transports of momentum and energy, center of mass position in 
the turbulent processes 

Kolmogorov 

turbulence 

Energy is injected at large scales by an external source, and is transferred without losses 

through the inertial interval and dissipates at small scales. Mean velocity of the center of 

mass of the fluid system is time-independent. 

RT turbulent 

mixing 

There is no external energy source other than gravity. Energy and momentum are gained 

due to buoyancy and are lost due to dissipation. In steady regime 0~ =μ−μ  and 

( ) Cg λλ=ε=ε 2/3~ . Accelerated turbulent mixing is driven by imbalance between 

the gain and loss of specific momentum, and at any scale μ≠μ ~  and ε≠ε ~ . In 

accelerated mixing, the mean velocity of the center of mass of the fluid system is time-

dependent. 

 

 

2.5 Asymptotic states of turbulent processes in space and in time. 
Statistically steady Kolmogorov turbulence is an asymptotic in time state, which is achieved 

when the memory of the initial conditions is completely lost, and when the boundaries of the outside 

domain do not influence the dynamics [15,63-67]. These conditions can be realized in a spatially 

extended system or in a finite-size domain, when the span of scales runs several decades from viscous 

to integral scale [15]. Implementation of these conditions in Rayleigh-Taylor turbulent mixing 

requires special attention [28]. In a finite-size domain, an asymptotic in time dynamics corresponds to 

a stable state with no motion at all: under the influence of gravity (directed from the top to the bottom) 

the system transits from an unstable configuration to a stable configuration (e.g. from an initial state 

with heavier fluid located at the top of the domain and lighter fluid - at the bottom to a reverse state), 

and the change in the system potential energy dissipates into heat. In a spatially extended system (e.g. 

in a large domain) the flow may accelerate, however at a certain time compressibility and 

stratification start to play a role and results in flow stabilization, as discussed in Ref. [14,59]. To allow 

for the development of Rayleigh-Taylor turbulent mixing and to enable its diagnostics over substantial 

span of scales, the size of the domain should be large enough yet not so large to prevent mixing 

stabilization by effects of compressibility and stratification. 

 

2.6 Effective drag in the turbulent flows. 
Regularization of accelerated turbulent mixing is at first glance an unusual concept. However, 

there is some evidence from previous studies that is does take place. For instance, re-laminarization of 

an accelerated flow is a well-known fluid dynamics phenomenon discovered in the works of Taylor 

[68] for flows in curved pipes and Sreenivasan [69] for boundary layers. Another indication of a more 

regular character of Rayleigh-Taylor mixing follows from the characteristic value of the flow drag. 

Coefficient C  in the dependencies LC 3v=ε  and LC 2v=μ  can be viewed as effective drag 

coefficient, which is related to the growth-rate 22gtah =  via ( ) 121 =+ Ca  [59-62]. For 0→C  
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(no drag) the solution is a free-fall with 1→a , whereas for ∞→C  (infinitely large drag) 0→a  

and the flow cannot accelerate. Experiments and simulations report relatively small values of 

15.005.0~ −a  (with 07.003.0~ −α  in the relation 2gtAh α=  in [49]). These values correspond 

to drag coefficient of 83~ −C , indicating that flow may tend to be more laminar rather than 

turbulent [63-67]. In canonical Kolmogorov turbulence, the value of C  is calculated from the third-

order velocity structure function as 4/5=C  and 1~C  [15,63-67]. This may lead to 3.07/2 ≈=a  

( 14.0~α  in 2gtAh α=  in [49]), which is significantly greater than the values actually observed. 

 

2.7 Invariant measures of turbulent process. 
In isotropic turbulence, the total momentum is zero because of isotropy. Time- and scale-

invariance of the energy dissipation rate L3~ vε  implies that the energy injected at large scales, 

( )Lvv2~ε , is transferred without loss through the inertial range and is dissipated at small scales, 

( )( )2~ LvvLε  [15,16,63-67]. That is, time- and scale-invariance of the energy dissipation rate 

L3~ vε  is compatible with existence of inertial interval and non-dissipative energy transfer 

between the scales [15,16,63-67]. In accelerated Rayleigh-Taylor turbulent mixing, the rates of 

change of specific energy are time-dependent, the energy dissipation rate is time-dependent, 

tg 2~~~ εε , and the specific momentum is imbalanced, μ≠μ~ . Time- and scale invariance of 

L2~ vμ  implies that at any time and length scale the specific momentum is being lost at the same 

constant rate, and momentum transfer between the scales is non-dissipative [61]. Enstrophy is another 

invariant of isotropic turbulence [63-67], whereas in Rayleigh-Taylor mixing this value decays with 

time (thus providing another indication of a tendency of accelerated mixing flow to re-laminarize) 

[61]. In Rayleigh-Taylor flow, vortical structures form helixes not vortices. In a flow dominated by 

the growth of horizontal scales, 2~~ gthλ , the helicity is a statistically steady value and its 

steadiness may serve as an indicator of achieving a merger-driven self-similarity [61], Table 3. 

 

Table 3: Some invariant measures of the turbulent process 

Kolmogorov 

turbulence 

Dynamics is statistically steady. Invariance of energy dissipation rates L3~ vε  is 

compatible with existence of inertial interval and energy cascade. Enstrophy and helicity 

are other invariants. 

RT turbulent 

mixing 

Dynamics is statistically unsteady. Invariance of rate of momentum loss L2~ vμ  leads 

to non-dissipative momentum transport between the scales. Energy dissipation rate and 

enstrophy are time-dependent, and helicity is invariant. 

 

 

 



Multi-scale Mathematics: Hierarchy of Collective Phenomena and Interrelations between Hierarchical Structures, 9 – 11 Dec 2011, Japan 

S.I. Abarzhi, The University of Chicago, USA 8

III. Correlations and fluctuations in turbulent processes. 
 

3.1 Space-time scaling properties: correlations and fluctuations in the turbulent process. 

For a description of scaling properties, let the length scale L  and time scale T  refer to large 

scales and times, let the characteristic velocity be v , let the characteristic velocity be lv at a small 

length scales l , and let the characteristics velocity be τv  on a short time-scale τ . 

In Kolmogorov turbulence [14-16,63-67], the invariance of the energy dissipation rate 

lL l
33 ~~ vvε  yields the velocity scaling ( ) 3/1~ Lll vv , N -th order velocity structure function 

( ) 3/~ Nl ε , and velocity scaling with time ( ) 3/1~ Tττ vv . The relative velocity of two parcels of 

fluids involved in these motions is ( ) 2/1~ ετ  on a time delay τ , and it is substantially smaller than the 

velocity fluctuations ( ) 3/1~ τετ vv  induced by turbulence. This well-known result means that in 

Kolmogorov turbulence, the main contribution to velocity fluctuations is provided by the turbulence 

not by the initial conditions [15], Tables 4,5. 

 

Table 4: Spatial scaling of the velocity in the turbulent process 

 Velocity scaling Velocity Nth order structure function 

Kolmogorov 

turbulence 

( ) 3/1~ Lll vv based on ε  invariance ( ) 3/~ Nl ε  based on ε  invariance 

RT turbulent 

mixing 

( ) 2/1~ Lll vv  based on μ  invariance ( ) 2/~ Nlμ  based on μ  invariance 

 

In Rayleigh-Taylor turbulent mixing, the invariance of the rate of momentum loss 

lL l
22 ~~ vvμ  yields the velocity scaling ( ) 2/1~ Lll vv , N -th order velocity structure function 

( ) 2/~ Nlμ , and the velocity scaling with time ( )Tττ ~vv . For two parcels of fluids involved in the 

motion with a time delay τ , their relative velocity is ( ) ττμ−μ g~~~  and it is comparable to 

μττ ~v  induced by turbulent fluctuations, whereas their own velocities grow with time as gt~  and 

( )τ−tg~  [14]. We see that in accelerated mixing flow, the velocity fluctuations are ‘frozen’ to the 

level of the initial conditions, and with time the contribution of fluctuations to the mixing dynamics is 

reduced, Tables 4,5. 

 

Table 5: Temporal scaling of the velocity in the turbulent process 

 Velocity scaling Velocity fluctuations 

Kolmogorov 

turbulence 

( ) 3/1~ Tττ vv  based on ε  invariance ( ) 3/1~ τετ vv  based on ε  invariance 

and ( ) ( ) 2/13/1 ετ>>τεv  

RT turbulent 

mixing 

( )Tττ ~vv  based on μ  invariance μττ ~v based on μ  invariance and 

( ) ττμ−μμτ g~~~  
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3.2 Reynolds number, viscous scale and integral scale in turbulent processes. 

In Kolmogorov turbulence, Reynolds number is finite constL =ν= vRe  and local 

Reynolds number ν= lll vRe  scales as ( ) 3/4Re~Re Lll  leading to the viscous length scale 

( ) 4/13~ εννl  and time-scale ( ) 2/1~ εντν  for 1~Re l . In accelerated turbulent mixing the 

Reynolds number grows with time as νν= 32~Re tgLv  and the local Reynolds number 

ν= lll vRe  scales as ( ) 2/3Re~Re Lll . For 1~Re l  viscosity plays a dominant role, thus leading 

to viscous length-scale ( ) 3/12~ μννl  with the corresponding time scale ( ) 3/12~ μντν . The viscous 

length-scale is finite. It is set by the flow acceleration and are comparable to the wavelength of mode 

of fastest growth [1,2]. Thus despite in accelerated Rayleigh-Taylor mixing the Reynolds number can 

reach large values relatively quickly the flow viscous scale remains finite. An upper limit for 

Reynolds number ν32~Re tg  can be estimated at a border of validity of incompressible 

approximation cgt ~  as νgcc
3~Re , where c  is the sound speed, Table 6. 

 
Table 6: Reynolds number, viscous scale, and integral scale in the turbulent process 

 Reynolds number Viscous and integral scales 

Kolmogorov 

turbulence 

constL =ν= vRe . Invariance of ε  

leads to ( ) ( ) 3/4Re~~Re Lllll νv . 

Invariance of ε  leads to ( ) 4/13~ εννl  and 

( ) 2/1~ εντν . An integral scale is the scale at 

which energy is gained by the flow system 

RT turbulent 

mixing 

νν= 32~Re tgLv . Invariance of μ  

leads to ( ) ( ) 2/3Re~~Re Lllll νv . 

For cgt ~  upper limit is νgcc
3~Re . 

Invariance of μ  leads to ( ) 3/12~ μννl  and 

( ) 3/12~ μντν . An integral scale is the coarsest 

vertical scale representing cumulative 

contributions of small scale structures. 

 

In Kolmogorov turbulence the integral scale is the scale, at which energy is gained by the 

flow system. For turbulent mixing this consideration may not be directly applicable. In Rayleigh-

Taylor mixing, momentum and energy are gained and dissipated at any scale, and imbalance between 

the rate of momentum gain and loss leads to flow acceleration. The coarsest vertical scale in 

Rayleigh-Taylor flow can be regarded as an integral cumulative scale, which represents cumulative 

contributions of small-scale structures in the flow dynamics, Table 6. 

 

 
3.3 Dimensional-analysis-based spectral properties of the turbulent process. 
In isotropic turbulence, the invariance of energy dissipation rate leads to kinetic energy 

spectrum ( ) 3/53/2~ −ε kkE  [15,63-67]. In Rayleigh-Taylor mixing accurate determination of spectra 

(and corresponding eigen-functions) is a formidable task because the dynamics is statistically 

unsteady. Dimensional analysis suggests that the spectrum of specific kinetic energy have the form 
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( ) 2~ −μkkE , which is steeper than Kolmogorov; similarly for the spectrum of specific momentum 

one obtains ( ) 2/32/1~ −μ kkM . In Kolmogorov turbulence ( ) 0≡kM  due to isotropy, Table 7, [61]. 

 

Table 7: Dimensional-analysis-based spectral properties of the turbulent process 

 Spectrum of specific kinetic energy Spectrum of specific momentum 

Kolmogorov 

turbulence 

( ) 3/53/2~ −ε kkE  set by invariance of ε . ( ) 0≡kM  due to isotropy 

RT turbulent 

mixing 

( ) 2~ −μkkE  set by invariance of μ  ( ) 2/32/1~ −μ kkM  set by invariance of 

μ  

 
 

3.4 Pressure fluctuations. 
In Kolmogorov turbulence, pressure fluctuations are evaluated using fourth-order velocity 

structure function so that pressure fluctuates as 3/43/4~ lε  with spectrum 3/73/4~ −ε k  [63-67]. For 

Rayleigh-Taylor mixing dimensional analysis suggests for pressure fluctuations 22~ lμ  with 

spectrum 32~ −μ k  which is steeper than in Kolmogorov turbulence, Table 8 [61]. 

 
Table 8: Dimensional-analysis-based properties of pressure fluctuations 

 Scaling Spectrum 

Kolmogorov 

turbulence 

3/43/4~ lε  set by invariance of ε . 3/73/4~ −ε k  set by invariance of ε . 

RT turbulent 

mixing 

22~ lμ  set by invariance of μ  32~ −μ k  set by invariance of μ  

 

 

3.5 Statistically steady and statistically unsteady turbulent mixing. 

To conclude this section, we discuss in more details statistically steady and statistically 

unsteady regimes in Rayleigh-Taylor flows. In a steady regime, the flow can appear more coherent or 

more ‘turbulent’ depending on the Atwood number and the initial conditions [3,4]. For the steady 

flow, the rates of momentum gain and loss as well as energy gain and dissipation are balanced, 

μ=μ~  and ε=ε~ , and the characteristic length scale of the flow λ  is constant. The characteristic 

velocity is λg~v , the Reynolds number is νλλν= gL ~Re v , and the energy dissipation 

rate is constant ( ) λλε 2/3~ g . This formally corresponds to the viscous scale 

( ) ( )( ) 4/12/334/13 ~ λλνεν g , which is smaller than the mode of fastest growth ( ) 3/12 gν  for 

( ) 3/12 gν>λ . However, as ( )( ) ~
4/12/33 λλνλ g ( )( ) 8/93/12 gνλ  and 18/9 ≈ , the characteristic 

span of scales in the steady flow is well captured by the ratio ( ) 3/12 gνλ . 
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The flow acceleration increases the flow velocity, integral length scale, Reynolds numbers, 

and energy dissipation rate. At the first glance, this may lead to an appearance of high-Reynolds 

number turbulent flow with a significant span of scales [41-58]. Momentum consideration [59-62] 

suggests however that buoyancy-driven turbulent mixing is accelerated due to imbalance between the 

gain and loss of momentum and energy with ( ) a=μμ−μ ~~  and ( ) a=εε−ε ~~ . In this flow the 

velocity gt~v , the length scale 2~ gth , the Reynolds number ν32~Re tg , and the span of 

scales ( ) 3/122~ ggt ν  indeed increases. Here the viscous scale is ( ) 3/12~ gν  and upper limit for 

the span of scales is ( ) 3/122~ ggc ν  for gtc ~ . However, compared to the case of statistically 

steady isotropic and homogeneous turbulence, the accelerated turbulent mixing exhibits stronger 

correlations, reduced contribution of fluctuations and steeper spectra and may tend to be more laminar 

[59-62], Table 9. 

Table 9: Flow quantities in statistically steady and statistically unsteady Rayleigh-Taylor mixing 

Steady RT 

flow 

Balance of momentum and energy μ=μ~  and ε=ε~ . Constant length scale λ , 

velocity λg~v , Reynolds number νλλ g~Re  and energy dissipation rate 

( ) λλε 2/3~ g  with corresponding viscous scale ( )( ) 4/12/33 λλν g  and  

span of scales ( )( ) 8/93/12 gνλ . 

Unsteady RT 

flow 

Imbalance of momentum and energy ( ) a=μμ−μ ~~  and ( ) a=εε−ε ~~ . 

Time-dependent length scale 2~ gth , velocity gt~v , Reynolds number 

ν32~Re tg  and energy dissipation rate tg 2~ε . Constant rate of momentum 

loss g~μ  with corresponding viscous scale ( ) 3/12~ gν  and  

span of scales ( ) 3/122~ ggt ν  with upper limit ( ) 3/122~ ggc ν . 

 

 

 

IV. Stochastic modeling of statistically unsteady turbulent mixing process 
As in any turbulent process, RT mixing dynamics has a random character, which is resulted 

from contribution of small-scale structures and interactions of all the scales [60,63-67]. Capturing this 

randomness is a complex task. In Kolmogorov turbulence, random character of flow dissipation is 

induced by velocity fluctuations with the energy dissipation rate being a statistic invariant [63-67]. In 

RT mixing flow the velocity and the length scale both fluctuate and the energy dissipation rate grows 

with time. We account for the random character of dissipation in RT flow on the basis of idea that 

even in a statistically unsteady process [whose fluctuating quantities are time-dependent and non-

Gaussian] there exist time- and scale-invariant values fluctuating about their means, particularly, the 

rate of momentum loss μ  [60]. 

To study the effect of fluctuations on the mixing dynamics, Eqs.2 are represented in a 

differential form  
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dtdh v= ,  Μ−Μ= d
~

dvd ,     (3a) 

with differentials of momentum gain dtg=Μ~d  and loss =Μd ( )dthC 2v  and with C  being a 

stochastic process [60]. This process is, in general, time-dependent, =C ( )tC , and is characterized by 

a time-scale Cτ , showing how fast the distribution ( )tC  approaches a stationary probability density 

function ( )Cp . The function ( )Cp  is non-symmetric, 0>C , with the mean value C , with the 

mode maxC  corresponding to the highest value of ( )Cp , and with the standard deviation σ , 

describing the fluctuations intensity. For stochastic processes with log-normal distribution 

( ) =Cp ( )( ) Ce CC σπσ−− 2
22

0 2lnln , the mean ( )2exp 2
0 σ= CC , the mode ( )2

0max exp σ−= CC , and the 

set of stochastic differential equations in (3a) takes the form 

dtdh v= , dt
h

Cgdtdv
2v

−= , dWCdt
C
CCdC

CC τ
σ+

τ⎟
⎟
⎠

⎞
⎜⎜
⎝

⎛ σ
−−=

2

2
ln

2

, (3b) 

with dW  being a standard Weiner process. 

The stochastic modeling results indicate that fluctuations do not change the asymptotic time-

dependence of the dynamics, so that 2~ 2gth  as ∞→τt , yet they influence significantly the 

coefficient 22 gtha =  [60]. Depending on the shape of the distribution ( )Cp  and on the 

fluctuations intensity σ , the mean value of a  may vary in several folds, and, furthermore, it saturates 

slowly with time for ( ) 1>>τt . This result explains qualitatively the several-fold scatter in the values 

of a  in the experiments and simulations [49]. It indicates that the growth-rate parameter a  is 

sensitive to the dissipation statistics and it is a significant parameter not because it is “deterministic” 

or “universal,” but because its value is rather small, 1<<a  [50]. Found in many experiments and 

simulations, the small a  implies that in RT flows almost all energy induced by the buoyant force 

dissipates, and a slight imbalance between the rates of momentum loss μ  and gain μ~  is sufficient for 

the mixing development. We emphasize that the rate of momentum loss ( ) hCt 2v=μ  is relatively 

insensitive to the effect of fluctuations, and monitoring the momentum transport is thus has crucial 

importance for grasping the essentials of the mixing process. 

 

 

 

V. Outcomes of theoretical analysis for mitigation and control of turbulent mixing process 
To date, the design of experiments on RT mixing [17-39] employs the results of traditional 

models [41-58] suggesting the following scenarios for RT evolution. Initially, small perturbations at 

the interface with wavelength λ  grow fast. In the nonlinear regime the velocity is λg~v  and 

amplitude is λgt~vt~h . Horizontal and vertical scales are strongly coupled, and self-similar 

growth of horizontal scales (e.g. bubble interaction and merge) leads to flow acceleration with 
2~~ gthλ . In accelerated regime the scales grow as 2~ gth  and 2~ gtλ , the Reynolds number 

and energy dissipation rate increase as ν32~Re tg  and t23 g~hv~ε . This may be interpreted as 

the development of a turbulent state of the mixing flow, which is similar to isotropic and 

homogeneous turbulence and is independent of the initial conditions, and whose viscous scale decays 
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as ( ) ( ) 4/1234/13 ~ tgνεν  and span of scales increases as ( ) ~
4/13 ενh 4/34/92/3 νtg . Therefore, 

according to these scenarios, RT turbulent mixing, once it appears, cannot be controlled. To proceed 

to mixing regime faster, the initial perturbation may contain large wavelength modes. To suppress the 

mixing development, the interface should be ‘finely polished’ [41-58]. 

As discussed in the foregoing, some of results of traditional models [41-58] can be obtained 

within the frames of the theoretical analysis [59-62] with the use of additional adjustable parameters. 

Some other results of the traditional models [41-58] are known to have severe limitations [4]. 

The theoretical analysis [3,4,59-62] finds that in the nonlinear regime of RTI, horizontal and 

vertical scales contribute independently to the dynamics, and the rates of specific momentum and 

energy are balanced, μ=μ~  and ε=ε~ . Accelerated turbulent mixing develops due to imbalance of 

specific momentum and energy with ( ) a=μμ−μ ~~  and ( ) a=εε−ε ~~ , where 22gtah =  (with 

‘effective’ g  accounting for the density ratio). There are two distinct mechanisms for the mixing 

development: (i) growth of horizontal scale (period) 2~ gtλ  and (ii) dominance of vertical scale 

(amplitude) hL ~  or energy dissipation. Bubble merge is possible but not a necessary condition for 

the mixing to occur. Compared to isotropic turbulence, RT turbulent mixing exhibits more order, 

steeper spectra, stronger correlations, and weaker contributions of fluctuations, which are ‘frozen’ to 

the initial conditions. In turbulent mixing flow the viscous scale is finite and is set by flow 

acceleration as ( ) ( ) 3/123/12 ~ gνμν . The span of scales is ( ) ( ) 3/1223/12 ~ ggtgh νν  with the 

upper limit ( ) 3/122 ggc ν . In the mixing flow the rates of gain and loss of specific momentum are 

time- and scale-independent, gL ~~~~ 2vμμ , the rates of energy gain and dissipation are time-

dependent, tg 2~~~ εε , and Reynolds number increases as ν32~Re tg . Therefore, the theoretical 

analysis [3,4,59-62] suggests that RT mixing flow can in principle be controlled by means of initial 

perturbation and acceleration. Horizontal and vertical scales can be controlled independently, and 

initial perturbation with large wavelengths may not induce any turbulence [4,59-62]. For better 

control of RT mixing, one should impose proper (e.g. highly coherent) initial conditions in order to 

prevent bubble merge. Furthermore, one should choose very special initial conditions to force the 

flow to fluctuate [3,4,59-62]. 

It would be beneficial for the design of experiments on RT mixing to account for that in 

strongly fluctuating turbulent flows the Reynolds number is high; yet not in any high Reynolds 

number flow the fluctuations are strong [59-62]. Implementation of turbulent flows in experiments is 

an extremely challenging task [28], as good experiments on turbulence are the ‘quantitative’ 

experiments, which require accurate interpretation of the (bias-free) experimental noise. A qualitative 

experiment with a binary answer ‘yes/no’ may be a good solution the case of RT turbulent mixing. 

Such an experiment may involve a comparative study of RT mixing dynamics with various initial 

conditions, e.g. involving hexagonal grid, square grid, two-mode grid, and fractal grid [70] in case of 

three-dimensional spatially extended flows. According to the analysis [3,4,59-62], the expected results 

would be the following. For accurately implemented hexagonal grid, bubble merge may not occur, 

and the flow is ‘regular’ and is dominated by the coherent structure. For square grid, bubble merge 
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may occur via multi-pole interactions. For two-mode grid with small and large wavelengths, bubble 

merge will develop faster compared to square grid. Fractal grid [70] may be the best to induce 

fluctuations and a ‘turbulent-like’ dynamics (these fluctuations may be dominated by the few modes 

and may not be stochastic [70]). 

 

 

VI. Conclusion 

We have considered the effect of momentum transport on scaling, invariant and statistical 

properties of Rayleigh-Taylor mixing flow [3,4,59-62]. It is shown that the rate of momentum loss is 

a better indicator of the unsteady turbulent dynamics than the rate of energy dissipation. Our 

consideration accounts for the multi-scale character of turbulent mixing dynamics and indicates two 

possible mechanisms for the mixing development. The first is the traditional “merge” associated with 

the growth of horizontal scales. The second is associated with the production of small-scale structures 

and with the growth of the vertical scale, which plays the role of the integral scale for energy 

dissipation. Based on invariance of the rate of momentum loss, we found that the fundamental 

properties of statistically unsteady Rayleigh-Taylor turbulent mixing depart substantially from 

classical Kolmogorov scenario. In particular, turbulent mixing flow exhibits more order compared to 

isotropic turbulence, and its viscous scale is set by the flow acceleration. The stochastic modeling 

results indicate that the growth-rate parameter of the mixing zone is a sensitive to statistical properties 

of dissipation. The momentum-based consideration of Rayleigh-Taylor mixing suggests a principal 

opportunity of mitigation and control of the statistically unsteady turbulent process. 
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