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NUMERICAL STUDY OF THE EFFECT OF DYNAMIC CAPILLARY
PRESSURE IN POROUS MEDIUM

RADEK FUČÍK1, JIŘ́ı MIKYŠKA1, TOSHIHIRO SAKAKI2, TISSA H. ILLANGASEKARE2

Abstract. In order to investigate effects of the dynamic capillary pressure-saturation relation-
ship used in the modelling of flow in porous medium, a one-dimensional fully implicit numerical
scheme is proposed and its validity is discussed by means of semi-analytical solutions developed by
McWhorter and Sunada and by the authors. The numerical scheme is used to simulate experimental
procedure using the measured dataset for the sand and fluid properties. Results of the simulation
using different models for dynamic effect term in capillary pressure - saturation relationship are
presented and discussed.

1. Introduction. In the understanding and prediction of the flow of immisci-
ble and incompressible fluids in porous medium, a reliable model of capillary forces
acting on the fluids is crucial. In past decades, various capillary pressure - saturation
models were correlated from laboratory experiments in equilibrium conditions. These
static capillary pressure - saturation relationships such as [4] or [28] has been used in
almost all mathematical studies on modelling of multiphase flow in porous medium.
However, soil physicists found that the laboratory measured capillary pressure does
not correspond to capillary pressure in case of large velocities. Recently, as a result of
the empirical approach in [26], theoretical studies [13], [14], [16], [15], [7], or [3] have
produced new aspects in the two-phase flow theories. The most important result is
that the classical capillary pressure - saturation relationship holds only in the state
of thermodynamic equilibrium. Therefore, it is believed that the classical approach
cannot be used in the modelling of capillarity when the fluid content is in motion and
a new model of the capillary pressure - saturation relationship is proposed, i.e., the
dynamic capillary pressure,[13], [14], [16], [15].

This manuscript focuses on the implications of the dynamic capillary pressure
- saturation relationship. The fully implicit numerical scheme is proposed and vali-
dated using the (semi-)analytical solutions for the static capillary pressure [22], [10],
and [11]. By estimating the experimental order of convergence, it is shown that the
numerical scheme is convergent and can be used for simulating flow in both homo-
geneous and heterogeneous porous medium. Consequently, the inclusion of various
models of dynamic capillary pressure coefficient are investigated and compared to the
static model of capillary pressure.

The two phase flow system can be simplified to the Richards problem, where
the pressure of the non-wetting phase (air or oil) is assumed to be constant. This is
the case in [18], where the dynamic effects is found not to be relevant for the given
structure of heterogeneous porous medium. Other numerical approaches using the
dynamic capillary pressure have been already studied for instance in [21], [20], or [24].
However, the relevance of using the dynamic capillary pressure in the full two-phase
flow system of equations has not been answered yet. The presented fully implicit

1Department of Mathematics, Faculty of Nuclear Sciences and Physical Engineering, Czech Tech-
nical University, Prague.

2Department of Environmental Science and Engineering, Colorado School of Mines, Golden,
Colorado.

1

Proceedings of the Czech-Japanese Seminar in Applied Mathematics 2008
Takachiho / University of Miyazaki, Miyazaki, Japan, September 1-7, 2008
pp. 14-30



numerical scheme can be used for such a detailed investigation of the saturation and
capillary pressure behaviour when dynamic capillary pressure is used instead of the
static capillary pressure in the full two-phase flow system. Moreover, different models
for the dynamic capillary pressure - saturation relationship are employed and their
respective impacts are discussed.

In this section, the constitutive quantities are introduced and the capillary pres-
sure is defined. Thorough definitions, descriptions, and examples can be found in
[8], [20], [1], [17], or [2]. Then, the mathematical model and the numerical scheme is
presented in Section 2. In the last section, the numerical scheme is validated using
analytical and semi-analytical solutions and the numerical experiments with dynamic
capillary pressure model are discussed.

1.1. Saturation. The fluid distribution in immiscible multiphase flow in porous
media is described by the saturation Sα [−]1 which indicates the volumetric portion
of the void space within the pores occupied by the fluid phase α. Hence, Sα is always
between 0 and 1. The sum of saturations Sα of all fluids present in the porous media
is 1, i.e.,

∑
α

Sα = 1.

Since not all volume of the fluid phase can be displaced in the multiphase flow from
the porous medium, the α-phase residual saturation quantity Srα [−] is introduced.
It expresses the minimal saturation of the phase α that will retain in porous medium
due to adhesion effects with respect to the solid matrix. Consequently, the effective
saturation Se

α [−] that describes only volumetric portions of displaceable fluid phases
is introduced as

Se
α =

Sα − Srα

1 −
∑
β

Srβ
. (1.1)

1.2. Capillary pressure. Following the standard definitions in literature, the
capillary pressure pc [ML−1] on the pore scale is defined as the difference between the
non-wetting phase pressure pn [ML−1] and the wetting phase pressure pw [ML−1],
i.e.,

pc = pn − pw. (1.2)

On the macroscale, the capillary pressure has been commonly considered as a
function of wetting phase saturation only and it has been widely used in model equa-
tions in literature [17], [2], [23], [12], [9], or [10]. The following Brooks and Corey [4]
capillary pressure - effective wetting phase saturation parameterization is used in the
presented two-phase flow model 2

peq
c = pd(Se

w)−
1

λ , (1.3)

where pd [ML−1] is the entry pressure and λ [−] describes the pore distribution of
the grains in porous material. The Brooks and Corey relationship (1.3) is suitable
for modelling of flow in heterogeneous porous media because the difference in the
entry pressure coefficients pd in different porous materials captures the barrier effect
that has been observed in experiments [23], [17], [1], [8]. As the main objective of

1[ ] indicates the unit of a symbol.
2A superscript eq is used in the definition (1.3) with respect to the latter and it indicates the

capillary pressure - saturation relationship model in thermodynamic equilibrium.
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the ongoing research is to study the capillarity in heterogeneous porous media, other
capillary pressure - saturation models (like that by van Genuchten [28] which does
not include the barrier effect) will not be considered in this manuscript.

The dynamic capillary pressure - saturation relationship is proposed in the fol-
lowing form [14]:

pc := pn − pw = peq
c − τ

∂Sw

∂t
, (1.4)

where peq
c is the capillary pressure - saturation relationship in the thermodynamic equi-

librium of the system (referred to as the static capillary pressure) and τ [ML−1T−1],
the dynamic effect coefficient, is a material property of the system.

Early in 1978, before the thermodynamic definition of (1.4) in [14], Stauffer [26]
observed the dynamic effect in laboratory experiments and proposed a linear depen-
dence in (1.4) with the following definition of τ

τS =
αSμwΦ

Kλ

(
pd

ρwg

)2

, (1.5)

where αS = 0.1 denotes a scaling parameter. Both λ and pd are the Brooks and Corey
parameters [4] that can be experimentally estimated. Other symbols are described in
Table 5.1.

The Stauffer model for the dynamic effect coefficient τS was obtained by corre-
lating experimental data. The values of τS vary between τS = 2.7 · 104 Pa s and
τS = 7.7 · 104 Pa s, see [20, page 27]. However, other researchers suggest that the
magnitude of τ should be in the order of 102 − 103 Pa s, [6], or, on the other hand,
it should be also in the order of 104 − 108 Pa s as estimated in [15].

Recently, a more general nonlinear dependence τ = τ(Sw) is assumed to be
more relevant in the modelling of realistic two-phase flow displacement [25]. In this
manuscript, constant, linear, and loglinear model will be used in numerical simulations
in order to investigate their influence on the two-phase flow.

1.3. Interface of porous media. At the interface of two different porous me-
dia, the normal components of fluxes of both fluids present in the system are contin-
uous due to conservation of mass [17]. If the fluid phase is present at the interface,
its pressure is also continuous. Consequently, following the definition (1.2), the capil-
lary pressure is continuous across the interface. In the case of the dynamic capillary
pressure (1.4), this condition yields

peq,I
c − τ I ∂SI

w

∂t
= peq,II

c − τ II ∂SII
w

∂t
, (1.6)

where the superscripts I and II enumerate the two different porous media, respec-
tively. As a consequence of the continuity of capillary pressure (both static and
dynamic), saturation Sα can be discontinuous across the interface, see [17] or [1].

2. Mathematical model. The mathematical model describing the two-phase
flow in a one-dimensional domain is presented in this section. The aim is to inves-
tigate how the inclusion of the dynamic capillary pressure (1.4) instead of the static
relationship (1.3) influences the numerical solution of the resulting system of equa-
tions.
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2.1. Governing equations. The governing two-phase flow equations in one-
dimensional domain [0, L] are given by the pw − Sn formulation [1]:

Φ
∂Sα

∂t
=

∂

∂x

[
K

μα
krα

(
∂

∂x
(pw + δαnpc) − ρα g

)]
, (2.1)

where Sw+Sn = 1, δαn is the Kronecker symbol, and α ∈ {w, n}. The wetting (water)
and non-wetting fluid (air, NAPL3) are indexed by w and n, respectively. The initial
and boundary conditions for (2.1) are given for each experimental problem, separately.

2.2. Discrete problem. A standard finite volume discretization technique is
used in order to determine approximate discrete solution Sk

n,i, pk
w,i of the problem

(2.1), generally defined as fk
i = f(kΔt, iΔx), where i = 0, 1, . . . ,m, mΔx = L, and

k = 0, 1, . . . , n, nΔt = T . L [L] is the length of the domain and T [T ] is the final time
of the simulation.

Since the nonlinear problem (2.1) involves the dynamic capillary pressure function
defined in (1.4) that includes time derivative of Sn, an implicit numerical scheme is
proposed in the following form:

Φ
Sk+1

α,i − Sk
α,i

Δt
= −

uk+1
α,i+1/2 − uk+1

α,i−1/2

Δx
, (2.2)

where α ∈ {w, n} and the discrete Darcy velocities uα are given as follows

uk+1
α,i+1/2 = −

K

μα
krα(Sk+1

α,upw)
( pk+1

w,i+1 − pk+1
w,i

Δx
+ δαn

pk+1
c,i+1 − pk+1

c,i

Δx
− ρα g︸ ︷︷ ︸

∂

∂x
Φα

)
, (2.3)

pk+1
c,i = pc

(
1 − Sk+1

n,i ,−
Sk+1

n,i − Sk
n,i

Δt

)
.

Sk+1
α,upw is the saturation taken in the upstream direction with respect to the gradient

of the phase potential Φα, i.e.

Sk+1
α,upw =

⎧⎨
⎩

Sk+1
α,i+1 if ∂

∂xΦα ≥ 0.

Sk+1
α,i if ∂

∂xΦα < 0.

At the material interface, the continuity of capillary pressure (1.6) requires that
there is a jump in saturation. Such discontinuous saturation Sn,i is represented by
SI

n,i and SII
n,i as it is shown in Figure 2.1, where i is the index of the node located at

the material interface. Therefore, the equation (1.6) is approximated by

peq,I
c (1 − Sk+1,I

n,i ) + τ I(1 − Sk+1,I
n,i )

Sk+1,I
n,i − Sk,I

n,i

Δt
=

peq,II
c (1 − Sk+1,II

n,i ) + τ II(1 − Sk+1,II
n,i )

Sk+1,II
n,i − Sk,II

n,i

Δt
.

(2.4)

If τ = 0, the interfacial saturations SI
n,i and SII

n,i can be computed analytically
by inverting the static capillary pressure function peq

c defined in (1.3). Therefore, it

3Non-Aqueous Phase Liquid
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Fig. 2.1. Discretization of the saturation jump at material discontinuity.

is sufficient to store only the interfacial saturation that corresponds to the medium
with a lower entry pressure pd because the other one can be easily computed when
needed, for details see [17].

However, if τ �= 0, equation (2.4) is a nonlinear equation that couples SI
n,i and

SII
n,i and, moreover, the interfacial saturations from the previous time step are also

required in (2.4). Consequently, using only one interfacial saturation to represent
the numerical solution is insufficient. Hence, SI

n,i and SII
n,i are added into the set

of unknowns instead of Sn,i. At the interfacial node i, SI
n,i is used in (2.3) when

computing the velocity uk+1
α,i−1/2, while SII

n,i is used in uk+1
α,i+1/2. Such an increase of

unknowns is compensated by the inclusion of (2.4) in the system of equations (2.2)
such that the number of unknowns equals to the number of equations.

If the capillary pressure function peq
c (Sw) is strictly decreasing as in the case of

the Brooks and Corey model (1.3), the function evaluated at both sides of (2.4)

f(ξ) = peq
c (1 − ξ) + τ(1 − ξ)

ξ − Sk,I
n,i

Δt
(2.5)

is strictly increasing if τ(ξ) is a non-decreasing function of ξ. Thus, the existence
of the inverse function f−1 is guaranteed and the equation (2.4) does not alter the
convergence of the numerical scheme.

The numerical scheme is solved using the Newton-Raphson iteration method,
where the Jacobi matrix is block tridiagonal. In each iteration, the upstream sat-
uration in (2.3) is recomputed using the current iteration of the solution and the
interfacial capillary pressure condition (2.4) is solved numerically together with (2.2)
and (2.3).

3. Numerical experiments. The numerical scheme (2.2) is validated using
analytical and semi-analytical solutions that are available only for the static capillary
pressure model and no gravity, i.e. τ = 0 and g = 0. The reliability of the numerical
solution is determined for three different situations where the advective, diffusive, and
both advective and diffusive part of the two-phase flow equations are benchmarked,
respectively (Sections 3.1, 3.2, and 3.3). The experimental orders of convergence eock

are computed using the Lk norm of the difference between the numerical and the
(semi-)analytical solution at the final time of the simulation, where k = 1, 2.

In the case of a porous medium with a single discontinuity, the implementation of
the interfacial condition (2.4) is verified using the semi-analytical solution developed
by the authors [11]. Details are shown in Sections 3.4 and 3.5.
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The Ohji sand was used as a porous medium in the following numerical simulations
with water and air as a wetting and non-wetting fluid, respectively. Physical properties
of the sand shown in Table 3.1 were measured during the laboratory experiments
held in the Center for Experimental Study of Subsurface Environmental Processes,
Colorado School of Mines. The details of the fluid properties are shown in Table 3.3.

Except for the pure advection problem, the numerical solution is computed also
for the models of the dynamic capillary pressure (1.4). The value of the dynamic
effect coefficient τ = τ(Sw) was estimated as a result of the laboratory experiment,
where capillary pressure and time evolution of the water saturation were measured.
Three functional models of the dynamic effect coefficient τ = τ(Sw) were correlated,
see Table 3.2. Additionally, the Stauffer model (1.5) gives τS = 3.3 · 105 for the
Ohji sand. In the following subsections, the numerical solutions using these dynamic
capillary pressure models are compared to the referential numerical solution computed
with the static capillary pressure model pc ≡ peq

c (1.3).
Unfortunately, no laboratory data is available for the case of a simple hetero-

geneous porous medium described in Sections 3.4 and 3.5. In order to investigate
solutions for the different models of the dynamic effect coefficient τ(Sw) in a hetero-
geneous porous medium, a fictive, coarser sand Ohji0.9 is introduced. Its parameters
are the same as for the Ohji sand except for the capillary pressure pc, the intrinsic
permeability K, and τ , which are all multiplied by the factor 0.9 (see Table 3.1).

Parameter Ohji sand Ohji0.9 sand
Porosity Φ [−] 0.448 0.448
Intrinsic permeability K [m2] 1.63·10−11 1.47·10−11

Residual water saturation Swr [−] 0.265 0.265
Brooks-Corey entry pressure pd [Pa] 3450 3105
Brooks-Corey pore size dist. index λ [−] 4.66 4.66

Table 3.1
Properties of the porous media used in the numerical simulation.

Model of τ [Pa s] Ohji sand Ohji0.9 sand
Constant model τ(Sw) = 1.1 · 106 τ(Sw) = 9.9 · 105

Linear model τ(Sw) = 3.2 · 106(1 − Sw) τ(Sw) = 2.88 · 106(1 − Sw)
Loglinear model τ(Sw) = 108 exp(−7.7Sw) τ(Sw) = 9 · 107 exp(−7.7Sw)

Table 3.2
Experimentally determined models of the dynamic effect coefficient τ for the Ohji sand and

fictive values of τ for the Ohji0.9 sand.

Parameter Water Air
Density ρ [kg m−3] 997.8 1.205
Dyn. viscosity μ [kg m−1s−1] 9.77 · 10−4 1.82 · 10−5

Table 3.3
Fluid properties used in the simulations.

3.1. Pure advection. Assuming pc ≡ 0, the system of equations (2.1) can be
simplified into a single hyperbolic equation with ∂pα/∂x = const, see [17], [19]. In
[5], Buckley and Leverett derived the analytical solution of such a problem using the
modified method of characteristics. The problem description is shown in Table 3.4.

Numerical solutions compared to the Buckley and Leverett analytical solutions
are shown in Figure 3.1.
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Initial condition : Sn(x, 0) = 0 ∀x ∈ (0, L)
Boundary conditions : Sn(0, t) = 1 − Swr = 0.735 ∀t ∈ [0, T ]

Sn(L, t) = 0 ∀t ∈ [0, T ]
un(L, t) = 10−4 ∀t ∈ [0, T ]

Problem setup : T = 1000 s, L = 15 cm, g = 0, pc ≡ 0
Porous medium : Homogeneous porous medium
Sand : Ohji sand, Table 3.1

Table 3.4
Description of the pure advection problem

0 0.02 0.04 0.06 0.08 0.1
0

0.2

0.4

0.6

0.8

x [m]

A
ir 

sa
tu

ra
tio

n 
S n [−

]

analytical
numerical, Δx = 1/160 cm
numerical, Δx = 1/320 cm

Experimental order of convergence
Δx [cm] eoc1 eoc2

1 → 1/2 0.83 0.70
1/2 → 1/4 0.81 0.71
1/4 → 1/8 0.80 0.72
1/8 → 1/16 0.80 0.73
1/16 → 1/32 0.80 0.72
1/32 → 1/64 0.80 0.69
1/64 → 1/128 0.81 0.61

Grid size Δx [cm] Time step Δt [s]
1 100

1/2 100/2

1/4 100/4

1/8 100/8

1/16 100/16

1/32 100/32

1/64 100/64

1/128 100/128

Fig. 3.1. Numerical solutions of the Buckley and Leverett problem (the pure advection case)
compared to the analytical solution, t = 1000 s. The experimental order of convergence eoc1 and
eoc2 are measured in L1 and L2 norms, respectively.

3.2. Pure capillary diffusion in homogeneous medium. If no external
forces act on the system, i.e., g ≡ 0, the flow in the one-dimensional domain is governed
only by capillarity and the system of equations (2.1) can be reformulated to satisfy the
McWhorter and Sunada problem formulation for the case of a bi-directional fluid dis-
placement, see [22], [10], [11]. Therefore, the McWhorter and Sunada semi-analytical
solution for the pure capillary diffusion problem can be obtained as a benchmark
solution for the numerical solution. The problem details are shown in Table 3.5.

As the numerical grid gets finer, the agreement of the numerical solution with
respect to the semi-analytical solution is apparent as it is shown in Figure 3.2.

The numerical solutions for the dynamic capillary pressure models are shown in
Figure 3.3.

3.3. Advection and capillary diffusion in homogeneous medium. If a
flux of air is imposed at the domain boundary, the flow in the domain is governed
by both capillarity and advection. Moreover, if the domain is placed horizontally,
i.e., g = 0, the generalized McWhorter problem formulation can be used in order to
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Initial condition : Sn(x, 0) = 0 ∀x ∈ (0, L)
Boundary conditions : Sn(0, t) = 0.73 ∀t ∈ [0, T ]

Sn(L, t) = 0 ∀t ∈ [0, T ]
Problem setup : T = 1000 s, L = 1 m, g = 0
Capillary pressure : Classical model (1.3), pc ≡ peq

c , τ ≡ 0
Porous medium : Homogeneous porous medium
Sand : Ohji sand, Table 3.1

Table 3.5
Description of the pure capillary diffusion problem in homogeneous porous medium.
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numerical, Δx = 1/32 cm
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]

analytical
num., Δx = 1/8 cm
num., Δx = 1/32 cm

Experimental order of convergence
Δx [cm] eoc1 eoc2

2 → 1 0.66 0.62
1 → 1/2 0.73 0.67

1/2 → 1/4 0.77 0.70
1/4 → 1/8 0.80 0.72
1/8 → 1/16 0.82 0.74
1/16 → 1/32 0.84 0.75

Grid size Δx [cm] Time step Δt [s]
2 200
1 50

1/2 50/4

1/4 50/16

1/8 50/64

1/16 50/256

1/32 50/1024

Fig. 3.2. Numerical solutions of the pure capillary diffusion problem compared to the
McWhorter and Sunada semi-analytical solution, t = 1000 s. The experimental order of convergence
eoc1 and eoc2 are measured in L1 and L2 norms, respectively.

obtain semi-analytical solution, which has been discussed by the authors in [10] and
[11]. The description of the problem is given in Table 3.6.

The main benefit of such a closed-form solution is a direct comparison of effects of
both advection and capillarity on the two-phase flow. The numerical solutions com-
pared to the McWhorter and Sunada semi-analytical solution are shown in Figure 3.4
and, again, the experimental errors of convergence show convergence of the numerical
solution towards the exact solution.

The necessity of infinite flux at t = 0 requires careful handling of the boundary
conditions. Despite singularity at t = 0, the entry flux of air, denoted as u0, is
integrable and thus the implementation of such a boundary condition is possible.

The numerical solutions for the dynamic capillary pressure models are shown in
Figure 3.5. Compared to the static, linear, or loglinear cases, the inclusion of the
constant model of τ in the capillary pressure leads to a non-monotonous profile of
pc = pc(x).

3.4. Pure capillary diffusion in heterogeneous medium. If the porous
medium described in Section 3.2 has a single discontinuity in the material properties,
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Fig. 3.3. Numerical solutions of the pure capillary diffusion problem using the constant, linear,
and loglinear models for dynamic effect coefficient τ are compared to the numerical solutions obtained
for the static capillary pressure τ = 0, t = 1000 s.

Initial condition : Sn(x, 0) = 0 ∀x ∈ (0, L)
Boundary conditions : Sn(0, t) = 0.73 ∀t ∈ [0, T ]

Sn(L, t) = 0 ∀t ∈ [0, T ]
un(0, t) = u0(t) = 1.63 · 10−3t−1/2 ∀t ∈ [0, T ]
uw(L, t) = 0.9u0(t) ∀t ∈ [0, T ]

Problem setup : T = 1000 s, L = 1 m, g = 0
Capillary pressure : Classical model (1.3), pc ≡ peq

c , τ ≡ 0
Porous medium : Homogeneous porous medium
Sand : Ohji sand, Table 3.1

Table 3.6
Description of the advection and capillary diffusion problem in homogeneous porous medium

i.e., it consists of two homogeneous porous media, the system of equation (2.1) can
be reformulated into the van Duijn and de Neef problem formulation [27]. Again, a
semi-analytical solution is available to benchmark the numerical solution and it is a
special case of the more general family of semi-analytical solutions developed by the
authors in [11]. As described in Table 3.7, the material discontinuity is located in the
middle of the domain at L/2.

The numerical solutions compared to the semi-analytical solution are shown in
Figure 3.6. Moreover, the estimation of the order of convergence indicates the inter-
facial condition is properly implemented.

In Figure 3.7, the numerical solutions with the dynamic capillary pressure models
are compared to the numerical solution obtained with static capillary pressure. The
dynamic capillary pressure has substantially different values across the interface with
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Δx [cm] eoc1 eoc2

4 → 2 0 83 0.64
2 → 1 0.73 0.64
1 → 1/2 0.75 0.65
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1/4 → 1/8 0.79 0.68
1/8 → 1/16 0.81 0.70

Grid size Δx [cm] Time step Δt [s]
4 16
2 4
1 1

1/2 1/4

1/4 1/16

1/8 1/64

1/16 1/256

Fig. 3.4. Numerical solutions of the advection and capillary diffusion problem in homogeneous
porous medium, t = 1000 s. The experimental order of convergence eoc1 and eoc2 are measured in
L1 and L2 norms, respectively.

respect to the static capillary pressure, which is in contradiction to [18].

Initial condition : Sn(x, 0) = 0.73 ∀x ∈ (0, L/2)
Sn(x, 0) = 0 ∀x ∈ (L/2, L)

Boundary conditions : Sn(0, t) = 0.73 ∀t ∈ [0, T ]
Sn(L, t) = 0 ∀t ∈ [0, T ]

Problem setup : T = 1000 s, L = 2 m, g = 0
Capillary pressure : Classical model (1.3), pc ≡ peq

c , τ ≡ 0
Porous medium : Heterogeneous porous medium
Sands : Ohji sand, Table 3.1 in (0, L/2)

Ohji0.9 sand Table 3.1 in (L/2, 0)
Table 3.7

Description of the pure capillary diffusion problem in heterogeneous porous medium.

3.5. Advection and capillary diffusion in heterogeneous medium. In
2008, Fuč́ık et al. [11] generalized the van Duijn and de Neef problem formulation by
the inclusion of the McWhorter and Sunada solution in homogeneous porous medium.
The resulting problem formulation requires that the van Duijn and de Neef initial sat-
uration distribution and the McWhorter and Sunada boundary fluxes are prescribed,
see Table 3.8.

In Figure 3.8, the numerical solutions are compared to the semi-analytical solution
and the experimental error of convergence is shown.

The numerical solutions of the problem for the dynamic capillary pressure models
are shown in Figure 3.9.
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Fig. 3.5. Numerical solutions of the advection and capillary diffusion problem in homogeneous
porous medium using the constant, linear, and loglinear models for dynamic effect coefficient τ are
compared to the numerical solutions obtained for the static capillary pressure τ = 0, t = 1000 s.

Problem description
Initial condition : Sn(x, 0) = 0.73 ∀x ∈ (0, L/2)

Sn(x, 0) = 0 ∀x ∈ (L/2, L)
Boundary conditions : Sn(0, t) = 0.73 ∀t ∈ [0, T ]

Sn(L, t) = 0 ∀t ∈ [0, T ]
pn(0, t) = const = 0 ∀t ∈ [0, T ]
uw(L, t) + un(L, t) = 1.59 · 10−3t−1/2 ∀t ∈ [0, T ]

Problem setup : T = 1000 s, L = 2 m, g = 0
Capillary pressure : Classical model (1.3), pc ≡ peq

c , τ ≡ 0
Porous medium : Heterogeneous porous medium
Sands : Ohji sand, Table 3.1 in (0, L/2)

Ohji0.9 Table 3.1 in (L/2, 0)
Table 3.8

Description of the advection and capillary diffusion problem in heterogeneous porous medium.

3.6. Discussion of the results. The numerical scheme (2.2) was tested against
five different analytical or semi-analytical solutions in the previous subsections. In
all cases, the numerical solutions converge towards the analytical or semi-analytical
solution and the order of convergence is shown in Figures 3.1, 3.2, 3.4, 3.6, and 3.8.

As expected, the numerical approximation of the discontinuous fronts are not
sharp even if the advection term dominates the flow (Figures 3.1, 3.4, and 3.8). This
is caused by the numerical diffusion in the scheme (2.2) as it is already described in
literature, see [19].

As shown in Figures 3.6 and 3.8, the jump in saturations across the interface in the
11
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Fig. 3.6. Numerical solutions of the van Duijn and de Neef problem (the capillary diffusion
case in a heterogeneous porous medium), t = 1000 s. The experimental order of convergence eoc1

and eoc2 are measured in L1 and L2 norms, respectively.

case of the heterogeneous porous medium is determined correctly and, moreover, the
presence of a heterogeneity does not influence the experimental order of convergence.
This will be an important referential solution for further investigation of the interfacial
condition (1.6) in highly heterogeneous porous media.

The inclusion of the dynamic capillary pressure models (constant, linear, and
loglinear models of τ) is important in cases, where there is a significant temporal
change in the saturation Sn since the temporal derivative of Sn is multiplied by the
dynamic effect coefficient τ , see (1.4). This occurs when the advection together with
the capillary diffusion dominate the displacement as it is shown in Figures 3.3 and
3.5.

As shown in Figure 3.5, the use of the constant model for the dynamic effect
coefficient τ changes the monotonicity of the capillary pressure profile which may be
physically unrealistic. Therefore, the constant model requires further investigation
of its validity. On the other hand, the use of the linear and the loglinear models of
τ does not seem to be important in the homogeneous porous medium since the air
saturation and capillary pressure profiles are similar to the profiles computed with
the static capillary pressure (compare Figures 3.3 and 3.5).

In the case of a heterogeneous medium, the inclusion of the dynamic capillary
pressure may substantionally change the simulated evolution of the flow since the
entry pressure of the finer porous media can be achieved sooner or later than in the
static case as it is shown in Figures 3.7 and 3.9. This indicates that the conclusions
published for the case of Richards equation in [18] may not hold for the full system
of equation of the two-phase flow.

4. Conclusion. This manuscript presents a one-dimensional numerical scheme
of two-phase incompressible and immiscible flow that enables for simulating non static
capillary pressure models in both homogeneous and heterogeneous porous media. The
numerical scheme is validated and its order of convergence is estimated using the
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Fig. 3.7. Numerical solutions of the capillary diffusion problem using the constant, linear, and
loglinear models for dynamic effect coefficient τ are compared to the numerical solutions obtained
for the static capillary pressure τ = 0 in a heterogeneous porous medium, t = 1000 s.

analytical and semi-analytical solutions for advection, advection and diffusion, and
diffusion dominated problems, respectively.

Laboratory measured parameters were used in the numerical simulation of the
dynamic capillary pressure including three main models of the dynamic effect coef-
ficient τ = τ(Sw) - constant, linear, and loglinear. The numerical solutions for the
dynamic capillary pressure show that the dynamic effect has significant impact on
the magnitude of the capillary pressure while the change in the saturation profiles
may be considered negligible in some cases. The constant model of τ showed rather
unrealistic profile of the numerical approximation of the capillary pressure because
the spatial monotonicity was different with respect to the results obtained with the
static capillary pressure model.

Results of the simulation indicate that the dynamic effect may not be so important
in drainage problems in a homogeneous porous medium, but, on the other hand, it
is of a great importance in highly heterogeneous media where the capillarity governs
flow through material interfaces.

5. List of symbols.

Acknowledgement. This work has been supported by:
• Project ”Applied Mathematics in Technical and Physical Sciences” MSM

6840770010, Ministry of Education of the Czech Republic.
• Project ”Mathematical Modelling of Multiphase Porous Media Flow”

201/08/P567 of the Czech Science Foundation (GA ČR).
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Fig. 3.8. Numerical solutions of the advection and capillary diffusion problem in heterogeneous
porous medium, t = 1000 s. The experimental order of convergence eoc1 and eoc2 are measured in
L1 and L2 norms, respectively.

Symbol Units Description
Sα [−] Saturation
pα [ML−1T−2] Pressure
ρα [ML−3] Density
μα [ML−1T−1] Dynamic viscosity
g [LT−2] Gravitational acceleration
Φ [−] Porosity
K [L2] Intrinsic conductivity
krα [−] Relative permeability
τ [ML−1T−1] Dynamic effect coefficient
α w, n Index of wetting or non-wetting fluid

Table 5.1
List of symbols
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Fig. 3.9. Numerical solutions of the advection and capillary diffusion problem in heterogeneous
porous medium using the constant, linear, and loglinear models for dynamic effect coefficient τ are
compared to the numerical solutions obtained for the static capillary pressure τ = 0, t = 1000 s.
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