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1 Introduction

This paper studies the initial value problem for the compressible Navier-Stokes
equation in R" :

Ou~+ (u-V)u+ VI;(’)) =LAu+ %“’V(V -u), (1)
(107 U)(O,ZE) = (p[))uO)(x)‘
Here t > 0, x = (21,29, -+ ,x,) € R™ the unknown functions p = p(t,z) > 0
and u = u(t,x) = (ui(t,x),us(t, x), -+ ,u,(t,z)) denote the density and velocity,

respectively; P = P(p) is the pressure that is assumed to be a function of the
density p; pu and p' are the viscosity coefficients satisfying the conditions > 0 and
i+ %,u > 0; and V-, V and A denote the usual divergence, gradient and Laplacian
with respect to x, respectively.

We assume that P(p) is smooth in a neighborhood of p with P’'(p) > 0, where p
is a given positive constant.



In this paper we derive the convergence rate of solutions of problem (1) to the
constant stationary solution (p, 0) as t — oo when the initial perturbation (pg—p, ug)
is sufficiently small in critical spaces and 32(7)700 with 1 <p < nQ—fl

Matsumura-Nishida [9] showed the global in time existence of the solution of (1)
for n = 3, provided that the initial perturbation (py — p, ug) is sufficiently small in
H3(R?*) N L}(R?). Furthermore, the following decay estimates were obtained in [9]

IV*(p = 5, u) ()| 2 < CL+ )35 k=0,1. (2)

These results were proved by combining the energy method and the decay estimates
of the semigroup E(t) generated by the linearized operator A at the constant state
(p,0).

On the other hand, Kawashita [7] showed the global existence of solutions for
initial perturbations sufficiently small in H*°(R™) with sy = [5] + 1, n > 2. (Note
that sy = 2 for n = 3). Wang-Tan [13] then considered the case n = 3 when the
initial perturbation (pg — p, ug) is sufficiently small in H?(R?) N L'(R?), and proved
the decay estimates (2). Okita [11] showed that if n > 2 then the following estimates
hold for the solution (p,u) of (1) :

IVE(p = )2 < CA+7T72 k=0, 50,

provided that (po — p, uo) is sufficiently small in H*(R") N L'(R") with so = [4] +1.
Li-Zhang [8] showed that the density and momentum converge at the rates (1 +
#)"37% in the L?-norm, when initial perturbation sufficiently small in H'(R?) N
Bri,(R?) with I > 4 and s € [0,1]. Note that L' is included in BY .. The optimal
LP — L9 convergence rate with 1 < p < g and 2 < ¢ < 6 in R? was established by
Duan-Liu-Ukai-Yang [4] such as

k
2

I(p = pew)(®)l|ze < CL+1)72070), 2< g <6,

where (p.,0) is the stationary solution of the compressible Navier-Stokes equation
with external potential force, under the assumptions that initial perturbation and
external potential force are sufficiently small in in some function spaces respectively.

Danchin [2] proved the global existence in a critical homogeneous Besov space,
i.e., a scaling invariant Besov space. The system (1); — (1)9 is invariant under the
following transformation

pa(t, ) == p(N\?t, Ax),  un(t,x) = Mu(\*, \x).

More precisely, if (p, u) solves (1), so dose (py, uy) provided that the pressure law P
has been changed into A\2P. Usually, we call that a functional space is a critical space
for (1) if the associated norm is invariant under the transformation (p,u) — (pa, uy)

(up to a constant independent of \). Homogeneous Besov space C' ([O,oo); B; | X
Bzf L 1) is a critical space for (1); and Danchin [2] proved the global existence in
C([0,00); BE,) x (C([0, 00); B]fl_l) N L*(0, oo; Bg;rl)) and the estimate

o

< M(llpo - ﬁHBflmefl + H“““Bfl‘l)’ (3)

sup{|lp(t) — pl| .51 + [|u(?)]
t>0 2,1
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if the initial perturbation is sufficiently small in (B2 1N 32 1 ) X B;l_ Yfor n > 2.

On the other hand, nonhomogeneous Besov space B;’ X B, P 1s called a critical
regularity space for (1). Haspot [5] proved the local solvablhty in a critical regularity
space.

In [12] the decay estimate of L%-norm was studied for initial perturbations suffi-
ciently small in critical spaces. It was proved in [12] that the perturbation satisfies

(o= puw) @) <C(L+1)74

if the initial perturbation is sufficiently small in (Bf1 NBY.) x (BQ%; 'n BY ) for
n > 3.

In this paper we improve the results in [12] and establish the decay estimate of
the 32%71 X Bfl_ ' norm of the perturbation for n > 2. Our main result of this paper
gives the optimal decay rate for strong solutions in critical Besov spaces, which is
stated as follows.

Theorem 1.1. Assume that n > 2 and 1 < p < 2. Then there exists € > 0 such

b f n+l-
that 1
Ug € 3271 N Bpooa (pO - p) € B2,1 N Bp,oo

and

+ [Juoll 5 <e

HPO - ﬁH 32271*1032700 =

n
o
BQAylmBgﬁoo

then problem (1) has a unique global solution (p,u) satisfying
(p = p.w) € C([0,00); Bjy) x (C([0,00); B, ) N L}(0, 005 B})™)).

Furthermore, there exists a constant Cy > 0 such that the estimates

(=P ) ()l 3 < ColL 1) 5072, (4)
o= 2 u) (Bl 3.1 < Coll+8)7 574, (5)
I =A)B)ll3 < Coll+)7H, (6)

hold fort > 0. Moreover, if 2 < q <n, then

1o = B.u)(O)llgg, < Col1 41726 ™)
fort > 0.

To prove Theorem 1.1, as in [6, 11, 12], we introduce a decomposition of the per-
turbation U(t) = (p—p, u)(t) associated with the spectral properties of the linearized
operator A. In the case of our problem, we simply decompose the perturbation U (t)
into low and high frequency parts. As for the low frequency part, we apply the
decay estimates for the low frequency part of the semigroup E(t) generated by the
linearized operator A; while the high frequency part is estimated by using the en-
ergy method. One of the points of our approach is that by restricting the use of
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the decay estimates for E(t) to its low frequency part, one can avoid the derivative
loss due to the convective term of the transport equation (1);. We note that in
estimating the low frequency part, we also make use of the fact that any order of
differentiation acts as a bounded operator on the low frequency part, so that we can
establish the decay estimate for the norm of the velocity with critical regularity. (See
Remark 4.4.) On the other hand, the convective term of (1); can be controlled by
the energy method and commutator estimate which we apply to the high frequency
part. In the estimates of nonlinearities we carefully compute nonlinear interactions
between low-low, low-high and high-high frequency parts. We also use the estimate
I ||u||Bgl+1 dt < Me, that follows from (3) established by Danchin [2].

2,
The paper is organized as follows. In Section 2 we introduce the notation and

some properties of Besov spaces. In Section 3 we rewrite the system into the one
for the perturbation and introduce auxiliary lemmas used in this paper. In Section
4 we give a proof of Theorem 1.1.

2 Preliminaries

In this section we first introduce the notation which will be used throughout this
paper. We then introduce Besov spaces and some properties of Besov spaces.

2.1 Notation

Let LP(1 < p < 00) denote the usual LP-Lebesgue space on R". For a nonnegative
integer m, we denote by H™ the usual L?-Sobolev space of order m. &' denotes dual
space of the Schwartz space. The inner-product of L? is denoted by (-,-). If S is
any nonempty subset of Z, sequence space [P(S) denote the usual [P sequence space
on S.

For any integer [ > 0, V!f denotes all of I-th derivatives of f.

For a function f, we denote its Fourier transform by §[f] = f

U@ =1 = | J@e ™ de (eR).
The inverse Fourier transform is denoted by §'[f] = f,

U fl) = fla) = 2n)7" - f)e*rde  (x € R).

2.2 Besov spaces

Let us now define the homogeneous and nonhomogeneous Besov spaces. First we
introduce the dyadic partition of unity. We can use for instance any {¢, x} € C*,
such that

3 8
Supp¢ C {§ € R”IZ < ¢l < g},
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4
Supp x C {£ € R"[[¢] < 5}7

—i—ng) gy =1 for £ €R",

7>0

D 0279 =1 for ¢ € R"\{0},

JEZ
Supp ¢(277) NSuppp(27) =0 for |j - j| > 2,
Supp x N Supp¢(277-) =0 for j > 1.
Denoting h = §F'¢ and h = 'y, we then define the dyadic blocks by
A_ju = hx*u,
Aju = 2j”/ h(27y)u(x — y)dy ifj >0,
Aju = 2j”/ h(2'y)u(x —y)dy ifj € Z.

The low-frequency cut-off operators are defined by

Siu = Z Apu, Sju: Z Aju.

Obviously we can write that: Id = ;8. The high-frequency cut-off operators S’j

are defined by

k>j

We define ¢; by ¢;(§) = #(277€).
To begin with, we define Besov spaces.

Definition 1. For se Rand 1 < p,r < oo, and u € §’ we set

Bs ., = H2jsl|AjU|le

[ I({j=—1})’

By, = 127014 ulls

Jul I"(z)"

The nonhomogeneous Besov space B; . and the homogeneous Besov space B;T

the sets of functions v € S’

Bs, <0 respectively.
Let us state some basic lemmas for Besov spaces.
Lemma 2.1. The following inequalities hold:
(4) IVA_1ullr2 < Cl[Ayul|ze.
(i) C712]|Agullye < [VAulle < OV Azl (G € Z).

>
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(iii) [V Syullie < C2|Spulle (G = 0).
(i) [1Syullz> < 29[V Spulle (> 0).
Lemma 2.1 easily follows from the Plancherel theorem.

Remark 2.2. For s e R and 1 < p,r < oo, we have
. 1
B, < C( Zkgj—l QSTkHAuHZP) "

. 1 ~ .
(1) C_I(Zkzj erkHAUHEp)T < HSjuHB;,,T < C(Zkzj 2Srk”Au”Tm)

One can easily prove Remark 2.2.

() C7H(Caejmr 271 Aull )" < 11Sjul

S l=

Lemma 2.3. The following properties hold:
(1) C~Hu|

gy, < | Vull g1 < Cllu

s .
BPJ‘

() [[Vul

st < Clulls,

(ii5) If 8’ > s or if s = s and ri < r then B

p,r1

C B,

(iv) If ry < r then B

p,r1

CB,,.
(v) Let A:=+/—A andt € R. Then the operator A* is an isomorphism from B§1
to By
See, e.g., [2], [3] and [5] for a proof of Lemma 2.3.

Lemma 2.4. The following properties hold:
() Jullew < Cllullys — (Biy © 1),
(i) BY, C L' C BY ..
(iii) Bs, = H*.
(i) By, C B;T (s > 0).
See, e.g., [2], [3] and [5] for a proof of Lemma 2.4.

Lemma 2.5. Let 1 < p < q < oo. Assume that f € LP(R™). Then for any
a € (NU{0})", there exist constants Cy, Cy independent of f,j such that

1

Supp f C {|€] < 4927} = (|02 f||za < C127H G0 £ 1,

Smme{AﬂjikkﬁAﬂﬂzjHﬂhPSCﬂjMfmﬁH%ﬂh%
Bl=|a



See, e.g., [1] for a proof of Lemma 2.5.
By Lemma 2.5, we see that

D NAfm <C Y 2ETNAf| e, (8)

jeL jeL
hence, we obtain 32%1_1 C BY,.
Remark 2.6. Let s >0 and 1 < p < 2. Then
Bs,NBY. CB;, CL.

Proof. By using Lemma 2.5, we have

lulle = (D 1Aulia)? < (D 1A5ullze)® + (D 1A,ulis)?

jez §<0 §>0
. . 1 . .
< O3 267D AsulE)? + D0 27 Aull e
3<0 >0
. . 1 . .

< Osup [ Ajull e (37 2997672) 2 137 29| Al e

i<0 <0 >0

This completes the proof. O

3 Reformulation of the problem

In this section we first rewrite system (1) into the one for the perturbation. We
then introduce some auxiliary lemmas which will be useful in the proof of the main
result.

Let us rewrite the problem (1). We define p, s and «y by

7 pt -
=, po = ———, 7= P(p)

p p

H1 =
By using the new unknown function
1
o(t,r) = ———— w(t,z) = —u(t,x),
v

the initial value problem (1) is reformulated as

3t0 +’}/V W = Fl(U>,
Ow — i Aw — e V(V - w) + Vo = Fp(U), (9)

(0, w)(0,2) = (00, wo) (),
where, U = ( ; )

F(U)=—y(w-Vo+oV-w),



o o
BU) = —w-Vw—m——gbw = pip———=V(V - w)
1 o
_ _ P d
+< Py _Bfo (spo +p) S)UVU
co+1 ~v o+1
We set
A 0 V-
RN A AN SVAS S PAVAVARY
By using operator A, problem (9) is written as
U — AU = F(U), Uli=o = Uy, (10)

where )
F1 U (o)
FU) = , U= :
@=(nw ) w=(n)
We introduce a semigroup generated by A. We set
E(t)u = 3’1[6‘4(5)%] foru € L?,

where

- 0 Al )
A(€) = ) .
(5) ( -7 —/~L1|§|2In - /~02§ft
Here and in what follows the superscript -* means the transposition.
We next state some basic lemmas.
Lemma 3.1. Let 51,50 < 5 such that sy + sy > 0; and let u € 35}1 and v € Bgfl.
Then uv € B;IJFSQ_E and

vl ia-s < Cllulgs oz

See, e.g., [1], for a proof of Lemma 3.1.

Lemma 3.2. Let s > 0 and let u € B§1 NL>. Let F € W[SHQ’OO(]R”) such that

loc
F(0) = 0. Then F(u) € B,. Moreover, there exists a function Cy of one variable
depending only on s,n and F' such that

£ (w)]

5, < Crlllullz=)ul

e
B3,

See, e.g., [2], for a proof of Lemma 3.2.
Lemma 3.3. (i) Let a,b > 0 satisfying max{a,b} > 1. Then

t
/ (14+58) (14t —s)ds < CO(1 )" minledl ¢ >,
0



(i) Let f € LP(0,00) and a,b > 0 satisfying max{a,b} > Z% for1 <p<oo andp
18 the conjugate exponent to p. Then

t 1
/(1+s) YL+t —s)fds < O(1+ ) minlebl( /|f|pds )7, t>0.
0

For a proof of (i), see [10]. Proof of (ii) is given by using Holder inequality; we
omit it.
Let us now introduce a few bilinear estimates in Besov spaces. We will use the

Bony decomposition
w = T,v+ Tyu+ R(u,v), (11)

with

Tw=) Siubjy, R(uv)=) Aubdy, Bp=»Ai v+ B+ D

JEL jJEZ
Lemma 3.4. It holds that
(%) . . .
sup 18Ty fllzr < Cl[Safr2][Sagllre,
j<
sup IAR(f,9)llpr < C(1S5f 121959122 + 190 12211 Sogll 22).-
j<
(1) If 0 < 81,52, 83,54 < 5, then

Ssf| S-sf|

> 2O T fle < C(HstgH SR

v HIS gl g
7>0 Y 21

- 51+S3),
B2,1

51+54

S 2VAR( 9|z < OISl 315101l

3>0

Remark 3.5. By Lemma 3.4, we have

(4)

S,ulg ||A7~W||L1 < O(HSMHL?HSWHL? + HSOUHL?HSOUHL?)-
1<

(#9) If 0 < s1,89,83,54 < Z, then

o2 Auoll: < OIS sull 3 4o

7>0

S_5U||le+s2 + ||S_5U|| 7_33 S_5U||Bs1+s3

+Héf5uuB§f4 Sosol

syses):
Proof of Lemma 3.4. We have

AT f = Y Bi(Siaghif), DjR(Fg)= Y DAy fDyg).

I3 —3l<4 J'>2j-3



For any 5 < 0, by the Holder inequality, we have
1A Tl < C > 1ISy-19A5 e

7' —j|<4

< C|Sugl2l|Saf 2,
and

IARf e < Cl Y- AApfAg)ln

i3
< CY A fligllin + > 1A fAjgln
J<0 i1

< C(I185fl122l1S59ll 22 + 1So fll 211 Sog]l 22).

Taking the supremum in j < 0, we obtain the desired estimates of (7).
We next prove (i7). Choose s; € [0, 5]. We then obtain by Hélder inequality and
Lemma 2.5 that

D 2VNAL e < O3 3 2B Sy19by )i
§>0 720 |j'—j|<4
S C Z 281j/||S«jl_1gAj/f||L2
j'>—4
< O3 27 |{S 59+ (Syo1 — S-5)g} Ay f 12
i'z—4
< C ) 2|Ise T
j'>—4 :
HI(Sj—1 = 5-5)all, & L2 )
< (||S—59H —s2 S—59”391+92+HS—59H **53 S—5g”B91+S3)

SoIAR( e < €YD YT 2INA(AfA )] e

>0 >0 j/>j-3
< OY Y 20 A (A fAg) e
§>0 §/>j—3
< €)Y 200G A | 22600 A g 2
720 4'>5-3
< CHS_4fHBQg’;b4 49| Byt
This completes the proof. O

We now introduce commutator estimates.

Lemma 3.6. Let s € (— 5,5+ 1}. There exists a sequence ¢; € [*(Z) such that
llcjllin = 1 and a constant C' depending only on n and s such that

Vi€Z, |f-V,A)gl < Ce;2 ‘”||Vf|| ||9||B

10



See, e.g., [1] for a proof of Lemma 3.6.

1

Lemma 3.7. Let 0 < p < g <1 < 00 and set § = ,17: r € (0,1). Then it holds
that

(i) LP N L7 C L and || fllee < I A1,
(ii) By, 0 By, € By and | fllzo, < I£15 50 Ml

p,

BO’ for1 <l < 0.

Proof. (i) is a well-known inequality. Let us prove (i7). Let 1 <[ < co. Then
by using (¢) and Hélder inequality of sequence space, we have

Iz, = (1AL

JEZ

< (S IA LN A1)
JEZ

< 1AL (1A 1)y
JEZ JEZ

<

0 1-6
< 1% 1715
When [ = oo, we have

11l 0 <supHA FUENAGFNE™ < U1 15"
q,00 p,00 7,00

This completes the proof. 0

4 Proof of main result

In this section we prove Theorem 1.1. In subsections 4.1 and 4.2 we establish the
necessary estimates for A_;U(t) and A;U(t) for j > 0, respectively. In subsection
4.3 we derive the a priori estimate to complete the proof of Theorem 1.1.

We first explain known results which are used to prove Theorem 1.1.
Danchin [2] proved the following global existence result in nonhomogeneous
Besov space.

Proposition 4.1 (Danchin [2]). Let n > 2. There are two posztwe constam‘s €1 and
M such that for all (po,ug) with (po — p) € 32 N 32 L s U € B and

||p0 - ﬁHBQ%’lﬂBZ%’l_l + HUOHBz%J_l S €1, (12)

problem (1) has a unique global solution (p,u) € C(R™; BflﬂBQ%* )x (LY (R B2+1)

C(R*; Bzgl_l)) that satisfies the estimate

sup{[lp(t)—pll —1+||U()||B§1—1}+/ el 3 +1dt<M(||po Pll g i tluoll 7—1)
2 ) 0

11



Haspot [5] proved the following local existence result in nonhomogeneous Besov
space.

n_y
Proposition 4.2 (Haspot [5]). Let n > 2 and 1 < p < 2n. Let up € B}, and

(po—p) € Bp;ﬁ with p—lo bounded away from zero. Then there exist a constant T > 0

such that the problem (1) has a local solution (p,u) on [0,T] with /—1) > 0 bounded
away from zero and:

= 3 2-1 241
p—peC(0,T;Bry), we (C(0,T);By, )NLY(0,T;BL, )).
Moreover, this solution is unique if
p<n.

Proposition 4.3. Let T' > 0 and let (o, w) be a solution of problem (10) on [0,T]
such that

o € C(0,T); Bi,),w € C(0,T); BS,) N L'(0, T B, ™), (13)
Then, N;U(t) = (Ajo, Ajw)* for j > —1 satisfy
AjU|t:0 = AjU(). (15)
Moreover, A_1U(t) satisfy

A, U(t) € C([0,T]; BY)), Vk € [0,00) (16)

and .
AU = B()A_ Uy + / Bt — $)A 1 F(U)(s)ds. (17)

0

Proof. Let U(t) = (o,w)" be a solution of (10) satisfying (13). Since A;AU =
AN U, applying A, to (10), we obtain (14) and (15). It then follows that

t
ANU(t) = E(t) AUy + / E(t —s)A;F(U)(s)ds.
0
We also have (16) from Lemma 2.1. This completes the proof. O

Set

S

M) == sup (L+7)20 DAL U@

0<r<t

+ sup (1+7) 67242 37 29| A,U(r)| 12

0<r<t j<0

+ sup (1+7)%72 Y 26D AU(T)|) e

0<r<t j<0

+ sup (1+7)% Y 28| A;U (7)1,

0<r<t j<0

12



Moo(t) == sup (1+7)2 22(%_1)j{||AjU(T)HL2 + 2|80 |12},

M(t) := M (t) + My (t).

If we could obtain uniform estimates of M (t) and M (t), then Theorem 1.1
would be proved.

Remark 4.4. M (t) includes the Bgl—norm of the low frequency part of perturbation
with time weigh. Since any order of differentiation acts as a bounded operator on

the low frequency part, we can treat B;l—norm of the low frequency part of velocity,
although the velocity itself belongs to C([0, 00); 32/12_1). Moo (t) is B2§1 X 3251—1 -norm
of the high frequency part of perturbation with time weigh. We note that the decay

order of high frequency part is faster than the low frequency part. These facts are
used to obtain decay estimates of nonlinear term.

4.1 Estimate of low frequency parts

In this subsection we derive the estimate of A_1U (%), in other words, we estimate
M (t).

Lemma 4.5 (Matsumura-Nishida [10]). (i) The set of all eigenvalues of A(€) con-
sists of \i(€) (i = 1,2,3), where

A(E) = *(u1+u2)|£l2+i|£\2 472*(u1+u2)l£|27
)\2((5) _ —(p1+p2)l€>—ilg| 472—(u1+u2)|£|2’
As(&) = —pmaléP?,

for all £ € R".

(i) €A has the spectral resolution
) 3
etA©) — Z e pi(g),
j=1

for all |&| except at most points of |§| > 0, where P;(€) is the eigenprojection
for X;(€).

Remark 4.6. For each M > 0 there exist Cy = Co(M) > 0 and By = fo(M) > 0
such that the estimate A
4O < CherRlel

holds for || < M and t > 0.

13



Lemma 4.7. Let s > 0 and let 1 < p < 2. Then E(t) satisfies the estimates

IE)A_Uslle < CA+)" 2572 sup || A, Up]|r,

7<0

> 2V E() AUl 2 < C(1+1)72 3(;m3)- QSupHA Uo||

7<0
fort > 0.

To prove Lemma 4.7, we will use the following inequalities.

Lemma 4.8. Let a > 0, pg > 0 and s > _;%' Then there holds the estimate

r/a

Z (/ |£|pose*p0a|§|2td£)% < C(l + t)zi 2

j<o JPTI<IE<2H?

for allt > 0.

We will prove Lemma 4.8 later. Now we prove Lemma 4.7.

Proof of Lemma 4.7. Let 1 < p < 2 and p’ be the Holder conjugate exponent
to p. By Plancherel’s theorem and Lemma 4.5 (i), we have that there exists a

constant 8 > 0 such that

e N S G CIK S b

(18)

1
2

2p / 1_1
< Csup||¢j UOHLP Z/ e_ﬁﬁ |§|2td§)p 2
<o S el <2it
n (1 1
< C(1414)"36G72) SupHA Uollre,
and
S 2EOAUMI < 0329 ( / . 11900 \df)
<0 §<0 2i<g| <2t
112 1
<[ e g ) )
j<o J2Ti<lg<2re
< CY AUl / g2 e Y g v
j<0 27 —1l<|g|<2i+2
_ﬂ(l l _s
< O+ 262 uPIIA Uollz»-

Here we used Lemma 4.8.
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The desired estimates of Lemma 4.7 for 1 < p < 2 follow from (18) and (19).

We can easily prove for p = 2. O
It remains to prove Lemma 4.8.
Proof of Lemma 4.8. Let a > 0, po > 0 and s > _;%' We have
Z (/ ’£|posefpoa\£l2td§)%
‘oo Jeimiclgl<aite
, BN
< cye(f agn
<0 |€]<29+2
< ¢y 2 < (20)
j<0
We will next show the the inequality
s —poall? 1 _n _s
(/2j_1<£|<2].+2 |§|po e—Poalé| tdf) ro < C't 20 2, (21)

3<0

By the substitution n = t%{“, we obtain

S / ¢[pos el e oo
o Joicpe<ait

i<

- Ry e dg) .

o Jreivicid<oev

If t <1, we can easily prove (21).
We suppose ¢t > 1. There exist an integer J < 0 such that 272/ <t < 272(/=1),

We have

/ |n|posefpoa\nl2d£)%
20 1/i<|g| <202/t

§<0

Z (/ |n|pose—poa|n\2d€)$
23

<7 —J—1<|g|<2d—T+3

1
+ Pose—poa|77|2d PO
Z (LjJ1<5|<2jJ+3 |77‘ 6)

J<j<0
=. ]1 + Ig.

IN

By the substitution k£ = 57 — J, we have

I, = Z (/2 |n’pose—poa|n\2d§)% <C,

k‘SO k71<‘5|<2k+3

15



and

I, < (/ |n|P086—poa|ﬂ|2d§)%
k>0 2k—1<|§|<2k+3
< Cze—pk(/ |n|pose—%poa|n|2d§)%
£>0 2k71<|£‘<2k+3
< C’Z e~32" < C.
k>0
Hence we obtain (21). By (20) and (21) we have the desired inequality . O

As for M (t), we show the following estimate.

Proposition 4.9. Let1 <p < f—& Then there exists a constant C' > 0 independent
of T' such that

t
My(t) < ClUsll gy + CM(t)/ ]l s + CME()
? 0 2,1
fort e [0,T].

To prove Proposition 4.9, we will use the following estimate on F(U).

Lemma 4.10. Suppose that 1 < p < nz—fl Then there exists a constant C' > 0
independent of T' such that

STIAFO)n < CO+8) FMB)|w] 50+ O+ 6272021
§<0 2t

fort e [0,T7].

We will prove Lemma 4.10 later. Now we prove Proposition 4.9.
Proof of Proposition 4.9. By Lemma 4.7 and (17), we see that
1A U@ e < E@A ol + / |E(r = )AL FU ()| 2dr’
0

< C+7) 207 sup | AU o
71<0

t
+/ (147 —7) 5 sup | A F(U ()| ads, (22)
0 7<0
and
S 2 AU < S IEEA U] +/ SO NE( — YA FUE)) | p2dr’
<0 j<0 0 <o
< C(1+ T)_%(%_%)_% sup HAonHLp
7<0
+/ (14+7—7) " 2sup||A;F(U(T)]| rdr’ (23)
0 7<0



for s > 0.

Using Lemma 4.10, for 0 < s < 2, we have

n

/ (147 =) 2 sup [|A; F(U(T)) | prdr’
0 7<0

t
< O/(1+T—T’)—Z—§{(1+T’)%M(T’)Hw(T’)HB%H+(1+r) "G M2 () Y
0

= CM<t)/ (1+7—7) 8501+ 7) 0D fu()| gt
0
+CM2(t)/ (147 —7)"535(1+7) "G 2247
0
< O(1+r)—2—§M(t)/ [w()| 5 adr’ +C(1+7) 7572 M2(2). (24)
0 2,1

Here we used Lemma 3.3 and the facts that n(
1 <p<=%. By (22) and (24), we obtain

—3)+3 > 1forn > 2 and

1
p 2

|ALU@e < CO+7) 26 DUsl g
OO+ 1) E M) /0 () g e’ + C(L+ 1) 2(0),
and hence,
(1+ T)%(%—%)HA_lU(T)HQ < C”UOHBgm + CM(t) /Ot ||w(7")||32%1+1d7" + CM?(t).
Similarly, we get estimates

(147)36720%2 3| AU (r) 2 < O[Tl g +C Mt / lw(T) “+1dT’+CM2(t),

7<0

n

()4 2 AU@ < Oy +CM ) [ 0l grdr+CA ),

7<0

(]__|_7— 2p 2223HA U( )||2 <O||U0||BO —I—OM / ||w || n+1d7’ +CM2()

7<0

Taking the supremum in 7 € [0,¢], we obtain the desired estimate. O
It remains to prove Lemma 4.10.

Proof of Lemma 4.10. We consider each term of F'(U). By Lemma 3.4, we
have

sup | Aj(w - Vo) < C{|[Sawl|12]|SaV e rz + |Sow| 2 ||So Ve | 12}

§<0

< O(L+6) "G MA(),
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IN

sup 1250V - w)| C{[S40 | 219Vl 22 + || Soo|| 2| So V| .2 }
j<

IN

C{l1Ss0ll2(1SoVwllz2 + [ Agw]l 2 + | Ayw]| o
| Aowlr2 + [[Azwl[r2) + [|Soo 2| SoVw| 2}
C{1+ 1) DTEMA () + (1+ ) H M) ]| 5}

IN

Similarly, we have

sugllﬁj(w~Vw)\|Ll < C{U+0TTITEMAE) + (L4 6) M) w5}
1< 2,1

We obtain by Lemma 2.1, 3.2 and 3.4

. o . o . ~ o ~
; 1 < A A
iggHAJ(UJrlAw)HL < CUISu(CllzllSabwlize + [1So(=— )zl So Awllze}
. ~ o ~
< Clllollz=iSswllsy, ++1So( =)l 33 1S Awlle}

< C{A+1) T + (1 + ) M) |w] g}
2,1

The other terms are estimated similarly, and we arrive at

sup [|AF(U) | < C(1+ 1) "G 275 M2(1) + C(1 + )% M (1) |w]] .
7<0

n
nay1.
2
B;,

This completes the proof. 0

4.2 Estimate of high frequency parts

We next derive estimates for M, (t).

{ 8,5Aj0_ + '}/V : A]”w = AjFl(U)a

Proposition 4.11. Let j > 0. There holds

1d
5 7 12U Ol + il VA2 + palV - Ajw(@)]12:

= (AjFl(U), Aj(f) + (A]’FQ(U), A]”w) (26)
for a.e. t €10,T].

See, e.g., [12], for the proof of Lemma 4.11.

We recall that for s € R, A® is defined by A*z := F1[|{|*2]. Let d = A7V - w
be the ”compressible part” of the velocity. Applying A~'V- to (25),, system (25)
writes

@Ajd — I/AAjd - ’}/AA]‘O' = A_lv . AjFQ(U),

where we denote v = iy + puo.

18



Proposition 4.12. Let j > 0. There holds

lvd d
2 A0 = G010, 8) + [ADy01 =2 |AL I

—(ALNGF(U), Ajd) — (A - A Fy(U), AN o) + %(AAjFl(U), AN ;o) (28)

for a.e. t €10,T].

See, e.g., [12], for the proof of Lemma 4.12.
We introduce a lemma for estimates of the right-hand side of (28).

Lemma 4.13. The following inequalities hold
(i o
(AL Vo), A0)] < Cag2 E W ull gl 14850 1e
(%)
|(ALj(w- Vo), A;d) |
< CfoszEullol g 1l

HIV Lo (2715 2% Sow ]|, 512 dllz2) },

where C' is independ of j € Z and {aj} with |[{o;}|n < 1.

Proof. As for (i), see, e.g., [2].

Let us prove (ii). By using Lemma 3.6, we obtain
|(ALj(w- Vo), A;d) |

‘ ([w . V, A]‘]O', AAjd)| + | (w . VAJ‘O', AAjd) |
Clog2™ 3Vl g o5 118,

VARVAN

Ln

IV 200 22 (10wl 1ALl 2 + 1| Sow
Clag2 Y| Tull g loll 5 125

Al 2,))

IN

VAol (2]||Sow|| ||A dIILz + 2% Sowl |, —1||A dllz2) }-
This completes the proof. O
Proposition 4.14. There holds

d
B (1) + ol (1)

< Cfa;(1 +t>*%M<t>||wu pen + (L4 0) 5209 A d] 2 M (1)
PAEDIAD 0V - )12 + 26D 2 R0
12570 A, By(U)] 1), (20)
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fort € [0,T] andj > 1, where ZjeZ a; <1, and ¢y is a positive constant independent
of j. Here, E;(t) is equivalent to 23~V || AU (t)| 22 +227|| Ao (t)|| 2. That is, there
exists a positive constant Dy such that

1o .
D_1(2(2 DI U ()| z2 + 227|250 (F)]|12)

< Ej(t)

< Di(2% AU 1) + 287 [ D50 (1) 12).-

Proof. We add (26) to k x (28) with a constant x > 0 to be determined later.
Then, we obtain

d 1
SI1A, U= + ——HAA olli: = k(Ao Ad) §

+u1HVAJw||Lz + uzIIV Ajwlli + K[| AN o7
1%
= e[ADw|7. + (O F(U), Ajo) + (A F(U), Ajw) + H;(AAJ-Fl(U), AAjo)
—k(ANF(U), Ajd) — k(AT'V - A F(U), ADo). (30)
We set
n_1ys 1 KRV
E}(t) = 2203 1”{§||AJU||%Q + §;||AAJUI|QL2 — k(ADjo, Njd) ).

It is not difficult to see that there exists Dy > 0 such that, if £ = min{D; 2,1}, then
E;(t) is equivalent to 2G~Y||A;U(#)|| 2 + 237]|Ajo(t)] 2 and that there exists a
co > 0 such that

203 < 25 [V A0l + |V - Aguls + Ao — el AL w]s).

Let us next estimate the right-hand side of 22(2717 x (30). By Hélder’s inequality,
we obtain

PET (AR (U), Ajo) < 257 AR(U)]1225 7| Ao 2,
22(%*1)3'(A~F2 L 00) < 257 A F(U) )220 Ao |,
223 -Vi(A7IV AFZ(U),AJU) 2609 A Fy(U)]| 2225 Y| Ao | 2.

By Lemma 4.13 we have

22 DAL F(U), ADo)

2 (AA (w-Vo),ADjo) + 225 (AA (oV - w),ANjo)

< CaijHBfrlHauggf(“ 12202 + 22 E VAN 0V - w) 2] AL o2,

and
225 VI (AN FL(U), Agd)
= 22G7VI(AA (w - Vo), Ad) + 227D (AN (0V - w), Ajd)
C{a27 GV wll, ~ﬂ+1||a|! 3 185l e

IN

+HIVA;ol| 2 (2J||Sow|! ||A |l 2 +22J|!Sow|| Y dllz2) }
+223 [ AL (o7 - w)||L2||Ajd||L2,
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where > jez @ < 1. Hence we obtain

d _n
C B+ 200} < OB {op(1+ ) 5 M(8)|lw]l 50

dt 7
+(1+ )73 26| Ayd| 2 M () + 25V AL (oY - w) |2
+2G VAR (U) g2 + 257 A Fa(U) | 2} (31)
From (31) and dividing by E;, we get the desired result. 0

4.3 Proof of Theorem 1.1.

Proposition 4.15. Let 1 <p < =% + There exists a constant e > 0 such that if

1
HUOHBfflﬂng + HO-OHBQ%1 < €,

then there holds
M) < C{Uol 31, +loll 5 }

for 0 <t < T, where the constant C does not depend on T.

Proof. By (29) we have
Bit) < ¢ )
t
40 [ eI a4 1 EMO
0 2,1

(1 1) 2G| A 2 M (1)
LB IAA (0 - )
+26 VAR (U) | g2 + 25V A F(U) | 2 dr, (32)

where Z;io a; < 1. Hence summing up on j > 0, by the monotone convergence
theorem, we obtain

S B <e Z E,(0)

t
+0/ e~ 0= (1 4+ 7) 7% M (1) ||w] . 7+1+Zzﬂz|m (0V - w)| 12
0

=0

+ Z PEVN AR (Ul + ) 2G| A F(U)| 2 Y (33)
=0
We next estimate the right-hand side of (33). From Lemma 3.1, we have

2:232’”A oVl <lloVewlyg < Cllof g [Vwllyz < C047)7 B M(r)|lwll, i

7=0
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Let us next consider the quantities )77 2GED|A;F(U)]| 2 -

2 25 NA W Vo)lz < lw- Vol g

=0

< Clull ||Vo||

< O(ISwl5 +|rsowu 3)loll3

< Cl+7)" pMz(T)+C(1+T)’%M(T)HwHB%+1,
S VEV A0V )z < oV w] 5o
j:() 2,1

< Clol 3 Vw3

< C(1+ T) » M?(T) +C(1+7) % M(7)w] 541

Hence, we obtain the estimate of 37 2G=D||A;F (U)| 2. By using Lemma 3.1,

Lemma 3.2 and Lemma 3.4, 3772 2G| A Fy(U)|| 12 is estimated as
ZQJ DA (w- Vw| - < C{||5—5w|| ||5—5Vw\| 3

HIS-sVwl 5135wl 3 +15-sul 5 1155wl 5
< C(14r)EMr g

Here we used
-1

15-swll . 31 < C{( > 2EAuwle) + ISl pi} SC+7) & M(r),

j=-—5

I1S-quw]|, g = Clvll

32“

o
Wi < ||H1Aw||3§1_1
< Ol 10wl 3
< cuauggluwugfﬂ
< O+ EME)lullg0,
> g
> ez < == Voll
7=0
< -2

— 3 190113

< C(A+7)" v M*(r).
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In the same way as above, we can obtain estimates of other terms on ||F2(U)||Bg_1.

2.1
Hence, by using Lemma 3.3, the integral of the right-hand side of (33) is estimated
as

¢
/ e_co(t—T){(l + 7)_5M2(7') +(1+ T)_%M(T)HWHB%H}dT
) 2,1

IN

! t
M(t) / e*CO(t77)<1 + 7—)_% HwHB%HdT + MQ(t) / 6700(7&77’)(1 n T)_%dT
0 2.1 0
< C(1+ t)_%€2M<t) +C(1+ t)_%MQ(t),
Hence, we obtain

M (t) < C(||UOIIB§1_1 + ||00||32g1> + CeaM(t) + CM?(2). (34)

By Proposition 4.9 and (34), we have
M(t) < C(I1Uoll,

Tl p0
B2,1 ﬂBp,

. + ||00||B§1) + Cea M (t) + CM?(2).
By taking €5 > 0 suitably small, we obtain
M(E) < (100l s, 0+ ool 1)
for all 0 <t < T with C independent of T'. This completes the proof. OJ
It follows from Proposition 4.2 and Proposition 4.15 that
M(t) < Cs for all ¢,

if the initial perturbation is sufficiently small. Hence we obtain the desired decay
estimate (4), (5) and (6) of Theorem 1.1.
Finally, by (8), we have

Uz, < CIUMI 5 < OO+ 5365,
By Lemma 3.7, for any 2 < ¢ < n, we obtain

U, < TN ITON" < CQL+8)7367,

where 0 = q(3ﬁ2) — % This gives (7). The proof of Theorem 1.1 is thus complete.
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