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   1. Introduction 

   Let f > 1 be a natural number and Cf a fixed primitive f-th root of unity. 
Let x be any primitive Dirichlet character of conductor f. 

   A Gauss sum attached to the character x is defined by

g(x)_ 2 x(x)q, 
       x mod f

where x runs over a complete system of representatives in the rational integer 
ring Z modulo f. This Gauss sum depends naturally on the selections of x and 

(f. From the definition we see easily that the number g(x) is an integer in the 
cyclotomic field Q(Cs r , (f). Here Q means the rational number field and q5 
denotes the Euler function. In the case where f = 2's the sum is an integer in the 
field Q((2n ). 

   It is known that in the case where f = p there are other kinds of Gauss 
sums with power residue characters in algebraic number fields under certain con-
ditions. For these Gauss sums the so-called Stickelberger theorem gives us the 

prime ideal decompositions [ 1 ]. More strictly speaking, from the Gross-Koblitz 
formula [2]  together with the continuity of p-adic 1-1-function, higher congruences 
can be obtained in principle. 

   Moreover we remark that there are Gauss sums of another kind, called expo-
nential Gauss sums, which we here do not deal with. 

   In this note we give first a slightly more precise congruence than the Stick-
elberger formula in the case where f = p is any odd prime from an elementary 
view-point, because two kinds of above sums coincide in this case.
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   In the second section we give a theorem on the p-adic values of the sums g(x) 
in higher cases where f =  pfl. 

   We point out that it is very important to determine the correct p-adic mag-
nitudes of Gauss sums with Dirichlet characters for some applications of p-adic 
L-functions [ 4 ], [ 5].

   2. Congruences 

   Let Qp be the rational p-adic number field and Zp the rational p-adic integer 
ring. Then we consider a fixed imbedding all algebraic numbers, hence especially 

(f, in the algebraic closure Qp of Qp. Therefore the values of x and g(x) are 
integers in the field Qp. Then the number g(x) belongs to the integer ring OQp((pn 
of the p-adic cyclotomic field Qp(Cpn ). 

   Now, we consider the case where f = pl (n > 1). Then, expanding the Gauss 
sum by a prime element (pn — 1 in the field Qp((pn) we have

pn-1 

g(x) x(x) (pn 
x=0

     n1 = E x(x) (x.) (Cpn — 1)3 
x=0 j=0 3

pnn — l pn —1 x• = L E x(x)(I3 (Cpn — 1)j 
   j=1 x=j.7!

=p1[~(~pn—1)j p~lx(x)(x)j~ 
 L 1 

  j=1 J' x=1

where (x)3 denotes the Jordan factorial x(x — 1) • • • (x — j + 1). 
   First we treat the case n = 1, hence p 2. Let w be the Teichmiiller character, 

namely w(x) = limp_,,, x'P for x E Zp* = Zp - pZp. Then any Dirichlet character 

x with conductor p is a power of co. Namely x = (Air for some r (1 < r < p — 2). 
From the congruences w(x) - x (mod p) for x E Zp* we have

p-1p-1 j 

E x(x)(x)j = E wr(x) E S(~, m)xm 
x=1x=1m=1

jp-1 

= E m) E wr(x)xm 
 m=1x=1

jp-1 

E m) E xr+m (mod p) 
m=1x=1

—S(j, p — 1 — r) (mod p).



Herein S(j, m) means the Stirling number of the first kind defined by  (X)3 = 

EL.   _1 S(j, m)X m, and it is a rational integer. Therefore we have

P-11 

g(x)=E~(C— 1)3S(~, p — 1 — r) (mod p((p — 1)). 
j=1.36

In the following we denote the prime ideal in the field QP(c,n) by p„. Then we 
know (p) = pnn-1(P-1) from the elementary ramification theory in the cyclotomic 
field QP(Cpn ). Therefore we see

P-11 

g(wr)_- >7(4 — 1)3 S(j, p — 1 — r) (modpp 
           j=1 3'

As it holds that S(j, p — 1 — r) = 0 for 1 < j <

g(wr)——(CP — 1)P-1-r (p-1—r)!

Consequently we have a refinement of the Stickhis particular 

case. 

   THEOREM 1. It holds that

P-11 

g(wr)=— ES(.~,p-1—r 
j=p-1-r3.

In particular

g(wr)         (p=—-----------_1_r) .P— 1)P

Especially we have pP-1-r II g(wr).

   By the way, take a prime element tv = Pyat co7,-CP -1 

(mod p) holds. Then we know the congruence

i=1

P-1 1 

CPE-.wi (mod p) 
J=0



From these congruences we have for 1  < j  <  p - 1

1p-1 1 
(Cp — 1)3 - 2 ti)%            le(t, j)v t (mod v 

~•t=j

where e(t, j) = EP, al,a2,...(1i)ta1(2,)a2 ... means the Stirling number of the second 
kind. In the summation P3 runs through all such partitions Pi : a1 + a2 + • • • _ 

j, a1+2a2+••• =t. 
    Hence we see

    p—1p-1 

g(wr)=—S(j, p - 1 - r)1e(t, Arut (mod pi) 

j

p-1 1 t 
  - E 1I E e(t,j)S(j, p - 1 - r)t t (mnrl pn 

t=1 j=1

By the orthogonality relations of the Stirling numbers weobtain

g(wr)         (p-- -11-r) .                  Iz7`p-1-r (mod Vi)

This is a truncated one of the Gross-Koblitz formula [ 2].

COROLLARY. For the prime element zu in the above wecongruence

g(wr) ——1 p-1-r (mod pi)         (p1r) !I 

'e obtain 

                                           have the

   To the cases where n = 2, 3 we can proceed with this method, but calculations 

are somewhat complicated. Hence we state only the results. In the case of n=2 , 

p odd, set x(1 + p) = C2-9-ax  with 1 < ax < p - 1. Then we have

g(x) = px(ax)Q'

When p = 2 we have g(x) = 2C4. In the case where n = 3, p is odd, we set 
similarly x(1 + p2) = Cp aX with 1 < ax < p - 1. Then it holds that

(x)=—px(axp3ax 2 2p21(Cp — 1)p211 g-------I(mod pp12 ) (                              ;-1)!



3. The general case

   In this section we treat higher cases in a unified manner. We discuss general 

case with n  > 2, namely any Gauss sum with  Dirichlet character with prime power 

conductor pn, mainly for p odd. 

First we take x=xo+py,1<so<p-1,0<y<pn-1-1asa system of 

the representatives, which run in the summation of the Gauss sum.

g(x) = E X(x) cxn 
           x mod pn

p-1 

     X(x0) Cpx„° X(1 + pxo ly) ~py, 
xo=1y mod pn-1

because we have x - x0(1 + pxo ly) (mod pn). 
   Now, we set h(xo, x) = Ey mod p"-1 x(1 + pxo ly)Cp„_1. Let Q_1 be the element 

of the Galois group G(Qp((pn-1)/Qp) such that Q-1 : Cpn-1 (-1_1. Because 
pn 

x(1 + pxo ly) is a pn-1-th root of unity in Qp((pn-1), we have

h(xo, X)°-1 = x(i pxoly)-l~py1 
Y mod pn -1

hence we see

h(xo, x)h(xo, XY-1 = E x(i + pxo lyl) cpn-1 E x(i +pxo 1y2)-1 ~pn-1 
y1 mod pn-1Y2 mod pn-1

      X(1+pxo.91)(y1-y2 
       1+-1pn-1    Y1,y2pxo y2

By changing the variables yl = t + y2 we have

                                                      1 

h(xo, x)h(xo, X)a-1E~pn-1E x(1+-----------pxo1) 
             t mod pn-1 Y2 mod pn-1

   By the way, we see easily by virtue of the orthogonality relations of characters 

together with the definition of conductor that

x(i + pxoIt= pvp(t)+1X(1 + px                                   -it) E x(1 + pvP(t)+2c) 
Y2 mod pn-11 +pxo y2C mod pn-2-'p(t)

pn-lx(1+pxolt) if vp(t) + 2 > n, 
0otherwise.



   In the above  vp(t) means the exponential p-adic valuation of t, namely 

pvp(t) II t. Therefore we have

p-1 

h(xo, X)h(xo, Xr1 = E (ppn1x(1+ pn-lxols) 
s=o

pn if X(1+pn-1)=(pxo, 
     0 otherwise.

   Because it holds that vp(h(xo, x)) = vp(h(xo, -1) we conclude the following 
congruence. There exists a unit e(x) E OQp(cn_1) such that

g(x) = X(xo)(pnE(X)((p — 1)Yn (mod Plt npn-1)•

By making use of the same notation for xo as before, namely xo = ax we obtain 

the following main theorem. 

   THEOREM 2. For any Dirichlet character x with conductor p" (p odd, n > 2) 
the Gauss sum g(x) satisfies the congruence

g(X) = E(X)X(ax)(Pn ((p - 1) 2 (mod pli2 pn-1)

for some unit e(x) in the field Qp((pn-i) * . 
   Especiallywe have v(    pyp9(X)) =

   In the case p = 2 we can derive similar congruences, in which we have only to 
use 2n-2 instead of pn-1. In general cases of conductor f we know that any Dirich-
let character x is decomposed into three components, namely the Teichmuller 
component, character of p-prime conductor, and character of the second kind. 
According to this decomposition the Gauss sum can be factored in a similar way. 

Using this fact together with our Theorems 1, 2 we can obtain an information of 
the p-adic magnitudes of Gauss sums of general type.

  *We can also express the result as an equality g(x) = e(X)X(a
x)(prl ((p — 1) Li 1.n with some 

unit e(X) in Qp((pn-i ). It seems to be interesting to determine e(X) exactly.
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