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1. Introduction

Inductive inference of recursive functions from imput-output examples
is considered. An iteratively working strategy utilizes the last hypothesis
produced by it and the present example. We investigate the inferring
power of some iteratively working strategies with anomalies.

A process of automatic program synthesis can be formalized to in-
ductive inference of recursive functions from examples as an infinite pro-
cess. Its situation can be imagined as follows: An algorithmic device,
which is formally a partial recursive function and called a strategy or an
inductive inference machine, takes as the input the graph of a recursive
function f which is the list of all examples (x, f(x)) for natural number x.
As it receives the list, it produces infinitely many computer programs called
hypotheses. When almost all programs produced by a strategy are equal to
a program that computes f, we say that the strategy inductively infers (or
identifies) f. A set of recursive functions is said to be identifiable by a
strategy if the strategy identifies every function in the set.

There are many possible requirements, called identification criteria, on
the process of synthesizing programs and the sequence of programs pro-
duced by a strategy. The power of an identification criterion, called an
identification type, is expressed by the class of all sets of recursive functions
each of which can be identified by some strategy under the identification
criterion.

2. Identification types

* We give some basic definitions and notations and present some funda-
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mental results, N=1{0, 1, 2, ...} denotes the set of all natural numbers
and N* denotes the set of all finite sequences of natural numbers, & and
C denote containment and proper containment for sets, respectively. A
function will mean a function of one variable unless otherwise indicated.
The classes of all partial recursive and (total) recursive functions are
denoted by @ and R, respectively. A function from R is sometimes
identified with the sequence of its values, Let .. .) be a fixed effective
encoding of 2*. f(x) | means that a partial recursive function f is defined
on a natural number x. f[k] denotes {f(0), f(Z), ..., f(B)), where fis a
partial recursive function and f(0), f(I), ..., f(k) (R=0) are defined. A
sequence (h,).cq of natural numbers is said to converge to a natural number
p, denoted by lim,h,=p, iff all but finitely many elements in the sequence
are identical to p. Let ¢y @1, ¢, ... be a fixed acceptable programming
system of £ [4]. p is said to be a program for f, if ¢,=f.

Let pEJN and fER. ¢,(x) #f(x) means that ¢,(x) is defined and not
equal to f(x), or ¢,(x) is undefined. Then x is’ called an anomaly, We
suppose n ranges over Jl. We wright ¢,="f if the cardinality of {x€J |
¢,(x) #f(x)} <n. By suitable encoding, we may treat a strategy or an
inductive inference machine M as a partial recursive function, At time k&
an inductive inference machine M takes as input f{k] which is a coding of
a finite sequence f(0), f(1), . . ., f(2) of data. M'’s hypothesis is a number
and M(f[2]) denotes the hypothesis at time % taken the data of f as an
input. First we review the Gold’s paradigm of identification in the limit or
EX-identification.

DeriviTion 1 [1, 21 MERP EX-identifies fER iff VREN, M(f[k]) | and
there exists p=Ulim,M(f[k]) and ¢,=f. We define as follows : EX(M) = {fE€
R | ME P EX-identifies f}, and EX={UCR | aIM= @ ; UCEX(M)}.

Thus EX represents the power of EX-identification and called an ide-
ntification type. Other identification types are defined similarly. We con-

sider criteria allowing the last hypothesis to have finitely many anomalies.

DeFinitioN 2 [1] ME @ EX"-identifies fE R iff Ve, M(f[k]) | and there
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exists p=lim,M(f[k]) and ¢,="f.

By the definitions 1 and 2, EX" coincides with EX and the similar
relations hold for other identification types with anomalies.

For an inductive inference machine M to EX"-identify a function f, we
allow M to utilize the all data f(0), f(), ..., f(k) at time k. Since an
inductive inference is an infinite process, an inductive inference machine
under no restriction on the amount of accessible input data is not realistic,
Thus we have an iteratively working machine M that iterates a process of
making a hypothesis #4,.; based on the its last hypothesis A, and the present
example (&, f(k)) at time .

The inferring power of some iteratively working machines are in-
vestigated in [3, b, 6, T1. We consider an extension of such machine in the
next section. In the definitions 3, 7 and 8, the hypothesis k,(f), if any, is
defined as follows : hy(f) =0, and A () =M. (P, &, f(&)), (=0), where M
is a partial recursive function of three variables and f is a recursive func-
tion,

DerinitioN 3 [3, 5, 7] Let M be a partial recursive function of three
variables. M IT'-identifies fER iff VREN, h,(f) is defined, and there
exists p=lUmyh,(f) and ¢,="f.

In the criteria described so far, we require the infinite sequence of the
hypotheses output by an inductive inference machine to converges as a
sequence of natural numbers. This means that the sequence of programs
represented by the hypotheses converges syntactically.

According to the approach in [1], we remove this requirement and
consider the FEX", OEX" and BC-identifications.

DerFinttioN 4 [1] ME@ FEX'—identifies fER iff Ye€J, MFk]) | and
{MFLRD) | kRER) is a finite set and if p occurs infinitely often in the
sequence(M(f[k]))re then ¢,="f.

DeriNiTioN 5 [1] ME® OEX"-identifies fER iff veeJ, M(F[k]) | and
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{M{[ED) | kET}) is a finite set and there exists p that occurs infinitely
often in the sequence(M(f[k])ieq and @,="f.

DeriNttioN 6 [1] ME@ BC-identifies fER iff vk, M(f[k])| and
Bkoe qn ’ Vkag, PMGTED =f.

In the following theorem we summarize a part of results, which is
concerned with this note.

Tueorem 1 [1, 71

(1) ITCEX.

(2) EX"=FEX"=0EX" (n€q),
(3) EXCBC.

3. An extension of iteratively working strategies

The definition of IT"-identification allows the coding of input data to a
hypothesis by a padding function [4]. If we modify the definition 3 as
follows : M IT -identifies fER iff VEEI, h,(f) is defined, and there exists
kyE T such that VE>Ek, Pn,n=/, then we have IT" =BC. Thus we consider
some criteria allowing iteratively working machines to code the input data
to a hypothesis to some extent. These criteria correspond to FEX" and
OEX"-identifications.

DerFiNiTION T MEQ FIT'-identifies fER iff VEEG, vhk(f) is defined and
{r.() | kEN} is a finite set and if p occurs infinitely often in the sequence
(7e(N)rea then @="f.

DerFiNITION 8§ ME P OIT'-identifies fER iff YeE N, h,(f) is defined and
{r.(H) | kE T} is a finite set and there exists p that occurs infinitely often in
the sequence (7,())iey and ¢,="f.

By the above definitions the following relations hold : EX"CFEX"C
OEX", IT'CFIT'COIT", IT'CEX", FIT'"CFEX" and OIT"COEX". By the
Theorem 1 (2), we have IT"CFIT'COIT"CEX" and by Theorem 1 (1), at least
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Thus we have k(@) =h,(g>) (0<j<ml+1, (m+1I<j). Since g', g2EU,CUC
IT"(M), there exists a number m such that
p=1lim;(@) =lim;(g), ¢,="g" and @,="g%.

This contradicts the asumption [>m. So there is no number m such
that hl(m+1)l+1=h2(m+l)l+1=hml+l(fi); and we have f,ER.

By the recursion theorem, there exists a>0 such that ¢,=f,€U;. Since
the sequence (h,(f,)).cq of hypotheses output by M taking the data of f, as
input does not converge, we have f,&I7"(M). This contradicts f,EU,CUC
IT"(M). Thus we have UEIT",
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one of three containments in the relation ITSFITSOITSEX is proper.

We show that an extension of theorem 1 (1) holds by using the same
technique in [7]. Therefore at least one of three containments in the
relation IT"CFIT"COIT"CEX" is proper.

TueoreMm 2 IT'CEX" (n<EJ).

Proor. We show that there exists USEX"\IT". Let Uy={al” | aEN*},
U={feR | o=/, VxEJ, f(x)#0} and U=U,UU,. Obviously UEEX",
We assume UEIT". There exists a partial recursive function M of three
variables such that U=U,UU,SIT"(M).

Let I>2n and g=1, 2 and i€Jl. We define f; as follows:

Let
£i(0) =4,
hy(f) =0,
Ry (R =M(hy(fD, 0, £:(0)).

For each m=0, 1, 2, ..., we repeat the following process :
oy =M (FD), mi+1, @),
hss=Mhy 1 mi+2, @),

hns 1141 =MBn i1 (m+ 11, @),
1 if Alwepis1#hma (D
i@ =12 if hbnspier=Rme1 (FD
ml+1<x<(m+1DD) and Ay 1ie17 Poe1(FD,s
P12 =M1 (), mi+1, fi(ml+1),
B3 =M B io(f), mi+2, fi(mi+2),

Bns 01410 =M1/ FD), (m+ DL, fi((m+1DD).
Suppose there is a number m such that Ab,.pie1=Pomspis1=Rms1 (D) .
We define the functions g' and g® as follows :
fi®) (0<x<ml)
gl = {1 ml+1<x<(m+110)
0 ((m+1Di<x),
fi(x) (0<x<mD)
g)= {2 (ml+1<x<(m+DD
0 ((m+1Di<x).



