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1. Introduction

   Inductive inference of recursive functions from imput-output examples 

is considered. An iteratively working strategy utilizes the last hypothesis 

produced by it and the present example. We investigate the inferring 

power of some iteratively working strategies with anomalies. 
   A process of automatic program synthesis can be formalized to in-

ductive inference of recursive functions from examples as an infinite pro-

cess. Its situation can be imagined as follows : An algorithmic device, 

which is formally a partial recursive function and called a strategy or an 

inductive inference machine, takes as the input the graph of a recursive 

function f which is the list of all examples (x, f (x)) for natural number x. 

As it receives the list, it produces infinitely many computer programs called 

hypotheses. When almost all programs produced by a strategy are equal to 

a program that computes f we say that the strategy inductively infers (or 

identifies) f. A set of recursive functions is said to be identifiable by a 

strategy if the strategy identifies every function in the set. 

   There are many possible requirements, called identification criteria, on 

the process of synthesizing programs and the sequence of programs pro-

duced by a strategy. The power of an identification criterion, called an 

identification type, is expressed by the class of all sets of recursive functions 

each of which can be identified by some strategy under the identification 

criterion.

2. Identification types

We give some basic definitions and notations and present some funda-



mental results.  71= {0, 1, 2, ... } denotes the set of all natural numbers 

and 71* denotes the set of all finite sequences of natural numbers. S and 

C denote containment and proper containment for sets, respectively. A 

function will mean a function of one variable unless otherwise indicated. 

The classes of all partial recursive and (total) recursive functions are 

denoted by g' and a, respectively. A function from gt is sometimes 

identified with the sequence of its values. Let < ... > be a fixed effective 

encoding of 72*. fix) I, means that a partial recursive function f is defined 

on a natural number x. f[k] denotes <f'(0), f(1), ... , f(k)>,  where f is a 

partial recursive function and f(0), f(1), ... , f(k) (k>_0) are defined. A 

sequence (hk)kE9/ of natural numbers is said to converge to a natural number 

p, denoted by limkhk=p, iff all but finitely many elements in the sequence 

are identical to p. Let 90, go1, 92, ... be a fixed acceptable programming 

system of gP [4] . p is said to be a program for f, if go,=f. 

   Let p E71 and /ER.  gop (x) � f(x) means that tpp (x) is defined and not 

equal to f(x), or gop(x) is undefined. Then x is called an anomaly. We 

suppose n ranges over 71. We wright gp="f if the cardinality of {xE91 

SQp (x) � f (x) } 5 n . By suitable encoding, we may treat a strategy or an 

inductive inference machine M as a partial recursive function. At time k 

an inductive inference machine M takes as input f[k] which is a coding of 

a finite sequence f(0), f(1), ... , f(k) of data. M's hypothesis is a number 

and M(f'[k]) denotes the hypothesis at time k, taken the data of f as an 

input. First we review the Gold's paradigm of identification in the limit or 

EX-identification.

DEFINITION 1 [1, 2] Mee EX-identifies f E 3t iff Vk E 91, M(f [k]) 4, and 

there exists p = limkM(f [k]) and cop =f . We define as follows : EX(M) = { f'E 

a I Meg EX-identifies .f}, and EX= {Uc gt. 12ME g' ; Ug_EX (M) } .

   Thus EX represents the power of EX-identification and called an ide-

ntification type. Other identification types are defined similarly. We con-

sider criteria allowing the last hypothesis to have finitely many anomalies.

DEFINITION 2 [1] Meg. EX"-identifies fegt iff VkE71, M(f[k]) 4, and there



exists p=limkM(f[k]) and  cpp="f.

  By the definitions 1 and 2, EX° coincides with EX and the similar 

relations hold for other identification types with anomalies. 

   For an inductive inference machine M to EXn-identify a function f, we 

allow M to utilize the all data f(0), f(1), ... , f(k) at time k. Since an 

inductive inference is an infinite process, an inductive inference machine 

under no restriction on the amount of accessible input data is not realistic. 

Thus we have an iteratively working machine M that iterates a process of 

making a hypothesis hk+I based on the its last hypothesis hk and the present 

example (k, f(k)) at time k. 

   The inferring power of some iteratively working machines are in-

vestigated in [3, 5, 6, 7] . We consider an extension of such machine in the 

next section. In the definitions 3, 7 and 8, the hypothesis hk(f), if any, is 

defined as follows : h°(f) =0, and hk+l(f) =M(hk(f), k, f(k)), (k>_0), where M 

is a partial recursive function of three variables and f is a recursive func-

tion.

DEFINITION 3 [3, 5, 7] Let M be a partial recursive function of three 

variables. M Ir-identifies fE. iff VkE JZ, hk(f) is defined, and there 

exists p=limkhk(f) and vp="f.

   In the criteria described so far, we require the infinite sequence of the 

hypotheses output by an inductive inference machine to converges as a 

sequence of natural numbers. This means that the sequence of programs 

represented by the hypotheses converges syntactically. 

   According to the approach in [1], we remove this requirement and 

consider the FEXn, OEX' and BC-identifications.

DEFINITION 4 [1] ME g. FEX"-identifies f E iff Viz GM M(f[k]) J, and 

{M(f[k]) I k E 9Z} is a finite set and if p occurs infinitely often in the 

sequence (M(f[k]))he22 then p=",f.

DEFINITION 5 [1] ME 9 OW-identifies f E q iff dk E Y2, M(f[k]) 1, and



 {M(f[k]) I k E Z is a finite set and there exists p that occurs infinitely 

often in the sequence(MV[k])kEm and Vp="f.

DEFINITION 6 [1] ME c BC-identifies fE gt iff VkE 92, M(f [k]) 4, and 

3koE 9l ; Vk zko, SPMU[k]) —f

   In the following theorem we summarize a part of results, which is 

concerned with this note. 

THEOREM 1 [1, 7] 

(1) ITCEX. 

(2) EXn=FEXn=OEX" (nE9l). 

(3) EXCBC.

3. An extension of iteratively working strategies 

   The definition of IT"-identification allows the coding of input data to a 

hypothesis by a padding function [4] . If we modify the definition 3 as 

follows : M IT' -identifies /ER iff Vk E 7L, hk (f) is defined, and there exists 

koE52 such that Vk>_ko, cohkw=f, then we have IT' =BC. Thus we consider 

some criteria allowing iteratively working machines to code the input data 

to a hypothesis to some extent. These criteria correspond to FEX" and 

OEX"-identifications .

DEFINITION 7 ME 2 FIr-identifies lea t iff Vk E,12, hk (f) is defined and 

{hk(f) I kE52} is a finite set and if p occurs infinitely often in the sequence 

(hk(f))kEm then Vp=nf.

DEFINITION 8 ME E' OIr-identifies fE . iff VkE 74 hk(f) is defined and 

{hk(f) I kE an is a finite set and there exists p that occurs infinitely often in 

the sequence (hk(f))kEx and Spp="f.

  By the above definitions the following relations hold : EX"CFEX"C 

OEX", IrcFIT"cOIr, IrcEX", FIrCFEX", and OIrcOEX". By the 

Theorem 1 (2), we have IT"CFIr, OIT"SEX", and by Theorem 1 (1), at least



Thus we have  h;(g1)=h;(g2) (0_<j—m1+1, (m+1)l<_j). Since gl, g2EUocUc 

Ir(M), there exists a number m such that 

p=lim;(g1)=limi(g2), co ="g.1. and p="g2. 

   This contradicts the asumption 1>m.  So there is no number m such 

that hl(m+1)/+1=h2(m+1)i+1=hml+1(fi), and we have AEA. 

   By the recursion theorem, there exists a >0 such that Coa =faE U1. Since 

the sequence (hk(fa))kE91 of hypotheses output by M taking the data of fa as 

input does not converge, we have fa Ir(M) . This contradicts faEUic Uc 

Ir (M) . Thus we have U$IT` .
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one of three containments in the relation  ITCFITCOITCEX is proper. 

  We show that an extension of theorem 1 (1) holds by using the same 

technique in [7] . Therefore at least one of three containments in the 

relation I7 FIT" c OIT' gEX" is proper. 

  THEOREM 2 IT'cEr (nE92) . 

PROOF. We show that there exists UEEX"\I'. Let Uo= {a0°° I aE fl*}, 

U1= (feat a. I Tyco =f Vx E f2, f (x) 00} and U= Uo U U1. Obviously UEEr. 

We assume UEIT". There exists a partial recursive function M of three 

variables such that U= Uo U U1 cIT' (M) . 

  Let 1> 2n and 47=1,  2 and i E 92 . We define fi as follows : 

Let

A(0) =i, 
                ho(fi) =0, 

h1(fi) =M(ho(fi), 0, fi(0)) . 
For each m=0,  1, 2, ..., we repeat the following process : 

hml+2=M(hml+1(fi), m1+1, q), 
141+3=M(hml+2, m1+2, q), 

14m+l)r+1=M(h(m+1)b (ri1+ 1)1, q), 
                         1 if h(m+1)i+10hml+l(fi) 

                                   1 

                   A(x)=2 if h(m+l)i+1—hml+1(f                                     i) 
(ml+1<_xS(m+1)1)and h(m+l)l+l#hml+l(fi), 

hml+2 (fi) = M(hml+ i (f), ml + 1, .fi (ml + 1) , 
hm1+3(fi) =M(hm1+2(fi), m1+2, fi(m1+2), 

              h(m+1)l+l(l) =M(h(m+l)i(fi), (m+1)1, .fi((m+1)1)) . 
   Suppose there is a number m such that h(m+1)l+1=h(m+1)1+1=hm1+1(fi) . 

   We define the functions gl and g2 as follows : 

A(x) (0<x<_ml) 

gl(x)= 1 (ml+15x<(m+1)l) 

                  0 ((m+1)l<x), 

A(x) (0<_x<_ml) 

g2(x) = 2 (ml+1<_x<_ (m+1)l) 

                   0 ((m+1)l<x).


