Regular abstract affine near-rings

矢ヶ部, 巌
九州大学教養部数学教室

https://doi.org/10.15017/1449063
Regular abstract affine near-rings

Iwao YAKABE
(Received September 6, 1989)

1. Introduction

In ring theory, it is well known that regular rings are characterized in terms of quasi-ideals. The purpose of this paper is to extend the above result to a class of abstract affine near-rings.

In Sections 2 and 3, we deal with some properties of regular elements and quasi-ideals of abstract affine near-rings, which will be used in the following sections. In Section 4, we give some characterizations of regular abstract affine near-rings by quasi-ideals and generalize the results of Kovács [1], Luh [2] and Steinfeld [4]. In Section 5, we apply the preceding results to characterize regular abstract affine near-rings without non-zero nilpotent elements in terms of quasi-ideals and generalize the result of Kovács [1].

For the basic terminology and notation we refer to [3].

2. Regular elements of abstract affine near-rings

Let N be a near-ring, which always means right one throughout this paper. For an element n of N, we denote $n-n_0$ by n_0 and $n0$ by n_c. Then $n = n_0 + n_c$ with $n_0 \in N_0$, $n_c \in N_c$, where N_0 and N_c are the zero-symmetric and constant parts of N, respectively.

A near-ring N is called an abstract affine near-ring if N is abelian and $N_0 = N_d$, where N_d is the set of all distributive elements of N.

An element n of a near-ring N is called regular if $n = nxn$ for some element x of N. The near-ring N is called regular if every element of N is regular.

These definitions lead immediately to:

Proposition 2.1. The following assertions on an element n of an abstract affine near-ring N are equivalent:
(1) \(n \) is a regular element of \(N \).
(2) \(n_0 \) is a regular element of \(N_0 \).
(3) \(n = nmn_0 \) for some element \(m \) of \(N_0 \).

Proof. (1) \(\Rightarrow \) (2) : First we remark that \((ab)_0 = a_0b_0\) for elements \(a, b \) of \(N \). In fact, since \(a_0 \) is distributive, we have
\[
ab = (a_0 + a_c) b = a_0(b_0 + b_c) + a_c = a_0b_0 + a_0b_c + a_c,
\]
whence \((ab)_0 = a_0b_0\).

Now the assumption (1) implies that \(n = nxn \) for some element \(x \) of \(N \). So, by the above remark \(n_0 = n_0x_0n_0 \), that is, \(n_0 \) is a regular element of \(N_0 \).

(2) \(\Rightarrow \) (3) : The assumption (2) implies that \(n_0 = n_0m_0n_0 \) for some element \(m \) of \(N_0 \). Then we have
\[
nmn_0 = (n_0 + n_c)m_0n_0 = n_0mn_0 + n_c = n_0 + n_c = n.
\]

(3) \(\Rightarrow \) (1) : By the assumption (3), \(m \) is distributive. So we have
\[
n(m - mn_c)n = n(mn - mn_c) = n(mn_0 + mn_c - mn_c) = nmn_0 = n,
\]
that is, \(n \) is a regular element of \(N \).

The equivalence of (2) and (3) is true without the assumption that \(N \) is an abstract affine near-ring. The following examples show that the other implications do not hold for arbitrary near-rings.

Example 2.2. Let \(V = \{0, a, b, c\} \) be the near-ring due to [3, Near-rings of low order (E-19)] defined by the tables
\[
+ \begin{array}{cccc}
0 & a & b & c \\
0 & 0 & a & b & c \\
a & a & 0 & c & b \\
b & b & c & 0 & a \\
c & c & b & a & 0 \\
\end{array} \quad \cdot \begin{array}{cccc}
0 & a & b & c \\
0 & 0 & 0 & 0 \\
a & a & a & a \\
b & 0 & 0 & 0 \\
c & a & a & a & c \\
\end{array}
\]
Then \(V_o = \{0, b\} \), \(V_c = \{0, a\} \) and \(c = b + a \). Since \(c^3 = c \), \(c \) is a regular element of \(V \). But \(c_0 = b \) is not a regular element of \(V_0 \), because \(bxb = 0 \) for all elements \(x \) of \(V_0 \).

Example 2.3. Let \(K = \{0, a, b, c\} \) be the near-ring due to [3, Near-rings of low order (E-21)] , whose addition coincides with that of \(V \) in Example 2.2 and
whose multiplication is defined by the table

\[
\begin{array}{c|cccc}
\cdot & 0 & a & b & c \\
\hline
0 & 0 & 0 & 0 & 0 \\
a & a & a & a & a \\
b & 0 & 0 & b & 0 \\
c & a & a & c & a \\
\end{array}
\]

Then \(K_0 = \{0, b\} \), \(K_c = \{0, a\} \) and \(c = b + a \). Since \(b^3 = b \) and \(c_0 = b, \ c_0 \) is a regular element of \(K_0 \). But \(c \) is not a regular element of \(K \), because \(c y c = a \) for all elements \(y \) of \(K \).

As an immediate consequence of Proposition 2.1, we have:

Corollary 2.4. An abstract affine near-ring \(N \) is regular if and only if the subring \(N_0 \) of \(N \) is regular.

3. Quasi-ideals of abstract affine near-rings

Let \(A, B \) and \(C \) be three non-empty subsets of a near-ring \(N \). Then \(AB \) (\(ABC \)) denotes the set of all finite sums of the form \(\sum a_k b_k \) with \(a_k \in A, b_k \in B \) (\(\sum a_k b_k c_k \) with \(a_k \in A, b_k \in B, c_k \in C \)), and \(A \ast B \) denotes the set of all finite sums of the form \(\sum (a_k (a'_k + b_k) - a_k a'_k) \) with \(a_k, a'_k \in A, b_k \in B \).

A right \(N \)-subgroup (left \(N \)-subgroup) of a near-ring \(N \) is a subgroup \(S \) of \((N, +) \) such that \(SN \subseteq S \) (\(NS \subseteq S \)). Note that left \(N \)-subgroups are called \(N \)-subgroups in [3], and that in case \(N \) is an abstract affine near-ring, right \(N \)-subgroups coincide with right ideals.

A quasi-ideal of a near-ring \(N \) is a subgroup \(Q \) of \((N, +) \) such that \(N \ast Q \cap NQ \cap QN \subseteq Q \). In case that \(N \) is zero-symmetric, a subgroup \(Q \) of \((N, +) \) is a quasi-ideal of \(N \) if and only if \(NQ \cap QN \subseteq Q \) (see [5, Proposition 3]).

For a non-empty subset \(A \) of a near-ring \(N \), we denote \(A \cap N_0 \) by \(A_0 \) and \(A \cap N_c \) by \(A_c \). A quasi-ideal \(Q \) of \(N \) is said to be of the first kind if \(Q = Q_0 + Q_c \). A quasi-ideal \(Q \) of \(N \) is of the first kind if and only if \(Q \) is a subnear-ring of \(N \) (see [5, Theorem 1]). Right \(N \)-subgroups, left \(N \)-sub-
groups, N_0 and N_c are quasi-ideals of the first kind, and the intersection of a family of quasi-ideals of the first kind is again a quasi-ideal of the first kind.

We state here some known results on quasi-ideals of abstract affine near-rings which will be used later. In the following remarks, N denotes an abstract affine near-ring.

REMARKS 3.1. A subgroup R of $(N, +)$ is a right N-subgroup of N if and only if $R = R_0 + R_c$ where R_0 is a right N_0-subgroup of N_0, R_c is a subgroup of $(N_c, +)$ and $R_0 N_c \subseteq R_c$ (see [3, Proposition 9.73]).

3.2. A subgroup L of $(N, +)$ is a left N-subgroup of N if and only if $L = L_0 + L_c$ where L_0 is a left N_0-subgroup of N_0 and $L_c = N_c$ (see [3, Proposition 9.73]).

3.3 A subgroup Q of $(N, +)$ is a quasi-ideal of the first kind of N if and only if $Q = Q_0 + Q_c$ where Q_0 is a quasi-ideal of N_0, Q_c is a subgroup of $(N_c, +)$ and $N_0 Q_c \cap (Q_0 N_c + Q_c) \subseteq Q_c$ (see [6, Theorem]).

The following will be also used later:

PROPOSITION 3.4. Let N be an abstract affine near-ring. Then the following assertions hold:

1. For every quasi-ideal Q of the first kind of N, $QN_0 Q \subseteq Q$.
2. For every right N-subgroup R of N, $R^2 = R_0^2 + R_c$.
3. For every left N-subgroup L of N, $L^2 = L_0^2 + N_c$.
4. For every right N-subgroup R and left N-subgroup L of N,

 \[RL = R_0 L_0 + R_c \quad \text{and} \quad R \cap L = R_0 \cap L_0 + R_c. \]

PROOF. (1) For a quasi-ideal Q of the first kind of N, by Remark 3.3, we have

\[Q_0 N_0 Q_0 \subseteq N_0 Q_0 \cap Q_0 N_0 \subseteq Q_0 \quad \text{and} \quad Q_0 N_c Q_c \subseteq N_0 Q_c \cap Q_0 N_c \subseteq Q_c. \]

So $Q N_0 Q = Q_0 N_0 Q_0 + Q_0 N_0 Q_c + Q_c \subseteq Q_0 + Q_c = Q$.

(2) For a right N-subgroup R of N, by Remark 3.1, we have $R_0 N_c \subseteq R_c$. So $R^2 = R_0 R_0 + R_0 R_c + R_c = R_0^2 + R_c$.

(3) For a left N-subgroup L of N, by Remark 3.2, we have $L_c = N_c$. So $L^2 = L_0 L_0 + L_0 N_c + N_c = L_0^2 + N_c$.

(4) Similarly, Remarks 3.1 and 3.2 imply that for a right N-subgroup R
and left N-subgroup L of N,

$$RL = R_0L_0 + R_0N_c + R_c = R_0L_0 + R_c.$$

Moreover, $R \cap L$ is a quasi-ideal of the first kind of N with $(R \cap L)_0 = R_0 \cap L_0$ and $(R \cap L)_c = R_c$. So we have $R \cap L = R_0 \cap L_0 + R_c$.

4. Characterizations of regular abstract affine near-rings

Now we state the main result of this paper:

Theorem 4.1. The following conditions on abstract affine near-ring N are equivalent:

1. N is regular.
2. Every quasi-ideal Q of the first kind of N has the form $Q \cap N_0 = Q$.
3. For every right N-subgroup R and left N-subgroup L of N,
 a. $R^2 = R$,
 b. $L^2 = L$,
 c. RL is a quasi-ideal of the first kind of N.
4. For every right N-subgroup R and left N-subgroup L of N,

 $$RL = R \cap L.$$

Proof. (1) \implies (2): Let Q be a quasi-ideal of the first kind of N. Then the assumption (1) and Proposition 2.1 imply $Q \subseteq QN_0 \subseteq QN_0Q$. Moreover, by Proposition 3.4 (1), we get $QN_0Q \subseteq Q$. So $Q = QN_0Q$.

(2) \implies (3): Let R, L be right and left N-subgroups of N, respectively. Since R is a quasi-ideal of the first kind of N, by the assumption (2) we get $R = RN_0R \subseteq RR \subseteq R$, that is, $R^2 = R$.

The statement $L^2 = L$ can be proved dually.

Finally, we show that RL is a quasi-ideal of the first kind of N. In view of Proposition 3.4 (4) and Remark 3.3, we have to prove that R_0L_0 is a quasi-ideal of N_0 and that $N_0R_c \cap ((R_0L_0)N_c + R_c) \subseteq R_c$.

It is clear that R_0L_0 is a subgroup of $(N_0, +)$. Since R_0 and L_0 are right and left N_0-subgroups of N_0 respectively, we get $N_0(R_0L_0) \subseteq N_0L_0 \cap R_0N_0 \subseteq L_0 \cap R_0$.

Moreover, by [6, Corollary], $L_0 \cap R_0$ is a quasi-ideal of the first kind of N. So, by the assumption (2) we get $L_0 \cap R_0 = (L_0 \cap R_0)N_0(L_0 \cap R_0) \subseteq R_0N_0L_0 \subseteq R_0L_0$.

Hence \(N_0 (R_0 L_0) \cap (R_0 L_0) N_0 \subseteq R_0 L_0 \), that is, \(R_0 L_0 \) is a quasi-ideal of \(N_0 \).

On the other hand, from the relation \((R_0 L_0) N_c \subseteq R_0 N_c \subseteq R_0 \), it follows that \(N_0 R_c \cap ((R_0 L_0) N_c + R_c) \subseteq N_0 R_c \cap R_c \subseteq R_c \). Thus \(RL \) is a quasi-ideal of the first kind of \(N \).

(3)\(\Rightarrow \) (4) : Let \(R, L \) be right and left \(N \)-subgroups of \(N \), respectively. In view of Proposition 3.4 (4), we have to prove that \(R_0 L_0 = R_0 \cap L_0 \).

First we show that

\[
(4.2) \quad Q_0 = N_0 Q_0 \cap Q_0 N_0,
\]

for every quasi-ideal \(Q \) of the first kind of \(N \).

By Remark 3.1, \(Q_0 + Q_0 N_0 + N_c \) is a right \(N \)-subgroup of \(N \) containing \(Q \). So the condition (a) implies that

\[
Q_0 Q_0 + Q_0 N_0 + N_c = (Q_0 + Q_0 N_0 + N_c)^2
\]

\[
= Q_0^2 + Q_0 (Q_0 N_0) + Q_0 N_0 + (Q_0 N_0) Q_0 + (Q_0 N_0)^2 + (Q_0 N_0) N_c + N_c
\]

\[
\subseteq Q_0 N_0 + N_c,
\]

whence \(Q_0 \subseteq Q_0 N_0 \). Moreover, by Remark 3.2, \(Q_0 + N_0 Q_0 + N_c \) is a left \(N \)-subgroup of \(N \) containing \(Q \). So the condition (b) implies dually that \(Q_0 \subseteq N_0 Q_0 \). Hence \(Q_0 \subseteq N_0 Q_0 \cap Q_0 N_0 \subseteq Q_0 \), that is, \(Q_0 = N_0 Q_0 \cap Q_0 N_0 \).

Now we show that \(R_0 L_0 = R_0 \cap L_0 \). As \(R_0 L_0 \subseteq R_0 \cap L_0 \), always holds, we have only to prove that \(R_0 \cap L_0 \subseteq R_0 L_0 \).

Since \(R \cap L \) is a quasi-ideal of the first kind of \(N \) with \((R \cap L)_0 = R_0 \cap L_0 \), by the relation (4.2) we get

\[
(4.3) \quad R_0 \cap L_0 = N_0 (R_0 \cap L_0) \cap (R_0 \cap L_0) N_0.
\]

Put \(R^* = (R_0 \cap L_0) N_0 + N_c \). Then, by Remark 3.1, \(R^* \) is a right \(N \)-subgroup of \(N \) with \((R^*)_0 = (R_0 \cap L_0) N_0 \). So, by the condition (a) and Proposition 3.4 (2), we get

\[
(4.4) \quad (R_0 \cap L_0) N_0 = ((R_0 \cap L_0) N_0)^2 \subseteq (R_0 L_0) N_0.
\]

Dually put \(L^* = N_0 (R_0 \cap L_0) + N_c \). Then, by Remark 3.2, \(L^* \) is a left \(N \)-subgroup of \(N \) with \((L^*)_0 = N_0 (R_0 \cap L_0) \). So, by the condition (b) and Proposition 3.4 (3), we get

\[
(4.5) \quad N_0 (R_0 \cap L_0) = (N_0 (R_0 \cap L_0))^2 \subseteq N_0 (R_0 L_0).
\]

On the other hand, the condition (c) and Proposition 3.4 (4) imply that \(R_0 L_0 \) is a quasi-ideal of \(N_0 \). So, from the relations (4.3), (4.4) and (4.5), it follows that
\[R_0 \cap L_0 \subseteq N_0 (R_0 L_0) \cap (R_0 L_0) N_0 \subseteq R_0 L_0. \]

Thus \(RL = R \cap L \).

(4)\(\Rightarrow \) (1) : Let \(a \) be an arbitrary element of \(N \). By \([a_0] \) we denote the subgroup of \((N_0, +) \) generated by \(a_0 \). Then, by Remark 3.1, \([a_0] + a_0 N_0 + N_c \) is a right \(N \)-subgroup of \(N \) containing \(a \). Since \(N \) is a left \(N \)-subgroup of \(N \), the assumption (4) implies that

\[a \in ([a_0] + a_0 N_0 + N_c) \cap N = ([a_0] + a_0 N_0 + N_c) N = a_0 N_0 + a_0 N_c + (a_0 N_0) N_c + N_c \subseteq a_0 N_0 + N_c, \]

whence \(a_0 \in a_0 N_0 \). Dually, \([a_0] + N_0 a_0 + N_c \) is a left \(N \)-subgroup of \(N \) containing \(a \). A similar argument shows that \(a_0 \in N_0 a_0 \). Hence we get

(4.6) \[a_0 \in a_0 N_0 \cap N_0 a_0. \]

On the other hand, put \(R' = a_0 N_0 + N_c \) and \(L' = N_0 a_0 + N_c \). Then, by Remarks 3.1 and 3.2, \(R' \) and \(L' \) are right and left \(N \)-subgroups of \(N \) with \((R')_o = a_0 N_0 \) and \((L')_o = N_0 a_0 \), respectively. From the condition (4) and Proposition 3.4 (4), it follows

(4.7) \[a_0 N_0 \cap N_0 a_0 = (a_0 N_0) (N_0 a_0) \subseteq a_0 N_0 a_0. \]

By the relations (4.6) and (4.7), we get \(a_0 \in a_0 N_0 a_0 \), that is, \(a_0 \) is a regular element of \(N_0 \). So, by Proposition 2.1, \(a \) is a regular element of \(N \). Thus \(N \) is regular.

Theorem 4.1 can not be extended to arbitrary near-rings. The following example shows that neither of the conditions (2), (3) and (4) implies the condition (1) in general.

EXAMPLE 4.8. All quasi-ideals of the first kind of the near-ring \(K \) in Example 2.3 are \(\{0\} \), \(K_0 \), \(K_c \) and \(K \). All of them are right \(K \)-subgroups of \(K \), and all left \(K \)-subgroups of \(K \) are \(K_c \) and \(K \). It can be easily seen that each of the conditions (2), (3) and (4) holds for \(K \). But \(K \) is not regular.

5. Regular abstract affine near-rings without non-zero nilpotents

As an application of Theorem 4.1, we characterize regular abstract affine near-rings without non-zero nilpotent elements, in terms of quasi-ideals.

THEOREM 5.1. The following conditions on abstract affine near-ring \(N \) are
equivalent:

(1) \(N \) is a regular near-ring without non-zero nilpotent elements.

(2) Every quasi-ideal of the first kind of \(N \) is idempotent.

(3) For every right \(N \)-subgroup \(R \) and left \(N \)-subgroup \(L \) of \(N \),
\[
RL = R \cap L \subseteq LR.
\]

PROOF. (1)\(\Rightarrow\)(2): Let \(Q \) be a quasi-ideal of the first kind of \(N \). Since \(Q \) is a subnear-ring of \(N \), \(Q^2 \subseteq Q \). So we have only to prove \(Q \subseteq Q^2 \).

Let \(q \) be an arbitrary element of \(Q \). By the regularity of \(N \) and Proposition 2.1, we have \(q = q m q_0 \) for some element \(m \) of \(N_0 \). Then \(q_0 = q_0 m q_0 \). So \(m q_0 \) is an idempotent element of \(N_0 \). Moreover, the condition (1) and Corollary 2.4 imply that \(N_0 \) is a regular ring without non-zero nilpotent elements. Hence \(m q_0 \) is in the center of \(N_0 \). Using also \(Q = Q N_0 Q \) by Theorem 4.1, we get
\[
q = (q m) q_0 (m q_0) = (q m) (m q_0) q_0 = (q m^2 q_0) q_0 \in (Q N_0 Q) Q = Q^2,
\]
that is, \(Q \subseteq Q^2 \). Thus \(Q \) is idempotent.

(2)\(\Rightarrow\)(3): Since \(R \cap L \) is a quasi-ideal of the first kind of \(N \), the condition (2) implies that
\[
R \cap L = (R \cap L)^2 \subseteq RL \cap LR.
\]
On the other hand, the relation \(RL \subseteq R \cap L \) always holds. So, we get \(RL = R \cap L \subseteq LR \).

(3)\(\Rightarrow\)(1): The condition (3) and Theorem 4.1 imply that \(N \) is regular.

Let \(n \) be an element of \(N \). By induction on \(k \), we can show that
\[
n^k = n_0^k + n_c + \sum_{j=1}^{k-1} n_0^j n_c,
\]
for all integers \(k \geq 2 \).

Now assume that \(n \) is a nilpotent element of \(N \) with \(n^k = 0 \) for an integer \(k \geq 2 \). Then, by the relation (5.2), we get
\[
n_0^k = 0 \quad \text{and} \quad n_c + \sum_{j=1}^{k-1} n_0^j n_c = 0.
\]

On the other hand, by the regularity of \(N \), we get
\[
n_0^{k-1} \in n_0^{k-1} N \cap N n_0^{k-1}.
\]
Here \(n_0^{k-1} \) is a left \(N \)-subgroup of \(N \). Moreover, since \(n_0^{k-1} \) is distributive, \(n_0^{k-1} N \) is a right \(N \)-subgroup of \(N \). So, by the condition (3) and the first relation in (5.3), we get
\[
n_0^{k-1} \in (N n_0^{k-1}) (n_0^{k-1} N) = N n_0^{k+1} N = N_c.
\]
whence \(n_0^{-1} = 0 \).

Repeating this procedure, we can get \(n_0 = 0 \). This result and the second relation in (5.3) imply that \(n_e = 0 \), that is, \(n = 0 \). Thus \(N \) has no non-zero nilpotent elements.

Theorem 5.1 cannot be extended to arbitrary near-rings. The following example shows that neither the condition (2) nor (3) implies the condition (1) in general.

EXAMPLE 5.4. It is easily seen that each of the conditions (2) and (3) holds for the near-ring \(K \) in Example 2.3. But \(K \) is not regular.

References