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1. Introduction

   In this note we consider the existence of nonnegative solutions of the 

semilinear elliptic boundary value problem :

(1)

—Pu=f (x , u)in CZ , 

u = 0on an , 

u>0, u 0in SZ , 

UEC2(SZ).

Here SZ is a bounded domain in RN (N z 3) with smooth boundary aSZ and 

f (x,u) :S2x[0,+00) —* R. 

   We assume the following conditions on the nonlinear term f (x, u) 

(F 1) f is locally Holder continuous in SZ x R+, where R+ = [ 0 , +00), 

                                                   (F2) al(x) tP+a2(x)s f (x, t). b1(x) tP+b2(x) 

(xES2, t?0), 
where 

   0 < P < (N + 2 )/(N  — 2) and p + 1, and furthermore 

a  (x ) and b e (x ) are continuous functions in S2 (Q = 1, 2 ) which may change 

sign in SZ,and there is a sphere Br ( x o) (Cu) with centre xo and radius r such 

that

a1(x)> 0 and a2(x) z 0 in Br(xo) .

In most earlier works ([ 1, 2 , 4 , 5 , 9 ]) , various authors have considered 

problem (1) of the case that f (x, u) depends only on u or satisfies some 

nonlinear conditions at u= 0 and u= +00. 

For example, the standard assumptions on f are as follows; 

(F3) f (x, t)15_a1+a2tP (xES2, t?0), f (x, 0)z0 (xeS2),



where  a, and a2 denote positive constant, and 1 < P < (N + 2 )/(N  — 2 ) 

(F4) lim (F (x, t )/ t ) <A1, (>A1) uniformly in x 

and 

(F 5) lirn ( f (x , t ) / t ) > (< A1) uniformly in x Ef2, 
r~+0 

Here A, is the first eigenvalue of (—s) with Dirichlet boundary condition. 

   It is obvious that f (x , u) with (F 2) does not always satisfy (F3), 

                                                       (F4) and (F5). 

Now we shall consider the special case of (1) :

(2)

—Pu =m(x) uP 

u=0 

uz0, u0

in f2 , 

on an , 

in fZ ,

Here p satisfies the following condition : 

(P) 0 < P < (N+2)/(N-2), P1, 

and 

m(x)EC"(n) (aE (0, 1)), 
(M) 

m (x) may change sign in 2 and max {m( x )  l x > 0 

Under the conditions (P) and (M) , f (x, u) = m (x) u P satisfies (F,) and 

(F2),  but does not satisfy (F 4) and (F5). 

                                 In [3] , Brown and Lin proved the existence of positive eigenfunction of 

problem : 

(3) —Au=,1m(x)u in (2, u=0 on af2, 

where A ER and m ( x) satisfies condition (M) . Recently Hess and Kato 

 [8] have generalized this problem to a more general case of uniformly elliptic 

operator of second order. 

 At first in §2, we shall study the problem (2) under the conditions (P) and 

(M) , and then in §3 the problem (1) under the conditions (F ,) — (F 2) with 

0<p<1.  Roughly speaking, our results are as follows : 

THEOREM 1. Under the conditions (P) and (M) , there exists a solution of the 

problem (2) and if 0 m (x) in (2, then the solution is positive. 

COROLLARY. If 0 s m( x) in f2 and 0 < p < 1, then the problem (2) has at 

most one positive solution.



THEOREM 2. Under the conditions  (F1)—(F2) with 0 < p <1, there is a 

solution of the problem (1). 

   We shall prove theorem 1 by the standard variational argument and theor-

em 2 by usual sub-super solution method. 

   Finally, we state the following definitions : 

DEFINITION 1. A function uEHo (CI) is said to be a weak solution of the problem 

(1), provided that

fdvEHo(l),
DEFINITION 2. A function QEH 1(fZ) is said to be a weak subsolution of the 

problem (1), provided that

fQ.Vv—f(x,Q)v}dxO VvEHo(fZ), vZO,
qS0 on an,

f (x, q,) EL2(fl).

For a weak supersolution ''I''EH1(1)) the inquality signs in the above definition 

are reversed.

2. The case f(x, u) =m (x) uP

   We shall prove Theorem 1. The proof below is due to the standard 

argument (See e. g. [2]) , and the proof is included for completenes. 

   Suppose m( x 0) > 0 at some x °Efn. 

Put V= { v EH (()) : f o m(x) vP+ldx> 0, v z 0 in fZ}. 
It is obvious that V is a nonempty subset of H o (C2). 
Consider the following minimization problem :

in V v Nix (4) Inf r f
flm(x)vP+dx)  2/0-1

(i) The case 0<P<1. 

  If v E V , then we have, by Holder's inequality,



 2 
 P+1 (5) 0< [fn In( x ) v P+1dx]  sc[ fnv2dx]CS2 f(1Vv12dx,

where S is the Sobolev's constant. 

(ii) Thecase 1<P< (N+ 2)/(N— 2). 

   Since 1 < P + 1 < 2 N/ (N — 2 ) , we have for any v E V
    22  

(6) 0< [in m v P±Idx]P + 15_[in vP+1dx]P + 15_cS2 f( 1712dx,

where S is the Sobolev's constant. 

Then we have

[in I Pr v 12dx] 
                (7) 0<cs2<--------------------(VvEV) 

[in mvP+ldx]2i(P+0
From (7) it follows that there exists a positive number d such that

[in I V 12dX1 
             (8) d = inf ---------------------------- 

vEV P+11(P+1)           [1(2  m vdx]2
Now we can select a subsequence { v n} in V such that

f(2mv1dx=1, 
(9) 

      lim f 117' v n l 2dx = d 
                      n —.00

Since { v n} is weakly compact in H o (S2) , then we can choose a subsequence 

of { v n}, which for simplicity we also denote by { v n}, and v oEH o (S2) 

such that

(10)
v  --~ v o weakly in HI, (S2), 

v n strongly in L 0(f2), 

where 1 < q < 2 N/ (N — 2 ) . 

Then we have

11 V0IIHa<li~IIvnH 

             

IIi=d.

On the other hand,



 fm(x)  (vn+1— V+1) dx
            P+1 1/(p+l)rP+1 P+1  C<V n— V p Idx)(J(vn + V 0 )dx)''fal

and by Sobolev's Imbedding Theorem we obtain

lim f, m (x) (vn+1—V0+1) dx = 0. 
n -.00

Therefore we conclude that

(11) fm(x)  v0P+1dx= 1, 
ff2 v0 2 dx=d.

Hence vo satisfies

(12)

In r v0.ry dx=d fnm(x)vov dx (VvEHo(n)) 
v °EH o (0), 

vnZ O in n.

Set u = d P -1 v p. Then u is a nonnegative weak solution of the problem (2). 

Therefore u satisfies

fnvu.vvdx=fnm(x) uP v dx (vvEH(;(n)),

(13)

U 0 in n, 

u EH o (Sl),
P+1  

fPu Izdx= dP-1 <00.
Now by virtue of the standard argument, we can show that 

m(x) uP(x) EL4(f)(V q >N/2), 

and then the above weak solution u belongs to C' (h). 

Therefore m (x) u P( x )  E C (SZ) ,

where
R=

min (a, P) if P < 1 , 

aif P > 1.

Hence u EC 2.Q(n). 

Furthemore if m ( x) z 0 in n, then by the maximum principle the solution u is



positive in  fZ. 

Therefore we can conculude the following : 

THEOREM 1. Suppose that the conditions (P) and (M) are satisfied. Then, 

the problem (2) has a solution, and if 0 s m (x) in fZ, then the solution u is 

positive. 

COROLLARY. If 0 5 _m(x)  in CZ and 0 <p<  1 , then the problem (2) has at 

most one positive solution. 

PROOF. We follow Spruck's argument (Theorem 1. 1 in [10]) . 

   Let u, v be positive solutions of the problem (2). 

   Set w,= u'_P and w2 = V 1-P. Then wk satisfies 

Owk=—(1—P)m(x)—p/(1—P) {IPwkI2/wk} (k=1, 2). 

From this it follows that 

p(w1—w2)=—P/(1—P) {IFw,l2/w1—jPw212/w2} 

= b,(x) (w1—w2)X,+c (x) (w1—w2) in 1, 
}=1 

where c(x)=p/(1—P) {IVw2I2/(w1w2)}z0. w1—w2=0 on an. 

By the maximum principle (e. g. [ 6 ] ), we have w, - w2 in i.

3. The general case f (x, u)

   We assume the conditions (F ,) and (F 2) are satisfied. 

At first we give some examples of f (x , u) satisfying (F1) and (F2). 

EXAMPLE. f (x, u)=a,(x) uP+a2(x), 

f (x, u)=a1(x) uP (e-u+1)+a2(x), 

   In this section we assume that 0 < P < 1. 

Now we shall construct a subsolution 92 and a supersolution AP of the problem 

(1). 

LEMMA 1. There exists a weak subsolution 97 of the problem (1). 

PROOF. 

By the assumption (F2),  there exist a sphere Br(  x 0) (Ca) with centre xo 

and radius r and a number a>0 such that 

a, (x)>a and a2(x)s 0 in Br(xo). 

Consider the eigenvalue problem :

(14)
Z =1.1 Zin Br(x0), 

Z = 0on aBr(x0).



   Let  go be the first eigenvalue of (14) and z the corresponding positive 

eigenfunction satisfying max { z (x) x E Br( x  0) } = 1. 

Set

S ZXEBr(Xo) 

0xEs2 — Br( Xo),

where constant sER+is not greater than (6/,u 0) 

In Br(  x0), rp satisfies 

Ogp+f (x, (sz)+a1(x) (sz)P+a2(x) 

z— S,u0 z +a(sz)P 

(SZ) P { (S`— S 1-PAL 0} > 0. 

Then TEH o (CZ) is a weak subsolution of the problem (1). 

LEMMA 2. There exists a weak supersoluition ''I'' of the problem (1). 

PROOF. Let D be a bounded domain with smooth boundary aD such that DD? . 

   Consider the following eigenvalue problem :

(15)

—pw=,1w in D , 

w= 0 on aD.

Let A0 be the first eigenvalue of (15) and wo the corresponding positive eigenfunc-

tion satisfying max { wo ( x ) x ED } = 1. 

Put h =min { w0 (x )(En}  (> 0) and III= t wo. 

Here the constant t is not less than ( 2 /(A.0 h)) 1 P. 

Without loss of generality, we assume b 100+ I b 21.0 s 1. 

Then in S2, '1' satisfies 

O'Y+f (x, ''Y)S—/.otwo+b1(x) (two)P+b2(x) 

 —Aotwo+ (tw0)P+ 1 

tP { 1+(1/t)P-20ht1—P}S 0. 

Then TE C 2 42) is a weak supersolution of the problem (1). 

Therefore if we choose t such that 

th>s, 

then

0 9(x)<''Y(x)in S2.

Now using Hess's result (Theorem 1 in [7] ), we can conclude the following : 

LEMMA 3. Under the above conditions, the problem (1) has a nonnegative weak



solution  U  EH  o (CI) with cPsus'I' in (2. 

   For any weak solution u of Lemma 3, the following inequality holds : 

ff(x,  u (x)) l 4dx < co (V q> 1) . 
By the standard argument, we know that the weak solution u belongs to 

w2'c'(n) (vq>N/2) and then uEC1(n), 

Using the condition (F 1) , we know f (x, u (x)) EC"  (SZ) . 

Therefore we can conclude that 

u EC 2 a ). 

Now we have proved the following : 

THEOREM 2.Under the condition (F 1) and (F 2) with 0 < P < 1 , 

the problem (1) has a nonnegative classical solution. 

Finally, we make the following : 

REMARK. Under the conditions (F 1) and (F 2) with p > 1, we can not state 

any result of the problem (1). In the next note we will mention some results 

about this. 
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