Quasi-ideals which are subnear-fields

矢ヶ部, 巌
九州大学教養部数学教室

https://doi.org/10.15017/1449047
Quasi-ideals which are subnear-fields

Iwao Yakabe

(Received September 24, 1985)

1. Introduction

In ring theory the following results are well-known (see [2, Satz 3; Satz 4]):

(A) If a quasi-ideal Q of a ring R is a division subring of R, then Q is a minimal quasi-ideal of R.

(B) A minimal quasi-ideal Q of a ring R is either a zero subring of R or a division subring of R.

In this note we shall extend these results to near-rings and show some applications of extended results.

2. Preliminaries

By a near-ring we mean a non-empty set N in which an addition $+$ and a multiplication \cdot are defined such that

1. $(N, +)$ is a group,
2. (N, \cdot) is a semigroup,
3. $(n+n')n''=nn''+n'n''$ $(n, n', n'' \in N)$.

In dealing with general near-ring the neutral element of $(N, +)$ will be denoted by 0.

In this section, N will denote a near-ring. The set N_0 of all elements n of N with $n0 = 0$ is called the zero-symmetric part of N; N is called zero-symmetric if $N=N_0$. An element d of N is called distributive if $d(n+n')=dn+dn'$ for all elements n, n' of N. The set of all distributive elements of N will be denoted by N_d.

Let A and B be two non-empty subsets of N. We shall define two kinds of products AB and $A*B$: AB denotes the set of all finite sums of
the form
\[\sum a_i b_i \ (a_i \in A, b_i \in B); \]

\(A^*B\) denotes the set of all finite sums of the form
\[\sum(a_i (a'_i + b_i) - a_i a'_i) \ (a_i, a'_i \in A, b_i \in B). \]

A subgroup \(S\) of \((N, +)\) is called an \(N\)-subgroup of \(N\) if \(NS \subseteq S\). A subgroup \(M\) of \((N, +)\) is called a subnear-ring of \(N\) if \(MM \subseteq M\). For instance, \(Nn\) is an \(N\)-subgroup of \(N\) for every element \(n\) of \(N\). The zero-symmetric part \(N_0\) of \(N\) is a subnear-ring of \(N\).

A subgroup \(Q\) of \((N, +)\) is called a quasi-ideal of \(N\) if \(QN \cap NQ \cap N^*Q \subseteq Q\). For instance, every \(N\)-subgroup of \(N\), \(dN\) with a distributive element \(d\) of \(N\) and the zero-symmetric part \(N_0\) of \(N\) are quasi-ideals of \(N\). Clearly \(\{0\}\) and \(N\) are quasi-ideals of \(N\). If \(N\) has no quasi-ideals except \(\{0\}\) and \(N\), we say that \(N\) is \(Q\)-simple.

A near-ring \(N\) is called a near-field if it has at least two elements and its non-zero elements form a group with respect to the multiplication defined in \(N\).

Let \(Z_2\) be the integers modulo 2. Then \((Z_2, +)\) with \(0 \cdot 0 = 0 \cdot 1 = 0, 1 \cdot 0 = 1 \cdot 1 = 1\) is a near-field. As usual, throughout this note, we will exclude those near-fields which are isomorphic to this near-field. So every near-field is zero-symmetric and \(Q\)-simple (see \([1, p. 249 and 3, Theorem 2]\)).

3. Quasi-ideals which are subnear-fields

A non-zero quasi-ideal \(Q\) of a near-ring \(N\) is called minimal if \(Q\) does not properly contain any non-zero quasi-ideal of \(N\).

We have

Theorem 1. If a quasi-ideal \(Q\) of a near-ring \(N\) is a subnear-field of \(N\), then \(Q\) is a minimal quasi-ideal of the zero-symmetric part \(N_0\) of \(N\).

Proof. Since a near-field is zero-symmetric, the quasi-ideal \(Q\) is contained in \(N_0\). By \([3, Proposition 2]\), the relation \(Q = Q \cap N_0\) implies that \(Q\) is a quasi-ideal of \(N_0\).
Let Q' be a quasi-ideal of N_0 such that $(0) \not= Q' \subseteq Q$. Then we have
\[Q'Q \cap QQ' \cap Q^*Q' \subseteq Q'N_0 \cap Q^*Q' \subseteq Q', \]
which implies that Q' is a quasi-ideal of Q. Since a near-field is Q-simple, we have $Q' = Q$. Thus Q' is a minimal quasi-ideal of N_0.

In Theorem 1, the quasi-ideal Q is a minimal quasi-ideal of N, too. In fact, we have

Proposition 1. If a quasi-ideal Q of a near-ring N is a minimal quasi-ideal of N_0, then Q is a minimal quasi-ideal of N.

Proof. Let Q' be a quasi-ideal of N such that $(0) \not= Q' \subseteq Q$. Then Q' is contained in N_0 and we have
\[Q'N_0 \cap N_0Q' \cap N_0^*Q' \subseteq Q'N \cap NQ' \cap N^*Q' \subseteq Q', \]
which implies that Q' is a quasi-ideal of N_0. Since Q is a minimal quasi-ideal of N_0, we have $Q' = Q$. Thus Q is a minimal quasi-ideal of N.

4. Minimal quasi-ideals

In view of Theorem 1, we are going to consider those quasi-ideals which are minimal in the zero-symmetric part. We start with

Proposition 2. Let e be a distributive idempotent element of a near-ring N and S an N-subgroup of N. Then eS is a quasi-ideal of N such that $eS = S \cap eN$.

Proof. Since S is an N-subgroup of N, we have $eS \subseteq NS \subseteq S$. On the other hand, we have $eS \subseteq eN$. Hence $eS \subseteq S \cap eN$.

Conversely, any element a of $S \cap eN$ has the form
\[a = s = en \quad (s \in S, \, n \in N), \]
whence $a = en = een = es \subseteq eS$.

Since S and eN are quasi-ideals of N, by [3, Proposition 1], the re-
lation $eS=S\cap eN$ implies that eS is a quasi-ideal of N.

We now have

Theorem 2. Let E be the set of all idempotent elements of a near-ring N and D the set of all elements d of N such that $d(n+n')=dn+dn'$ for all elements n, n' of the zero-symmetric part N_0 of N.

If a quasi-ideal Q of N is a minimal quasi-ideal of N_0, then Q is a subnear-ring of N with $Q\cap E \cap D=\{0\}$ or Q is a subnear-field of N.

Proof. Since Q is a quasi-ideal of N_0, by [3, Corollary to Theorem 1], Q is a subnear-ring of N_0. Hence Q is a subnear-ring of N.

Suppose that $Q\cap E \cap D=\{0\}$. Then there is a non-zero element e in $Q\cap E \cap D$. So the element e is a distributive idempotent element of the subnear-ring N_0 of N, and N_0e is an N_0-subgroup of N_0. Hence $e(N_0e)$ is a quasi-ideal of N_0 by Proposition 2.

Since Q is a quasi-ideal of N_0, by [3, Proposition 3], we have

\[e(N_0e)=N_0e\cap eN_0 \subseteq N_0Q \cap QN_0 \subseteq Q. \]

Moreover, $e(N_0e)$ contains the non-zero element e^2. So, from the minimality of the quasi-ideal Q, it follows that $Q=e(N_0e)$.

This implies that Q is a subnear-ring with the identity element e. So it remains to be shown that every non-zero element of Q has a left inverse element in Q.

Let n be a non-zero element of Q. Then we have $Qn=e(N_0n)$. Since N_0n is an N_0-subgroup of N_0, by Proposition 2, Qn is a quasi-ideal of N_0 and it contains the non-zero element en. Moreover, Qn is contained in Q. So, from the minimality of the quasi-ideal Q, it follows that $Qn=Q$. Consequently, there exists an element n' in Q such that $n'n=e$.

In case that N is zero-symmetric in Theorem 2, it is evident that $D=N_0$. So we have

Corollary. If a quasi-ideal Q of a zero-symmetric near-ring N is minimal, then Q is a subnear-ring of N with $Q\cap N_0 \cap E=\{0\}$ or Q is a subnear-field of N.
5. Applications

Applying Corollary to Theorem 2, we are going to give an another
proof of the following theorem in [3]:

Theorem 3. If a zero-symmetric near-ring \(N \) has a cancellable distributive
element contained in a minimal quasi-ideal of \(N \), then \(N \) is a near-field.

Proof. Suppose that the zero-symmetric near-ring \(N \) has a cancel-
lable distributive element \(c \) contained in a minimal quasi-ideal \(Q \) of \(N \).

Since \(c \) is distributive, by [3, Proposition 1], \(cN \cap Nc \) is a quasi-ideal
of \(N \) and it contains the non-zero element \(c^2 \). Moreover, by [3, Propo-
sition 3], we have \(cN \cap Nc \subseteqQN \cap NQ \subseteq Q \). So, from the minimality of the
quasi-ideal \(Q \), it follows that \(Q=cN \cap Nc \).

Since \(c^2 \) is distributive, similarly we have \(Q=c^2N \cap Nc^2 \). This implies
that the element \(c \) has the form

\[
c=c^2n=mc^2 \quad (n, m \in N),
\]

whence \(cm=(mc)Nn=mc \).

Set \(e=cn \), then \(e \) is contained in \(cN \cap Nc \), and \(e \neq 0 \), since \(ce=c \neq 0 \). Moreover, we have

\[
e^2=(mc)(cn)=m(c^2n)=mc=e.
\]

Furthermore, the element \(e \) is distributive. In fact, for all elements
\(n_1, n_2 \) of \(N \), we have

\[
ce(n_1+n_2)=c(n_1+n_2)=cn_1+cn_2=cen_1+cen_2,
\]

that is, \(ce(n_1+n_2)=c(en_1+en_2) \). This and the cancellability of the
element \(c \) imply that \(e(n_1+n_2)=en_1+en_2 \).

Thus the minimal quasi-ideal \(Q \) has the non-zero distributive idem-
potent element \(e \). So, by Corollary to Theorem 2, \(Q \) is a subnear-field
with the identity element \(e \).

The element \(e \) is the identity element of \(N \), too. In fact, multiplying both sides of the equality \(ec=c \) by any element \(x \) of \(N \), we have

\[
xec=x, \text{ whence } xe=x.
\]

Dually we have \(ex=x \) from \(ce=c \).

Since \(e \) is contained in \(Q \), for any element \(x \) of \(N \), we have

\[
x=ex=xe \in QN \cap NQ \subseteq Q.
\]
that is, \(N = Q \). Thus \(N \) is a near-field.

A non-zero \(N \)-subgroup \(S \) of a zero-symmetric near-ring \(N \) is called \textit{minimal} if \(S \) does not properly contain any non-zero \(N \)-subgroup of \(N \).

We now have the following result which is an extension of \([2, \text{Satz 5}]\) to zero-symmetric near-rings:

\textbf{THEOREM 4.} If a minimal \(N \)-subgroup \(S \) of a zero-symmetric near-ring \(N \) has a non-zero distributive idempotent element \(e \) of \(N \), then \(eS \) is a subnear-field of \(N \), moreover it is a minimal quasi-ideal of \(N \).

\textbf{Proof.} By Proposition 2, \(eS \) is a quasi-ideal of \(N \). Because of Theorem 1 and \([3, \text{Corollary to Theorem 1}]\), all we have to prove is that the non-zero elements of \(eS \) form a multiplicative subgroup of \(N \).

Evidently, \(e \) is a left identity element of \(eS \). Let \(es \) be a non-zero element of \(eS \). Then \(S(es) \) is a non-zero \(N \)-subgroup of \(N \) contained in \(S \). By the minimality of \(S \), we have \(S(es) = S \). Hence \((eS)(es) = eS \). This implies the existence of a non-zero element \(et \) of \(eS \) such that \((et)(es) = e \). Thus the non-zero elements of \(eS \) form a multiplicative subgroup of \(N \).

\textbf{References}

