Quasi-ideals which are subnear-fields

矢ヶ部, 巌
九州大学教養部数学教室

https://doi.org/10.15017/1449047

出版情報：九州大学教養部数学雑誌. 15 (1), pp.67-72, 1985-12. 九州大学教養部数学教室
バージョン：published
権利関係：
Quasi-ideals which are subnear-fields

Iwao Yakabe
(Received September 24, 1985)

1. Introduction

In ring theory the following results are well-known (see [2, Satz 3; Satz 4]):

(A) If a quasi-ideal Q of a ring R is a division subring of R, then Q is a minimal quasi-ideal of R.

(B) A minimal quasi-ideal Q of a ring R is either a zero subring of R or a division subring of R.

In this note we shall extend these results to near-rings and show some applications of extended results.

2. Preliminaries

By a near-ring we mean a non-empty set N in which an addition $+$ and a multiplication \cdot are defined such that

1. $(N, +)$ is a group,
2. (N, \cdot) is a semigroup,
3. $(n+n')n''=nn''+n'n''$ $(n, n', n'' \in N)$.

In dealing with general near-ring the neutral element of $(N, +)$ will be denoted by 0.

In this section, N will denote a near-ring. The set N_0 of all elements n of N with $n0=0$ is called the zero-symmetric part of N; N is called zero-symmetric if $N=N_0$. An element d of N is called distributive if $d(n+n')=dn+dn'$ for all elements n, n' of N. The set of all distributive elements of N will be denoted by N_d.

Let A and B be two non-empty subsets of N. We shall define two kinds of products AB and $A*B$: AB denotes the set of all finite sums of
the form
\[\sum a_i b_i \quad (a_i \in A, b_i \in B) ; \]

\(A*B \) denotes the set of all finite sums of the form
\[\sum(a_i(a_i + b_i) - a_i a_i) \quad (a_i, a_i' \in A, b_i \in B). \]

A subgroup \(S \) of \((N, +)\) is called an \textit{N-subgroup} of \(N \) if \(NS \subseteq S \). A subgroup \(M \) of \((N, +)\) is called a \textit{subnear-ring} of \(N \) if \(MM \subseteq M \). For instance, \(Nn \) is an \(N \)-subgroup of \(N \) for every element \(n \) of \(N \). The zero-symmetric part \(N_0 \) of \(N \) is a subnear-ring of \(N \).

A subgroup \(Q \) of \((N, +)\) is called a \textit{quasi-ideal} of \(N \) if \(QN \cap NQ \cap N*Q \subseteq Q \). For instance, every \(N \)-subgroup of \(N \), \(dN \) with a distributive element \(d \) of \(N \) and the zero-symmetric part \(N_0 \) of \(N \) are quasi-ideals of \(N \). Clearly \(\{0\} \) and \(N \) are quasi-ideals of \(N \). If \(N \) has no quasi-ideals except \(\{0\} \) and \(N \), we say that \(N \) is \(Q \)-simple.

A near-ring \(N \) is called a \textit{near-field} if it has at least two elements and its non-zero elements form a group with respect to the multiplication defined in \(N \).

Let \(\mathbb{Z}_2 \) be the integers modulo 2. Then \((\mathbb{Z}_2, +)\) with \(0 \cdot 0 = 0 \cdot 1 = 0 \), \(1 \cdot 0 = 1 \cdot 1 = 1 \) is a near-field. As usual, throughout this note, we will exclude those near-fields which are isomorphic to this near-field. So every near-field is zero-symmetric and \(Q \)-simple (see [1, p. 249 and 3, Theorem 2]).

3. Quasi-ideals which are subnear-fields

A non-zero quasi-ideal \(Q \) of a near-ring \(N \) is called \textit{minimal} if \(Q \) does not properly contain any non-zero quasi-ideal of \(N \).

We have

\[\text{THEOREM 1.} \quad \text{If a quasi-ideal } Q \text{ of a near-ring } N \text{ is a subnear-field of } N, \text{ then } Q \text{ is a minimal quasi-ideal of the zero-symmetric part } N_0 \text{ of } N. \]

\[\text{PROOF.} \quad \text{Since a near-field is zero-symmetric, the quasi-ideal } Q \text{ is contained in } N_0. \text{ By [3, Proposition 2], the relation } Q = Q \cap N_0 \text{ implies that } Q \text{ is a quasi-ideal of } N_0. \]
Let \(Q' \) be a quasi-ideal of \(N_0 \) such that \(\{0\} \neq Q' \subseteq Q \).
Then we have

\[
Q'Q \cap QQ' \cap Q^*Q' \subseteq Q'N_0 \cap N_0Q' \cap N_0^*Q' \subseteq Q',
\]

which implies that \(Q' \) is a quasi-ideal of \(Q \). Since a near-field is \(Q \)-simple, we have \(Q' = Q \). Thus \(Q' \) is a minimal quasi-ideal of \(N_0 \).

In Theorem 1, the quasi-ideal \(Q \) is a minimal quasi-ideal of \(N \), too. In fact, we have

Proposition 1. If a quasi-ideal \(Q \) of a near-ring \(N \) is a minimal quasi-ideal of \(N_0 \), then \(Q \) is a minimal quasi-ideal of \(N \).

Proof. Let \(Q' \) be a quasi-ideal of \(N \) such that \(\{0\} \neq Q' \subseteq Q \). Then \(Q' \) is contained in \(N_0 \) and we have

\[
Q'N_0 \cap N_0Q' \cap N_0^*Q' \subseteq Q'N_0 \cap N_0Q' \cap N_0^*Q' \subseteq Q',
\]

which implies that \(Q' \) is a quasi-ideal of \(N_0 \). Since \(Q \) is a minimal quasi-ideal of \(N_0 \), we have \(Q' = Q \). Thus \(Q \) is a minimal quasi-ideal of \(N \).

4. Minimal quasi-ideals

In view of Theorem 1, we are going to consider those quasi-ideals which are minimal in the zero-symmetric part. We start with

Proposition 2. Let \(e \) be a distributive idempotent element of a near-ring \(N \) and \(S \) an \(N \)-subgroup of \(N \). Then \(eS \) is a quasi-ideal of \(N \) such that \(eS = S \cap eN \).

Proof. Since \(S \) is an \(N \)-subgroup of \(N \), we have \(eS \subseteq NS \subseteq S \). On the other hand, we have \(eS \subseteq eN \). Hence \(eS \subseteq S \cap eN \).

Conversely, any element \(a \) of \(S \cap eN \) has the form

\[
a = s = en \quad (s \in S, \ n \in N),
\]

whence \(a = en = een = es \in eS \).

Since \(S \) and \(eN \) are quasi-ideals of \(N \), by [3, Proposition 1], the re-
lation \(eS = S \cap eN \) implies that \(eS \) is a quasi-ideal of \(N \).

We now have

Theorem 2. Let \(E \) be the set of all idempotent elements of a near-ring \(N \) and \(D \) the set of all elements \(d \) of \(N \) such that \(d(n + n') = dn + dn' \) for all elements \(n, n' \) of the zero-symmetric part \(N_0 \) of \(N \).

If a quasi-ideal \(Q \) of \(N \) is a minimal quasi-ideal of \(N_0 \), then \(Q \) is a subnear-ring of \(N \) with \(Q \cap E \cap D = \{0\} \) or \(Q \) is a subnear-field of \(N \).

Proof. Since \(Q \) is a quasi-ideal of \(N_0 \), by [3, Corollary to Theorem 1], \(Q \) is a subnear-ring of \(N_0 \). Hence \(Q \) is a subnear-ring of \(N \).

Suppose that \(Q \cap E \cap D \neq \{0\} \). Then there is a non-zero element \(e \) in \(Q \cap E \cap D \). So the element \(e \) is a distributive idempotent element of the subnear-ring \(N_0 \) of \(N \), and \(N_0 e \) is an \(N_0 \)-subgroup of \(N_0 \). Hence \(e(N_0 e) \) is a quasi-ideal of \(N_0 \) by Proposition 2.

Since \(Q \) is a quasi-ideal of \(N_0 \), by [3, Proposition 3], we have

\[
e(N_0 e) = N_0 e \cap eN_0 \subseteq N_0 Q \cap QN_0 \subseteq Q.
\]

Moreover, \(e(N_0 e) \) contains the non-zero element \(e^4 \). So, from the minimality of the quasi-ideal \(Q \), it follows that \(Q = e(N_0 e) \).

This implies that \(Q \) is a subnear-ring with the identity element \(e \). So it remains to be shown that every non-zero element of \(Q \) has a left inverse element in \(Q \).

Let \(n \) be a non-zero element of \(Q \). Then we have \(Qn = e(N_0 n) \). Since \(N_0 n \) is an \(N_0 \)-subgroup of \(N_0 \), by Proposition 2, \(Qn \) is a quasi-ideal of \(N_0 \) and it contains the non-zero element \(en \). Moreover, \(Qn \) is contained in \(Q \). So, from the minimality of the quasi-ideal \(Q \), it follows that \(Qn = Q \). Consequently, there exists an element \(n' \) in \(Q \) such that \(n'n = e \).

In case that \(N \) is zero-symmetric in Theorem 2, it is evident that \(D = N_0 \). So we have

Corollary. If a quasi-ideal \(Q \) of a zero-symmetric near-ring \(N \) is minimal, then \(Q \) is a subnear-ring of \(N \) with \(Q \cap N_0 \cap E = \{0\} \) or \(Q \) is a subnear-field of \(N \).
5. Applications

Applying Corollary to Theorem 2, we are going to give an another proof of the following theorem in [3]:

Theorem 3. If a zero-symmetric near-ring N has a cancellable distributive element contained in a minimal quasi-ideal of N, then N is a near-field.

Proof. Suppose that the zero-symmetric near-ring N has a cancellable distributive element c contained in a minimal quasi-ideal Q of N.

Since c is distributive, by [3, Proposition 1], $cN \cap Nc$ is a quasi-ideal of N and it contains the non-zero element c^2. Moreover, by [3, Proposition 3], we have $cN \cap Nc \subseteq Q \cap NQ \subseteq Q$. So, from the minimality of the quasi-ideal Q, it follows that $Q = cN \cap Nc$.

Since c^2 is distributive, similarly we have $Q = c^2N \cap Nc^2$. This implies that the element c has the form

$$c = c^2n = mc^2 \quad (n, m \in N),$$

whence $cn = (mc^2)n = mc$.

Set $e = cn$, then e is contained in $cN \cap Nc = Q$, and $e \neq 0$, since $ce = c \neq 0$. Moreover, we have

$$e^2 = (mc)(cn) = m(c^2n) = mc = e.$$

Furthermore, the element e is distributive. In fact, for all elements n_1, n_2 of N, we have

$$ce(n_1 + n_2) = c(n_1 + n_2) = cn_1 + cn_2 = cen_1 + cen_2,$$

that is, $ce(n_1 + n_2) = c(en_1 + en_2)$. This and the cancellability of the element c imply that $e(n_1 + n_2) = en_1 + en_2$.

Thus the minimal quasi-ideal Q has the non-zero distributive idempotent element e. So, by Corollary to Theorem 2, Q is a subnear-field with the identity element e.

The element e is the identity element of N, too. In fact, multiplying both sides of the equality $ce = c$ by any element x of N, we have $xce = xc$, whence $xe = x$. Dually we have $ex = x$ from $ce = c$.

Since e is contained in Q, for any element x of N, we have

$$x = ex = xe \in QN \cap NQ \subseteq Q.$$
that is, \(N = Q \). Thus \(N \) is a near-field.

A non-zero \(N \)-subgroup \(S \) of a zero-symmetric near-ring \(N \) is called minimal if \(S \) does not properly contain any non-zero \(N \)-subgroup of \(N \).

We now have the following result which is an extension of [2, Satz 5] to zero-symmetric near-rings:

Theorem 4. If a minimal \(N \)-subgroup \(S \) of a zero-symmetric near-ring \(N \) has a non-zero distributive idempotent element \(e \) of \(N \), then \(eS \) is a subnear-field of \(N \), moreover it is a minimal quasi-ideal of \(N \).

Proof. By Proposition 2, \(eS \) is a quasi-ideal of \(N \). Because of Theorem 1 and [3, Corollary to Theorem 1], all we have to prove is that the non-zero elements of \(eS \) form a multiplicative subgroup of \(N \).

Evidently, \(e \) is a left identity element of \(eS \). Let \(es \) be a non-zero element of \(eS \). Then \(S(es) \) is a non-zero \(N \)-subgroup of \(N \) contained in \(S \). By the minimality of \(S \), we have \(S(es) = S \). Hence \((eS)(es) = eS \). This implies the existence of a non-zero element \(et \) of \(eS \) such that \((et)(es) = e \). Thus the non-zero elements of \(eS \) form a multiplicative subgroup of \(N \).

References