Quasi-ideals which are subnear-fields

矢ケ部, 巌
九州大学教養部数学教室

https://doi.org/10.15017/1449047
Quasi-ideals which are subnear-fields

Iwao YAKABE
(Received September 24, 1985)

1. Introduction

In ring theory the following results are well-known (see [2, Satz 3; Satz 4]):

(A) If a quasi-ideal Q of a ring R is a division subring of R, then Q is a minimal quasi-ideal of R.

(B) A minimal quasi-ideal Q of a ring R is either a zero subring of R or a division subring of R.

In this note we shall extend these results to near-rings and show some applications of extended results.

2. Preliminaries

By a near-ring we mean a non-empty set N in which an addition + and a multiplication • are defined such that

1. \((N, +)\) is a group,
2. \((N, \cdot)\) is a semigroup,
3. \((n+n')n'' = nn'' + n'n'' \ (n, n', n'' \in N)\).

In dealing with general near-ring the neutral element of \((N, +)\) will be denoted by 0.

In this section, \(N\) will denote a near-ring. The set \(N_s\) of all elements \(n\) of \(N\) with \(n0 = 0\) is called the zero-symmetric part of \(N\); \(N\) is called zero-symmetric if \(N = N_s\). An element \(d\) of \(N\) is called distributive if \(d(n+n') = dn + dn'\) for all elements \(n, n'\) of \(N\). The set of all distributive elements of \(N\) will be denoted by \(N_d\).

Let \(A\) and \(B\) be two non-empty subsets of \(N\). We shall define two kinds of products \(AB\) and \(A*B\): \(AB\) denotes the set of all finite sums of
the form

$$\sum a_i b_i \ (a_i \in A, b_i \in B) ;$$

$A*B$ denotes the set of all finite sums of the form

$$\sum (a_i (a_i' + b_i) - a_i a_i') \ (a_i, a_i' \in A, b_i \in B).$$

A subgroup S of $(N, +)$ is called an N-subgroup of N if $NS \subseteq S$. A subgroup M of $(N, +)$ is called a subnear-ring of N if $MM \subseteq M$. For instance, Nn is an N-subgroup of N for every element n of N. The zero-symmetric part N_0 of N is a subnear-ring of N.

A subgroup Q of $(N, +)$ is called a quasi-ideal of N if $QN \cap NQ \cap N^*Q \subseteq Q$. For instance, every N-subgroup of N, dN with a distributive element d of N and the zero-symmetric part N_0 of N are quasi-ideals of N. Clearly $\{0\}$ and N are quasi-ideals of N. If N has no quasi-ideals except $\{0\}$ and N, we say that N is Q-simple.

A near-ring N is called a near-field if it has at least two elements and its non-zero elements form a group with respect to the multiplication defined in N.

Let Z_2 be the integers modulo 2. Then $(Z_2, +)$ with $0 \cdot 0 = 0 \cdot 1 = 0$, $1 \cdot 0 = 1 \cdot 1 = 1$ is a near-field. As usual, throughout this note, we will exclude those near-fields which are isomorphic to this near-field. So every near-field is zero-symmetric and Q-simple (see [1, p. 249 and 3, Theorem 2]).

3. Quasi-ideals which are subnear-fields

A non-zero quasi-ideal Q of a near-ring N is called minimal if Q does not properly contain any non-zero quasi-ideal of N.

We have

Theorem 1. If a quasi-ideal Q of a near-ring N is a subnear-field of N, then Q is a minimal quasi-ideal of the zero-symmetric part N_0 of N.

Proof. Since a near-field is zero-symmetric, the quasi-ideal Q is contained in N_0. By [3, Proposition 2], the relation $Q = Q \cap N_0$ implies that Q is a quasi-ideal of N_0.
Let Q' be a quasi-ideal of N_0 such that $(0) \neq Q' \subseteq Q$. Then we have

$$Q'Q \cap QQ' \cap Q*Q' \subseteq Q'N_0 \cap N_0Q' \cap N_0*Q' \subseteq Q',$$

which implies that Q' is a quasi-ideal of Q. Since a near-field is Q-simple, we have $Q' = Q$. Thus Q' is a minimal quasi-ideal of N_0.

In Theorem 1, the quasi-ideal Q is a minimal quasi-ideal of N, too. In fact, we have

Proposition 1. If a quasi-ideal Q of a near-ring N is a minimal quasi-ideal of N_0, then Q is a minimal quasi-ideal of N.

Proof. Let Q' be a quasi-ideal of N such that $(0) \neq Q' \subseteq Q$. Then Q' is contained in N_0 and we have

$$Q'N_0 \cap N_0Q' \cap N_0*Q' \subseteq Q'N \cap NQ' \cap N*Q' \subseteq Q',$$

which implies that Q' is a quasi-ideal of N_0. Since Q is a minimal quasi-ideal of N_0, we have $Q' = Q$. Thus Q is a minimal quasi-ideal of N.

4. Minimal quasi-ideals

In view of Theorem 1, we are going to consider those quasi-ideals which are minimal in the zero-symmetric part. We start with

Proposition 2. Let e be a distributive idempotent element of a near-ring N and S an N-subgroup of N. Then eS is a quasi-ideal of N such that $eS = S \cap eN$.

Proof. Since S is an N-subgroup of N, we have $eS \subseteq NS \subseteq S$. On the other hand, we have $eS \subseteq eN$. Hence $eS \subseteq S \cap eN$.

Conversely, any element a of $S \cap eN$ has the form

$$a = s = en \quad (s \in S, \ n \in N),$$

whence $a = en = een = es \in eS$.

Since S and eN are quasi-ideals of N, by [3, Proposition 1], the re-
lation $eS=S\cap eN$ implies that eS is a quasi-ideal of N.

We now have

Theorem 2. Let E be the set of all idempotent elements of a near-ring N and D the set of all elements d of N such that $d(n+n')=dn+dn'$ for all elements n, n' of the zero-symmetric part N_0 of N.

If a quasi-ideal Q of N is a minimal quasi-ideal of N_0, then Q is a subnear-ring of N with $Q\cap E\cap D=\{0\}$ or Q is a subnear-field of N.

Proof. Since Q is a quasi-ideal of N_0, by [3, Corollary to Theorem 1], Q is a subnear-ring of N_0. Hence Q is a subnear-ring of N.

Suppose that $Q\cap E\cap D\neq\{0\}$. Then there is a non-zero element e in $Q\cap E\cap D$. So the element e is a distributive idempotent element of the subnear-ring N_e of N, and N_e is an N_e-subgroup of N_e. Hence $e(N_e)$ is a quasi-ideal of N_0 by Proposition 2.

Since Q is a quasi-ideal of N_0, by [3, Proposition 3], we have

$$e(N_e) = N_e \cap eN_e \subseteq N_0 \cap QN_e \subseteq Q.$$

Moreover, $e(N_e)$ contains the non-zero element e^4. So, from the minimality of the quasi-ideal Q, it follows that $Q=e(N_e)$.

This implies that Q is a subnear-ring with the identity element e. So it remains to be shown that every non-zero element of Q has a left inverse element in Q.

Let n be a non-zero element of Q. Then we have $Qn=e(N_{n^t})$. Since N_{n^t} is an N_e-subgroup of N_e, by Proposition 2, Qn is a quasi-ideal of N_e and it contains the non-zero element en. Moreover, Qn is contained in Q. So, from the minimality of the quasi-ideal Q, it follows that $Qn=Q$. Consequently, there exists an element n' in Q such that $n'n=e$.

In case that N is zero-symmetric in Theorem 2, it is evident that $D=N_e$. So we have

Corollary. If a quasi-ideal Q of a zero-symmetric near-ring N is minimal, then Q is a subnear-ring of N with $Q\cap N_0 \cap E=\{0\}$ or Q is a subnear-field of N.

5. Applications

Applying Corollary to Theorem 2, we are going to give another proof of the following theorem in [3]:

Theorem 3. If a zero-symmetric near-ring N has a cancellable distributive element contained in a minimal quasi-ideal of N, then N is a near-field.

Proof. Suppose that the zero-symmetric near-ring N has a cancellable distributive element c contained in a minimal quasi-ideal Q of N.

Since c is distributive, by [3, Proposition 1], $cN \cap Nc$ is a quasi-ideal of N and it contains the non-zero element c^2. Moreover, by [3, Proposition 3], we have $cN \cap Nc \subseteq QN \cap NQ \subseteq Q$. So, from the minimality of the quasi-ideal Q, it follows that $Q = cN \cap Nc$.

Since c^2 is distributive, similarly we have $Q = c^2N \cap Nc^2$. This implies that the element c has the form

$$c = c^2n = mc^2 \quad (n, m \in N),$$

whence $cn = (mc^2)n = mc$.

Set $e = cn$, then e is contained in $cN \cap Nc = Q$, and $e \neq 0$, since $ce = c \neq 0$. Moreover, we have

$$e^2 = (mc) (cn) = m(c^2n) = me = e.$$

Furthermore, the element e is distributive. In fact, for all elements n_1, n_2 of N, we have

$$ce(n_1 + n_2) = c(n_1 + n_2) = cn_1 + cn_2 = cen_1 + cen_2,$$

that is, $ce(n_1 + n_2) = c(en_1 + en_2)$. This and the cancellability of the element c imply that $e(n_1 + n_2) = en_1 + en_2$.

Thus the minimal quasi-ideal Q has the non-zero distributive idempotent element e. So, by Corollary to Theorem 2, Q is a subnear-field with the identity element e.

The element e is the identity element of N, too. In fact, multiplying both sides of the equality $ce = c$ by any element x of N, we have $xec = xc$, whence $xe = x$. Dually we have $ex = x$ from $ce = c$.

Since e is contained in Q, for any element x of N, we have

$$x = ex = xe \in QN \cap NQ \subseteq Q,$$
that is, $N=Q$. Thus N is a near-field.

A non-zero N-subgroup S of a zero-symmetric near-ring N is called **minimal** if S does not properly contain any non-zero N-subgroup of N.

We now have the following result which is an extension of [2, Satz 5] to zero-symmetric near-rings:

Theorem 4. If a minimal N-subgroup S of a zero-symmetric near-ring N has a non-zero distributive idempotent element e of N, then eS is a subnear-field of N, moreover it is a minimal quasi-ideal of N.

Proof. By Proposition 2, eS is a quasi-ideal of N. Because of Theorem 1 and [3, Corollary to Theorem 1], all we have to prove is that the non-zero elements of eS form a multiplicative subgroup of N.

Evidently, e is a left identity element of eS. Let es be a non-zero element of eS. Then $S(es)$ is a non-zero N-subgroup of N contained in S. By the minimality of S, we have $S(es)=S$. Hence $(eS)(es)=eS$. This implies the existence of a non-zero element et of eS such that $(et)(es)=e$. Thus the non-zero elements of eS form a multiplicative subgroup of N.

References