Quasi-ideals which are subnear-fields

矢ヶ部，巌
九州大学教養部数学教室

https://doi.org/10.15017/1449047
Quasi-ideals which are subnear-fields

Iwao Yakabe
(Received September 24, 1985)

1. Introduction

In ring theory the following results are well-known (see [2, Satz 3; Satz 4]):

(A) If a quasi-ideal Q of a ring R is a division subring of R, then Q is a minimal quasi-ideal of R.

(B) A minimal quasi-ideal Q of a ring R is either a zero subring of R or a division subring of R.

In this note we shall extend these results to near-rings and show some applications of extended results.

2. Preliminaries

By a near-ring we mean a non-empty set N in which an addition $+$ and a multiplication \cdot are defined such that

1. $(N, +)$ is a group,
2. (N, \cdot) is a semigroup,
3. $(n+n')n''=nn''+n'n''$ $(n, n', n'' \in N)$.

In dealing with general near-ring the neutral element of $(N, +)$ will be denoted by 0.

In this section, N will denote a near-ring. The set N_0 of all elements n of N with $n0=0$ is called the zero-symmetric part of N; N is called zero-symmetric if $N=N_0$. An element d of N is called distributive if $d(n+n')=dn+dn'$ for all elements n, n' of N. The set of all distributive elements of N will be denoted by N_d.

Let A and B be two non-empty subsets of N. We shall define two kinds of products AB and $A*B$: AB denotes the set of all finite sums of
the form

\[\sum a_i b_i \ (a_i \in A, b_i \in B) ; \]

\(A*B \) denotes the set of all finite sums of the form

\[\sum (a_i(a_i'+b_i)-a_i a_i') \ (a_i, a_i' \in A, b_i \in B). \]

A subgroup \(S \) of \((N, +)\) is called an \(N\)-subgroup of \(N \) if \(NS \subseteq S \). A subgroup \(M \) of \((N, +)\) is called a subnear-ring of \(N \) if \(MM \subseteq M \). For instance, \(Nn \) is an \(N\)-subgroup of \(N \) for every element \(n \) of \(N \). The zero-symmetric part \(N_0 \) of \(N \) is a subnear-ring of \(N \).

A subgroup \(Q \) of \((N, +)\) is called a quasi-ideal of \(N \) if \(QN \cap NQ \subseteq N^*Q \subseteq Q \). For instance, every \(N\)-subgroup of \(N \), \(dN \) with a distributive element \(d \) of \(N \) and the zero-symmetric part \(N_0 \) of \(N \) are quasi-ideals of \(N \). Clearly \(\{0\} \) and \(N \) are quasi-ideals of \(N \). If \(N \) has no quasi-ideals except \(\{0\} \) and \(N \), we say that \(N \) is \(Q\)-simple.

A near-ring \(N \) is called a near-field if it has at least two elements and its non-zero elements form a group with respect to the multiplication defined in \(N \).

Let \(\mathbb{Z}_2 \) be the integers modulo 2. Then \((\mathbb{Z}_2, +)\) with \(0 \cdot 0 = 0 \cdot 1 = 0 \), \(1 \cdot 0 = 1 \cdot 1 = 1 \) is a near-field. As usual, throughout this note, we will exclude those near-fields which are isomorphic to this near-field. So every near-field is zero-symmetric and \(Q\)-simple (see [1, p. 249 and 3, Theorem 2]).

3. Quasi-ideals which are subnear-fields

A non-zero quasi-ideal \(Q \) of a near-ring \(N \) is called minimal if \(Q \) does not properly contain any non-zero quasi-ideal of \(N \).

We have

Theorem 1. If a quasi-ideal \(Q \) of a near-ring \(N \) is a subnear-field of \(N \), then \(Q \) is a minimal quasi-ideal of the zero-symmetric part \(N_0 \) of \(N \).

Proof. Since a near-field is zero-symmetric, the quasi-ideal \(Q \) is contained in \(N_0 \). By [3, Proposition 2], the relation \(Q = Q \cap N_0 \) implies that \(Q \) is a quasi-ideal of \(N_0 \).
Let Q' be a quasi-ideal of N_o such that $(0) \neq Q' \subseteq Q$.

Then we have

$$Q'Q \cap QQ' \cap Q^*Q' \subseteq Q'N_o \cap N_oQ' \cap Q'N_o^*Q' \subseteq Q',$$

which implies that Q' is a quasi-ideal of Q. Since a near-field is Q-simple, we have $Q' = Q$. Thus Q' is a minimal quasi-ideal of N_o.

In Theorem 1, the quasi-ideal Q is a minimal quasi-ideal of N, too. In fact, we have

Proposition 1. If a quasi-ideal Q of a near-ring N is a minimal quasi-ideal of N_o, then Q is a minimal quasi-ideal of N.

Proof. Let Q' be a quasi-ideal of N such that $(0) \neq Q' \subseteq Q$. Then Q' is contained in N_o and we have

$$Q'N_o \cap N_oQ' \cap Q'N_o^*Q' \subseteq Q'N \cap Q^*Q' \subseteq Q',$$

which implies that Q' is a quasi-ideal of N_o. Since Q is a minimal quasi-ideal of N_o, we have $Q' = Q$. Thus Q is a minimal quasi-ideal of N.

4. Minimal quasi-ideals

In view of Theorem 1, we are going to consider those quasi-ideals which are minimal in the zero-symmetric part. We start with

Proposition 2. Let e be a distributive idempotent element of a near-ring N and S an N-subgroup of N. Then eS is a quasi-ideal of N such that $eS = S\cap eN$.

Proof. Since S is an N-subgroup of N, we have $eS \subseteq NS \subseteq S$. On the other hand, we have $eS \subseteq eN$. Hence $eS \subseteq S\cap eN$.

Conversely, any element a of $S \cap eN$ has the form

$$a = s = en \ (s \in S, \ n \in N),$$

whence $a = en = een = es \in eS$.

Since S and eN are quasi-ideals of N, by [3, Proposition 1], the re-
lation $eS=S\cap eN$ implies that eS is a quasi-ideal of N.

We now have

Theorem 2. Let E be the set of all idempotent elements of a near-ring N and D the set of all elements d of N such that $d(n+n')=dn+dn'$ for all elements n, n' of the zero-symmetric part N_0 of N.

If a quasi-ideal Q of N is a minimal quasi-ideal of N_0, then Q is a subnear-ring of N with $Q\cap E\cap D=\{0\}$ or Q is a subnear-field of N.

Proof. Since Q is a quasi-ideal of N_0, by [3, Corollary to Theorem 1], Q is a subnear-ring of N_0. Hence Q is a subnear-ring of N.

Suppose that $Q\cap E\cap D\neq \{0\}$. Then there is a non-zero element e in $Q\cap E\cap D$. So the element e is a distributive idempotent element of the subnear-ring N_0 of N, and N_0e is an N_0-subgroup of N_0. Hence $e(N_0e)$ is a quasi-ideal of N_0 by Proposition 2.

Since Q is a quasi-ideal of N_0, by [3, Proposition 3], we have

$$e(N_0e)=N_0e\cap eN_0\subseteq N_0Q\cap QN_0\subseteq Q.$$

Moreover, $e(N_0e)$ contains the non-zero element e. So, from the minimality of the quasi-ideal Q, it follows that $Q=e(N_0e)$.

This implies that Q is a subnear-ring with the identity element e. So it remains to be shown that every non-zero element of Q has a left inverse element in Q.

Let n be a non-zero element of Q. Then we have $Qn=e(N_0n)$. Since N_0n is an N_0-subgroup of N_0, by Proposition 2, Qn is a quasi-ideal of N_0 and it contains the non-zero element en. Moreover, Qn is contained in Q. So, from the minimality of the quasi-ideal Q, it follows that $Qn=Q$. Consequently, there exists an element n' in Q such that $nn'=e$.

In case that N is zero-symmetric in Theorem 2, it is evident that $D=N_0$. So we have

Corollary. If a quasi-ideal Q of a zero-symmetric near-ring N is minimal, then Q is a subnear-ring of N with $Q\cap N_0\cap E=\{0\}$ or Q is a subnear-field of N.
5. Applications

Applying Corollary to Theorem 2, we are going to give an another proof of the following theorem in [3]:

Theorem 3. If a zero-symmetric near-ring N has a cancellable distributive element contained in a minimal quasi-ideal of N, then N is a near-field.

Proof. Suppose that the zero-symmetric near-ring N has a cancellable distributive element c contained in a minimal quasi-ideal Q of N.

Since c is distributive, by [3, Proposition 1], $cN \cap Nc$ is a quasi-ideal of N and it contains the non-zero element c^2. Moreover, by [3, Proposition 3], we have $cN \cap Nc \subseteq QN \cap NQ \subseteq Q$. So, from the minimality of the quasi-ideal Q, it follows that $Q = cN \cap Nc$.

Since c^2 is distributive, similarly we have $Q = c^2N \cap Nc^2$. This implies that the element c has the form

$$c = c^2n = mc^2 (n, m \in N),$$

whence $cn = (mc^2)n = mc$.

Set $e = cn$, then e is contained in $cN \cap Nc = Q$, and $e \neq 0$, since $ce = c \neq 0$. Moreover, we have

$$e^2 = (mc)(cn) = m(c^2n) = me = e.$$

Furthermore, the element e is distributive. In fact, for all elements n_1, n_2 of N, we have

$$ce(n_1 + n_2) = c(n_1 + n_2) = cn_1 + cn_2 = cnen_1 + cnen_2,$$

that is, $ce(n_1 + n_2) = c(en_1 + en_2)$. This and the cancellability of the element c imply that $e(n_1 + n_2) = en_1 + en_2$.

Thus the minimal quasi-ideal Q has the non-zero distributive idempotent element e. So, by Corollary to Theorem 2, Q is a subnear-field with the identity element e.

The element e is the identity element of N, too. In fact, multiplying both sides of the equality $ce = c$ by any element x of N, we have $xe = xc$, whence $xe = x$. Dually we have $ex = x$ from $ce = c$.

Since e is contained in Q, for any element x of N, we have

$$x = ex = xe \in QN \cap NQ \subseteq Q,$$
that is, \(N = Q \). Thus \(N \) is a near-field.

A non-zero \(N \)-subgroup \(S \) of a zero-symmetric near-ring \(N \) is called minimal if \(S \) does not properly contain any non-zero \(N \)-subgroup of \(N \).

We now have the following result which is an extension of [2, Satz 5] to zero-symmetric near-rings:

Theorem 4. If a minimal \(N \)-subgroup \(S \) of a zero-symmetric near-ring \(N \) has a non-zero distributive idempotent element \(e \) of \(N \), then \(eS \) is a subnear-field of \(N \), moreover it is a minimal quasi-ideal of \(N \).

Proof. By Proposition 2, \(eS \) is a quasi-ideal of \(N \). Because of Theorem 1 and [3, Corollary to Theorem 1], all we have to prove is that the non-zero elements of \(eS \) form a multiplicative subgroup of \(N \).

Evidently, \(e \) is a left identity element of \(eS \). Let \(es \) be a non-zero element of \(eS \). Then \(S(es) \) is a non-zero \(N \)-subgroup of \(N \) contained in \(S \). By the minimality of \(S \), we have \(S(es) = S \). Hence \((eS)(es) = eS \). This implies the existence of a non-zero element \(et \) of \(eS \) such that \((et)(es) = e \). Thus the non-zero elements of \(eS \) form a multiplicative subgroup of \(N \).

References