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Anzai transformation and its centralizer

Toshihiro HAMACHI*) and Motosige OSIKAWA 

          (Received September 13, 1982)

1. Introduction 

   For a set F of non-singular transformations on a Lebesgue measure 

space we denote by C(F) the set of all non-singular transformations on the 

space commuting with every element in F. We say that for an ergodic 

non-singular transformation T the set C(T) is the centralizer and that the 

set  CC(T)  (=C(C(T))) is the second centralizer. 

   We say that a transformation (x, y)--->(x+    A, y + cx+ v) on T n x T n 

is an Anzai transformation, if {1, 21, 22, • • •, An} is rationally independent, 

where A= (Al, 22, • • •, 2,) and v are in T n and c is a regular matrix with 

integer entries. In section 2 we determine the sets C(go,2,n) and CC(OG,2,,) 

and show that the set {0o,2,,,; jEZ} is closed with respect to the weak topo-

logy, and that W,A„; jEZ} cCC(0o,2,,) cC(0o,2„).We note that in general 
eak closue) 

for an ergodic non-singular transformation T,{T~; jEZ}c{T-f; jEZ} 

cCC(T)cC(T), and that C(T) is commutative if and only ifC(T) 
=CC(T). D. Ornstein [6] gave an example of an ergodic measure pre-

serving transformation T with C(T) = {Tf; jEZ}. If T is a Bernoulli 

transformation then CC(T) c C(T), and CC(T) = {T1; jEZ} which was 

proved by D. Rudolph [11]. For an ergodic non-singular transformation 
T it has pure point spectrum if and only if C(T) is compact [5]. In this 

case {T';jEZ}c{T';EZ}=C(T). 

   H. Anzai [2] discussed the conjugacy problem for the 1-dimensional 

Anzai transformations. The n-dimensional Anzai transformations are in 

the class of transformations with quasidiscrete spectrum whose conjugacy 

problem was solved by L. M. Abramov [1], and by F. Hahn and W. Parry 
[3]. In section 3 we give an explicite condition for the conjugacy of n-
dimensional Anzai transformations. For this we introduce an invariant for 

ergodic measure preserving transformations which is, roughly speeking, the
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family of point spectra of elements of the centralizer of an ergodic transfor-

mation, and show that it is a complete invariant for the 1-dimensional Anzai 

transformations. 

   In section 4 we introduce a new equivalence relation of ergodic measure 

preserving transformations and discuss it.

2. Anzai transformation

   We denote by M(n, Z) the set of all  n  x  n matrices with integer entries 

and by M' (n, Z) the set of all matrices in M(n, Z) whose determinants are 

1 or —1. For an element 2 in the n-dimensional torus Tn and an element 

k in the n-dimensional lattice Zn we write <k, 2> = exp 27ri (k121 + k222 + • • • + 

kn2n), where Ai and ki are the i-th coordinates of A and k respectively for 

i=1, 2, • • •, n. For elements A and 77 in Tn and a matrix a in M(n, Z) we 

define a transformation 0o,2„ on the direct product space Tn x Tn by cba,A,,(x, y) 

_ (x+A, y+6x+v) for (x, y) in Tn x Tn . The is measure preserving 

with respect to the Haar measure dxdy on Tn x Tn. We say that the 

transformation ¢a,1,,2 is an n-dimensional Anzai transformation if {1, Al, 22, 
• • •, An} is rationally independent and if the determinant of a is not zero.

   THEOREM 1. Every n-dimensional Anzai transformation cbQ,a,, has 
the following properties: 

   (1) cbu,x,, is ergodic. 

   (2) Sp(ga,A„) _ {<k, A>;kEZn}. 

   (3) C(q$ ,2,,) _ {cbr,R„9;a, f E Tn, z- M(n, Z) such that 6(a) =r(2)}. 

   (4) A transformation 0r,a,,q in C(q,7,2,,) is ergodic if and only if it is 
       an Anzai transformation. 

   (5) Let po be the greatest common divisor of all entries of a, and 
       let 6=poao with 60 in M(n, Z), d=p02o with 20 in Tn and 

         p0(p
2-1)         72— 60(A0) =P0720 with vo in Tn, then CC(0„,2,0 _ {coo,ao,,;o• 

Oo,o,ry;jEZ, (3ETn}• 

   (6) {q,Q,,,,; jGZ} is a closed and proper subst of CC(c00,,), and 
CC(0,,,A,T) =C(4u,A„) if and only if n=1.

PROOF. (1), (2) and (3) follows from Theorem 9 of [9]. We



note that (3) is a special case of Theorem 3 if we replace by  0.0„. 

In this case every isomorphism between g6o,a,, and itself is in C(95o0„). 

   (4) Assume that a cbT,a,9 in C(0o0„) is ergodic, then it is easy to see 

that {1, al, a2i • • •, an} is rationally independent. Since the determinant of 6 

is not zero, {1, 6 (a),f 6 (a) 2, • • •, 6 (a)7,1 is rationally independent. Hence, we 

have from 6 (a) = r (2) that the determinant of z- is not zero, i. e. , ~pT,a~ is an 

Anzai transformation. 

   (5) By (3) every transformation in CC(cbo,1,,) has a form0=,a,p with 

a (a) = r (A), and we have z-' (a) = z- (a') for any z-' in M(n, Z) and any a' in 

Tn such that ca'=r'2. From 6(a) =r(2) we have r'c-'z(A) =z•6-1z-'(A), 

and hence, r'a 'r=r6-'r' for any r' in M(n, Z) follows from that {1, 21, 22, •• , 

An} is rationally independent. Then there exists a real number r with 

r = rc. From 6 (a) = rc (A) we have a = r,l. Let po, co, 2, and 7o be ones 

mentioned in (4). Since r=rpoco is in M(n, Z), rpo is an integer which 

we denote by j. Then we have r=j.o and a=j ,. Conversely, it is 

obvious that every Opo,f,o,g, j in Z and Q in Tn, is in CC(c0, ,,). Here, 

we note that 0Qo,)a=,o==~2»• 

   (6) For a non-zero element k in Zn let f (x, y) =<k, y>, (x, y) in Tn x 
Tn, then we have

.1 1 f y))— f (x, y) I dxdy = J I <k, j6 (x) +i (i21)  6 (2) +j71>
— dx= JI <jta(k), x>—<k,i(j21)a(A)—j,7> dx

>V2Prob(I<jtc(k),x>—<k, —1 (92 1)6 I>8/2)— 22 
if j# O. It follows from this that {(14,2,,;jEZ} is closed. The other 

parts of (5) follows from (3) and (5).q. e. d.

3. Isomorphism problem of Anzai transformations 

   We discuss the isomorphism problem of Anzai transformations.

   LEMMA 2. Let ,? be an element in Tn such that {1, Ai, 22, •••, A„)- is 

rationally independent. Then for an element A' in Tn, {<k, ,l> ; k E Zn} 
={<k, ,i>; k E Zn} if and only if there exists a matrix s in M' (n , Z) with 
A'=aA.



   PROOF.If  2'=82 for some d in 1111 (n, Z), then from <k', 2'>= 

<`d(k'), A> for k' in Z" we have {<k, A>;kEZ"}={<k', A'>;k'EZ"}, where 
`8 is the transposed matrix of d. Next, assume that {<k, A> ; k E Z"} 
_ {<k', A'>; k' E Z"}. Then, since {1,2, -2,,~t"}is rationally indepen- 

dent, for every k' in Z" there exists a unique k in Z" with <k', 2'> 

=<k, A>. If we write k=p(k'), p is a homomorphism from Z" into itself . 
Since for every k in Z" there exists a k' in Z" with <k', 2'>=<k, A>, p is 

an automorphism of Z", and so, it is a matrix in M 1(n, Z) . Hence, put 

8=`p, d is a matrix in M1 (n, Z) and A'=dA.

   THEOREM 3. Anzai transformations 0Q,a,,, and are mutually 

isomorphic if and only if there exist matrices do and 81 in M1 (n, Z) such 

that A' —8°A and such that 6'=d1ca '. In this case every isomorphism 0 

between them has a form: 0(x, y) = (o0 (x) + u, ô1(y) +z- (x) + v) for (x, y) in 

T" x T", where u and v are elements in T" and r is a matrix in M(n, Z) 

such that 6'u=rA+812-71.

   PROOF. Let 80 and d1 be matrices in M1 (n, Z) such that A'=802 and 

such that 6'=d16do1. Let u be an element in T" with 6'u=812—v', and 

put cii (x, y) _ (80(X) + u, d1(y)) for (x, y) in T" x T". Then we have 
             Conversly, let ct' be an isomorphism between 0a,2,, and qo',A',,'. 

Since Sp (qo,2,„) = Sp (qQ',2',,'), by (2) of Theorem 1 and Lemma 2 there exists 

a matrix do in M1(n, Z) with A' =d02. For k in Z” set fk (x, y) =<k , x> 
for (x, y) in T" x T" and gk (x, y) = fk (0 (x, y)) / ft 3 (k) (x, y) for (x, y) in T" 
x T". Then gk(x, y) is (I),,2,,1-invariant, and hence it is a constant from 

the ergodicity of qu~. We write gk(x, y) =ck. Since ck+k'=ckck' for k 

and k' in Z" there exists an element u in T" with ck = <k, u> for k in Z". 

Then we have fk (x, y)) = <k, d0 (x) + u> for (x, y) in T" x T" and k in Z" , 
and hence, has a form: (x, y) = (do (x) + u, cfi (x, y)) for some 0 (x , y) in T". 
Set A(k, k', k") = J J<k, 0(x, y)><k', x><k", y>dxdy for k, k' and k" in Z. 
Then from cf~~Q,i,~=cl',A',1'ci' we have 0(x+A,y+6(x)+72)=0(x,y)+6'(8 o(x)+u) 
+ 71 for (x, y) in T" x T" and A (k, k', k") _ <k, c'do (2) — 6' (u) —,2><k', A><k" , 
—6(2)+v>A(k , k'+too`6'(k) —`6(k"), k") for k, k' and k" in Z". If `do`6'(k) —t6(k") 

 0, then since I A(k, k', k") I = I A(k, k'+j(`do`6'(k)—'c(k")), k") I for all j in Z" 
                                  ") we have EIA((k, k'+j(`80`6'(k)—te(k"), kI2=I A(k, k', k") I2<~, and so, 

 1=11=1



 A(k, k', k") =0. Therefore, it follows that t80tc'(k) =t6 (k") if A(k, k', k") 0 

for some k' in Z. Since for every k in Zn there exists a (k', k") in 

Zn x Zn with A(k, k', k") * 0, (t6) -lth0t6' (k) takes a value in Zn for all k in Zn. 

Therefore, 6'o06-1 is a matrix in M(n, Z), which we denote by 81, and for 

each k in Zn there exists a k' in Zn with A(k, k', tai (k)) *0. Such a k' 

satisfies <k, s1(2) — 6' (u) — r2'><k', 2> = 1. From this k' is uniquely determined 

since {1, Al, 22, • • •, An} is rationally independent. Let tz' be the matrix in 

M(n, Z) : k E Zn--->k' E Zn. Then we have z (2) = 6' (u) --a,  (,) +7'. Taking the 

Fourier inverse transform we have <k, (p (x, Y)> = A (k, tz (k) , t81(k)) <k, v (x) 

x <k, sl (y)> for (x, y) in Tn x Tn and k in Zn, and it follows from this that 

there exists an element v in Tn such that (p(x, y) = s1(y) + z (x) + v for (x, y) in 

T n x T n.Thus, we obtain cu (x, y)= (a0 (x) + u, a, (Y) +z- (x) + v) for (x, y) in 

T n x T n,q. e. d.

   REMARK 1. In the same way as for the proof of Theorem 3 one can 

obtain the following coboundary condition for an Anzai transformation q ,: 

Let 6' be a matrix in M(n, Z) and u an element in T' . Then there 

exists a measurable T n-valued function f(x, y) on T n x T n such that 6' (x)+u 

= y)) — f(x, y) for (x, y) in T n x T n if and only if there exist 

matrices 8 and z- in M(n, Z) such that 6'=S6 and such that u=z2+ay. 

In this case f (x, y) =z-x+sy+v for (x, y) in Tn x Tn, for some v in Tn.

   REMARK 2. A shorter proof of Theorem 3 and a computation of cen-

tralizers of Anzai transformations can be also given by using the result of 

W. Parry [10] which says any isomorphism between unipotent affine trans-

formations of nilmanifolds is necessarily af fine.

   THEOREM 4. Let 0,,,2,,7 and be Anzai transformations. Then 

Sp(0.0„)= SP(0.192',V) and {Sp(U) ; UE C(c0.0,,) is ergodic} _ {Sp(U') 

C(~a',2',~') is ergodic} if and only if there exist matrices a0, a1 and a2 in 

M'(n, Z) such that 2'=a02 and such that 6'=816a21.

   PROOF. Assume that Sp(qioo,v) —Sp(ga',A',,') and that {Sp(U) ; UE 

C(06,1„) is ergodic} = {Sp (U') ; U' ~ C(q ',2',0') is ergodic}. Applying (2) of 

Theorem 1 and Lemma 2 to the assumption Sp (0&,a,n) = Sp (q0',A',,') we have a 

matrix 8o in AY' (n, Z) such that 2'=a02. Since thE,o-1(A),o is in C(q. ,2,,1)



and ergodic, where E is the unit matrix, by the other assumption we take 

an ergodiic in such that  Sp(46E,a-1cA>,o)=Sp(Or',a',o). In the 

same way as above we have a matrix 82 in M'(n, z) with a' =826-1A. 

Since 6'a'=r'A' by (3), we have 6'826-12=6'a'=z'A'=z-'doA, from which we 

have 6'd26 1 = r'do, since {1,-1, 22, • • •, An} is rationally independent. Replacing 

6, A and 77 by a', A' and respectively we have a matrix 83 in M' (n, Z) such that 

6836-1=rd01. Since I re I = 16d36' 1a06'626-lsol I = i 6836-1 116'd26-1 I — 1603I 1826-1 
= I C 116-11 =1, r and z-' are in M1(n, Z) . Put d1= z'80 then 81 is in M1(n, Z) 

and we have6'=816d21. Conversely, assume A'=8o2 and 6'=816821 for 

matrices d1 and 82 in M'(n, Z). Then by Theorem 3 4,1 o' and 0a,az180 (A),, 

are mutually isomorphic, and so, it is enough to show that {Sp(U) ; U 

E C(go,A„) is ergodic} _ {Sp(U') ; U' C(qa,? 21 a 0 (2),72) is ergodic}. Let 0,13 be 

an Anzai transformation in C(ca,oZ' a 0 (A),,,), then 0,3 ;1 a2,a,0 is an Anzai trans-

formation in C(0a0z160 )A),2) since 6(a) =rod-VOA-18o (A).It is obvious that 

Sp (qr,a, p) = Sp Ora o 1 a 2,a,0) = {<k, a> ; k E Zn}. In the same way as above one 

can get for an ergodic U' in C(q,0218o(A),,)) an ergodic U in C(ca,i,,) such that 

Sp (U') = Sp (U) .q. e. d.

   Since M1(1, Z) _ {1, —1}, by Theorem 3 and Theorem 4 we have the 

following Corollary.

  COROLLARY 5. The pair (Sp(T), {Sp(U) ; U in C(T) is ergodic}) is 

a complete invariant for isomorphism of the 1-dimensional Anzai trans-

formations.

4. A new equivalence relation

   Ergodic measure preserving transformations T and T' of Lebesgue spaces 

(2, 9, P), P(2) =1 and (D', ', P'), P'(S1) =1 respectively, are said to 

be C-connected by n-steps if the there exists a finite sequence U„ U„, , • • • Un 

of ergodic measure preserving transformations of a Lebesgue space (Do, 9` o, 

P0) , Po(90)=1 such that Ui_ 1 Ui = Ui Ui_ 1 for i=1, 2, ........., n, such that U0 is 

isomorphic to T, and such that Un is isomopphic to T'.Ergodic measure 

preserving transformations T and T' are said to be C-equivalent if they are 
C-connected by finite steps. C-equivalence satisfies the equivalence rela-

tion. A C-equivalence class is said to have index n if all transformations



in the class are mutually C-connected by n steps and if there are transfor-

mations in the class which are not mutually C-connected by  n-1 steps.

   THEOREM 6. If ergodic measure preserving transformations T and 

T' are mutually C-equivalent, then Sp(T) and Sp(T') are mutually iso-

morphic as groups.

   PROOF. It follows from Proposition 2 of [5] that if ergodic measure 

preserving transformations T and T' satisfy TT'=T'T, then Sp(T) and 
Sp(T') are mutually isomorphic as groups. From this we obtain the 

theorem.q. e. d.

   THEOREM 7.(1) The set of all pure point spectrum transformations 

whose point spectra are mutually isomorphic as a group is a C-equivalence 

class with index 1. 

   (2) For an irrational number A, the set of all 1-dimensional Anzai 

transformations 0n,n (2+q),7, n in Z, q in Q= {rational numbers}, 77 in R, is 

a C-equivalence class with index 2. 

   (3) All Bernoulli transformations with finite entropy are mutually 

C-equivalent.

   PROOF. (1) If an ergodic measure preserving transformation T has 

pure point spectrum and if the spectrum Sp(T) is isomorphic to a countable 
subgroup P of the 1-dimensional torus, by a theorm of Halmos-von Neumann 

[4] it is isomorphic to a translation on the character group P of P. 

                                                                                       A Hence, (1) follows from that all translations on the character groupP com-

mute with each other. 

   (2) let ni E Z, q1 Q and -i E R for i=1, 2. Take m, r1 and r2 in Z 
such that m(q1—q2)=r1/n1—r2/n2f and put q=q1—r1/n1m1=q2—r2/n2m2• 

Then by (3) of Theorem 1 both On1,n1(2+g1,,v1 and 0n2,n2(2+q2),,2 commute with 

0.,.(2±q), o and hence, are mutually C-connected by 2 steps. Let C6,,,,q,p be 

an Anzai transformation in C(62,22,0). Then m x 2A=2a mod 1 implies 

a=mA or a=mA+1/2, and hence, Sp(gm,a,p) _ {exp 27rikmA;kEZ} or {exp 

27rik (mA+ 1 /2) ; k E Z} for some integer m. Since Sp(~1,2+1, 9,0) = {exp 27rik 

(A+1/3) ; k Z}, ~l,i+li3,o and 162,2z,0 are not mutually C-connected by 1-step. 

   (3) follows from the fact that Bernoulli transformation with same en-



tropy are mutually isomorphic and from the existence of a Bernoulli flow 

[7]  C8].
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