SN KREZZ2MTIER Y R b

Kyushu University Institutional Repository

Anzail transformation and i1ts centralizer

A, BEA
RN RS HEBE P E

), JTE
NN RS Sz

https://doi.org/10.15017/1449034

HARIBER : UMM KEBEERE M. 13 (2), pp.87-94, 1982-12, NWMNKZEHEHHEHE
N—=2 3

HEFIBAMR

%, KYUSHU UNIVERSITY




Anzai transformation and its centralizer

Toshihiro HAMACHI® and Motosige OSIKAWA
(Received September 13, 1982)

1. Introduction

For a set F of non-singular transformations on a Lebesgue measure
space we denote by C(F) the set of all non-singular transformations on the
space commuting with every element in F. We say that for an ergodic
non-singular transformation 7 the set C(T") is the centralizer and that the
set CC(T)(=C(C(T))) is the second centralizer.

We say that a transformation ¢.,u,,: (%, ¥)—>(x+4,y+ex+7) on T"XT"
is an Amnzai transformation, if {1, A, A, -+, 4.} 1s rationally independent,
where A=(Ay, A2+, 4,) and % are in 7" and ¢ is a regular matrix with
integer entries. In section 2 we determine the sets C(¢o,,,) and CC(¢s,1,,)
and show that the set {¢},,,;j€Z} is closed with respect to the weak topo-
logy, and that {¢7,:,7;7€ Z} CCC(@e,205) TC(Payay). We note that in general
for an ergodic non-singular ‘transforma;ion T,{T%;jeZyc{T?;jeZ }T(wwc rlosue
cCC(TYcC(T), and that C(T) is commutative if and only if C(T)
=CC(T). D. Ornstein [6] gave an example of an ergodic measure pre-
serving transformation 7T with C(T)={T7;jZ}. If T is a Bernoulli
transformation then CC(T);:C(T), and CC(T)={T?; jeZ} which was

proved by D. Rudolph [11]. For an ergodic non-singular transformation
T it has pure point spectrum if and only if C(T) is compact [5]. In this
case {T%jeZ}%{TQeZ}:C(T).

H. Anzai [2] discussed the conjugacy problem for the 1-dimensional
Anzai transformations. The n-dimensional Anzai transformations are in
the class of transformations with quasidiscrete spectrum whose conjugacy
problem was solved by L.M. Abramov [1], and by F. Hahn and W. Parry
[3]. In section 3 we give an explicite condition for the conjugacy of n-
dimensional Anzai transformations. For this we introduce an invariant for
ergodic measure preserving transformations which is, roughly speeking, the
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family of point spectra of elements of the centralizer of an ergodic transfor-
mation, and show that it is a complete invariant for the 1-dimensional Anzai
transformations.

In section 4 we introduce a new equivalence relation of ergodic measure
preserving transformations and discuss it.

2. Anzai transformation

We denote by M(n, Z) the set of all #x#»n matrices with integer entries
and by M*'(n,Z) the set of all matrices in M(n, Z) whose determinants are
1 or —1. For an element A in the n-dimensional torus 7" and an element
k in the z-dimensional lattice Z" we write <k, A>=exp 2ri(k 4+ kA4 +
k,2,), where ; and k,; are the i-th coordinates of 4 and & respectively for
i=1,2, -, n. For elements 4 and % in 7" and a matrix ¢ in M(n,Z) we
define a transformation @.,1,, on the direct product space T"X T" by ¢o,1,,(%, ¥)
=(x+A4,y+ox+7) for (x,9) in T"xT". The ¢.,:,, is measure preserving
with respect to the Haar measure dxdy on T"xT™ We say that the
transformation ¢.,i,, is an n-dimensional Anzai transformation if {1, A, i,
-, A} is rationally independent and if the determinant of ¢ is not zero.

THEOREM 1. Every n-dimensional Anzai transformation ¢.., has
the following properties:

) Poyayy IS ergodic.

@) So(Boriy) ={<k, A>;kcZ"}.

@) Clboyiy) =A{drrs;a, BET™, c€M(n, Z) such that s(a)=r(1)}.

4) A transformation b.es in C(bu,,) is ergodic if and only if it is
an Anzai transformation.

(5) Let p, be the greatest common divisor of all entries of o, and
let 6=p.0, with oy in M(n,Z), A=p,l, with A, in T" and

7= 28D Gy =pons with 7, in T, then CCbun) = (bl

PoosjE€Z, BT},
©6) A{dlanjeZ} is a closed and proper subst of CC(go,,), and
CC(boyas) =C(boy2,y) if and only if n=1.

0o °

PROOF. 1, (@) and (3) follows from Theorem 9 of [9]. We
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note that (3) is a special case of Theorem 3 if we replace ¢,/ by @o1,0.
In this case every isomorphism between ¢,,:, and itself is in C(d,1,,).

(4) Assume that a ¢, in C(@,,1,,) is ergodic, then it is easy to see
that {1, a;, @3, ---, @,} is rationally independent. Since the determinant of ¢
is not zero, {1,s(a), 6(a),, ---,a(a),} is rationally independent. = Hence, we
have from ¢(a)=7(2) that the determinant of = is not zero, i.e., @:,a,p iS an
Anzai transformation.

(5) By (3) every transformation in CC($s,,) has a form .., with
o(a)=r(A), and we have 7'(a)=7(a’) for any ¢ in M(n,Z) and any « in
T" such that ca’'=<'A. From ¢(a)=c(A) we have z'¢7c(Q) =rs 7' (1),
and hence, 7'¢7'r=7¢7¢' for any ¢’ in M(n, Z) follows from that {1, A, 4,, **-,
An} is rationally independent. Then there exists a real number 7 with
T="rg. From o(a)=r5(1) we have a=rA. Let po, 00,4 and 7, be ones
mentioned in (4). Since t=#pyo, is in M(n,Z), rp, is an integer which
we denote by ;. Then we have r=js, and a=ji,. Conversely, it is
obvious that every ésg,e 7 in Z and B in 77, is in CC(go,). Here,
we note that @eg,m,= bc,001

(6) For a non-zero element % in Z" let f(x,y)=<k,y>, (x,%) in T"X
T", then we have

|17 @i 900 = £ 3 | dwdy = [| <t jo () + 225 ) + >

1) dz=I<jto k), 5>~<k, Lo ()~ > d

>V ZProb(| < j's(k), x>~ <k, LI Doy > 1>V 2y =Y 2
if j+0. It follows from this that {¢?,,,;7€Z} is closed. The other
parts of (5) follows from (3) and (5). q.e.d.

3. Isomorphism problem of Anzai transformations

We discuss the isomorphism problem of Anzai transformations.

LEMMA 2. Let 2 be an element in T" such that {1, 2, g+, Au} 1S
rationally independent. Then for an element X in T, {<k,21>;k€Z"}
={<k, A>;k=Z"} if and only if there exists a matrix & in M'(n, Z) with
A'=6A.



90 T. Hamachi and M. Osikawa

PROOF. If 2=064 for some & in M'(n,Z), then from <K,6 A’>=
<*o(R'), 2> for k' in Z" we have {<k, 1> k€ Z"} ={<F, V>;k' 2"}, where
t6 is the transposed matrix of . Next, assume that {<&, A>;ksZ"}
={<k, > keZ"}. Then, since {1, 4, Ay -, A,} is rationally indepen-
dent, for every £ in Z" there exists a unique % in Z* with <#, 1>
=<k, 2>. If we write k=p(&),p is a homomorphism from Z" into itself.
Since for every & in Z" there exists a k' in Z" with <k, ’'>=<k, 1>, p is
an automorphism of Z", and so, it is a matrix in M'(n, Z). Hence, put
d='p, & is a matrix in M*(n, Z) and V=04

THEOREM 3. Anzai transformations ¢.,.,, and ¢, are mutually
isomorphic if and only if there exist matrices 6, and &, in M'(n,Z) such
that X=6,A and such that ¢ =0,083". In this case every isomorphism ¢
between them has a form: $(x,y)=(,(x)+u,8,(¥)+c(x)+v) for (x,9) in
T"xT", where u and v are elements in T" and ¢ is a matrix in M(n, Z)
such that ¢d/u=<2+06,9—7'.

PROOF. Let &, and 6, be matrices in M*(n, Z) such that A’=d,4 and

such that ¢'=¢,003% Let # be an element in 7" with ¢'u=d—7, and
put ¢(x,¥)=(6(x)+u,s,(y)) for (x,y) in T"xT". Then we have ¢d.,,,,
=Pt aty P Conversly, let ¢ be an isomorphism between ¢.,,, and ¢,

Since Sp(ba1,) =Sp(po,20,7), by (2) of Theorem 1 and Lemma 2 there exists
a matrix 8, in M*(n, Z) with '=3d,A. For %k in Z" set fi(x,y)=<k, x>
for (%) in T"XT" and ge(x,y)=felp %9/ f,, \,(%,9) for (x,y) in T
xT", Then g,(x,¥) is ¢.i,,~invariant, and hence it is a constant from
the ergodicity of ¢, We write g.(x,y)=c¢,. Since ¢y =crcy for k
and % in Z" there exists an element # in 7™ with ¢,=<k, u> for % in Z".
Then we have f(¢(x,9)) =<k, & (x)+u> for (x,y) in T"xT™ and & in Z~,
and hence, ¢ has a form: ¢ (x, ) =(3,(x) +#, ¢ (x,¥)) for some ¢(x,y) in T".
Set Ak, k', k~)=”<k, @ (x,3)>F, x><K',y>dxdy for kK and ¥ in 2",
Then from ¢z, = ¢or,2yp we have ¢ (x+4,y+0(x) +7) =@ (x, ¥) +4'(6,(x) +u)
+7' for (x,) in T"X T" and A(k, k', k") =<k, 0'8,(A) — o' () —y ><k', \><k",
=0 (D) +9>Ak, B +'6,'¢" (k) —*a (B"), k") for k, k' and k" in Z". 1f %5,%¢' (k) —t (B"")
+0, then since |A(k, &, k") | =| Ak, k' +j(d, s’ (k) —*a (k")), k") | for all jin Z"
we have é [A(Ck, k' + (%60 (k) —ta (k") k) [2:21 | ACk, ¥, k") |*<oo, and so,



Anzai transformation and its centralizer 91

Ak K, k") =0, Therefore, it follows that ®8,%’ (k) =‘s (k") if A(k, K, k") +0
for some &' in Z". Since for every 2 in Z" there exists a (&, k') in
Z"xZ" with A(k, B, k") =0, (b6) '%6,%¢’ (k) takes a value in Z" for all kin Z™.
Therefore, ¢'6,07 is a matrix in M(n, Z), which we denote by ¢,, and for
each £ in Z" there exists a & in Z" with Ak k, %, (k) +0. Such a &
satisfies <7k, 8,(9) —o'(u) —y'><k', 2>=1. From this #’ is uniquely determined
since {1, A, 4, .-+, A,} is rationally independent. Let ’r be the matrix in
M(n,Z):keZ"—>k'eZ", Then we have () =¢ (#) —6,(y) +7. Taking the
Fourier inverse transform we have <&, ¢ (x, ¥) >=A(k, 'z (k), 6, (k) )<k, = (x)>
X<k, 0,(y)>for (x,y) in T"x T" and £ in Z", and it follows from this that
there exists an element v in 7" such that ¢ (x,¥)=8,(¥) +7(x) +v for (x,y) in
T"x T Thus, we obtain ¢ (x,y) = (8,(x) +u, 6,(y) +7z(x)+v) for (x,y) in
T"xT" qg.e.d.

REMARK 1. In the same way as for the proof of Theorem 3 one can
obtain the following coboundary condition for an Anzai transformation é.;::
Let ¢’ be a matrix in M(n,Z) and w an element in T . Then there
exists a measurable T"-valued function f(x,y) on T"X T" such that ¢'(x)+u
=f(Boyay (2, ¥)) —f(x, %) for (x,¥) in T"XT" if and only if there exist
matrices & and ¢ in M(n,Z) such that ¢ =ds and such that u=cA+oy.

In this case f(x,y)=cx+éy+v for (x,y) in T*"xXT", for some v in T".

REMARK 2. A shorter proof of Theorem 3 and a computation of cen-
tralizers of Anzai transformations can be also given by using the result of
W. Parry [10] which says any isomorphism between unipotent affine trans-

formations of nilmanifolds is necessarily affine.

THEOREM 4. Let ¢,,3,, and ¢o,,y be Anzai transformations. Then
Sp(boyayn) =Sp(@aryaryr)  and  {Sp(U);USC(pay,y) is ergodicy={S,(U");U'e
C(@o,r,y) is ergodic} if and only if there exist matrices 0,8, and o, in
M'(n,Z) such that X'=d,A and such that ¢ =06,003"

PROOF. Assume that Sp(@o,,) =Sp(de,i,) and that {Sp(U);Ue
C(@s,,y) 18 ergodic} ={Sp(U"); U'eC(po,1,,) is ergodic}. Applying (2) of
Theorem 1 and Lemma 2 to the assumption Sp(s,1,,) =Sp(de,2,,7) We have a
matrix & in M'(n,Z) such that A’'=édA. Since $po-tw, is in C(goa)
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and ergodic, where E is the unit matrix, by the other assumption we take
an ergodiic @,y i C(Pot,aty) such that Sp(dge—1m,0) =Sp(derars). In the
same way as above we have a matrix §, in M'(n, 2) with a'=d07'4

Since d’a’=7'A by (3), we have ¢'d,0 'A=d'a’=¢'A=7'3,4, from which we
have ¢'6,6 " '=1'6,, since {1, A, A, -, A,} is rationally independent. Replacing
6, 2 and » by ¢’, X’ and %' respectively we have a matrix é; in M*(#n, Z) such that

000" '=163%,  Since |rr’|=|0630""1600'd,6 707} | =|0830" Y| | 0'820 7 | = | 08| | 807
=lo||67'|=1, r and ¢’ are in M*(n,Z). Put 8,=7'8, then ¢, is in M*'(n, Z)
and we have ¢ =48,007". Conversely, assume A'=¢A and o¢'=a,007' for

ot

matrices 8, and &, in M*(n, Z). Then by Theorem 3 ¢.,/,/';" and éo,s3" s, 1
are mutually isomorphic, and so, it is enough to show that {S,(U);U
€ C(psy1,y) 18 ergodic}={Sp(U');U’eC(qﬁ,,a;‘aom,v) is ergodic}. Let ¢,as be
an Anzai transformation in C(es}'s, ), then éu7ts, .m0 is an Anzai trans-
formation in C(q%,;;‘;om,v) since ¢ (a) =78%'0,07'0,(A). It is obvious that
Sp(Perars) =Sp(Bes7's ran) = {<k,a>;k€Z"}.  In the same way as above one
can get for an ergodic U’ in C(4.,7"s, ) an ergodic U in C(¢e,1,4) such that
Sp(U)=8S(U). g.e. d.

Since M*(1,Z)={1, —1}, by Theorem 3 and Theorem 4 we have the

following Corollary.

COROLLARY 5. The pair (Sp(T), {SpU); Uin C(T) is ergodic}) is
a complete invariant for isomorphism of the l-dimensional Anzai trans-

formations.

4. A new equivalence relation

Ergodic measure preserving transformations 7 and 7" of Lebesgue spaces
(2, %,P), P(@)=1 and (2, F P, P(2)=1 respectively, are said to
be C-connected by n-steps if the there exists a finite sequence U, U,,,--U,
of ergodic measure preserving transformations of a Lebesgue space (£, F,
P, Py(2,) =1 such that U, ,U;=U,U;_, for i=1,2, - ,n, such that U, is
isomorphic to 7, and such that U, is isomopphic to 7". Ergodic measure
preserving transformations 7 and 7’ are said to be C-equivalent if they are
C-connected by finite steps. C-equivalence satisfies the equivalence rela-
tion. A C-equivalence class is said to have index n if all transformations
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in the class are mutually C-connected by # steps and if there are transfor-
mations in the class which are not mutually C-connected by #-1 steps.

THEOREM 6. If ergodic measure preserving transformations T and
T’ are mutually C-equivalent, then Sy(T) and S,(T') are mutually iso-
morphic as groups.

PROOF. It follows from Proposition 2 of [5] that if ergodic measure
preserving transformations 7 and 7’ satisfy T7'=T'T, then S,(7T) and
Sp(T") are mutually isomorphic as groups. From this we obtain the
theorem. q.e.d.

THEOREM 7. (1) The set of all pure point spectrum transformations
whose point spectra are mutually isomorphic as a group is a C-equivalence
class with index 1.

(2) For an irrational number 2, the set of all 1-dimensional Anzai
transformations ¢,,,ai0,, N in Z, q in Q={rational numbers}, y in R, is
a C-equivalence class with index 2.

(3) All Bernoulli transformations with finite entropy are mutually

C-equivalent.

PROOF. (1) If an ergodic measure preserving transformation 7 has
pure point spectrum and if the spectrum Sp(7) is isomorphic to a countable
subgroup I" of the 1-dimensional torus, by a theorm of Halmos-von Neumann
[4] it is isomorphic to a translation on the character group I of I,

Hence, (1) follows from that all translations on the character group I' com-
mute with each other.

@) let n;eZ,q;=Q and ;=R for i=1,2. Take m, », and 7, in Z
such that m(q,—q,)=7r,/n,—7,/n,, and put q=q,—7,/n,m =q,—7,/n,m,.
Then by (3) of Theorem 1 both ¢a,un,eqp,7, and @aynyeay,0, commute with
®mma+0s o and hence, are mutually C-connected by 2 steps. Let ¢,,q,5 be
an Anzai transformation in C(@1,0). Then mXx2i=2a mod 1 implies
a=mi or a=mAi+1/2, and hence, Sy(dn.ap) ={exp 2rnikmi;k€Z} or {exp
2rik(mi+1/2);keZ} for some integer m. Since Sp(0y1,141,30) = {exp 27ik
(A+1/3);REZ}, bi041,50 and Py,0,, are not mutually C-connected by 1-step.

(3) follows from the fact that Bernoulli transformation with same en-
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tropy are mutually isomorphic and from the existence of a Bernoulli flow

(7] (8]
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