九州大学学術情報リポジトリ Kyushu University Institutional Repository

Anzai transformation and its centralizer

濱地, 敏弘 九州大学教養部数学教室

押川, 元重 九州大学教養部数学教室

https://doi.org/10.15017/1449034

出版情報:九州大学教養部数学雑誌. 13 (2), pp.87-94, 1982-12. 九州大学教養部数学教室

バージョン: 権利関係:

Anzai transformation and its centralizer

Toshihiro HAMACHI* and Motosige OSIKAWA (Received September 13, 1982)

1. Introduction

For a set F of non-singular transformations on a Lebesgue measure space we denote by C(F) the set of all non-singular transformations on the space commuting with every element in F. We say that for an ergodic non-singular transformation T the set C(T) is the *centralizer* and that the set C(T)(=C(C(T))) is the second centralizer.

We say that a transformation $\phi_{\sigma,\lambda,\eta}:(x,y)\longrightarrow (x+\lambda,y+\sigma x+\eta)$ on $T^n\times T^n$ is an Anzai transformation, if $\{1, \lambda_1, \lambda_2, \dots, \lambda_n\}$ is rationally independent, where $\lambda = (\lambda_1, \lambda_2, \dots, \lambda_n)$ and η are in T^n and σ is a regular matrix with integer entries. In section 2 we determine the sets $C(\phi_{\sigma,\lambda,\eta})$ and $CC(\phi_{\sigma,\lambda,\eta})$ and show that the set $\{\phi^j_{\sigma,\lambda,\eta}; j \in Z\}$ is closed with respect to the weak topology, and that $\{\phi_{\sigma,\lambda,\eta}^j; j \in Z\} \subset CC(\phi_{\sigma,\lambda,\eta}) \subset C(\phi_{\sigma,\lambda,\eta})$. We note that in general for an ergodic non-singular transformation T, $\{T^j; j \in Z\} \subset \{T^j; j \in Z\}$ $\subset CC(T) \subset C(T)$, and that C(T) is commutative if and only if C(T)=CC(T). D. Ornstein [6] gave an example of an ergodic measure preserving transformation T with $C(T) = \{T^j; j \in Z\}.$ If T is a Bernoulli transformation then $CC(T) \subseteq C(T)$, and $CC(T) = \{T^j; j \in Z\}$ which was proved by D. Rudolph [11]. For an ergodic non-singular transformation T it has pure point spectrum if and only if C(T) is compact [5]. case $\{T^j; j \in Z\} \subset \{T^j; \in Z\} = C(T)$.

H. Anzai [2] discussed the conjugacy problem for the 1-dimensional Anzai transformations. The n-dimensional Anzai transformations are in the class of transformations with quasidiscrete spectrum whose conjugacy problem was solved by L.M. Abramov [1], and by F. Hahn and W. Parry [3]. In section 3 we give an explicite condition for the conjugacy of n-dimensional Anzai transformations. For this we introduce an invariant for ergodic measure preserving transformations which is, roughly speeking, the

^{*)} Supported in part by the Ministry of Education, Science and Culture Grant-in-Aid for Scientific Research.

family of point spectra of elements of the centralizer of an ergodic transformation, and show that it is a complete invariant for the 1-dimensional Anzai transformations.

In section 4 we introduce a new equivalence relation of ergodic measure preserving transformations and discuss it.

2. Anzai transformation

We denote by M(n,Z) the set of all $n \times n$ matrices with integer entries and by $M^1(n,Z)$ the set of all matrices in M(n,Z) whose determinants are 1 or -1. For an element λ in the n-dimensional torus T^n and an element k in the n-dimensional lattice Z^n we write $\langle k, \lambda \rangle = \exp 2\pi i (k_1 \lambda_1 + k_2 \lambda_2 + \cdots + k_n \lambda_n)$, where λ_i and k_i are the i-th coordinates of λ and k respectively for $i=1,2,\cdots,n$. For elements λ and η in T^n and a matrix σ in M(n,Z) we define a transformation $\phi_{\sigma,\lambda,\eta}$ on the direct product space $T^n \times T^n$ by $\phi_{\sigma,\lambda,\eta}(x,y) = (x+\lambda,y+\sigma x+\eta)$ for (x,y) in $T^n \times T^n$. The $\phi_{\sigma,\lambda,\eta}$ is measure preserving with respect to the Haar measure dxdy on $T^n \times T^n$. We say that the transformation $\phi_{\sigma,\lambda,\eta}$ is an n-dimensional Anzai transformation if $\{1,\lambda_1,\lambda_2,\cdots,\lambda_n\}$ is rationally independent and if the determinant of σ is not zero.

THEOREM 1. Every n-dimensional Anzai transformation $\phi_{\alpha,\lambda,\eta}$ has the following properties:

- (1) $\phi_{\sigma,\lambda,\eta}$ is ergodic.
- (2) $S_p(\phi_{\sigma,\lambda,\eta}) = \{\langle k, \lambda \rangle; k \in \mathbb{Z}^n \}.$
- (3) $C(\phi_{\sigma,\lambda,\eta}) = \{\phi_{\tau,\alpha,\beta}; \alpha, \beta \in T^n, \tau \in M(n,Z) \text{ such that } \sigma(\alpha) = \tau(\lambda)\}.$
- (4) A transformation $\phi_{\tau,\alpha,\beta}$ in $C(\phi_{\sigma,\lambda,\eta})$ is ergodic if and only if it is an Anzai transformation.
- (5) Let p_0 be the greatest common divisor of all entries of σ , and let $\sigma = p_0 \sigma_0$ with σ_0 in M(n, Z), $\lambda = p_0 \lambda_0$ with λ_0 in T^n and $\eta \frac{p_0(p_0 1)}{2} \sigma_0(\lambda_0) = p_0 \eta_0 \text{ with } \eta_0 \text{ in } T^n, \text{ then } CC(\phi_{\sigma, \lambda, \eta}) = \{\phi^j_{\sigma_0, \lambda_0, \eta_0} \cdot \phi_{0, 0, \beta}; j \in Z, \beta \in T^n\}.$
- (6) $\{\phi_{\sigma,\lambda,\eta}^j; j \in Z\}$ is a closed and proper subst of $CC(\phi_{\sigma,\lambda,\eta})$, and $CC(\phi_{\sigma,\lambda,\eta}) = C(\phi_{\sigma,\lambda,\eta})$ if and only if n=1.

PROOF. (1), (2) and (3) follows from Theorem 9 of [9]. We

note that (3) is a special case of Theorem 3 if we replace $\phi_{\sigma',\lambda',\eta'}$ by $\phi_{\sigma,\lambda,\eta}$. In this case every isomorphism between $\phi_{\sigma,\lambda,\eta}$ and itself is in $C(\phi_{\sigma,\lambda,\eta})$.

- (4) Assume that a $\phi_{\tau,\alpha,\beta}$ in $C(\phi_{\sigma,\lambda,\eta})$ is ergodic, then it is easy to see that $\{1,\alpha_1,\alpha_2,\cdots,\alpha_n\}$ is rationally independent. Since the determinant of σ is not zero, $\{1,\sigma(\alpha)_1,\sigma(\alpha)_2,\cdots,\sigma(\alpha)_n\}$ is rationally independent. Hence, we have from $\sigma(\alpha)=\tau(\lambda)$ that the determinant of τ is not zero, i.e., $\varphi_{\tau,\alpha,\beta}$ is an Anzai transformation.
- (5) By (3) every transformation in $CC(\phi_{\sigma,\lambda,\eta})$ has a form $\phi_{\tau,\alpha,\beta}$ with $\sigma(\alpha) = \tau(\lambda)$, and we have $\tau'(\alpha) = \tau(\alpha')$ for any τ' in M(n,Z) and any α' in T^n such that $\sigma\alpha' = \tau'\lambda$. From $\sigma(\alpha) = \tau(\lambda)$ we have $\tau'\sigma^{-1}\tau(\lambda) = \tau\sigma^{-1}\tau'(\lambda)$, and hence, $\tau'\sigma^{-1}\tau = \tau\sigma^{-1}\tau'$ for any τ' in M(n,Z) follows from that $\{1,\lambda_1,\lambda_2,\cdots,\lambda_n\}$ is rationally independent. Then there exists a real number r with $\tau = r\sigma$. From $\sigma(\alpha) = r\sigma(\lambda)$ we have $\alpha = r\lambda$. Let p_0, σ_0, λ_0 and η_0 be ones mentioned in (4). Since $\tau = rp_0\sigma_0$ is in M(n,Z), rp_0 is an integer which we denote by j. Then we have $\tau = j\sigma_0$ and $\alpha = j\lambda_0$. Conversely, it is obvious that every $\phi_{f\sigma_0,f\lambda_0,\beta}$, j in Z and β in T^n , is in $CC(\phi_{\sigma,\lambda,\eta})$. Here, we note that $\phi_{\sigma_0,\lambda_0,\tau_0} = \phi_{\tau,\lambda,\eta}$.
- (6) For a non-zero element k in Z^n let $f(x,y) = \langle k,y \rangle$, (x,y) in $T^n \times T^n$, then we have

$$\iint |f(\phi_{\sigma,\lambda,\eta}^{j}(x,y)) - f(x,y)| dxdy = \int |\langle k, j\sigma(x) + \frac{j(j-1)}{2}\sigma(\lambda) + j\eta \rangle$$

$$-1| dx = \int |\langle j^{i}\sigma(k), x \rangle - \langle k, \frac{j(j-1)}{2}\sigma(\lambda) - j\eta \rangle | dx$$

$$>\sqrt{2} \operatorname{Prob}(|\langle j^{i}\sigma(k), x \rangle - \langle k, -\frac{j(j-1)}{2}\sigma(\lambda) - j\eta \rangle | >\sqrt{2}) = \frac{\sqrt{2}}{2}$$

if $j \neq 0$. It follows from this that $\{\phi_{\sigma,\lambda,\eta}^j; j \in Z\}$ is closed. The other parts of (5) follows from (3) and (5). q. e. d.

3. Isomorphism problem of Anzai transformations

We discuss the isomorphism problem of Anzai transformations.

LEMMA 2. Let λ be an element in T^n such that $\{1, \lambda_1, \lambda_2, \dots, \lambda_n\}$ is rationally independent. Then for an element λ' in T^n , $\{\langle k, \lambda \rangle; k \in Z^n\}$ = $\{\langle k, \lambda \rangle; k \in Z^n\}$ if and only if there exists a matrix δ in $M^1(n, Z)$ with $\lambda' = \delta \lambda$.

PROOF. If $\lambda' = \delta \lambda$ for some δ in $M^1(n, Z)$, then from $\langle k', \lambda' \rangle = \langle {}^t \delta(k'), \lambda \rangle$ for k' in Z^n we have $\{\langle k, \lambda \rangle; k \in Z^n\} = \{\langle k', \lambda' \rangle; k' \in Z^n\}$, where ${}^t \delta$ is the transposed matrix of δ . Next, assume that $\{\langle k, \lambda \rangle; k \in Z^n\} = \{\langle k', \lambda' \rangle; k' \in Z^n\}$. Then, since $\{1, \lambda_1, \lambda_2, \cdots, \lambda_n\}$ is rationally independent, for every k' in Z^n there exists a unique k in Z^n with $\langle k', \lambda' \rangle = \langle k, \lambda \rangle$. If we write $k = \rho(k')$, ρ is a homomorphism from Z^n into itself. Since for every k in Z^n there exists a k' in Z^n with $\langle k', \lambda' \rangle = \langle k, \lambda \rangle$, ρ is an automorphism of Z^n , and so, it is a matrix in $M^1(n, Z)$. Hence, put $\delta = {}^t \rho$, δ is a matrix in $M^1(n, Z)$ and $\lambda' = \delta \lambda$.

THEOREM 3. Anzai transformations $\phi_{\sigma,\lambda,\eta}$ and $\phi_{\sigma',\lambda',\eta'}$ are mutually isomorphic if and only if there exist matrices δ_0 and δ_1 in $M^1(n,Z)$ such that $\lambda' = \delta_0 \lambda$ and such that $\sigma' = \delta_1 \sigma \delta_0^{-1}$. In this case every isomorphism ψ between them has a form: $\psi(x,y) = (\delta_0(x) + u, \delta_1(y) + \tau(x) + v)$ for (x,y) in $T^n \times T^n$, where u and v are elements in T^n and τ is a matrix in M(n,Z) such that $\sigma' u = \tau \lambda + \delta_1 \eta - \eta'$.

Let δ_0 and δ_1 be matrices in $M^1(n, Z)$ such that $\lambda' = \delta_0 \lambda$ and Let u be an element in T^n with $\sigma' u = \delta_1 \eta - \eta'$, and such that $\sigma' = \delta_1 \sigma \delta_0^{-1}$. put $\psi(x,y) = (\delta_0(x) + u, \delta_1(y))$ for (x,y) in $T^n \times T^n$. Then we have $\phi \phi_{\sigma,\lambda,\eta}$ Conversly, let ψ be an isomorphism between $\phi_{\sigma,\lambda,\eta}$ and $\phi_{\sigma',\lambda',\eta'}$. Since $S_p(\phi_{\sigma,\lambda,\eta}) = S_p(\phi_{\sigma',\lambda',\eta'})$, by (2) of Theorem 1 and Lemma 2 there exists For k in Z^n set $f_k(x, y) = \langle k, x \rangle$ a matrix δ_0 in $M^1(n, Z)$ with $\lambda' = \delta_0 \lambda$. for (x,y) in $T^n \times T^n$ and $g_k(x,y) = f_k(\phi(x,y))/f_{t_{\delta_0(k)}}(x,y)$ for (x,y) in T^n Then $g_k(x,y)$ is $\phi_{\sigma,\lambda,\eta}$ -invariant, and hence it is a constant from the ergodicity of $\phi_{\sigma,\lambda,\eta}$. We write $g_k(x, y) = c_k$. Since $c_{k+k'} = c_k c_{k'}$ for k and k' in Z^n there exists an element u in T^n with $c_k = \langle k, u \rangle$ for k in Z^n . Then we have $f_k(\psi(x,y)) = \langle k, \delta_0(x) + u \rangle$ for (x,y) in $T^n \times T^n$ and k in Z^n , and hence, ψ has a form: $\psi(x, y) = (\delta_0(x) + u, \psi(x, y))$ for some $\psi(x, y)$ in T^n . Set $A(k, k', k'') = \iint \langle k, \psi(x, y) \rangle \overline{\langle k', x \rangle \langle k'', y \rangle} dxdy$ for k, k' and k'' in Z^n . Then from $\psi \phi_{\sigma,\lambda,\eta} = \phi_{\sigma',\lambda',\eta'} \psi$ we have $\psi(x+\lambda,y+\sigma(x)+\eta) = \psi(x,y) + \sigma'(\delta_{\sigma}(x)+u)$ $+\eta'$ for (x, y) in $T^n \times T^n$ and $A(k, k', k'') = \langle k, \sigma' \delta_0(\lambda) - \sigma'(u) - \eta' \rangle \langle k', \lambda \rangle \langle k'', \lambda \rangle$ $-\sigma(\lambda) + \eta > A(k, k' + t \delta_0 t \sigma'(k) - t \sigma(k''), k'')$ for k, k' and k'' in \mathbb{Z}^n . If $t \delta_0 t \sigma'(k) - t \sigma(k'')$ $\neq 0$, then since $|A(k, k', k'')| = |A(k, k' + j({}^t\delta_0{}^t\sigma'(k) - {}^t\sigma(k'')), k'')|$ for all j in Z^n we have $\sum_{i=1}^{\infty} |A((k, k'+j({}^t\delta_0{}^t\sigma'(k)-{}^t\sigma(k''), k''))|^2 = \sum_{i=1}^{\infty} |A(k, k', k'')|^2 < \infty$, and so,

A(k, k', k'') = 0.Therefore, it follows that ${}^t\delta_0{}^t\sigma'(k) = {}^t\sigma(k'')$ if $A(k, k', k'') \neq 0$ for some k' in Z^n . Since for every k in Z^n there exists a (k', k'') in $Z^n \times Z^n$ with $A(k, k', k'') \neq 0$, $({}^t\sigma)^{-1t} \delta_0{}^t\sigma'(k)$ takes a value in Z^n for all k in Z^n . Therefore, $\sigma' \delta_0 \sigma^{-1}$ is a matrix in M(n, Z), which we denote by δ_1 , and for each k in Z^n there exists a k' in Z^n with $A(k, k', {}^t\delta_1(k)) \neq 0$. satisfies $\langle k, \delta_1(\eta) - \sigma'(u) - \eta' \rangle \langle k', \lambda \rangle = 1$. From this k' is uniquely determined since $\{1, \lambda_1, \lambda_2, \dots, \lambda_n\}$ is rationally independent. Let t_{τ} be the matrix in $M(n, Z): k \in \mathbb{Z}^n \longrightarrow k' \in \mathbb{Z}^n$. Then we have $\tau(\lambda) = \sigma'(u) - \delta_1(\eta) + \eta'$. Taking the Fourier inverse transform we have $\langle k, \psi(x, y) \rangle = A(k, {}^t\tau(k), {}^t\delta_1(k)) \langle k, \tau(x) \rangle$ $\times < k, \delta_1(y) > \text{ for } (x, y) \text{ in } T^n \times T^n \text{ and } k \text{ in } Z^n, \text{ and it follows from this that}$ there exists an element v in T^n such that $\psi(x,y) = \delta_1(y) + \tau(x) + v$ for (x,y) in $T^n \times T^n$. Thus, we obtain $\psi(x, y) = (\delta_0(x) + u, \delta_1(y) + \tau(x) + v)$ for (x, y) in $T^n \times T^n$. q. e. d.

REMARK 1. In the same way as for the proof of Theorem 3 one can obtain the following coboundary condition for an Anzai transformation $\phi_{\sigma,\lambda,\eta}$: Let σ' be a matrix in M(n,Z) and u an element in T^n . Then there exists a measurable T^n -valued function f(x,y) on $T^n \times T^n$ such that $\sigma'(x) + u = f(\phi_{\sigma,\lambda,\eta}(x,y)) - f(x,y)$ for (x,y) in $T^n \times T^n$ if and only if there exist matrices δ and τ in M(n,Z) such that $\sigma' = \delta \sigma$ and such that $u = \tau \lambda + \delta \eta$. In this case $f(x,y) = \tau x + \delta y + v$ for (x,y) in $T^n \times T^n$, for some v in T^n .

REMARK 2. A shorter proof of Theorem 3 and a computation of centralizers of Anzai transformations can be also given by using the result of W. Parry [10] which says any isomorphism between unipotent affine transformations of nilmanifolds is necessarily affine.

THEOREM 4. Let $\phi_{\sigma,\lambda,\eta}$ and $\phi_{\sigma',\lambda',\eta'}$ be Anzai transformations. Then $S_p(\phi_{\sigma,\lambda,\eta}) = S_p(\phi_{\sigma',\lambda',\eta'})$ and $\{S_p(U); U \in C(\phi_{\sigma,\lambda,\eta}) \text{ is ergodic}\} = \{S_p(U'); U' \in C(\phi_{\sigma',\lambda',\eta'}) \text{ is ergodic}\}\$ if and only if there exist matrices δ_0, δ_1 and δ_2 in $M^1(n,Z)$ such that $\lambda' = \delta_0 \lambda$ and such that $\sigma' = \delta_1 \sigma \delta_2^{-1}$.

PROOF. Assume that $S_p(\phi_{\sigma,\lambda,\eta}) = S_p(\phi_{\sigma',\lambda',\eta'})$ and that $\{S_p(U); U \in C(\phi_{\sigma,\lambda,\eta}) \text{ is ergodic}\} = \{S_p(U'); U' \in C(\phi_{\sigma',\lambda',\eta'}) \text{ is ergodic}\}$. Applying (2) of Theorem 1 and Lemma 2 to the assumption $S_p(\phi_{\sigma,\lambda,\eta}) = S_p(\phi_{\sigma',\lambda',\eta'})$ we have a matrix δ_0 in $M^1(n,Z)$ such that $\lambda' = \delta_0 \lambda$. Since $\phi_{E,\sigma^{-1}(\lambda),0}$ is in $C(\phi_{\sigma,\lambda,\eta})$

and ergodic, where E is the unit matrix, by the other assumption we take an ergodiic $\phi_{\tau',\alpha',0}$ in $C(\phi_{\sigma',\lambda',\eta'})$ such that $S_p(\phi_{E,\sigma^{-1}(\lambda),0}) = S_p(\phi_{\tau',\alpha',0})$. same way as above we have a matrix δ_2 in $M^1(n, z)$ with $\alpha' = \delta_2 \sigma^{-1} \lambda$. Since $\sigma'\alpha'=\tau'\lambda'$ by (3), we have $\sigma'\delta_2\sigma^{-1}\lambda=\sigma'\alpha'=\tau'\lambda'=\tau'\delta_0\lambda$, from which we have $\sigma' \delta_2 \sigma^{-1} = \tau' \delta_0$, since $\{1, \lambda_1, \lambda_2, \dots, \lambda_n\}$ is rationally independent. Replacing σ , λ and η by σ' , λ' and η' respectively we have a matrix δ_3 in $M^1(n, \mathbb{Z})$ such that $\sigma \delta_3 \sigma'^{-1} = \tau \delta_0^{-1}. \quad \text{Since } |\tau \tau'| = |\sigma \delta_3 \sigma'^{-1} \delta_0 \sigma' \delta_2 \sigma^{-1} \delta_0^{-1}| = |\sigma \delta_3 \sigma'^{-1}| |\sigma' \delta_2 \sigma^{-1}| = |\sigma \delta_3| |\delta_2 \sigma^{-1}|$ $= |\sigma| |\sigma^{-1}| = 1$, τ and τ' are in $M^1(n, Z)$. Put $\delta_1 = \tau' \delta_0$ then δ_1 is in $M^1(n, Z)$ Conversely, assume $\lambda' = \delta_0 \lambda$ and $\sigma' = \delta_1 \sigma \delta_2^{-1}$ for and we have $\sigma' = \delta_1 \sigma \delta_2^{-1}$. matrices δ_1 and δ_2 in $M^1(n, Z)$. Then by Theorem 3 $\phi_{\sigma', \lambda', \eta'}$ and $\phi_{\sigma, \delta_2^{-1} \delta_0(\lambda), \eta}$ are mutually isomorphic, and so, it is enough to show that $\{S_p(U); U\}$ $\in C(\phi_{\delta,\lambda,\eta})$ is ergodic} = $\{S_p(U'); U' \in C(\phi_{\sigma,\delta_2^{-1}\delta_0(\lambda),\eta}) \text{ is ergodic}\}.$ Let $\phi_{\tau,\alpha,\beta}$ be an Anzai transformation in $C(\phi_{\sigma,\delta_2^{-1}\delta_0(\lambda),\eta})$, then $\phi_{\tau\delta_0^{-1}\delta_2,\alpha,0}$ is an Anzai transformation in $C(\phi_{\sigma,\delta_2^{-1}\delta_0(\lambda),\eta})$ since $\sigma(\alpha) = \tau \delta_0^{-1}\delta_2\delta_2^{-1}\delta_0(\lambda)$. It is obvious that $S_p(\phi_{\tau,\alpha,\beta}) = S_p(\phi_{\tau\delta_0^{-1}\delta_2,\alpha,0}) = \{\langle k,\alpha \rangle; k \in \mathbb{Z}^n\}.$ In the same way as above one can get for an ergodic U' in $C(\phi_{\sigma,\delta_2^{-1}\delta_0(\lambda),\eta})$ an ergodic U in $C(\phi_{\sigma,\lambda,\eta})$ such that $S_p(U') = S_p(U)$. q. e. d.

Since $M^1(1, \mathbb{Z}) = \{1, -1\}$, by Theorem 3 and Theorem 4 we have the following Corollary.

COROLLARY 5. The pair $(S_p(T), \{S_p(U); U \text{ in } C(T) \text{ is ergodic}\})$ is a complete invariant for isomorphism of the 1-dimensional Anzai transformations.

4. A new equivalence relation

Ergodic measure preserving transformations T and T' of Lebesgue spaces $(\mathfrak{Q}, \mathscr{F}, P)$, $P(\mathfrak{Q}) = 1$ and $(\mathfrak{Q}', \mathscr{F}', P')$, $P'(\mathfrak{Q}') = 1$ respectively, are said to be C-connected by n-steps if the there exists a finite sequence $U_0, U_1, \dots U_n$ of ergodic measure preserving transformations of a Lebesgue space $(\mathfrak{Q}_0, \mathscr{F}_0, P_0)$, $P_0(\mathfrak{Q}_0) = 1$ such that $U_{i-1}U_i = U_iU_{i-1}$ for $i = 1, 2, \dots, n$, such that U_0 is isomorphic to T, and such that U_n is isomorphic to T'. Ergodic measure preserving transformations T and T' are said to be C-equivalent if they are C-connected by finite steps. C-equivalence satisfies the equivalence relation. A C-equivalence class is said to have index n if all transformations

in the class are mutually C-connected by n steps and if there are transformations in the class which are not mutually C-connected by n-1 steps.

THEOREM 6. If ergodic measure preserving transformations T and T' are mutually C-equivalent, then $S_p(T)$ and $S_p(T')$ are mutually isomorphic as groups.

PROOF. It follows from Proposition 2 of [5] that if ergodic measure preserving transformations T and T' satisfy TT'=T'T, then $S_p(T)$ and $S_p(T')$ are mutually isomorphic as groups. From this we obtain the theorem.

THEOREM 7. (1) The set of all pure point spectrum transformations whose point spectra are mutually isomorphic as a group is a C-equivalence class with index 1.

- (2) For an irrational number λ , the set of all 1-dimensional Anzai transformations $\phi_{n,\eta,(\lambda+q),\eta}$, η in Z, q in $Q=\{rational\ numbers\}$, η in R, is a C-equivalence class with index 2.
- (3) All Bernoulli transformations with finite entropy are mutually C-equivalent.
- PROOF. (1) If an ergodic measure preserving transformation T has pure point spectrum and if the spectrum $S_p(T)$ is isomorphic to a countable subgroup Γ of the 1-dimensional torus, by a theorm of Halmos-von Neumann [4] it is isomorphic to a translation on the character group $\hat{\Gamma}$ of Γ . Hence, (1) follows from that all translations on the character group $\hat{\Gamma}$ com-

mute with each other.

- (2) let $n_i \in \mathbb{Z}$, $q_i \in \mathbb{Q}$ and $\eta_i \in \mathbb{R}$ for i=1,2. Take m, r_1 and r_2 in \mathbb{Z} such that $m(q_1-q_2)=r_1/n_1-r_2/n_2$, and put $q=q_1-r_1/n_1m_1=q_2-r_2/n_2m_2$. Then by (3) of Theorem 1 both $\phi_{n_1,n_1(\lambda+q_1),\eta_1}$ and $\phi_{n_2,n_2(\lambda+q_2),\eta_2}$ commute with $\phi_{m,m(\lambda+q),\sigma}$ and hence, are mutually C-connected by 2 steps. Let $\phi_{m,a,\beta}$ be an Anzai transformation in $C(\phi_{2,2\lambda,0})$. Then $m\times 2\lambda=2\alpha \mod 1$ implies $\alpha=m\lambda$ or $\alpha=m\lambda+1/2$, and hence, $S_p(\phi_{m,a,\beta})=\{\exp 2\pi ikm\lambda;k\in\mathbb{Z}\}$ or $\{\exp 2\pi ik(m\lambda+1/2);k\in\mathbb{Z}\}$ for some integer m. Since $S_p(\phi_1,\lambda+1/2,0)=\{\exp 2\pi ik(\lambda+1/3);k\in\mathbb{Z}\}$, $\phi_1,\lambda+1/2,0$ and $\phi_2,\lambda+1/2,0$ are not mutually C-connected by 1-step.
 - (3) follows from the fact that Bernoulli transformation with same en-

tropy are mutually isomorphic and from the existence of a Bernoulli flow [7] [8].

References

- [1] L.M. ABLAMOV: Metric automorphism with quasi-discrete spectrum, Izv. Akad. Nauk SSSR 26 (1962), 513-530. (A.M.S. Translations, Ser. II 39 (1964), 37-56.)
- [2] H. ANZAI: Ergodic skew product transformations on the torus, Osaka Math. J. (1951), 83-89.
- [3] F. HAHN and W. PARRY: Minimal dynamical systems with quasidiscrete spectrum, J. of London Math. Soc. 40 (1965), 309-323.
- [4] P.R. HALMOS and J. von NEUMANN: Operator methods in classical mechanics II, Ann. of Math. 43 (1942), 332-350.
- [5] T. HAMACHI: The normalizer group of an ergodic automorphism of type III and the commutant of an ergodic flow, J. Functional Analysis 40 (1981), 387-403.
- [6] D. Ornstein: On the root problem in ergodic theory, Proc. of 6th Berkeley Symposium Math. Statist. Probability 2 (1972), 347-356.
- [7] D. Ornstein: Bernoulli shifts with same entropy are isomorphic, Advances Math. 4 (1970), 337-352.
- [8] D. Ornstein: Imbedding Bernoulli shifts in flows, Lecture notes in Math. Springer-Verlag 160 (1970), 178-218.
- [9] M. OSIKAWA: Centralizer of an ergodic measure preserving transformation, Publ. RIMS, Kyoto Univ. 18 (1982), 35-48.
- [10] W. PARRY: Metric classification of ergodic nilflows and unipotent affines, Amer. J. Math. 93 (1971), 819-828.
- [11] D. RUDOLF: The second centralizer of a Bernoulli shift is just its power, Israel J. Math. 29 (1978), 167-178.