Generalized Boolean-like rings

矢ヶ部, 巌
九州大学教養部数学教室

Yakabe, Iwao
Department of Mathematics, College of General Education, Kyushu University

https://doi.org/10.15017/1449033
Generalized Boolean-like rings

Iwao Yakabe
(Received September 4, 1982)

1. Introduction

In this paper we introduce the concept of generalized Boolean-like rings which is a generalization of the concept of Boolean-like rings. It is the purpose of this paper to initiate a study of generalized Boolean-like rings.

Boolean-like rings were introduced by A.L. Foster in [2]. Many properties of these rings have been studied (also see [3], [5], [6], [7] and [8]). The following properties of Boolean-like rings are well known:

(a) Each element is weakly idempotent;
(b) The nilpotent elements form an ideal;
(c) The idempotent elements form a subring;
(d) Each element can be uniquely written as the sum of an idempotent element and a nilpotent element.

Now, in Section 2, we introduce generalized Boolean-like rings and give an example of a generalized Boolean-like ring which is noncommutative.

In Section 3 and Section 4, we extend the above properties (a) and (b) to generalized Boolean-like rings.

In generalized Boolean-like rings, the properties (c) and (d) do not hold in general. We characterize generalized Boolean-like rings with the property (c) or (d) in Section 5 and Section 6, respectively.

2. Definition and example

A Boolean-like ring introduced by Foster [2] is a commutative ring with identity of characteristic 2 in which \((1-a)a(1-b)b=0\) holds for all elements \(a, b\) of the ring. Omitting the commutativity and the existence of identity in Boolean-like rings, we get the following concept:

A ring \(R\) is called a generalized Boolean-like ring if \(R\) is of characteristic 2 and \((a-a^2)(b-b^2)=0\) holds for all \(a, b\) of \(R\).

Every Boolean ring is a generalized Boolean-like ring. Of course,
every Boolean-like ring is a generalized Boolean-like ring. These rings are commutative. We have noncommutative one as follows:

Let B be a Boolean ring with identity, M a unitary left B-module and $S=B\oplus M$ the direct sum of B, M as additive groups. Define a multiplication in S by

$$(a, \alpha)(b, \beta) = (ab, a\beta)$$

for all a, b of B and α, β of M. Then S is a generalized Boolean-like ring, and S is commutative if and only if $M=\{0\}$.

In fact, it can be easily seen that S is a ring. Also

$$(a, \alpha) + (a, \alpha) = (a+a, \alpha+\alpha) = (0, 0),$$

for $a+a=(1+1)a=0a=0$. Further

$$\{(a, \alpha) - (a, \alpha)^2\} \{b, \beta\} = \{b, \beta\} - (a, \alpha)\{a, \alpha\},$$

$$= (0, \alpha-\alpha\alpha)(0, \beta-\beta\beta) = (0, 0),$$

which imply that S is a generalized Boolean-like ring.

Finally, if $M\neq\{0\}$, then there exists an element $\alpha\neq0$ in M, and we have

$$(1, 0)(0, \alpha) = (0, \alpha) \neq (0, 0),$$

and

$$(0, \alpha)(1, 0) = (0, 0),$$

which imply that S is noncommutative.

3. Weak idempotency

We recall that each element of a Boolean-like ring is weakly idempotent. This is extended to generalized Boolean-like rings. Namely, we have

Theorem 1. Each element a of a generalized Boolean-like ring satisfies

$$a^4 = a^2.$$

Proof. This follows from the expansion of $(a-a^2)^2$, for the characteristic of a generalized Boolean-like ring is 2, and $(a-a^2)^2=0$.

From this we immediately have
COROLLARY. For each element \(a \) of a generalized Boolean-like ring, and for all nonnegative integer \(n \)
\[
a^{n+4} = a^{n+2}.
\]

That is, there are at most 3 powers \(a, a^2, a^3 \) of \(a \) which are distinct.

4. Nilpotency

We recall that, in a Boolean-like ring \(H \), the set \(N \) of all nilpotent elements of \(H \) is an ideal of \(H \), and that the factor ring \(H/N \) is a Boolean ring.

In this section, we show that these properties can be extended to generalized Boolean-like rings. To do so we need a preliminary result.

Lemma 1. In a generalized Boolean-like ring, an element \(a \) is nilpotent only if \(a^2 = 0 \).

Proof. If \(a \) is nilpotent, then the least integer \(n \) such that \(a^n = 0 \) must either be 1, 2 or 3 by the corollary to Theorem 1. But \(n \neq 3 \), for \(a^3 = 0 \) implies \(a^2 (= a^4) = 0 \) by Theorem 1, and 3 would not be least. Hence if \(a \neq 0 \), then \(n = 2 \), and in any case \(a^2 = 0 \).

Lemma 2. Let \(R \) be a generalized Boolean-like ring and \(N \) the set of all nilpotent elements of \(R \). Then
\[
N = \{a - a^2 | a \in R \}.
\]

Proof. We have \((a - a^2)^2 = 0 \) by definition of generalized Boolean-like ring, whence \(a - a^2 \) is nilpotent.

Conversely if \(b \) is nilpotent, then \(b^2 = 0 \) by Lemma 1. Hence \(b = b - b^2 \), which completes the proof.

We have the immediate corollary, which is not needed in the sequel.

Corollary. A generalized Boolean-like ring is Boolean if and only if 0 is its sole nilpotent element.
LEMMA 3. In a generalized Boolean-like ring, if \(a, b \) are any nilpotent elements, then \(ab=0 \).

PROOF. This is an immediate consequence of Lemma 2 and the definition of a generalized Boolean-like ring.

We now are able to show

THEOREM 2. Let \(R \) be a generalized Boolean-like ring and \(N \) the set of all nilpotent elements of \(R \). Then

1. \(N \) is an ideal of \(R \);
2. \(R/N \) is a Boolean ring.

PROOF. (1): Since \(R \) is periodic by Theorem 1, and since nilpotent elements of \(R \) commute with each other by Lemma 3, this follows from Theorem 4.3 in [1]; however, the full complexity of the proofs in [1] is not required here, so we include a more elementary proof.

For any element \(a, b \) of \(N \), we have
\[
(a-b)^2 = 0,
\]
by Lemma 1 and Lemma 3.

For any element \(a \) of \(N \) and \(r \) of \(R \), \(e=(ar)^2 \) is idempotent by Theorem 1, and therefore \(re-e-re \) is nilpotent. Hence we have
\[
a(re-e-re)=0,
\]
by Lemma 3; that is, \((ar)^3=0 \), so we have
\[
(ar)^2=(ar)^4=0.
\]
Since \(a \) and \(ar \) are nilpotent, we have \(a(ra)=0 \) by Lemma 3, so \((ra)^2=0 \) as well.

(2): For any element \(r \) of \(R \), \(r-r^2 \) is nilpotent by Lemma 2.

Hence we have
\[
r^2=r \ (N),
\]
which implies that the factor ring \(R/N \) is Boolean.

5. Idempotency

We recall that, in a Boolean-like ring, the idempotent elements form its subring. However, in the case of generalized Boolean-like rings, this
does not hold in general.

For instance, in the generalized Boolean-like ring \(S \) constructed in Section 2, if \(M \neq \{0\} \), then there exists an element \(\alpha \neq 0 \) in \(M \). Then \((1, \alpha), (1, 0)\) are idempotent, but \((1, \alpha) - (1, 0)\) is not idempotent, for \((1, \alpha) - (1, 0) = (0, \alpha)\) and \((0, \alpha)^2 = (0, 0) \neq (0, \alpha)\).

In this section, we characterize generalized Boolean-like rings in which the idempotent elements form a subring. We begin with the following lemmata.

Lemma 4. Let \(R \) be a generalized Boolean-like ring and \(J \) the set of all idempotent elements of \(R \). Then
\[
J = \{a^2 \mid a \in R\}.
\]

Proof. For any element \(a \) of \(R \), \(a^2 \) is idempotent by Theorem 1. Conversely if \(b \) is idempotent, then \(b = b^2 \).

Lemma 5. In a generalized Boolean-like ring \(R \), each element can be written as the sum of an idempotent element and a nilpotent element.

Proof. For any element \(a \) of \(R \), we have
\[
a = a^2 + (a - a^2),
\]
which is a demanded decomposition by Lemma 2 and Lemma 4.

We now have

Theorem 3. Let \(R \) be a generalized Boolean-like ring, \(J \) the set of all idempotent elements of \(R \) and \(N \) the set of all nilpotent elements of \(R \). Then the following conditions are equivalent:

1. \(J \) is a subring of \(R \);
2. Each element of \(J \) commutes with each element of \(N \);
3. \(N \) is contained in the center of \(R \);
4. \(R \) is commutative.

Proof. \((1) \Rightarrow (2)\): For any element \(a \) of \(J \) and \(b \) of \(N \), we have
\[
(a + b)^2 = a + ab + ba,
\]
where \((a+b)^2\) and \(a\) are elements of \(J\). Hence \(ab+ba\) is an element of \(J\), for \(J\) is a subring of \(R\). On the other hand, \(ab+ba\) is an element of \(N\) by Theorem 2. Therefore
\[ab+ba \in J \cap N = \{0\},\]
which implies \(ab=ba\), for \(R\) is of characteristic 2.

(2) \(\Rightarrow\) (3): For any element \(x\) of \(R\), by Lemma 5 we can write
\[x = a + b,\]
with some \(a\) of \(J\) and \(b\) of \(N\). Then, for any element \(c\) of \(N\), we have
\[cx = ca + cb = ac + bc = xc.\]

(3) \(\Rightarrow\) (4): \(R\) is periodic, and \(N\) is contained in the center of \(R\). Then this follows from Herstein's result in [4].

(4) \(\Rightarrow\) (1): This is easily seen.

6. Uniqueness of additive decomposition

We recall that, in a Boolean-like ring, each additive decomposition mentioned in Lemma 5 is unique. However, in the case of generalized Boolean-like ring, this does not hold in general.

For instance, in the generalized Boolean-like ring \(S\) constructed in Section 2, if \(M \neq \{0\}\), then there exists an element \(a \neq 0\) in \(M\). Then \((1, a)\) can be written in two ways as follows:
\[(1, a) = (1, 0) + (0, a) = (1, a) + (0, 0),\]
where \((1, 0), (1, a)\) are idempotent, and \((0, a), (0, 0)\) are nilpotent.

In this section, we characterize generalized Boolean-like rings in which each additive decomposition is unique. We begin with

Lemma 6. Suppose that each element of a generalized Boolean-like ring \(R\) can be uniquely written as the sum of an idempotent element and a nilpotent element.

If \(a, b\) are idempotent elements of \(R\) and \(a-b\) is a nilpotent element of \(R\), then \(a=b\).

Proof. Put \(a-b=c\), then we have
\[a = a + 0 = b + c,\]
where \(a, b\) are idempotent, and \(0, c\) are nilpotent. Hence the assumption shows that \(a=b\) and \(c=0\).
We now are able to show

Theorem 4. Let R be a generalized Boolean-like ring, J the set of all idempotent elements of R and N the set of all nilpotent elements of R.

Then each element of R can be uniquely written as the sum of an idempotent element and a nilpotent if and only if R is commutative.

Proof. Necessity: For any element a of J and b of N, we have

$$(a+b)^2 = a + ab + ba,$$

where $(a+b)^2$, a are elements of J and $ab+ba$ is an element of N. Hence Lemma 6 shows that $ab+ba=0$. Therefore we have $ab=ba$.

Since each element of J commutes with each element of N, Theorem 3 shows that R is commutative.

Sufficience: If

$$a+b=a'+b' \ (a, a' \in J, b, b' \in N),$$

then $a+a'=b+b'$. By Theorem 3 and Lemma 1 together with Theorem 2, we have

$$(a+a')^2 = a + a' = (b+b')^2 = 0,$$

which implies that $a=a'$, and therefore $b=b'$.

References