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1. Notations and preliminaries 

   Let us consider the linear regression model

 y=X0+e, (1.1)

where y=t(y1f y2, ......, yn) is an observed vector, xi=t(xi1, xi2f ......, xi,,,), i= 

1, 2, ......, n, is an observation point, X = t (x1f x2, ......, xn) is a design matrix, 

6=t(01, 02, ......, Om) is a vector of unknown parameters and e= t (el, e2, ......, en) 

is an error vector which has mean vector 0 and variance-covariance matrix 

IO2.62 is unknown and In is the identity matrix of degree n. 

   Any observation point xi, i=1, 2, ......, n, is chosen from a compact subset 

of Rm. A set of observation points Dn= {x1, x2, ......, xn} is called an n-points 

design. 

          A 

   LetODn be the least squares estimator of 9 using a design Dn with des-

ign matrix X, we assume that 6 is estimable by Dn, then 

    bp?, = (tXX)-1tXy (1.2) 
     Al 

    V(;Dn)=62(tXX)-1. (1.3) 

                                                  A Furthermore, the least squares estimatorrDn of linear combination of unknown 

parameters r=tbd and its variance are given by 
    AA 

   rADn= tbBDn (1. 4) 

      V (;Dn) =62•tb(tXX) -1b. (1.5) 
  AA 

   If V(rDn)~V(rDn') holds for any linear combination r of parameters, we 

say that the n-points design Dn is better than the design Dn', or that Dn is 

an improvement of Dn' and write Dn 2- Dn'. 

   A proper subset C of n-points designs is called an essentially complete



class if for any n-points design  Dn' in the complement of C there exists some 

design Dn in C which is better than Dn'. If any design in C has not its 

improvement, C is called the minimal essentially complete class. 

   Put MDn = tXX, which we call the information matrix of a design D. 

   We can see the following lemma immediately. 

   LEMMA 1 (Ehrenfeld [1]). A necessary and sufficient condition for Dn 

being better than Dn' is that the difference MDn—MDn' of the information 

matrices of designs Dn and Dn' is nonnegative definite.

2. The minimal essentially complete class of symmtric designs with one 

   factor 

   Let us consider the following regression model in this section. 

y=XB+e,(2.1) 

where X= t (x1i x2, ......, xn) and 

xi=t(1, xi, xi, ......, x7), i=1, 2, ......, n. (2.2) 

Then we have the information matrix MDn of the design Dn= {x1, x2, ......, xn}, 

which is symmetric,

MDn= n Ex, Exi Jxt......Eel 

Exf Ex? Jxt......jx7+1 

Ext Ex?...... Eft" 

                  • • 

                      Ez                               xmt

(2.3)

   We rewrite Dn= 41i x2, ......, xn} by Dn= 1x1, x2, ......, xn} and call xi, 1=1, 2, ......

, n, an observation point, also. 

   Without loss of generality, we can assume that any observation point is 

chosen from [-1,1]. 

   Now, let A5 = Ex{ and A,' = jx t'f, j=1, 2, ......, 2m, for designs D.= {x1, 

x2i ......, xn} and Dn' ={x1', x2', ......, xn'}, respectively. Then the difference of 

the information matrices is



 MD„—MDn'='0 21-21' 22-22'......A
7m-Am'                    /12—A2'

]23-23'/~m+1-1m'+1                         A
424'......Am+22m'+2 

                                                                                     • • 

                              •
22m• 22m'

(2.4)

   Noting that the (1, 1) element of the above matrix is zero, and from 

lemma 1 we can understand the following lemma. 

  LEMMA 2 (Kiefer and Wolfowitz [2]). A design Dn is better than Du' 

if and only if the following conditions hold. 

       (i) ,lf=2/, j=1, 2, ......, 2m-1,(2. 5) 

and (ii) 2297%A'2m.•(2.6)

x1, X2, , xp, X, 
   A design D,„is written occasionally as D„,=or ,i=1, 2, 

ni n2.........n1, ni 

......, p where Eni = n. That means the observation point xi is observed n,; 

times, i=1, 2, ......, p.

  THEOREM 1 (Ishii G., et al. [3]). An essentially complete class of 

designs on the regression curve (2. 1) is constructed by designs of the fol-

lowing type Dn.

      xi 
Dn= ,    i=1,2, ......, 2m+1(2.7) 

      ni

where x1= —1<x2<......<x2,n<x2m+1=1, Ejni= n, n2i takes its value only 0 or 

1,i=1,2, ......,m. 

DEFINITION 1. A design is symmetric if an observation point x is 

observed nx times, then the observation point —x is observed n,; times in 

D. 

   Therefore, if Dn is symmetric then 22f+1=4, j=1, 2, ....... From the theorem 

1, for m=2, the quadratic regression problem, any admissible design has at 

most three observation points in (-1,1) and if we restrict on symmetric 

designs, then one of them is zero.

THEREM 2. For the quadratic regression problem the class of designs



of the type

 —1, —x, 0, x, 1 D
„= 

 n1 1 n2 1 n1
(2. 8)

where xE[0,1), 2n1+n2+2=n, consists the minimal essentially complete 

class in the class of symmetric designs. 

   PROOF. Let D„'= {x1', x2', ......, x„'} be any symmetric n point design . 
We attempt to improve D.'. By lemma 2, if there exist integers n1, n2 and 

xE [0,1) such that 

  (i) n1+x2=Exi'2/2(=22'/2),(2.9) 

and 

  (ii) n1+x4> xi2F/2(=24'/2)(2. 10) 

then D„ 

   Let us consider a maximizing problem: Maximize Eaf, where A= {a= 
aEA

(a,) I Jai = a and 0Cai<1, i=1, 2, ......, n} . Since A is a convex closed set 

in the positive orthant and Ea i is the square of length of a, Ea; takes 

its maximum at the boundary of A. The longest distance from the origin 

to the boundary of i-dimensional cube is 1/ i _, thus if iCa<i + 1 then the 

farthest points of A from the origin are the cross points of edges of (i+1)-

dimensional cube and the hyperplane Eaz=a. One of those points is a= 

(1, ......, 1, N/a — i, 0, ......, 0) and others are the vectors whose components, 

i 1n-1—i 

consist of permutations of components of a. 

   Now put a=A2'/2, then a= a,......,1, x, 0, ......, 0), where n1=[22'/2]([ ] 

ni 1 n-1—nl 

means the Gauss notation) and x=4/,l2/2_i , is a solution of the maximizing 

problem. Therefore, by using those n1 and x we know that D„ is better 
than D„' and can not be improved by any design because of its maximality.

3. The minimal essentially complete class of symmeteric designs with two 

   factors on the quadratic response surface 

   Let us consider the following regression model in this section. 

y=XB+e(3.1)



where  X=  t  (x1i x2f ......, x,) and 

xt=1(1, x11, x2$, xlt, x2i, x1 x2ti), i=1, 2, ......, n.(3.2) 

   Similarly to the section 2, we write Dn = { (x14, x24), i =1, 2, ......, n} or

     (x11, x2i) D
n = , i=1, 2, ......, p where Enz = n. 

n,

   We give two meanings to the notion of symmetricity of designs : 

(a) symmetric at the origin for any factor, 

and 

(b) symmetric between two factors. 

   DEFINITION 2. Dn is a symmetric design if the followings hold. 

   (i) If (x1, x2) E Dn, then (1 xi, +x2) E Dn, 

and 

   (ii) if (x1, x2), x1 - x2, is observed i times, then (x2, x1) is also observed 

i times. 

   The information matrix of a symmetric design Dn = { (xlt, x2i), i=1, 

2, ......, n} is

Mnn=/ n 0 0 22 22 0 

A2 0 0 0 0 

         22 0 0 0 

                 14 22,2 0 

A4 0 

                               12,2

(3.3)

where A2,2=~xizxZ1• 

  THEOREM 3. The class of designs of the type

    (11, *1), (Ix, Ix), (11, 0), (0, 11), (0, 0) 
D„= 

n1 1 n2 n2 n3
(3.4)

where 0<x, y<1 and 4(n1+n2)+8+n3=n, consists the minimal essentially 

complete class in the class of symmetric designs. 

   The proof is from the next four lemmas. 

   LEMMA 3. A design Dn= {(x1,, x23} is better than Dn'_ {(xi;, x24)} if 

and only if



 (i)  22=22',(3.5) 

(1i)(3.6) 
and 

 (iii) 24-22,2%24'-2'2,2(3.7) 

hold, where 2(2 =Exf i 2, A'? j=1, 2, and 22;1 =Ex`i a2x`z a2. 

   PROOF. The difference of the information matrices of Dn and D,,,' is

MD,-MD..'=/ 0 0 0 22-22' 22-22' 0 \ 

22-22' 0 0 00 

22-22' 0 00 

24-24' 22,2-2'2,2 0 (3.8) 

24-24' 0 
\22,2-2'2,2 /

That MDn-M'Du is nonnegative definite implies conditions (3.5), (3.6) and 

(3.7) .

   LEMMA 4. Any design of the type 

D'=Do U {(=i=xi, 1x2), (.J:x2i 1x1)}, 0<x1 x2<1, (3. 9) 

can be improved by a design 

D= Do U { (i u, _i: u), (J-v, 0), (0, Iv)} (3.10) 

for some u and v, 0=u, v<1, where Do is any design. 

   PROOF. We shall show the existence of u and v, 0- u, v<1, that satisfy 

(3.5), (3.6) and (3.7) . Since the design Do is included in both D and D', 

we can omit the contributions of Do to those conditions. Conditions are 

reduced to 

( i) 4u2+2v2= (xi +x2) =8A(say)(3.11) 

  (ii) 4u4 %16x1x3 =8B2(say)(3. 12) 
and 

 (iii) 2v4% 8(A2-4B2).(3.13) 

Substituting u2%-2B (from (3. 10)) to (3. 9), we get 

v2`4A-2N/ 2 B.(3.14) 

By straightfoward calculation, we get that 4A-2,/-273�2N/A2— 4B2. Thus, 

from (3. 11) and (3. 12) the existence of u and v is assured.



   Note that the existence of u and v is not unique. 

   LEMMA 5. Any design of the type 

 D'=DoU {(1- xi, +x1), i=1, 2, ......, m}(3.15) 

can be improved by

       (+1, +1), (1-u, +u), (0,0) 
D=DoU(3.16) 

      m'1 4(m—m'-1)

for some integer m' and uE [0, 1). 

   PROOF. The conditions (3.5), (3.6) and (3.7) become 

 (i) m'+u2=Exi,(3.17) 

 (ii) m'+ u4> x t(3.18) 

and 

 (iii) 0%0.(3.19)

(3.19) is trivial. Conditions (3.17) and (3.18) are satisfied by choosing 

m'=[Ex!i, u=8/Ex —m'. That appeared in the proof of theorem 2.

   LEMMA 6. Any design of the type 

D'=DoU {(1-xti, 0), (0, +xti), i=1, 2, ......, m}, 0<xi<1, (3.20) 

can be improved by

       ( J-1,  0), (0, + 1), (+ u, 0), (0, _I : u), (0, 0) 
D=D0U(3.21) 

      m' m' 1 1 4(m —m'--1)

for some integer m' and uE[0,1). 

   PROOF. The conditions (3.5), (3.6) and (3.7) are reduced to 

 (i) m'+u2=Exi(3.22) 

(ii) 00(3.23) 

and 

(iii) m'+(3.24) 

Those are the same conditions of above lemma. 

   Any design which is not of the type of (3.4) can be improved and there 

is not other design which is better than a design of the type (3.4) because 

of their construction of improvement. Thus theorem 3 is proved.



4. The minimal essentially complete class of symmetric designs with k 

   factors

   We consider the following regression model in this section. 

 y=XB+e,(4.1) 

where X = t (xi, x2f ......, x,z) and 

t(1 , xli, x21,, xki, xli, ......, xki, xlix2i.,, xk-lixki), (4.2) 

i=1,2, ......,n. 

   We write an n point design as D.= { (x1i, x21,, xki), i =1, 2, ......, n} or 

(x1i, x21,......, xki) D
„=, i= 1,  2, ......, p where Eni = n. 

            ni 

   Let symmetric designs have the properties (a) and (b). 

   DEFINTION 3. A design Dn is symmetric if the followings hold. 

   (i) If (x1, x2, ......, xk) E Df, then (+ x1, + x2, ......, + xk) E Df, 
and 

   (ii) if (x1, x2f ......, xk) E Dn, then (ax1, ax2, ......, axk) E Dn, where(axl, 

ax2, ......, cxk) is any permutation of (x1, x2, ......, xk) . 

   The information matrix of a symmetric design D. is

Mvn= n 
022 22. • .24(4.3) 

              22 
• 

   •00 
                22 

                          22 22,2 • • 22,2 

      240 
22,2 

• -
4 

22,2 
                             • 0 

• 
22,2 i

THEOREM 4. The class of designs of the type

(11, +1, ..., +1), (±x, +x, ..., +x), (+1, 0, ..., 0), ••., D
m= 

nl1n2 

(0, • • •, +1), (+y, 0, ..., 0), • • (0, • 0, +y), (0, 0, • •., 0) 
(4.4) 

n21 ••• 1n,



where  2k(ni+1)  +2k(n2+1)  +n3=n, 0<x, y<1, consists the minimal essent-

ially compete class in the class of symmetric designs. 

   The proof is just the same way of the proof of theorem 3.

Lemma 3 holds in this case. 

LEMMA 4'. Any design of the type

D'=DoU {(+x1, ±x2f •••, +xk), and its permuted vectors, at least 

   one of the components is different}(4. 5)

can be improved by

(±u, ±u, •••, ±u), (+v, 0, •••, 0), •.•, (0, •••, 0, ±v), D
=Do U 

    11 ••• 1 

(0, 0, • • •, 0) 
(4.6) 
       others

for some u and v, 0 u, v<1. 

   LEMMA 5'. Any design of the type 

D'=DoU {(+xi, ±xi, •••, +xi), i=1, 2, •••, m}(4.7) 

can be improved by

        (+1, +1, •••, ±1), (+u, +u, ••., ±u), (0, 0, •••, 0) 
D= Da U(4.8) 

     m'1others

for some integer m' and uE[0,1). 

   LEMMA 6'. Any design of the type 

D'=DoU{(±xi3O,...,0), •••, (0,...,0, +xi),i=1,2,...,m} (4.9) 

can be improved by

        (+1 0 ••• 0) ••• (0 ••. 0 +1) (+u 0 ••• 0) •.. 
D=Do U 

      m' ••• m'1 • • 

       (0, • • •, 0, ±u), (0, 0, • • •, 0) (
4.10) 
        1others

for some integer m' and uE[0,1). 

   We can verify that above D and D' satisfy the conditions of lemma 3.



   The  definition  3 of the symmetricity of designs seems too strong. Though 

any admissible design has not these observation points, if (x1, x2, ......, xi), 

all xi's are distinct each other, is in a design Dn then n must be greater than 

2kk!. For k=3, 4 and 5 those numbers are 48, 192 and 1920, respectively. 

   Let H= (hi;) be a 2m x k matrix such that each element hi; is 1 or -1, 
'HH=2mI k and none of its column vectors equals to t(1,1, ......, 1), and m is 

the smallest integer which satisfies 2->k. As H, we can use a submatrix 

of Hadamard matrix. 

   DEFINITION 4. A design is pseudo-symmetric if the followings hold. 

   (i) If (x1, x2, ......, xk) E D, then (htiixii h12x2, ......, hikxk) E D for i =1, 2, 

......,2m, 

and 

   (ii) if a pair (x, y) is contained in some twocolumn vectors of the 

design matrix X of D, then the pair is also contained in any two column 

vectors of X. 

   Any pseudo-symmetric design has no longer (a) the origin symmetricity 

and (b) the factor symmetricity with respective to observation points. But, 

it remains the form (4. 3) of its information matrix unchanged. Symmetric 

or pseudo-symmetric design defined in this paper are ones of the second 

order symmetric designs. (See [5] the definition of second order symmetry). 

   Numbers of observation points of pseudo-symmetric designs are relatively 

smaller than that of symmetric designs. When k is a prime number or a 

power of some prime number, the co mplete orthogonal system of Latin squ-
ares, having letters 1, 2, ......, and k, exists. Let (al, c2, ......, al?) be any 

row of latin square in that system. If (xa1, xa2i ......, xak) E D for any (x1, x2, 

...... xk) ED, then the condition (ii) of definition 4 is satisfied. In this case, 

the numbers of observation points are at least 27k(k-1), those are 24, 96 

and 180 when k=3, 4 and 5, respectively. 

   The next theorem is proved by the same manner of previous theorems.

THEOREM 5. The class of designs of the type

     (hE1, 11,2, ••., hkk), (hti1x, hi2x, ..., hikx), (- 1, 0, ..., 0), ..., D
= 

n1 1n2 ••• 

   (0, • • 0, ± 1), (±y, 0, ..., 0), • • ., (0, ..., 0, ±y), (0, 0, ••., 0) 
(4.11) 
    n2 1 • • • 1 others



consists the minimal essentially complete class in the class of pseudo-

symmetric designs, where  H=(1215) is defined above and 0<x, y<1.
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