The minimal essentially complete class of symmetric exact designs with k factors on the quadratic response surfaces

Sakaguchi，Koji
Department of Mathematics，College of General Education，Kyushu University
https：／／doi．org／10．15017／1449029

出版情報：九州大学教養部数学雑誌． 13 （1），pp．51－61，1981－12．九州大学教養部数学教室 バージョン：
権利関係：

The minimal essentially complete class of symmetric exact designs with k factors on the quadratic response surfaces

Koji Sakaguchi

(Received August 29, 1981)

1. Notations and preliminaries

Let us consider the linear regression model

$$
\begin{equation*}
\boldsymbol{y}=X \boldsymbol{\theta}+\boldsymbol{e}, \tag{1.1}
\end{equation*}
$$

where $\boldsymbol{y}={ }^{t}\left(y_{1}, y_{2}, \cdots \cdots, y_{n}\right)$ is an observed vector, $\boldsymbol{x}_{i}={ }^{t}\left(x_{i 1}, x_{i 2}, \cdots \cdots, x_{i w}\right), i=$ $1,2, \cdots \cdots, n$, is an observation point, $X==^{t}\left(\boldsymbol{x}_{1}, \boldsymbol{x}_{2}, \cdots \cdots, \boldsymbol{x}_{n}\right)$ is a design matrix, $\boldsymbol{\theta}={ }^{t}\left(\theta_{1}, \theta_{2}, \cdots \cdots, \theta_{m}\right)$ is a vector of unknown parameters and $\boldsymbol{e}={ }^{t}\left(e_{1}, e_{2}, \cdots \cdots, e_{n}\right)$ is an error vector which has mean vector 0 and variance-covariance matrix $I_{n} \sigma^{2} . \sigma^{2}$ is unknown and I_{n} is the identity matrix of degree n.

Any observation point $\boldsymbol{x}_{i}, i=1,2, \cdots \cdots, n$, is chosen from a compact subset of R^{m}. A set of observation points $D_{n}=\left\{\boldsymbol{x}_{1}, \boldsymbol{x}_{2}, \cdots \cdots, \boldsymbol{x}_{n}\right\}$ is called an n-points design.

Let $\hat{\boldsymbol{\theta}}_{D_{n}}$ be the least squares estimator of $\boldsymbol{\theta}$ using a design D_{n} with design matrix X, we assume that θ is estimable by D_{n}, then

$$
\begin{align*}
& \hat{\boldsymbol{\theta}}_{D_{n}}=\left({ }^{t} X X\right)^{-1, t} X \boldsymbol{y} \tag{1.2}\\
& V\left(\hat{\boldsymbol{\theta}}_{D_{n}}\right)=\sigma^{2}\left({ }^{t} X X\right)^{-1} . \tag{1.3}
\end{align*}
$$

Furthermore, the least squares estimator $\hat{\tau}_{D_{n}}$ of linear combination of unknown parameters $\boldsymbol{\tau}={ }^{\boldsymbol{b}} \boldsymbol{b} \boldsymbol{\theta}$ and its variance are given by

$$
\begin{align*}
& \hat{\boldsymbol{\tau}}_{D_{n}}={ }^{t} \boldsymbol{b} \hat{\boldsymbol{\theta}}_{D_{n}} \tag{1.4}\\
& V\left(\hat{\tau}_{D_{n}}\right)=\sigma^{2} \cdot \boldsymbol{b}\left({ }^{t} X X\right)^{-1} \boldsymbol{b} \tag{1.5}
\end{align*}
$$

If $V\left(\hat{\tau}_{D_{n}}\right) \leqq V\left(\hat{\tau}_{D_{n}}{ }^{\prime}\right)$ holds for any linear combination τ of parameters, we say that the n-points design D_{n} is better than the design $D_{n}{ }^{\prime}$, or that D_{n} is an improvement of $D_{n}{ }^{\prime}$ and write $D_{n} \curvearrowright D_{n}{ }^{\prime}$.

A proper subset C of n-points designs is called an essentially complete
class if for any n-points design $D_{n}{ }^{\prime}$ in the complement of C there exists some design D_{n} in C which is better than $D_{n}{ }^{\prime}$. If any design in C has not its improvement, C is called the minimal essentially complete class.

Put $M_{D_{n}}={ }^{t} X X$, which we call the information matrix of a design D_{n}.
We can see the following lemma immediately.
Lemma 1 (Ehrenfeld [1]). A necessary and sufficient condition for D_{n} being better than $D_{n}{ }^{\prime}$ is that the difference $M_{D_{n}}-M_{D_{n}}{ }^{\prime}$ of the information matrices of designs D_{n} and $D_{n}{ }^{\prime}$ is nonnegative definite.
2. The minimal essentially complete class of symmtric designs with one factor

Let us consider the following regression model in this section.

$$
\begin{equation*}
\boldsymbol{y}=X \theta+\boldsymbol{e}, \tag{2.1}
\end{equation*}
$$

where $X={ }^{t}\left(\boldsymbol{x}_{1}, \boldsymbol{x}_{2}, \cdots \cdots, \boldsymbol{x}_{n}\right)$ and

$$
\begin{equation*}
\boldsymbol{x}_{i}={ }^{\mathrm{t}}\left(1, x_{i}, x_{i}^{2}, \cdots \cdots, x_{i}^{m}\right), i=1,2, \cdots \cdots, n . \tag{2.2}
\end{equation*}
$$

Then we have the information matrix $M_{D_{n}}$ of the design $D_{n}=\left\{\boldsymbol{x}_{1}, \boldsymbol{x}_{2}, \cdots \cdots, \boldsymbol{x}_{n}\right\}$, which is symmetric,

We rewrite $D_{n}=\left\{x_{1}, x_{2}, \cdots \cdots, x_{n}\right\}$ by $D_{n}=\left\{x_{1}, x_{2}, \cdots \cdots, x_{n}\right\}$ and call $x_{i}, i=1,2$, $\cdots \cdots, n$, an observation point, also.

Without loss of generality, we can assume that any observation point is chosen from $[-1,1]$.

Now, let $\lambda_{j}=\sum x_{i}^{j}$ and $\lambda_{j}{ }^{\prime}=\sum x_{i}^{\prime j}, j=1,2, \cdots \cdots, 2 m$, for designs $D_{n}=\left\{x_{1}\right.$, $\left.x_{2}, \cdots \cdots, x_{n}\right\}$ and $D_{n}{ }^{\prime}=\left\{x_{1}{ }^{\prime}, x_{2}{ }^{\prime}, \cdots \cdots, x_{n}{ }^{\prime}\right\}$, respectively. Then the difference of the information matrices is

$$
M_{D_{n}}-M_{D_{n}{ }^{\prime}}=\left(\begin{array}{ccc}
0 & \lambda_{1}-\lambda_{1}{ }^{\prime} & \lambda_{2}-\lambda_{2}{ }^{\prime} \cdots \cdots \lambda_{m}-\lambda_{m}{ }^{\prime} \tag{2.4}\\
\lambda_{2}-\lambda_{2}{ }^{\prime} & \lambda_{3}-\lambda_{3}{ }^{\prime} \cdots \cdots \lambda_{m+1}-\lambda_{m}{ }^{\prime}{ }^{\prime}+1 \\
& & \lambda_{4}-\lambda_{4}^{\prime} \cdots \cdots \cdot \lambda_{m+2}-\lambda_{m}{ }^{\prime}{ }^{\prime}+2 \\
& & \cdot \\
& & \\
& & \\
\lambda_{2 m}-\lambda_{2 m}{ }^{\prime}
\end{array}\right)
$$

Noting that the $(1,1)$ element of the above matrix is zero, and from lemma 1 we can understand the following lemma.

Lemma 2 (Kiefer and Wolfowitz [2]). A design D_{n} is better than $D_{n}{ }^{\prime}$ if and only if the following conditions hold.
(i) $\lambda_{j}=\lambda_{j}^{\prime}, j=1,2, \cdots \cdots, 2 m-1$,
and
(ii) $\lambda_{2 m} \geqq \lambda^{\prime}{ }_{2 m}$.

A design D_{n} is written occasionally as $D_{n}=\left\{\begin{array}{c}x_{1}, x_{2}, \cdots \cdots, x_{1} \\ n_{1} n_{2} \cdots \cdots \cdots n_{p}\end{array}\right\}$ or $\left\{\begin{array}{c}x_{i} \\ n_{i}\end{array}, i=1,2\right.$, $\cdots \cdots, p\}$ where $\Sigma n_{i}=n$. That means the observation point x_{i} is observed n_{i} times, $i=1,2, \cdots \cdots, p$.

Theorem 1 (Ishii G., et al. [3]). An essentially complete class of designs on the regression curve (2.1) is constructed by designs of the following type D_{n}.

$$
D_{n}=\left\{\begin{array}{c}
x_{i} \tag{2.7}\\
n_{i}
\end{array}, i=1,2, \cdots \cdots, 2 m+1\right\}
$$

where $x_{1}=-1<x_{2}<\cdots \cdots<x_{2 m}<x_{2 m+1}=1, \sum n_{i}=n, n_{2 i}$ takes its value only 0 or $1, i=1,2, \cdots \cdots, m$.

Definition 1. A design is symmetric if an observation point x is observed n_{x} times, then the observation point $-x$ is observed n_{x} times in D_{n}.

Therefore, if D_{n} is symmetric then $\lambda_{2 j+1}=0, j=1,2, \cdots \cdots$. From the theorem 1 , for $m=2$, the quadratic regression problem, any admissible design has at most three observation points in $(-1,1)$ and if we restrict on symmetric designs, then one of them is zero.

THEREM 2. For the quadratic regression problem the class of designs
of the type

$$
D_{n}=\left\{\begin{array}{ccccc}
-1, & -x, & 0 & x, & 1 \tag{2.8}\\
n_{1} & 1 & n_{2} & 1 & n_{1}
\end{array}\right\}
$$

where $x \in[0,1), 2 n_{1}+n_{2}+2=n$, consists the minimal essentially complete class in the class of symmetric designs.

Proof. Let $D_{n}{ }^{\prime}=\left\{x_{1}{ }^{\prime}, x_{2}{ }^{\prime}, \cdots \cdots, x_{n}{ }^{\prime}\right\}$ be any symmetric n point design. We attempt to improve $D_{n}{ }^{\prime}$. By lemma 2, if there exist integers n_{1}, n_{2} and $x \in[0,1)$ such that
(i) $n_{1}+x^{2}=\sum x_{i}{ }^{2} / 2\left(=\lambda_{2}{ }^{\prime} / 2\right)$,
and
(ii) $n_{1}+x^{4} \geqq \sum x_{i}{ }^{2 \prime} / 2\left(=\lambda_{4}^{\prime} / 2\right)$
then $D_{n} \curvearrowright D_{n}{ }^{\prime}$.
Let us consider a maximizing problem: Maximize $\sum a_{i}^{2}$, where $A=\{\boldsymbol{a}=$ $\boldsymbol{a} \in A$
$\left(a_{i}\right) \mid \Sigma a_{i}=\alpha$ and $\left.0 \leqq a_{i}<1, i=1,2, \cdots \cdots, n\right\}$. Since A is a convex closed set in the positive orthant and Σa_{i}^{2} is the square of length of $a, \Sigma a_{i}^{2}$ takes its maximum at the boundary of A. The longest distance from the origin to the boundary of i-dimensional cube is \sqrt{i}, thus if $i \leqq \alpha<i+1$ then the farthest points of A from the origin are the cross points of edges of ($i+1$)dimensional cube and the hyperplane $\sum a_{i}=\alpha$. One of those points is $\boldsymbol{\alpha}=$ $(1, \underbrace{\cdots \cdots, 1}_{i} \sqrt{\alpha-i}, \underbrace{0, \cdots \cdots, 0}_{n-1-i})$ and others are the vectors whose components, consist of permutations of components of \boldsymbol{a}.

Now put $\alpha=\lambda_{2}{ }^{\prime} / 2$, then $a=(1, \underbrace{\cdots \cdots, 1, x, 0,}_{n_{1}} 1 \underbrace{\cdots \cdots, 0}_{n-1-n_{1}})$, where $n_{1}=\left[\lambda_{2}{ }^{\prime} / 2\right]$ ([] means the Gauss notation) and $x=\sqrt{\lambda_{2}^{\prime} / 2-i}$, is a solution of the maximizing problem. Therefore, by using those n_{1} and x we know that D_{n} is better than D_{n}^{\prime} and can not be improved by any design because of its maximality.

3. The minimal essentially complete class of symmeteric designs with two factors on the quadratic response surface

Let us consider the following regression model in this section.

$$
\begin{equation*}
\boldsymbol{y}=X \boldsymbol{\theta}+\boldsymbol{e} \tag{3.1}
\end{equation*}
$$

where $X={ }^{t}\left(\boldsymbol{x}_{1}, \boldsymbol{x}_{2}, \cdots \cdots, \boldsymbol{x}_{n}\right)$ and

$$
\begin{equation*}
x_{i}={ }^{t}\left(1, x_{1 i}, x_{2 i}, x_{1 i}^{2}, x_{2 i}^{2}, x_{1 i} x_{2 i}\right), \quad i=1,2, \cdots \cdots, n \tag{3.2}
\end{equation*}
$$

Similarly to the section 2 , we write $D_{n}=\left\{\left(x_{1 i}, x_{2 i}\right), i=1,2, \cdots \cdots, n\right\}$ or $D_{n}=\left\{\begin{array}{c}\left(x_{1 i}, x_{2 i}\right) \\ n_{i}\end{array}, i=1,2, \cdots \cdots, p\right\}$ where $\Sigma n_{i}=n$.

We give two meanings to the notion of symmetricity of designs:
(a) symmetric at the origin for any factor, and
(b) symmetric between two factors.

DEFINITION 2. D_{n} is a symmetric design if the followings hold.
(i) If $\left(x_{1}, x_{2}\right) \in D_{n}$, then $\left(\pm x_{i}, \pm x_{2}\right) \in D_{n}$,
and
(ii) if (x_{1}, x_{2}), $x_{1} \neq x_{2}$, is observed i times, then (x_{2}, x_{1}) is also observed i times.

The information matrix of a symmetric design $D_{n}=\left\{\left(x_{1 i}, x_{2 i}\right), i=1\right.$, $2, \cdots \cdots, n\}$ is

$$
\mathrm{M}_{D_{n}}=\left(\begin{array}{cccccc}
n & 0 & 0 & \lambda_{2} & \lambda_{2} & 0 \tag{3.3}\\
& \lambda_{2} & 0 & 0 & 0 & 0 \\
& & \lambda_{2} & 0 & 0 & 0 \\
& & & \lambda_{4} & \lambda_{2,2} & 0 \\
& & & & \lambda_{4} & 0 \\
& & & & & \lambda_{2,2}
\end{array}\right)
$$

where $\lambda_{2,2}=\Sigma x_{1 i}^{2} x_{2 i}^{2}$.
THEOREM 3. The class of designs of the type

$$
D_{n}=\left\{\begin{array}{cccc}
(\pm 1, \pm 1), & (\pm x, \pm x), & (\pm 1,0),(0, \pm 1),(0,0) \tag{3.4}\\
n_{1} & 1 & n_{2} & n_{2}
\end{array} n_{3}\right\}
$$

where $0 \leqq x, y<1$ and $4\left(n_{1}+n_{2}\right)+8+n_{3}=n$, consists the minimal essentially complete class in the class of symmetric designs.

The proof is from the next four lemmas.

Lemma 3. A design $D_{n}=\left\{\left(x_{1 i}, x_{2 i}\right)\right\}$ is better than $D_{n}{ }^{\prime}=\left\{\left(x_{1 i}^{\prime}, x_{2 i}^{\prime}\right)\right\}$ if and only if
(i) $\lambda_{2}=\lambda_{2}{ }^{\prime}$,
(ii) $\lambda_{2,2} \geqq \lambda_{2}^{\prime}, 2$,
and
(iii) $\lambda_{4}-\lambda_{2,2} \geqq \lambda_{4}^{\prime}-\lambda_{2,2}^{\prime}$
hold, where $\lambda_{2}^{(\prime)}=\sum x_{j i}^{(\prime \prime}{ }^{2}, \lambda_{4}^{(\prime)}=\sum x_{i}^{(\prime)}{ }^{4}, j=1,2$, and $\lambda_{2,2}^{(\prime)}=\sum x_{1 i}^{(i)}{ }^{2} x_{2 i}^{(\prime)}{ }^{2}$.
Proof. The difference of the information matrices of D_{n} and $D_{n}{ }^{\prime}$ is

$$
M_{D_{n}}-M_{D_{n}{ }^{\prime}}=\left(\begin{array}{cccccc}
0 & 0 & 0 & \lambda_{2}-\lambda_{2}{ }^{\prime} & \lambda_{2}-\lambda_{2}{ }^{\prime} & 0 \tag{3.8}\\
& \lambda_{2}-\lambda_{2}{ }^{\prime} & 0 & & 0 & 0 \\
& & \lambda_{2}-\lambda_{2}{ }^{\prime} & 0 & 0 & 0 \\
& & & \lambda_{4}-\lambda_{4}{ }^{\prime} & \lambda_{2,2}-\lambda_{2,2}^{\prime} & 0 \\
& & & & & \lambda_{4}-\lambda_{4}{ }^{\prime} \\
& & & & & 0 \\
& & & & & \lambda_{2,2}-\lambda_{2,2}^{\prime}
\end{array}\right)
$$

That $M_{D n}-M_{D n}^{\prime}$ is nonnegative definite implies conditions (3.5), (3.6) and (3.7).

Lemma 4. Any design of the type

$$
\begin{equation*}
D^{\prime}=D_{0} \cup\left\{\left(\perp x_{1}, \pm x_{2}\right),\left(\pm x_{2}, \pm x_{1}\right)\right\}, 0<x_{1} \neq x_{2}<1, \tag{3.9}
\end{equation*}
$$

can be improved by a design

$$
\begin{equation*}
D=D_{0} \cup\{(\perp \boldsymbol{u}, \pm \boldsymbol{u}),(\perp \boldsymbol{v}, 0),(0, \pm \boldsymbol{v})\} \tag{3.10}
\end{equation*}
$$

for some u and $v, 0 \leq u, v<1$, where D_{0} is any design.
Proof. We shall show the existence of u and $v, 0 \leqq u, v<1$, that satisfy (3.5), (3.6) and (3.7). Since the design D_{0} is included in both D and D^{\prime}, we can omit the contributions of D_{0} to those conditions. Conditions are reduced to
(i) $4 u^{2}+2 v^{2}=\left(x_{1}^{2}+x_{2}^{2}\right)=8 A$ (say)
(ii) $4 u^{4} \geqq 16 x_{1}^{2} x_{2}^{2}=8 \mathrm{~B}^{2}$ (say)
and
(iii) $2 v^{4} \geqq 8\left(A^{2}-4 B^{2}\right)$.

Substituting $u^{2} \geqq 2 B$ (from (3.10)) to (3.9), we get

$$
\begin{equation*}
v^{2} \leqq 4 A-2 \sqrt{2} B \tag{3.14}
\end{equation*}
$$

By straightfoward calculation, we get that $4 A-2 \sqrt{2} B \geqq 2 \sqrt{A^{2}-4 B^{2}}$. Thus, from (3.11) and (3.12) the existence of u and v is assured.

Note that the existence of u and v is not unique.
Lemma 5. Any design of the type

$$
\begin{equation*}
D^{\prime}=D_{0} \cup\left\{\left(\pm x_{i}, \pm x_{i}\right), i=1,2, \cdots \cdots, m\right\} \tag{3.15}
\end{equation*}
$$

can be improved by

$$
D=D_{0} \cup\left\{\begin{array}{ccc}
(\pm 1, \pm 1), & (\pm u, \pm u), & (0,0) \tag{3.16}\\
m^{\prime} & 1 & 4\left(m-m^{\prime}-1\right)
\end{array}\right\}
$$

for some integer m^{\prime} and $u \in[0,1)$.
Proof. The conditions (3.5), (3.6) and (3.7) become
(i) $m^{\prime}+u^{2}=\sum x_{i}^{2}$,
(ii) $m^{\prime}+u^{4} \geqq \sum x_{i}^{4}$
and
(iii) $0 \geqq 0$.
(3.19) is trivial. Conditions (3.17) and (3.18) are satisfied by choosing $m^{\prime}=\left[\Sigma x_{i}^{2}\right], u=\sqrt{\sum x_{i}^{2}-m^{\prime}}$. That appeared in the proof of theorem 2.

Lemma 6. Any design of the type

$$
\begin{equation*}
D^{\prime}=D_{0} \cup\left\{\left(\perp x_{i}, 0\right),\left(0, \pm x_{i}\right), i=1,2, \cdots \cdots, m\right\}, 0 \leq x_{i}<1, \tag{3.20}
\end{equation*}
$$

can be improved by
for some integer m^{\prime} and $u \in[0,1)$.
Proof. The conditions (3.5), (3.6) and (3.7) are reduced to
(i) $m^{\prime}+u^{2}=\Sigma x_{i}^{2}$
(ii) $0 \geqq 0$
and
(iii) $m^{\prime}+u^{4} \geqq \sum x_{i}^{4}$.

Those are the same conditions of above lemma.
Any design which is not of the type of (3.4) can be improved and there is not other design which is better than a design of the type (3.4) because of their construction of improvement. Thus theorem 3 is proved.

4. The minimal essentially complete class of symmetric designs with k factors

We consider the following regression model in this section.

$$
\begin{equation*}
\boldsymbol{y}=X \boldsymbol{\theta}+\boldsymbol{e}, \tag{4.1}
\end{equation*}
$$

where $X={ }^{t}\left(\boldsymbol{x}_{1}, \boldsymbol{x}_{2}, \cdots \cdots, \boldsymbol{x}_{n}\right)$ and

$$
\begin{equation*}
x_{i}={ }^{\mathrm{t}}\left(1, x_{1 i}, x_{2 i}, \cdots \cdots, x_{k i}, x_{1 i}^{2}, \cdots \cdots, x_{k i}^{2}, x_{1 i} x_{2 i}, \cdots \cdots, x_{k-1 i} x_{k i}\right), \tag{4.2}
\end{equation*}
$$

$i=1,2, \cdots \cdots, n$.
We write an n point design as $D_{n}=\left\{\left(x_{1 i}, x_{2 i}, \cdots \cdots, x_{k i}\right), i=1,2, \cdots \cdots, n\right\}$ or $D_{n}=\left\{\begin{array}{c}\left(x_{1 i}, x_{2 i}, \cdots \cdots, x_{k i}\right) \\ n_{i}\end{array}, i=1,2, \cdots \cdots, p\right\}$ where $\sum n_{i}=n$.

Let symmetric designs have the properties (a) and (b).
Defintion 3. A design D_{n} is symmetric if the followings hold.
(i) If $\left(x_{1}, x_{2}, \cdots \cdots, x_{k}\right) \in D_{n}$, then $\left(\pm x_{1}, \pm x_{2}, \cdots \cdots, \pm x_{k}\right) \in D_{n}$,
and
(ii) if $\left(x_{1}, x_{2}, \cdots \cdots, x_{k}\right) \in D_{n}$, then $\left(\sigma x_{1}, \sigma x_{2}, \cdots \cdots, \sigma x_{k}\right) \in D_{n}$, where (σx_{1}, $\sigma x_{2}, \cdots \cdots, \sigma x_{k}$) is any permutation of ($x_{1}, x_{2}, \cdots \cdots, x_{k}$).

The information matrix of a symmetric design D_{n} is

ThEOREM 4. The class of designs of the type

$$
\begin{array}{r}
D_{n}=\left\{\begin{array}{ccc}
(\pm 1, \pm 1, \cdots, \pm 1),(\pm x, \pm x, \cdots, \pm x),(\pm 1,0, \cdots, 0), \cdots \\
n_{1} & 1 & n_{2} \\
\cdots
\end{array}\right. \\
\left.\begin{array}{cccc}
(0, \cdots, \pm 1),(\pm y, 0, \cdots, 0), \cdots,(0, \cdots, 0, \pm y),(0,0, \cdots, 0) \\
n_{2} & 1 & \cdots & 1
\end{array}\right) \tag{4.4}
\end{array}
$$

where $2^{k}\left(n_{1}+1\right)+2 k\left(n_{2}+1\right)+n_{3}=n, 0 \leqq x, y<1$, consists the minimal essentially compete class in the class of symmetric designs.

The proof is just the same way of the proof of theorem 3.
Lemma 3 holds in this case.

Lemma 4^{\prime}. Any design of the type $D^{\prime}=D_{0} \cup\left\{\left(\pm x_{1}, \pm x_{2}, \cdots, \pm x_{k}\right)\right.$, and its permuted vectors, at least one of the components is different $\}$
can be improved by

$$
\begin{align*}
D=D_{0} \cup & \left\{\begin{array}{ccc}
(\pm \boldsymbol{u}, \pm \boldsymbol{u}, \cdots, \pm \boldsymbol{u}),(\pm \boldsymbol{v}, 0, \cdots, 0), \cdots,(0, \cdots, 0, \pm v) \\
1 & 1 & \cdots
\end{array}\right. \\
& \left.\begin{array}{l}
(0,0, \cdots, 0) \\
\text { others }
\end{array}\right\} \tag{4.6}
\end{align*}
$$

for some u and $v, 0 \leqq u, v<1$.
Lemma 5^{\prime}. Any design of the type

$$
\begin{equation*}
D^{\prime}=D_{0} \cup\left\{\left(\pm x_{i}, \pm x_{i}, \cdots, \pm x_{i}\right), i=1,2, \cdots, m\right\} \tag{4.7}
\end{equation*}
$$

can be improved by

$$
D=D_{0} \cup\left\{\begin{array}{cc}
(\pm 1, \pm 1, \cdots, \pm 1),(\pm u, \pm u, \cdots, \pm u),(0,0, \cdots, 0) \tag{4.8}\\
m^{\prime} & 1
\end{array}\right.
$$

for some integer m^{\prime} and $u \in[0,1)$.
Lemma 6^{\prime}. Any design of the type

$$
\begin{equation*}
D^{\prime}=D_{0} \cup\left\{\left(\pm x_{i}, 0, \cdots, 0\right), \cdots,\left(0, \cdots, 0, \pm x_{i}\right), i=1,2, \cdots, m\right\} \tag{4.9}
\end{equation*}
$$

can be improved by

$$
\begin{gather*}
D=D_{0} \cup\left\{\begin{array}{c}
(\pm 1,0, \cdots, 0), \cdots,(0, \cdots, 0, \pm 1),(\pm u, 0, \cdots, 0), \cdots \\
m^{\prime} \quad \cdots \quad m^{\prime} \\
(0, \cdots, 0, \pm u),(0,0, \cdots, 0) \\
1
\end{array}\right\}
\end{gather*}
$$

for some integer m^{\prime} and $u \in[0,1)$.
We can verify that above D and D^{\prime} satisfy the conditions of lemma 3 .

The definition 3 of the symmetricity of designs seems too strong. Though any admissible design has not these observation points, if ($x_{1}, x_{2}, \cdots \cdots, x_{k}$), all x_{i} 's are distinct each other, is in a design D_{n} then n must be greater than $2^{k} k$!. For $k=3,4$ and 5 those numbers are 48,192 and 1920 , respectively.

Let $H=\left(h_{i j}\right)$ be a $2^{m} \times k$ matrix such that each element $h_{i j}$ is 1 or -1 , ${ }^{t} H H=2^{m} I_{k}$ and none of its column vectors equals to ${ }^{t}(1,1, \cdots \cdots, 1)$, and m is the smallest integer which satisfies $2^{m}>k$. As H, we can use a submatrix of Hadamard matrix.

Definition 4. A design is pseudo-symmetric if the followings hold.
(i) If ($x_{1}, x_{2}, \cdots \cdots, x_{k}$) $\in D$, then $\left(h_{i 1} x_{1}, h_{i 2} x_{2}, \cdots \cdots, h_{i k} x_{k}\right) \in D$ for $i=1,2$, $\cdots \cdots, 2^{m}$,
and
(ii) if a pair (x, y) is contained in some two column vectors of the design matrix X of D, then the pair is also contained in any two column vectors of X.

Any pseudo-symmetric design has no longer (a) the origin symmetricity and (b) the factor symmetricity with respective to observation points. But, it remains the form (4.3) of its information matrix unchanged. Symmetric or pseudo-symmetric design defined in this paper are ones of the second order symmetric designs. (See [5] the definition of second order symmetry).

Numbers of observation points of pseudo-symmetric designs are relatively smaller than that of symmetric designs. When k is a prime number or a power of some prime number, the complete orthogonal system of Latin squares, having letters $1,2, \cdots \cdots$, and k, exists. Let ($\sigma 1, \sigma 2, \cdots \cdots, \sigma k$) be any row of latin square in that system. If ($x_{o_{1}}, x_{o 2}, \cdots \cdots, x_{o_{k}}$) \mathcal{D} for any (x_{1}, x_{2}, $\left.\cdots \cdots, x_{k}\right) \in D$, then the condition (ii) of definition 4 is satisfied. In this case, the numbers of observation points are at least $2^{m} k(k-1)$, those are 24,96 and 180 when $k=3,4$ and 5 , respectively.

The next theorem is proved by the same manner of previous theorems.
Theorem 5. The class of designs of the type

$$
\begin{array}{r}
D=\left\{\begin{array}{ccc}
\left(h_{i 1}, h_{i 2}, \cdots, h_{k k}\right),\left(h_{i 1} x, h_{i 2} x, \cdots, h_{i k} x\right),(\pm 1,0, \cdots, 0), \cdots, \\
n_{1} & 1 & n_{2} \\
\cdots
\end{array}\right. \\
\left.\begin{array}{ccccc}
(0, \cdots, 0, \pm 1),(\pm y, 0, \cdots, 0), \cdots, & (0, \cdots, 0, \pm y),(0,0, \cdots, 0) \\
n_{2} & 1 & \cdots & 1 & \text { others }
\end{array}\right\}
\end{array}
$$

consists the minimal essentially complete class in the class of pseudo－ symmetric designs，where $H=\left(h_{i j}\right)$ is defined above and $0 \leq x, y<1$ ．

References

［1］S．Ehrenfeld：Complete class theorems in experimental designs，Proc．of Third Berkeley Symp．Math．Stat．Prob．，1（1955），57－68．
［2］J．Kiefer and J．Wolfowitz：Optimal design in regression problem，Annals of Math．Stat．，30（1959），271－294．
［3］石井吾郎，河野和正，阪口紘治：統計的線形模型における最適計画について，Reported at the 1979 Summer Seminar of Statistician＇s group held at Aso，Kumamoto Pref．
［4］石井吾郎：統計的線形模型における配置の良さについて，経営研究 第113号（1971），1－23．
［5］K．Kono：Optimum design for quadratic regression on k－cube，Memoirs of Facult． of Science，Kyusyu Univ．，A，16（1962），114－138．

