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1. Notations and preliminaries

Let us consider the linear regression model

y=X0+e, (1.1
where y="(3;, yo *--- ,¥,) is an observed vector, Xx;=°(xy, X, - y Xi), 1=
1, 2, , M, is an observation point, X="*(x;, x,, -+-** ,X,) is a design matrix,
9=:00,,0, - ,0,) is a vector of unknown parameters and e="'(e,, e,, ----- , €n)

is an error vector which has mean vector 0 and variance-covariance matrix
I,6% ¢* is unknown and I, is the identity matrix of degree n.

Any observation point x;,¢=1,2, - , M, is chosen from a compact subset
of R™. A set of observation points D,={x, X, =+« , X,} is called an n-points
design.

Let ép,, be the least squares estimator of € using a design D, with des-
ign matrix X, we assume that @ is estimable by D,, then

O, =(XX) Xy (1.2)
V(bp,)=a*(CXX) . (1.3)

-~
Furthermore, the least squares estimator ro» of linear combination of unknown
parameters r=°bf# and its variance are given by

Zon="bBp, (1.4)

V (£p,) =a>B(*XX)"'b. (1.5)

If V(;u,,)gV(;D,.’) holds for any linear combination = of parameters, we
say that the zn-points design D, is better than the design D,’, or that D, is

an improvement of D,’ and write D, ~ D,’.
A proper subset C of n-points designs is called an essentially complete
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class if for any #-points design D,’ in the complement of C there exists some
design D, in C which is better than D,’. If any design in C has not its
improvement, C is called the minimal essentially complete class.
Put Mp,='XX, which we call the information matrix of a design D,.
We can see the following lemma immediately.

LEMMA 1 (Ehrenfeld [1]). A necessary and sufficient condition for D,
being better than D,’ is that the difference Mp,—Mp,’ of the information

matrices of designs D, and D,’ is nonnegative definite.

2. The minimal essentially complete class of symmtric designs with one

factor

Let us consider the following regression model in this section.

y=X0-+e, @.10
where X="*(x;, x;, -+ , X,) and

x;="(1, x;, 22, +++o+ yXT), 1=1,2, 000 , M. 2.2)
Then we have the information matrix Mp, of the design D,={x;, x,, -+ , x;,},

which is symmetric,

Mp,=[n 2x; 3xi Zxi-- 307
Sxi xSt Sxtt!

St ng """ Ex::-” Q. 3)
P14
We rewrite D,={x;, x,, -+ , X, by D= {x,, %, - , x,} and call x,,i=1, 2,

------ , M, an observation point, also.

Without loss of generality, we can assume that any observation point is
chosen from [—1,1].

Now, let ;=3x} and A,/'=33x,", j=1,2,--- ,2m, for designs D,={x,,
Kgy voeee ,x,} and D,/={x,", x,’, - , Xa'}, respectively. Then the difference of

the information matrices is
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MDn—MDn’Z O /{1"“11’ XQ—XQ’ """ xm—lm,
Az"lzl 13—)\3, """ lm+1_lm’+l
/14_}\4' """ Am+z_lm’+2 (24)

/12,,,—].2,,,'

Noting that the (1,1) element of the above matrix is zero, and from
lemma 1 we can understand the following lemma.

LEMMA 2 (Kiefer and Wolfowitz [2]). A design D, is better than D,’
if and only if the following conditions hold.

(1) Af:Aj,v ]:1’ 2, """ ’ 2m*11 (2. 5)

and (1)  Azm=A2me 2.6)
Xy Xy 2ovee y Xp X;

A design D, is written occasionally as D,= { }or{ ,i1=1,2,
nl nz ......... n]’ nt

------ , p}where Sn,=n. That means the observation point x, is observed =,

times, £=1,2, - , b.

THEOREM 1 (Ishii G., et al. [3]). An essentially complete class of
designs on the regression curve (2.1) is constructed by designs of the fol-
lowing type D,.

Xi
Dn:{ ,i1=1,2, ,2m+1} 2.7
n.

T

where x,=—1<x,< -+ Lo K1 =1, Sm;=mn, n,, takes its value only 0 or

DEFINITION 1. A design is symmetric if an observation point x is
observed #n, times, then the observation point —x is observed #, times in
D,.

Therefore, if D, is symmetric then d,5,,=0, j=1,2, ----- . From the theorem
1, for m=2, the quadratic regression problem, any admissible design has at
most three observation points in (—1,1) and if we restrict on symmetric
designs, then one of them is zero.

THEREM 2. For the quadratic vegression problem the class of designs
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of the type

2.8

-1, —x, 0, x, 1
.| }

n, 1 n 1 n

where x&[0,1), 2n,+n,+2=n, consists the minimal essentially complete
class in the class of symmetric designs.

PROOF. Let D.'={x, x,’, -+ , %'} be any symmetric # point design.
We attempt to improve D.’. By lemma 2, if there exist integers #,, #, and
x<[0,1) such that

@) n+2=3%."7/2(=2,'/2), 2.9
and

(1) m+x2'=x,.2/2(=2,"/2) (2.10)
then D, « D.’.

Let us consider a maximizing problem: Maximize 3a?, where A={a=
acA

(@) |Xa;=a and 0<a;<1,i=1,2, .- ,n}. Since A is a convex closed set
in the positive orthant and e} is the square of length of @, a? takes
its maximum at the boundary of A. The longest distance from the origin
to the boundary of i-dimensional cube is /7, thus if i<a<i+1 then the
farthest points of A from the origin are the cross points of edges of (i+1)-

dimensional cube and the hyperplane 3la,=a. One of those points is a=
a, - v 1, Aa—i, 0, , 0) and others are the vectors whose components,
—— . ,
i 1 n—1-—i

consist of permutations of components of a.
Now put a=2,'/2, then a=(1, --+--- ,1,%,0, ,0), where n,=[1,"/21([ ]
— R
7, 1 n-1-n,
means the Gauss notation) and x=+/7;,/2—7, is a solution of the maximizing
problem. Therefore, by using those #, and x we know that D, is better

than D,’ and can not be improved by any design because of its maximality.

3. The minimal essentially complete class of symmeteric designs with two
factors on the quadratic response surface

Let us consider the following regression model in this section.

y=X0+e (G
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n

{(xm Xa) |
D —_ —_—
n;
We give two meanings to the notion of symmetricity of designs:
(a) symmetric at the origin for any factor,
and
(b) symmetric between two factors.

DEFINITION 2. D, is a symmetric design if the followings hold.

() If (x,x,)€D,, then (ix, +x,)ED,,
and ‘

(ii) if (x4, x,), X, #x,, is observed ¢ times, then (x, x,) is also observed
¢ times.

The information matrix of a symmetric design D,={(%y, %), i=1,

Mp,=,/n 0 0 A i, 0

A0 0 0 0

A 0 0 O
A Ao 0 @.3)

A 0O

1212
where A,,,=3x3:x.
THEOREM 3. The class of designs of the type
(41, &1), (kx, £x), (£1,0), (0, £1), (0,0)
D,= } 3.4)
nl 1 n; nz n:{

where 0<x, y<1 and 4(n,+n,)+8+n,=n, consists the minimal essentially
complete class in the class of symmetric designs.
The proof is from the next four lemmas.

LEMMA 3. A design D,={(xy;, x.,)} is better than D, ={(x1;, x;,)} if
and only if
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(1) =27, (3.5

(i) Ape=A%sa (3.6)
and

(iii) 14“/12;22/141—1'2,2 (3.7)

hold, where A9 =Xx{?% A9 =3x?%, j=1,2, and /Iz‘f’z=2x“'1’ﬁx"z’f.
PROOF. The difference of the information matrices of D, and D,’ is

Mp,—Mp,'=,0 0 0 -4 2.—4) 0
A—4 0 0 0
=1 0 0

X4.“‘14' 12,2—1’2,2

A=A

3.8

S O O <O

’
AZ;Z—A 292

That M,,—M’,. is nonnegative definite implies conditions (3.5), (3.6) and
3.7.

LEMMA 4. Any design of the type
D'=DyU{(dlxy, 1:x,), (12, -2}, 02, + 2,<1, 3.9
can be improved by a design
D=D,U{(L:n, J-u), (Lv,0), (0, l-2)} (3.10)
for some # and v, 0<Xw, v<1, where D, is any design.
PROOF. We shall show the existence of # and v, 0<u, v<(1, that satisfy

(3.5),(3.6) and (3.7). Since the design D, is included in both D and D,

we can omit the contributions of D, to those conditions. Conditions are
reduced to

(i) 4u®+2v°=(x2+x%)=8A(say) (3.11)

(ii) 4u! >-16x%x%=8B*(say) 3.12)
and
(iii) 2v*=:-8(A*-—4B?). 3.13)
Substituting #°=2B (from (3.10)) to (3.9), we get
v*<4A-2./9 B. (3.14)

By straightfoward calculation, we get that 44—2v/ 2 B=>2,/ 42— 4B%. Thus,

from (3.11) and (3.12) the existence of # and v is assured.
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Note that the existence of # and v is not unique.

LEMMA 5. Any design of the type
DIZDOU{(J:xiv -sz)9i=]-’ 2’ """ ’ m} (3' 15)

can be improved by

(ﬁ:l, ’Jtl), (;ltu, iu), (0, 0)
D=D, U { } (3.16)
m’ 1 d(m—m'—1)

for some integer m’ and #<[0, 1).

PROOF. The conditions (3.5), (3.6) and (3.7) become

) m'+ut=3x?, 3.17)

(i) m'+u'=>xt (3.18)
and

(iii) 0=0. (3.19)

(3.19) is trivial. Conditions (3.17) and (3.18) are satisfied by choosing
m'=[3x?], u=+/Sx2—m'. That appeared in the proof of theorem 2.

LEMMA 6. Any design of the type
D'=D,U{(Ltx;,0), 0, =x),i=1,2, - ,m}, 0<<x,<1, (3.20)
can be improved by
(4+1,0), (0, +:1), (+#,0), (0, 4-%), 0,0
m' 1 1 4(m—m'—-1)

’

D=D, U { } @3.21)

m
for some integer m’ and #<[0,1).

PROOF. The conditions (3.5), (3.6) and (3.7) are reduced to

() m+ur=3x 3.22)

(i) 0=0 (3.23)
and

(ii1) m'+u'>=3xt. (3.24)

Those are the same conditions of above lemma.

Any design which is not of the type of (3.4) can be improved and there
is not other design which is better than a design of the type (3.4) because
of their construction of improvement. Thus theorem 3 is proved.
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4. The minimal essentially complete class of symmetric designs with k&
factors

We consider the following regression model in this section.

y=X6b+e, 4.
where X="(x,, x,, ----, x,,) and
X, =L, Hgy Kagy ooony Kgsy Ky ooooeey Xy Xy ooy X 16¥ns), 4.2
Z—-]., 2’ ...... , N
We write an # point design as D,={(%y;, %55 -+ s Xeidy 1=1,2, e s 1} or
D {(xu, Kggy e , x,n»)’ i=1,2, e , p}where Sn=mn.
n;

Let symmetric designs have the properties (@) and (4).

DEFINTION 3. A design D, is symmetric if the followings hold.

@A) If (xy, xp 0o y %) ED,, then (Lxy, £, , kx) €D,
and

(ii) if (xlv x‘h """ » xk)EDm then (ley O'xm """ ’ ka)EDm Where (lev

OXygy woeree ,0%;) is any permutation of (x,, x5, -+ AR
The information matrix of a symmetric design D, is
Ml)n= n O 12 12 LS ‘14 \ (4'3)
Az
. 0 0
Az

14 . . 0
¢ Az
. A
Az
N Az

THEOREM 4. The class of designs of the type
{(—}Zly —tly ) :l:]-)r (:{:xr +x, -, :tx)) (:tlv O’ Tty O)’ )

”n, 1 n,
(O’ R j:]-)’ (:tyv 0, Tty 0), R (Oy Tty Oy iy)) (0, 07 ) 0)

n, 1 1 Ny

} 4.9
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where 2¥(n,+1) +2k(n,+1) +n,=n,0=x, y<1, consists the minimal essent-
tally compete class in the class of symmetric designs.
The proof is just the same way of the proof of theorem 3.

Lemma 3 holds in this case.

LEMMA 4. Any design of the type

D'=D U {(£%,, £x,, -+, £%,), and its permuted vectors, at least
one of the components is different} 4.5)

can be improved by

(:bul iu, ...7 i:u)! (j‘-‘v, 01 ”.7 0)9 .'.’ (0! -..’ 07 :tv)!
D=Do U {
1 1 1
(Oy O: *tty 0)
: w
others
for some # and v, 0=<u, v<1.
LEMMA 5. Any design of the type
D’:D‘)U{(ixi’ j:xi’ "ty :{:xi)ri=11 21 M) m} (4° 7)
can be improved by
(:tl-’ ily Tty :tl)! (:*:us :’:uv Ty iu), (01 0’ Tty 0)
D=D,U } 4.8)
m' 1 others
for some integer m' and #<[0,1).
LEMMA 6. Any design of the type
D'=D,U{(+x,0,--,0),--(0,--0, £x,),i=1,2, -, m} 4.9
can be improved by
(ﬂ:lr O’ ) O)r Yy (0, ) 07 :b]-)v (:tu» O, Sty 0)1 tty
D= OU {
m' m’ 1
(Ov R Or :Eu)r (O, 0’ “tty 0)
} (4.10)
1 others

for some integer m’ and #<[0, 1).
We can verify that above D and D’ satisfy the conditions of lemma 3.
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The definition.3 of the symmetricity of designs seems too strong. Though
any admissible design has not these observation points, if (%, x5 -+ y X)),
all x/s are distinct each other, is in a design D, then # must be greater than
2¥k!. For £=3,4 and 5 those numbers are 48, 192 and 1920, respectively.

Let H=(hy) be a 2™xk matrix such that each element %; is 1 or —1,
‘tHH=2"I, and none of its column vectors equals to (1,1, ------ ,1), and m is
the smallest integer which satisfies 2">>k. As H, we can use a submatrix
of Hadamard matrix.

DEFINITION 4. A design is pseudo-symmetric if the followings hold.
1) If (o 25 oo , %) €D, then (huxy, hpxy -, hyx)eD for i=1,2,

(ii) if a pair (x,y) is contained in some two column vectors of the
design matrix X of D, then the pair is also contained in any two column
vectors of X.

Any pseudo-symmetric design has no longer (a) the origin symmetricity
and (b) the factor symmetricity with respective to observation points. But,
it remains the form (4.3) of its information matrix unchanged. Symmetric
or pseudo-symmetric design defined in this paper are ones of the second
order symmetric designs. (See [5] the definition of second order symmetry).

Numbers of observation points of pseudo-symmetric designs are relatively
smaller than that of symmetric designs. When % is a prime number or a
power of some prime number, the complete orthogonal system of Latin squ-
ares, having letters 1,2, ----- , and k&, exists. Let (¢1,62, - ,ok) be any
row of latin square in that system. If (%o, X5 -vo-++ , %) €D for any (x,, x,,
------ , %) €D, then the condition (ii) of definition 4 is satisfied. In this case,
the numbers of observation points are at least 2™k(k—1), those are 24, 96
and 180 when k2=3,4 and 5, respectively.

The next theorem is proved by the same manner of previous theorems.

THEOREM 5. The class of designs of the type
{(hilv htZy ) hlck)v (hilxr hiny Ty hikx)) (—171! 07 Ty O)y Tty

", 1 n,

(Ov Yy Ov il)y (:ty! 0’ "y 0)1 Tty (Oy ) Ov :ty)l (0v 07 Tty 0)
}(4.11)

n, 1 1 others
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consists the minimal essentially complete class in the class of pseudo-
symmetric designs, where H=(h;;) is defined above and 0<x, y<1.

(1]
(2]
[31

[4]
(5]
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