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   The fractional calculus has been investigated by many mathematicians 

[11]. In their works the Riemann-Liouville operator (R-L) was the most 
central, while Erdelyi and Kober defined their operator (E-K) in connection 

with the Hankel transform [6]. Thereafter various generalizations have been 

made [11]. Here we shall define a certain integral operator involving the 

Gauss hypergeometric function. (cf. Definition 1) Such an integral was first 

treated by Love [7] as an integral equation. However, if we regard the 

integral as an operator with a slight change, it will contain as special cases 

both R-L and E-K owing to reduction formulas for the Gauss function by 

restricting the parameters. The more interesting fact is that for our operator 

two kinds of product rules may be made up by virtue of Erdelyi's formulas 

[3], which were first proved by using the method of fractional integration 

by parts in the R-L sense. From the rules, of course, the ones for R-L and 

E-K are deduced. Moreover, our operator is representable by products of 

R-L's, from which it is possible to obtain the integrability and estimations 

of Hardy-Littlewood type. We shall also state, in parallel, formulas for an 

integral operator on the interval (x, oo), which is an extension of operators 

of Weyl and another Erdelyi-Kober. (cf. Definition 2) Then a formula of 

integration by parts for our operators is obtained. In Section 3 commutative 

relations will be given for the sake of the Mellin transform. 

   Since 1969, A. M. Nahusev [9] and the other authors in USSR (see [12]) 

have studied various problems for degenerate hyperbolic equations and equa-

tions of mixed type with boundary conditions containing integrals or deriva-

tives of fractional order in the R-L sense. Results for such problems 

involving our operators and more properties of the operators will be publi-

shed elsewhere.



1. Definitions 

   DEFINITION 1. Let  a>0, Q and be real numbers. 1' The integral ope-

rator IF=90, which acts on certain functions f (x) on the interval (0, oo), is 

defined by

(1.1) Ix=P='f= 1,(a)JJ(x-t)1F(a+fl,o  —v;a;1— t) f (t)dt,
where P is the gamma function, F denotes the Gauss hypergeometric series

(1.2) 2Fi (a, b ; c; z) _(a)(b), ! z I <1 
o (c),~n!

and its analytic continuation into I arg (1-z) I <=, and (a) = P (a + n) /P (a) . 

   DEFINITION 2. Under the same assumptions in Definition 1, the integral 

operator PPP,' is defined by

(1.3) J==90f=-------P(a) J (tx) 1taPF(a+9,—;a;1—t)f(t)dt.
   NOTE 1. When a+Q=O or Q=0, I and J are reduced to the following 

integral operators:
                                            x 

(1. 4)Ix=-a='jf =1(
a) o(x—t)a -if (t)dt-R.f, (Riemann-Liouville)

(1. 5) Roo f =  x-a-) P (
a) o(x—t)a-it'f (t)dt-Ea='f,(Erdelyi-Kober)

(1. 6) Jx=-a, f—  I,(a) L(t_x)-'f(t)dt_=wf,  (Weyl)
(1. 7) Js=°0f—  P(a)----J(t_x)!_1t_a_f(t)dt=_K:2f,  (Erdelyi-Kober)

by virtue of the formulas F (0, b; c ; z) =1 and 

(1.8) F(a,b;a;z)_(1—z)-b. 

  NOTE 2. The following equalities will be useful in the future: 2) 

(1. 9) Ea,* f=x-a-°Raxo f, 

(1.10) Kao f=xoWax-a-h1 f. 

  Making use of the relation F (a, b; c; z) = F (b, a; c; z), we have

THEOREM 1.

1) The following results are valid for complex numbers Re a>0, 49 and 72, but for 
brevity we shall confine ourselves to the real case. 

2) The suffix x in the above operators will be omitted in the following discussions 
unless it is needed.



 (1.  11)I«,P, xf-of_Ia,i,ftf, 

(1. 12)J«,13,1x«+13+v f=J«,—«—~,—«—~ f

   The formula 

(1. 13) F(a, b;c;z)=(1—z)`-a-bF(c—a, c—b;c;z) 

implies

 THEOREM 2. 

(1. 14) I«,~,~ f=x-«-a-nl«,-«-~, « Af, 

(1. 15) J«,P,i f=x)-P J«,J,P f.

 COROLLARY. 

(1. 16) I «,P,o f=x-«-BR« f, I«,a,-« f_x-aE«, « af, 

(1.17) J«,P,of=x—fllfa,ft J«f «f=x—«—flW« f.

2. Some properties of I and J

   Let 1<p<oo. Lp denotes a class of real functions which are measurable 

and p-th power integrable on the interval (0, oo) with the norm II • I Ip. L„ 

denotes a class of real, measurable and essentially bounded functions on 

(0, oo) with the norm 11.11— 

  If we combine results of Hardy and Littlewood [5], Kober [6] and Flett 

[4] by keeping in mind Note 2, we obtain

   LEMMA 1. Let 1<p<q<oo, a<1-- and b>a— 1 If functions f(x) 

and g(x) satisfy xaf E Lp and xbge Lp, and a>p—qwhere a may be 
equal to p—

qexcept the cases 1=p<q<0oand 1<p<q = oo, then xP q 
1 1 

xR«fand xP-q_«+b Wag belong to Lq and there hold the estimations') 

   DEFINITION 3. Let 1<p<q<00. The condition Ai(a, 8, 72,a;P, q) means 

that the members satisfy

   DEFINITION 3. Let 1<p<q<00. The condition Ai(a, 8, 72,a;P, q) means 

that the members satisfy

Y

3) In what follows the single symbol C will denote a constant depending on the 

parameters appeared in the inequality.



(2)  (i)a>—Q+p—y>p—qfor p<r<q, or
(ii)a>—z,+p—y>—qfor p<r<q.

(If 1= p < q <oo or 1< p < q = oo, one of the equal signs in (i) and (ii) 

should be excluded.) If, instead of (1), we assume

(1)' b > — min (Q, 72)                  1 

then that is called the condition A2(a, i3, ij;b;p, q).

   THEOREM 3. Let 1 < p q oo. Assume the conditions AI (a, i9, 72; a; p, 

q) and A2(a,Q,72;b;p, q), then xP Q+P+aI",P,' f and xPQ+P+b J",P,'g belong to 
Lq for any functions f(x) and g(x) with x"f ELp, xbgELp, and there hold 
the estimations

(2.3)IIxP Q Ia,130fllq < Cllxaflip,

_ 

(2.4)IIxP q+P+bJ",Pogllq CllxbgliP•

Furthermore the following decompositions are valid: 

Case (i) ; 

(2.5) I",ao f=x-"-P-*R"+Px'R-P f=R-Px-"-*R"+Px" f, 

(2.6) J", ,~g=x"-PW"+Px-"-'W-Pg=W-Px'W"+ax-"--P-ng. 

Case (ii) ; 

(2.7) I",P,n f—x-"-P-vR"+°xPR-nxn-P f—R-nx-"-PR"+*.f, 

(2.8) J",P,'Ig=W""x-"-PW-vg=x"W-'xPyy"+nx-"-P-°g. 

   PROOF. For the simplicity we shall consider the case 1<p <q <oo and 

(ii). From the assumptions a<1--1--, a+72�-1-- y for p<r<q, xaf ELp 
and by noting Lemma 1 we obtain EL,. and 

(2.9) IIxP r " n+aR""fllr < Cllxafljp. 

On the other hand a<—(3+v— 1 +1 implies 1—1+(3—n+a<1— 1,then, p 
rr 

for any function F(x) with zP r+P'+aFELr, we have xH Q+P+aR-*FELq and 

 (2.10) IIxP Q+P+aR-'FIIq G CIIxP-r+P-~+aFlln 

because —77>r—q. Substituting F=x-"-ftR"+n f into (2.10) and using 
(2. 9), we have

                  11+P+a 
(2.11) Ilv-QR-'x-"-PR"+'fllq < CllxafIi.



Now consider the integral

 (2.12) R-ox-a-PRa+vf

Since the interchangeability of the order of integrations is guaranteed by 

the above statements and by Fubini's theorem, then (2. 12) is equal to

         r(—v)r(a+72) J.(x —t)- '-it- a- ft(t —u)'+'-' f (u) du dt.

(2.13) I'(-7I)1'Ca+724 of(u)J u(x `t)--i(t_u)a+n-1t-a-a dt du
      x-a-aJx(x—u)a-1f(u)J1v--1(1—v)a+-1[1—(l--)v]-a-pdvdu 

  oox   -a-P---------J
(x_u)1F(a+I9I'(a) , —77;a;1— x)f(u)du=l°,ft f,

where we have used the formula [8]

(2.14) F (a, b; c; z)—  r (c) 1tb-1(1—t)c-b-'(1—tz)-adt, I(b) I (c—b)Jo 

               Re c>Re b>0, arg(1—z) I <7C.

Hence from (2. 11), (2. 12) and (2. 13) we obtain (2. 3). For the other pairs 

of p and q with 1< p < q <oo, the validity of the theorem may be assured 

by a similar manner. The rest of the decompositions for I can be concluded 

by the use of Theorems 1 and 2. Proofs for J are parallel. 

NOTE 3. Taking into account of Note 2, we may substitute E (or K) 

instead of some one or two R (or W) in (2. 5) and (2. 7) (or (2. 6) and 

(2. 8)), and obtain the other decompositions, e. g. 
Ia'ft,2=x-rEa+d,o-rxrR-, =x-P-r-eEa+P,'-ft-r-axrE-f,—axa etc. 

For want of space the whole formulas are not mentioned here.

  Between I and J, there holds the following generalized fractional inte-

gration by parts.

  THEOREM 4. Let 1�p�00, 1< q <oo and p+—1>1. 1 Suppose that 
constants a, b, a, (3 and 77 satisfy the conditions:

a< min (0, —j9+77)---+1,8 a+ b=1— — ++0 and 
(i)-1>-1a>-9+p—+q-1 forp<r< gq1or 

1 1 1 1 
(ii) a> — i+ p — y > 7-)+  4-1 for p<r<-----q-1 • 

(If 1= p < q <oo or 1= q < p <oo, one of the equal signs in (i) and (ii) 
should be omitted.) If xdfELp and xbgELq, then there holds the equality



 (2.  15) rg(x)I70,'fdx=Jof(x).,Pogdx.
  PROOF. The left hand side of (2. 15) is equal to 

(2.16) P(a) Jg (x) x a -aJo(x—t)a-1F(a+19,—v;a;1—f)f(t) dt dx. 
The assumptions and Theorem 3 imply x-bI:' 13' ° 1 f 1 E LQ, (q-1) . Thus I g (x)1 

x IF'3'v 1 f 1 E4 Therefore we may interchange the order of integrations in 

(2. 16) .

(2. 17) Eg(x)R,fiof  dx
—  (a)  ff(t)J(x—t)1xF(a+$, _;a;1_x)g(x) dx dt
=Jof (t)J7'P'~g dt.

   THEOREM 5. Let a>r>0. Under the same assumptions in Theorem 

3, there hold the following decompositions: 

(2.18) Ia's''f, =lr,a,vla—r,P—a,r+v f—Ia—r,d—a,v+r+alr,a,v—p+a f, 

  (2.19) Ja,P,vg= Ja—r,p—a,r+v Jr,a,vg= Jr,a,v—ft+aJa—r,fl—a,v+r+ag. 

  PROOF. The results follow from Erdelyi's formulas [3]

(2.20) F(a,b;c;z)= I,rCc)  It'-1(1—t)c-2-1(1—tz)-ai                  ( ,)P(c-A)J

F(a—a', b;A;tz)F(a', b—A;c—A;  z(1—t)  1— tz)dt

(2.21) I'(c) Jltz-1(1—t)c-,-1(1—tz)r-a-b 
P(A)I'(c—A)o

F(r—a, r—b;2;tz) F(a+b—r, r—);c-2;  z(1—t)  )dt 1—tz,

Re c>Re )>0, 1 arg(1—z)1 <7r.

Here the change of the order of integrations is clear by the similar arguments 

in the previous discussions, so we shall omit precise proofs.

  NOTE 4. (2.18) and (2.19) are useful as product rules in writting in 

the forms 

  (2.22) Ia,P,'Ir,a,a+v—Ia+r,p+a,v, Ia,90lr,8,v—f-7-8—Ia+r,p+40—r-8, 

  (2.23) Jr,a,a+v Ja,fl,v— Ja+r,ft+a,v, Jr,a,v—~—r—a Ja,p,9= Ja+r,p+a,v—r—a.

3. Further formulas for I and J 

  Let us consider the Mellin transform



 (3.1)^F{so(x);z}=Jox'1So(x) dx,

where z is a complex variable.

   LEMMA 2. For Re c>0, Re f>0, Re z>max {Re(—p), Re(a+b—c—p), 

Re(—d+ f —p+q), Re(e—p+q)}, there holds

(3.2) w)d-f+P-q11
F(a, b;c;vw) F(d, e; f; w(1—v)) dv;z}                     1—vw

=r(c)r(f)  r (z+p)r (z—a—b+c+p) r  (z+d—f+p—q) r (z—e+p—q)  
r (z—a+c+p) r (z—b+c+p) r (z+p—q)r(z+d—e+p—q)

PROOF. Substitute the formulas

(3.3),_re{(1—x)`-1F(a,b;c;1—x)H(1—x);z}= r(c)r(z)r(c—a—b+z)  r(c—a+z)I'(c—b+z) '

Re c>0, Re z>max{0, Re(a+b—c)}, [10, (I. 15. 2)]

(3.4) .7‘{(x-1)`-1F(a, b;c;1—x)H(x-1);z}

r (c) r (1+a—c—z) r (1+b—c—z)  
r (1—z) r (1+a+b—c—z) '

Re c>0, Re z>max{Re(1+a—c), Re(1+b—c)} [10, (I. 15. 4)]

into

(3.5) ./lf{xaJotbcoi(xt)cp2(t)dt;z}—D1(z+a)02(1—z—a+b), [10, (I.1.14)] 
change the parameters suitably and set x=1—w, then we have (3. 2) after 

certain arrangements, where H(t) is the Heaviside function, ._4{co1; z} = 

01(z) and ./4%02;z}_02(z).

COROLLARY. Set

                               ,fla+r-1 i 

(3.6) I(a,8,72;r, 8, C;w)=------------r(a)I'(r) ova-'(1—v)r-1(1—wv)-r-a

F(a+Q, —z;a;wv)F(r+8, —C;r; w(1—v)) dv, 1—wv

then we have

(3.7) ../,{I(a,Q,r2;BC;w);z}=  r(z)r(z—(3+v'—l)r(z-8+C)  r(z—Q—B) r(z+a+72-8)r(z+r+C) 

                      for a>0, r>0, Re z>max{0, 8—C, j9—V+8}.

  NOTE 5. In the right hand side of (3. 7), there are 9 combinations of 

the set of the parameters to be cancelled each one of the denominator and



the numerator. Then in any case the side is equal to the Mellin  transform 

of some Gauss function by the formulas (3.3) and 

(3.8) .-4 {xacp(x);z}_0(z+a), where . r{cp;z}_D(z). [10, (I.1.3)] 

But no formula is produced except (2.20) and (2.21). So any new product 

rule except (2.22) and (2. 23) can not be known. Similar discussions have 

been made by Buschman [2] for (3.2) in order to obtain Erdelyi type for-

mulas, where he pointed out 9 special combinations. There are, however, 

4P2 x 4P2=2=72 possibilities of combinations. Examining all cases by using 

(1.8), (1.13) and

(3.9) F(a, b;c;z)=(1—z)-aF(a, c—b;c;  
z z 1),

we find that, in addition to the Erdelyi formulas, a new one is constructed 

no more than the following:

(3.10) F(a,b;c;z)= ,(2) Ir(c)                      I(c —A)(1—z)-a+'+hIt2-1(1-0e- 2-1                              II

(1—tz)a-a'-cF(a—a', b—c+a'+2;A;tz) F(a', —a+b+a'; c-2;z(1—t))dt, 1—tz

Re c>Re 2>0, l arg(1—z) I <7r.

From the fact (3. 7), we have

 LEMMA 3. Let a>0, r>0 and 0<2<a+r. There hold the identities 

(3.11) I (a, Q, z'^r, 8, C; w) =I (2, —2+a+$, —A+a+r, 2—a+8, A—a+C; w) 
        =I (2 , —2+Q-7?+r+B+C,,2; —A+a+r, 2+,7—r—C, A+'7—r-8;w) 

=1(2, —2+a+v—C, Q+(; —2+a+r, 2—a+,e—v+B+C, 2—a+C;w) 

=1(2, —A+r+8, 8+ C; —2+a+r, 2+p—r, A+v—r-8;w) .

By Theorem 3 and Lemma 3 the following is clear.

   THEOREM 6. Let 1<Pcr jSq<oo (j=1, 2), a>0, r>0 and 0<22<a+r. 

Assume the conditions Ai(r, 8,C; a;p, r1), A1(a,(3, 72;p—---r+8+a; r1,q), 
1 1  A

1(-2+a+r, 2—a+8, 2—a+C; a;p, r2) and A1(2, —2+a+8, 71; p—r 2+2—a 

+8+a;r2f q).Ifxaf ELp, then xa+P+a+aI a,P,vIr,a,c f and x9-1+P+a+a 

f belong to Lq and there holds the identity 

(3.12) I a,P,0Ir,a,c f=I2,-2+a+ft,VI-2+a+T,2—a+a,2—a+c f



   NOTE 6. From the rest of formulas in Lemma 3, we obtain the follow-

ing identities by supposing respective  conditions: 

  (3.13) Ia,P'') I r'o,`f
_I2,-2+$-'I+r+a+C,o I-2+a+r,2+'I-7-C,2+'1 -7-8 f 

`I2,-2+a+'1-C,13+CI-2+a+r,1-a+ft-'7+a+C,1-a+C f 

=I2,-2+r+a,p+C I-2+a+r,2+f-r,2+3i-r-a f.

   NOTE 7. Replace the condition Al by A2 in Theorem 6 and in Note 6, 

we have

(3.14) Ja,ft,'I Jr,a,C f=r2,-2+a+fi,-2+a+'r^-2+a+r,2-a+a,C f 

                                  T 

              =J2,-1-V+r+C,-2-d+r+C-a+a+r,2+ft+n-r+a-C,C f 

=J2,-2+a+ft+'I+8-C,-2+a++0 J-2+a+r,2-a-p+C,)+a f 

_ j1,-2+r+a,-2-ft+r+C J-1+a+r,2+,-r,o+a f

   NOTE 8. Set 8=8=0, 2=r in the last identities in (3.13) and (3.14), 

then 

  (3.15) Ea,')E r,C f =E7,CEa'°f, Ka,')K',C f =K7,CKa^° f 

are valid, which are just ones obtained by Buschman [1].
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