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Introduction

   In this paper we are concerned with the existence and decay of weak 

solutions of the following nonlinear wave equations with nonlinear dissipa-

tive terms

 at'---- u—ziu+p   atu)+(u)=f in Q(0.1)
with the initial-boundary conditions

u(0,x)=uo(x),-~ u(x,0)=ui(x) and uI1=0(0.2)
where Q= U SZt x {t} is a bounded increasing (in t) domain in ir x [0, oo) 

0<c<. 

and 2 is the lateral boundary of Q. 

   Recently, linear and nonlinear wave equations in noncylindrical domains 

have been treated by many authors. Lions [4] introduced the so-called 

penalty method to solve existence problem. Using this method, Medeiros 

[5] proved the existence of weak solution to the problem (0. 1)-(0. 2) with 

p(-----at u)=0 for a wide class of 8(u) such that 8(u)u�0.  Cooper & Bardos 
[2] proved the existence and uniqueness of weak solution for the case p=0, 

8 (u) = I u I ° u (a>0) and 2' is globaly "time-like" without the increasingness 

condition on Q. Cooper [1] considered the local decay property of solutions 

of linear equations (in an exterior domain), assuming the boundary is time-

like at each point. Inoue [3] succeeded in proving the existence of classical 

solutions for the case n=3, 6=0 and 8(u) =u3 when the body is time-like 

at each point. 

   In this note we restrict ourselves to the case of the domain being mono-

tone increasing to investigate decay property as well as the existence of 

weak solutions. We utilize fully the existence of the dissipative term, which 

is different essentially from earlier papers. It should be noted also that we



make no monotonicity conditions on  [3(u).  In a cylindrical case, our problem 

has been treated by one of the authors [6] [7] [8] [9] and our result here 

can be regarded as partial extensions of those works.

1. Preliminaries

   We use some familiar notations of function spaces without definitions. 

Points of Rr x [0, oo) are denoted as (x, t). 

   First we state our assumptions on Q, p, Q and the forcing term f; 

A1. (i) Let Q= U 2t x {t} (Rn x [0, oo). Then 2, is monotone increas-
                          ost<0• 

ing, that is, DticS2t2 if t1Ct2. 

(ii) S2 and ..(2= U 2t is regular and bounded. 
                          0 t <O0 

A2. 0(s) is a function on R, satisfying the conditions 

10 (s) I CKo l s l a +1(1.1) 
where a is a constant such that 

0 <aC 
n-22  if n>3 and <a<oo if n=1,2.(1. 2) 

A3. p(s) is a function on R, satisfying 

K1Isfr+2cp(s)scK2(1+IsI)r+1 s and
(1.3) (p(s1) —p(s2)) (s1—s2)>0 

where r is a constant satisfying (1.2), admitting r=0. 

A4. f belongs toS([000)•L(r+z)/(r+1) (.l))i.(r+2)/(r+1)f~t~e.f
t+l (r+/(r+ ~(t)=Ilf (s) I1 L(r+2)2)/(r+2)1) (Qt)ds)(1.+1)/(r+2)<Const. <00.

   Finally in this section we give our definition of solution. We say a function 

u on U 2tx {t} is a weak solution to the problem (0.1)-(0.2) if u'ELl oe([0, ost<0 

oo) ; L2 (S2t) ), u E L oc ([0, oo) ; II1(S2t)) and t--> (•, t) (some extension of u(• ,  t) 
on 2), t->u'(•, t) are continuous with values 111(S2) and L2(2), respectively. 

The equations (0.1), (0. 2) are satisfied in the distribution sense.

2. Some lemmas on difference inequalities

   Here we prepare some lemmas concerning difference inequalities, which 

will be needed for the proof of decay property of solutions. 

   LEMMA 2.1 Let {am,}mso be a sequence of positive numbers such that 

am,+1—am, do>0 or am,+1>(1+d1)am,(2. 1)



for  m=0,  1, 2, ... , where do, d1 are some positive constants. Then we have 

    am>amo+do(m—mo) for m>mo(2.2) 

where mo is the smallest integer such that

mo>max{log(  aoddo)(log(1+d1))-1, 0}. 

                     l

   PROOF. First, suppose that mo=O. In this case we have 

ao>dod i 1 

and hence (note that {a,n} is an increasing sequence) 

am>min{am_1+do, (1+d1)am_1} =am_i+do for m=1, 2, ... , 

which implies immediately (2.2) with mo =O. 

   Next, we assume mo>0. Then we have 

amo>dodi 1.(2. 3) 

Indeed, if this was false, we see easily 

(do+ak)>(1 +dl)ak for k=0, 1, ... , mo-1 

and hence by the assumption (2. 1) 

amo>(1 +d1)moao(2. 4) 

which is a contradiction because amo<dodi l implies (1 +d1) "`oao>dod i 1. Thus 

by (2. 2) we obtain, as in the case mo=0, 

amo+k>amo+dok (k=1, 2, 3, ... ). 

   LEMMA 2.2. Let 0(t) be a nonnegative decreasing function on R+ 

= [0, oo), satisfying 

0(t+1)l+a—d20(t)1+a-d3(0(t) —0(t+1))(2. 5) 
with some constants a>0, 0<d2<1, d3>0. Then we have 

0(t)�c0(1+t)-l'a for tER+,(2. 6) 

where co is a constant depending on 0(0) and other known constants. 

   PROOF. Setting y(t)=0(t)- , we see easily 

    y(t+1)—y(t)=J'de{6c(t+1)+(1-0)0(t)}-ad° 
>a(c$(t)— (At +1))0(t)^(1+a).

(1—a2) gt)1+a�d 3(0(t)-0(t+1))

and hence, using (2. 7),

y(t+1)—y(t)>(2(13)-1(1—d2)a>0.(2. 8) 

On the other hand, if 0(t+1)c 2 (1+d2)0(t)1+a, we have



y(t+1)>1+d2 21la/(1+a)  y(t).(2.9)
Thus applying Lemma 2.1 to the sequence 

{Y Cm (0<0<1) 

we obtain (2. 6) immediately. 

   REMARK 1. If (2. 5) is valid for a=0, then it is easy to see that 

(t)Cconst. e-kt 
for some k>0. 

   LEMMA 2.3. Let 0(t) be a decreasing nonnegative function on R+, 

satisfying

0(t+1)<d4{A2(t)+(A(t)+b1(t)), O(t) }+g2(t) (2
.10)                f

or t>0

where d4>0 and we set 

A(t)={0(t)0(t+1)}1/(r+2) (r>0). 

Moreover, let us assume 

gi (t)+g2(t)<d5(1+t)-B(2. 11) 

for some d5>0 and 0>2/r. Then we have 

95(t)<c1(1+t)-2/r for t>0(2. 12) 

where c1 is a constant depending on 0(0) and other known constants. 

   PROOF. Using Young inequality, we obtain easily from (2. 10), for any 

o(t+1) 2)/2<ce(0(t) —95(t+1) +63(t) (r+2)/2) +egt) (r+2)/2 

where we set g3(t) =gi (t) +g2(t). Hereafter ce denotes various constants 

depending on e. Putting 0(t) =0(t) +vt-a (v>0) we have 

~(t+1) (r+2)/2<ce(Yl'(t) —(!1 (t+1)) +e0(t) (r+2)/2+Ie(t)
where

Ie(t)=ce(—vt +v(t+1)-B)+2(r+2)/2v(r+2)/2t-a(r+2)/2g3(t)(r+2)/2 

By the same arguments as in [8] we can show Ie(t)<0 forlarge t if (2.11) 

is valid. Therefore by Lemma 2.2 we obtain (2. 12). 

   REMARK 2. In [8], the following difference inequality is treated: 

      max 0(t) l+a_<const. —0(t+1)) +g(t). (a?0). 
se [t,t+1]

3. Existence and decay of solution

   To state our theorems we must recall some functionals on HH1(S2) intro-

duced in [6];



J0(u) = 2 IIuI1Hl(A)  +f  a fou(x) 8(s)dsdx,

Jl (u) = II uII HI (A, +.19 f (u) udx,
.i (u) = 2 II u11 H1(A) —(KOSa+2 /(a+2))IIuII H12,A)

and

J1(u) =IIUII l(A) l~Osa+211u11j112

where Sa +2 is a constant such that 

IIuIILa+2 (A) a+211u11H1.

Note that Jo(u)>J0(u) and J1(u)J1(u), which will be used later. Moreover 

we set

J0(x) — Zx2—(K0Sa+2/(a+2))xa+2
and

J1(x) =x2—K0Sa+2xa+2

for x>0. Let xo be a maximal point of J1(x), i. e.,

       2 1/a 
 _ x0—1 KOSa+i (a+2)

and set D0=J0(x0). Note that L . and Jo are both increasing on [0, x0]. 

   The stable set Wo is defined as follows. 

Wo={(uo, u1)EH1(9o) XL2(Do) I IluoIIFrl(A)<xo and

II (u0, 141) 11W0---211141i2(A°)+J(u0) <Do}
Hereafter, for a function u(x) defined on a subset Do of Sa we set

      u(x) if xESZ0 
u(x) = 0 if 

xi$S2°

for xED. 

   Now we are ready to state our results. 

   THEOREM 1. Let (uo, u1) E W0.Then there exists a constant Mo=M0 

(D0-11(u., ul) I I Wo)>0 such that if

M=SUp(Ja+lllf(s)I1L(r+/(r+i)cA)ds)M0        t(r+1) / (r+2) 
           L(r+2)/(r+1)<

then the problem (0. 1)-(0. 2) has a weak solution u(t) satisfying 

Ilu'(t)IIL2(AC)<N/2Do and Ilu(t)IIFI1(Ai) <x0.



   THEOREM 2. Let  M<M°. Then, the solution u in Theorem 1 satis-

fies the following decay property: 

(i) if r=0 and 8(t)doe-At (do, A0>0), then 

!Iu(t)11E(t)_<<cZe-" for t>0 

with some A>0, and 

(ii) if r>0 and 8(t)Cd0(1+t)-(1+')-1/r for some r,>O, then 

Ilu(011Ect)._c3(1+t)'/' for t>0 

where we recall

s()=jt+lII(r+2r+ utI`f ()IISL(r+2)/)/((r+l)l) (A)dS)(r+l)/(r+2)
and we set 

IIu (t)1I E (t) =IIu' (011 I L2 (At) +IIu (t) I I 1(s t) • 
Of course the constant c2, c3 depend on the initial data (uo, u1). 

   REMARK 3. If we assume (3 (u) u>0, then the assertions of above 

Theorems are valid for all (u0, u1) E H1(20) x LZ (Do) without the restriction 

on 11(uo, ui) IIiq . 

   Let us proceed to the proofs of above Theorems. 

   PROOF OF THEOREM 1. We employ a penalty method. Let x(x, t) be 

the characteristic function of S2 x R+ —Q and consider the equation

i-2ue—due+ p( at ue) + fl (uo +  a ue= f on S2 x R+ (3.1)
with ue(x, 0) = 40(x),ax-----u, (x, 0) =u1(x) and ue(t)I as=O. (3. 2)
Since 2 is regular we may assume uo(x) EH1(2). We solve (3.1) by Galer-

kin method. Let {w1(x)} be a basis of Al(Sa) and let

um,.,e(x, t) ~ale(t)w~(x)

where aj,m,e(t) are determined by the system of ordinary differential equation

(u, ,e(t), wj) + (ru1 ,e(t), Gwj) + (P(um,e), w>)

+ (Q(u,n,e(t)), wi) + (x(t>um, e(t), WI) = (.f (t), w5),

and

um,e (0) —A4 strongly in H1(2), 

u,,,,e (0) -->ui strongly in LZ (2). 

   Since x (x, t) is monotonically increasing with respect to t, we obtain, 

as long as um,e(t) exists,



2IIum,E(t2)IIL2 CO) +JO(um,e(t2); e) + J2(p(u,s(t)), u,,(t))dt 

 2um,E(tl) IIL2(D)+Jo(um,E(ti) ;e)+lt,2(J(t), um,E(t))dt (3.  3)  
for t2>t1>0, where 

Jo(u;e)=J0(u)+----2 e I12Cullb2(D).
Also we have

jtl{eIlxum,E1112(D) +Ji(um,E(t))}dt
<(24,E(t1), um,E(ti))+(um,E(t2), um,e(t2))(3.4)

+J (1114;.,e(0 1112 + (J (t), um,E(t)))dt. 
tl

Since2II u,A,E(0) IIL2(D) +Jo (u„z,E(0) ; e) tends to II (uo, ul) !Iwo as m—*oo, we
see that for 72>0 there exists mo>0 such that

2IIuE(0) IIL2(D) +^ (um,E(0) ;e) <Do—II(uo,u1)1114,0+(3. 5)
and

IIum,E(0) II H1 <xo for m>m0.

Thus combining (3.3)-(3.5) we can conclude by almost the same argument 

as in [6] that there exists a constant M0=Mo(D0— II (uo, u1)1Iw0) such that if 

M<Mo, um,E(t) exists on [0, oo) and the following estimates hold:

2IIu;~,E(t)Ili2(D)+Jo(um,E(t);e)<Dofor tE[0,00)(3.6)

From (3. 6) it follows that

Ilum,E(t) II L2(D)<^2D0, Ilum,E(t)lIj (D)<x0,

                                       ~tl 

E II x(t)um,E(t) IIL2(D)<^ 2D0 andc Ilum,E(s) IILr+2 (D)ds~C(D0,M0)

<00(3. 7)

for large m. 

   Thus by standard compactness and monotonicity arguments (see Lions, 

Strauss [4, 10]) we see that there exist a subsequence {um,,e} of {u,,,,,E(t)} 

and a function uE(x, t) such that 

                         us weakly* in L°°([0, oo) ; 111(S2)) and a. e. in. S2 x R+, 

Q (um,,E) -->Q (u€) weakly* in L°°([0, co) ; L2 (S2) )



u;,e--->u'eweakly* inL"([0,  oo); L2 (S2))
(3. 8)

(r+2)/ (r+1) 

P (u.1,e) --> o (u') weakly in L(R+ ; L (r+2) / (r+ 1) (S2) ) 
    loc

and

 1-:
%/72(u„, f, --> xuE weakly* in L°3 CO, oo); L2(S2)).

Thus us(t) is a weak solution of the problem (3. 1)-(3. 2) and the estimates 
(3. 7) still hold for ue. Repeated use of compactness and monotonicity argu-
ments for {u,} show that a subsequence {ice} of {us} (ei-->O) satisfies the 

convergence properties as in (3. 8). In particular we obtain that1xueis 
eg 

convergent with respect to weak* topology of L°'([0, oo); L2 (S2)). Hence the 

limit function u(t) of fu, 1}satisfies (note that S2, is regular)

xu=0, i. e. , uELe°([O, oo);H1CS2r))•

It is easy to see u(x, 0) =110(x)  and u' (x, 0) =121(x). Thus u is a required 

weak solution of our problem. (the continuity of u(•, t), u'(•, t) are assured 

by Strauss [10]) 

   PROOF OF THEOREM 2. For the proof of Theorem 2 it suffices to show 

that the approximate solutions um,e(t) (m: large) satisfy the decay estimate 

independent of m, e. We know already

11Cum,e(t))?J 0 (um,e(t))�kollum,€(t)1IH1 (A)

for all tECO, co) with some k0>0. 

   We shall derive a difference inequality concerning the energy of um,e to 
apply Lemma 2.3. First we observe that, for t,>t2f

ECum,€Ct2)) —E (um,e(t1)) +------21 Jt211 u ,e(s) IILr+2 (n)ds _O (3. 9)
where we set 

     E (um,e(t)) = 2 11um,,e(t) I12+Jo(um,e(t) ; e)
 fr+1l (2K11/(r+1)oo-(r+2)/(r+1) +lr+2)1r+21Ji!f(s)II(r+2)/(r+l)(A)ds.

By the assumption on f (t) and by (3. 9) E (u(t)) is a nonnegative monotone 

decreasing function on R. Let t be fixed arbitrarily. Then by (3.9) with 

t1=t, t2=t+1, we see that there exist two points tie [t, t+ +1] and t2E [t+ 
4 , t + 1] such that

I lum,e (ti) IILr+2 (Q)(K1)cr+2, 
                   1/ D (

t)



where  D(t)  _  {E(um,e(t)) —E(um ,e(t+1))}"(.+2), and hence, as in (3. 4), we 
have

Jt2{ 1 tixum,c(.5)IIL2(a)+Itum,€(s)ti;(Q)}ds 

  1

c(S2) {D (t) max IIum,e(s) IIL2(a) +D(t)2(3. 10) 
sett,t+1]

+8(t) max II um,e(s) II L2 (o) } 
se[t,c+1]

where c (S2) denotes constants depending on meas (Sa) . From (3.9) and (3.10) 

we see that there exists a time t* e[t, t+1] such that

2Mu;,a,e(t*) I12(u) +Jo(um,e(t*) ; e)
(S2) {D(t)2+ (D(t) +8(t)) max IIum,E(S) IIL2(a)} 

seCt,t+1] (3.11)
CC(S2) {D(t)2+(D(t)+8(t)) max E(um ,E(s))}. se [t,t+1]

Since E(um,E(t)) is monotone decreasing we have by (3.11)

E (um,E(t+1))<E (um,E(t*))CC(S2) {D(t)2+ D(t)-+OM) ^E(um,E(t))

+ 8(t+i) (r+2) (r+1)}(3.12) 
i=0

Applying Lemma 2.3 to (3.12) we obtain immediately the desired result.
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