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Introduction

In this paper we are concerned with the existence and decay of weak
solutions of the following nonlinear wave equations with nonlinear dissipa-

tive terms
0° 7 r
—a?u—Au+p(Wu>+B(u)—f in @ 0.1)
with the initial-boundary conditions
u(0, x)=u0(x),—8%—u(x, O =u,(x) and %|;=0 (0.2)

where Q=°<tu<w 2, % {t} is a bounded increasing (in #) domain in R"X[0, o)
and X is the lateral boundary of @.

Recently, linear and nonlinear wave equations in noncylindrical domains
have been treated by many authors. Lions [4] introduced the so-called
penalty method to solve existence problem. Using this method, Medeiros
[5] proved the existence of weak solution to the problem (0.1)-(0.2) with

p(%u)=0 for a wide class of 8(#) such that f(#)u=0. Cooper & Bardos

[2] proved the existence and uniqueness of weak solution for the case p=0,
B(w)=|u|*u (a=0) and X is globaly “time-like” without the increasingness
condition on . Cooper [1] considered the local decay property of solutions
of linear equations (in an exterior domain), assuming the boundary is time-
like at each point. Inoue [3] succeeded in proving the existence of classical
solutions for the case #=3, 3=0 and B(#)=u#> when the body is time-like
at each point.

In this note we restrict ourselves to the case of the domain being mono-
tone increasing to investigate decay property as well as the existence of
weak solutions. We utilize fully the existence of the dissipative term, which
is different essentially from earlier papers. It should be noted also that we
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make no monotonicity conditions on B(#). In a cylindrical case, our problem
has been treated by one of the authors [6] [7] [8] [9] and our result here
can be regarded as partial extensions of those works.

1. Preliminaries

We use some familiar notations of function spaces without definitions.
Points of R"X[0, ) are denoted as (x,¢).
First we state our assumptions on @, p, B8 and the forcing term f;
A, (i) Let Q=°‘LtJ<N.Q;><{t} (R®*x[0,0). Then £, is monotone increas-
ing, that is, 2:,cC®2., if ¢,<t,.
(ii) £, and onsL‘J“QG is regular and bounded.

A,. B(s) is a function on R, satisfying the conditions

|B()=Kyls]* an
where a is a constant such that
0<a=_Z. if 723 and <a<oo if #=1,2. 1.2

A;. p(s) is 4 function on R, satisfying
K,|s|™*<p(s)s<K,(1+|s])™' s and
(p(s)) ~p(82)) ($:—$2) =0
where 7 is a constant satisfying (1.2), admitting »=0.
A,. f belongs to S¢in, e ([0,00); L7270 (03Y, e,

e+l [ (rk2) 74D
0@ =(] T IF @I T G 0 ds) 707 7D Lconst. oo,

Finally in this section we give our definition of solution. We say a function

1.3

won U 2,x {t} is a weak solution to the problem (0.1)-(0.2) if u'eL:m([O,
St<o
00); L*(2,)), ueL;, ([0,00); H,(2,)) and t—#(+, ) (some extension of %(-, )

on ), t—# (+,t) are continuous with values H,(2) and L*(2), respectively.
The equations (0.1), (0.2) are satisfied in the distribution sense.

2. Some lemmas on difference inequalities

Here we prepare some lemmas concerning difference inequalities, which
will be needed for the proof of decay property of solutions.
LEMMA 2.1 Let {a,}n., be a sequence of positive numbers such that
Cpir—8n=d >0 or a,.,=>(1+d)a, 2.1
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for m=0,1,2,..., where d, d, are some positive constants. Then we have
An=amo+dy(m—m,)  for m=m, (2.2)
where m, is the smallest integer such that

) log(1+4) ™, 0}.

PRrROOF. First, suppose that m,=0. In this case we have
a,=ddi!
and hence (note that {a,} is an increasing sequence)
a,=min{a,_,+d, (1+d)a,_,}=a,_,+d, for m=1,2,...,
which implies immediately (2.2) with m,=0.

mogmax{log<

Next, we assume m,>0. Then we have

Amg==d 7. 2.3)

Indeed, if this was false, we see easily
(d,+a)>A+d)a, for k=0,1,...,m,—1
and hence by the assumption (2.1)

Amy>(14+d))™a, 2.4)
which is a contradiction because @.,<d,d;! implies (1+d,)™a,>d.d7*. Thus
by (2.2) we obtain, as in the case m,=0,

Ao v2mo+dok (£=1,2,3,...).

LEMMA 2.2. Let ¢(t) be a nonnegative decreasing function on R*
=[0, ), satisfying

PR+ —dp () <d, (6(8) —p(£+1)) (2.5)
with some constants a>0,0<d,<1,d,>0. Then we have
o) =<c,A+8) = for teR*, 2.6)

where c, is a constant depending on ¢(0) and other known constants.
PROOF. Setting y(#)=¢(¢) ™", we see easily

YD =y = [ Fr106G+ D+ 1=6)p(1)} *dd
Za(3()—B(t+1))B(®) O, @
Therefore, if ¢(t+1)"**>32d24()1e, we have by (2.5)
A28 4 ayezdy (6~ 9t +1)) |

and hence, using (2.7),
y(+1)—y(#)=(2d,) " (1—dy)a>0. 2.8)

On the other hand, if ¢(t+1)§%(1+d2)¢(t)““, we have
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ya+n=(2)" . (2.9)

Thus applying Lemma 2.1 to the sequence
{y(m+)}m_ (0=6<1)
we obtain (2.6) immediately.
REMARK 1. If (2.5) is valid for =0, then it is easy to see that
o (t)<const. ¢ *
for some £>0.
LEMMA 2.3. Let ¢(t) be a decreasing nonnegative function on R*,
satisfying
p(t+1)=d {A*®)+(A®) + g,V o) } +£:(8)

for 10 (2.10)
where d, >0 and we set
A@)={pBW)pE+1D} "2 (r>0).
Moreover, let us assume
gt +&M)=d;(1+t)"° 2.11)
for some d; >0 and 6>2/r. Then we have
p)y=c,(1+8)™*" for t=0 (2.12)

where ¢, is a constant depending on ¢(0) and other known constants.
Proor. Using Young inequality, we obtain easily from (2.10), for any
e>0,
BU+1) D e (p (1)~ p(E+1) £ () DY) e () T
where we set g,(¢)=g2(¢) +g,(t). Hereafter ¢. denotes various constants
depending on e. Putting ¢(#)=¢ @) +vt™? (v>0) we have
P+ TP (P~ E+1)) +ep (8) TR (2)
where
Ie(t) :ce(_yt’ﬁ +y(t_‘_1)“ﬂ) _'_2("" 2)/2V(T+Z)/2t—0 (T+2)/2+g3(t) ("'+2)/2'
By the same arguments as in [8] we can show 7.(¢)<0 for large ¢ if (2.11)
is valid. Therefore by Lemma 2.2 we obtain (2.12).
REMARK 2. In [8], the following difference inequality is treated:
max ¢(f)*<const. (¢(t) —p(t+1))+g@). (a=0).

sa@lt,z+13

3. Existence and decay of solution

To state our theorems we must recall some functionals on H,(2) intro-
duced in [6];
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u(x
Tocwy =Sy, o0+ [ *) o(s)dsdx,
Ty =lull}y o, +jg Bwyuds,

iy =Zlully, o) —(KSit3 /(a2 )lull 2

Hy@

and
i) =llullyy, o ~EoSetillulg”

where S... is a constant such that
HMHLHZm)§Sa+2|\u|b‘}l_

121

Note that J,(#)=/],(#) and J,(#)=],(»), which will be used later. Moreover

we set
Jo(#) == (K, Sity/ (a+2)x°
and
Ji(x)=x—K,Sit3x°+?
for x=0. Let x, be a maximal point of J,(x), i.e.,

""-{ :1%2(a+2) }W

and set D,=/,(x,). Note that J, and J, are both increasing on [0, x,].

The stable set W, is defined as follows.
Wo={ (o, ) € H,(2) X L*(D0) | llt4oll 5, 10y<%, and

+J (@) <D}

Hereafter, for a function #(x) defined on a subset 2, of £ we set
5 u(x) if xe82,
#(x) = .
if xE82,

I (ot I)HW(,_—llulllL,a

for x 8.
Now we are ready to state our results.

THEOREM 1. Let (u,u,)=W, Then there exists a constant M,=M,

(Dy—11(tho, #,)lwo) >0 such that if

M=sup([ A @IS ds) T T <M,
then the problem (0.1)-(0.2) has a weak solution u(t) satisfying
e ()l2200<a/2Dy and e (s, 0, <o
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THEOREM 2. Let M<<M, Then, the solution u in Theorem 1 satis-

fies the following decay property:

(1) ifr=0and 0(t)<de™™ (d,, 4,>>0), then
e llzw=c.e™® for t=0

with some 2>0, and

(ii) if r>0 and 6()<d,(1+8)" D"V for some >0, then
lu@®llgw=c;(L+2)7*" for t>0

where we recall

t+1 o (r+2)/(r+ 1)
50):(-[‘ Hf($)||L(r+2)/<r+1)(ﬂ)ds)(”l)/(r”)

and we set
Hu(t)llzm=|Iu'(t)l|um“ +lu®ll g, -
Of course the constant c,, ¢, depend on the initial data (u,, u,).

REMARK 3. If we assume pB(#)u#=0, then the assertions of above
Theorems are valid for all (u,, ,) € H,(2,) x L?(2,) without the restriction
on || (%o, %,)|lwo.

Let us proceed to the proofs of above Theorems.

PROOF OF THEOREM 1. We employ a penalty method. Let x(x,¢) be
the characteristic function of X R*—@Q and consider the equation

2 ~
—aa't'-;”e“‘me‘f’f’( aat u5)+ﬁ(us)+-%—ue=f0n QX R* @.1
with  ue(x, 0) =#,(x), —gx—u.(x, 0)=#,(x) and ue(¢)|:,=0. 3.2

Since 2, is regular we may assume #%,(x)<H,(2). We solve (3.1) by Galer-
kin method. Let {w;(x)} be a basis of H,(2) and let
t (5, 1) = 33 @1,m, e (D05 (5)
where a; ,e(f) are determined by the system of ordinary differential equation
(ur;,e(t)y Wj) + (Vum,e(t)y ij) + (p(ui:l,s>’ Wj)
+ (B(“m,e(t)), Wj) +%(Z(t)um’ e(t)r Wj) = (f(t)$ WJ),
and
Up,e(0)—>H,  strongly in H,(2),
Une (0)—>H, strongly in L*(2).
Since %(x,t) is monotonically increasing with respect to f, we obtain,

as long as u,(¢) exists,
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¢
Ll et + JoCtme(82); &) +[H(oCtn,e®), i e (D))t
1

el +Ionet); O+ [*(F@), wae®dat  (3.3)

for ¢,2¢,220, where
Jo(ui) =Jo @) + -zl o
Also we have
e RS ACRONT
S e (1), o, (1)) + (i (1), e (£2)) 3.9
+[ e Dl + O, em e,

Since {1k, e(Oll20 +Jo(tn,e(0); &) tends to [I(se, #)llw as m—co, we
see that for >0 there exists m,>0 such that
e (01202 ] W, 0) ;6) <D~ Il sy ) o7 3.5)

and
(1#m,e (D 7, <%, for m>m,.

Thus combining (3.3)-(3.5) we can conclude by almost the same argument
as in [6] that there exists a constant M,=M,(D,—||(%, #)\|lw,) such that if
M<M,, u,.() exists on [0,00) and the following estimates hold:

Ftn,e (B 1220, + ot (8)36) <D, for tE[0, 09) 3.6)
From (3.6) it follows that
Hur:u,e(t)”z,2m><\/7D_m ”um,e(t)f|§1<0)<xo,

t+1 ’
L1t e (D)l 20r </ 2D; and [ e (911752 o ds= (D, M)

<eo 3.7
for large m.

Thus by standard compactness and monotonicity arguments (see Lions,
Strauss [4, 10]) we see that there exist a subsequence {#m ,,e} of {#,,ec(2)}
and a function u¢(x,?) such that

U, e—> e weakly* in L=([0,00); H,(2)) and a.e. in 2xR",

B(#y,,e)—>B(ue) weakly* in L™([0, c0); L*(2))
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Un, e—>Ue Weakly* in L=([0,00); L*(2)) | (3.8)

(T+2)/(T+1)

P (tn,e)—>p(us) weakly in Lw (R*; L+n7+0(0Y)
and

St > yte weakly® in L0, 0); LH()).

Thus #.(¢) is a weak solution of the problem (3.1)-(3.2) and the estimates
(3.7) still hold for #.. Repeated use of compactness and monotonicity argu-
ments for {#¢} show that a subsequence {ue,} of {ue} (e;—0) satisfies the

convergence properties as in (3.8). In particular we obtain that %—xue , 1s
5

convergent with respect to weak* topology of L*([0, co); L(£2)). Hence the
limit function #(#) of {u.} satisfies (note that 2, is regular)
=0, i.e., usL=([0,0); H,(2)).

It is easy to see u(x,0)=#,(x) and #'(x,0)=#,(x). Thus # is a required
weak solution of our problem. (the continuity of #(.,?), #'(+,¢) are assured
by Strauss [10])

PROOF OF THEOREM 2. For the proof of Theorem 2 it suffices to show
that the approximate solutions u, ¢(¢#) (m: large) satisfy the decay estimate
independent of m, e. We know already

Ji Qe Y2 o e ()2 Bl e (D115, 0

for all t[0, c0) with some &,>0.
We shall derive a difference inequality concerning the energy of #,. to
apply Lemma 2.3. First we observe that, for #,>¢,,

Bt (8)) — E t,et)) + 50NNt (1530, 4520 3.9)

where we set

E (s, e(8)) =Lt e (O], (e (1) )
1L/(T+1) foo =~ , ,
(D )T @ISR, ds.
By the assumption on f(¢) and by (3.9) E(«(t)) is a nonnegative monotone
decreasing function on R*. Let ¢ be fixed arbitrarily. Then by (3.9) with

t,=t, t,=t+1, we see that there exist two points tle[t,t—k—«lw] and f,e[f+

4
3
4’

t+1] such that

¢

1/(T+2)
a0 =(2-)" D@
1
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where D(#)={Et,,e(t)) —E(t,(t+1))}*7"*?, and hence, as in (3.4), we
have

H @

I:z{%ﬁlum,e(s)“%?(m+Hum’e(s)“2° }ds
Zc(@1{D(®), max lin,e()llz2 +D(®)* (3.10)
+6(t):e?}a;§u”ums5(s) [|L2(D)}’

where ¢(2) denotes constants depending on meas(2). From (3.9) and (3.10)
we see that there exists a time #* [#, #+1] such that

GO IR AR
(@D @'+ (DM +3(1), MaX ()12}
(@ DO+ DB +31)), max v Eluns())}.

G.11)

Since E (u,,¢(¢)) is monotone decreasing we have by (3.11)
E (#, e ¢+ D) E (thy, e )= (DD )*+ D (#)+0t) )/ E(tn e (1))
+ S0t +i) O (3.12)
Applying Lemma 2.3 to (3.12) we obtain immediately the desired result.
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