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   Introduction 

   Let H be a real Hilbert space and V, W be real Banach spaces with 

Vc WcH. We assume V is dense in W and H, and the natural injections 

from V into W and from W into H are both continuous. We identify H 

with its dual H* (i. e. Vc WcHc W*c V*). Pairing between V* and V is 

denoted by ( , ). 

   Let us consider the nonlinear evolution equation 

u"(t)+B(t)u'(t)+Au(t)=0 (tER+=[0, oo))(E) 

where A is the Frechet derivative of a nonnegative functional FA(u) on V 

and B(t) is a bounded operator for each t from W to W *. 

   Regarding the operators A and B(t), we make the following assumptions: 

H1. For each d>0, the set {u E V I FA(u) < d} is bounded, and (Au, u) 

>koFA(u) for uE V with some ko>0. 

   H2. B(t) satisfies the inequalities; 

klh(t) II vjl w+1>—II B(t)vIl w* and 

(B(t)v,v)>h(t)IIvIIW+2 for v 

where k1(>0), r (>0) are constants and h(t) is a function on R+ with h(t) 

>h>0. 

   Recently in [5], one of the present authors has investigated the decay 

property of solutions of (E) in the case of B(t) being independent of t, and 

subsequently, in [6], the case that both of A and B depend on t has been 

treated. In [6], however, we are interested mainly in the case A (t) and 

(or) B(t) tend to 0 as t--1.00 in a certain sense, and little attention is paid 

to the case that they are unbounded with respect to t. 

   The object of this paper is to prove that the solutions of (E) approach 

to 0 as t -* oo in the energy if we make some restriction on the growth of 

h(t) appearing in H2. As simple examples show our result is best possible 

in a certain sense (see section 3).



  Though our method and result are related to those of  [5], [6], they are 

essentially generalizations of a recent work [1] by Artstein and Infante, 

where the second order ordinary differential equation 

I(t) +h(t)z(t) +kx(t) =0 (k>0) 

is mainly discussed. 

   In section 3 we give some typical examples.

1. Preliminaries

   Here we state our definition of solutions of (E) and a lemma due to 

Artstein and Infante [1]. 

   DEFINITION. A V-valued function u(t) on R+ = [0, 00) is said to be a 
T+21 

solution of (E) if uEC(R+; V), u'EC(R+; H) nLlo~ (R+; W), u"EL(R+; 

V*) and the equation (E) is valid in V* for a. e. t E R+. 

   Let u(t) be a solution of (E). Then we have formally 

dt  E(u(t)) + (B (t)u'(t), u'(t)) =0 (a. e.)(1. 1) 
where we set

E(u(t))=----21

Moreover we have formally, by integration by parts, 

(u'(t2), u'(t2)) — (u'(t1), u'(t1)) +f2 illu'(t) IIi+ 
                                                 1 +(B(t)u'(t), u(t))+(Au(t), (u(t))} dt=0(1.2) 

for t1i t2ER+. 

Throughout the paper we consider only the solutions satisfying (1. 1) and 

(1. 2), which does not seem to be so restrictive in practical problems. 
   For our argument the following lemma is essential. 

   LEMMA ([1]). Let a1, a2, ..... be a sequence of positive numbers with

                               

1---- th
e property that, for some N0,aallon2. Then E—00. 

               1=1i=1 ati

2. Result

  Our result is the following: 

  THEOREM. In addition to H,, and H2, suppose that the function h(t) 

in H2 satisfies the growth condition



TT 2-----+roh(t)dt<No for any  T>O,(2. 1)
with some No>0. 

Then, for any solution u (t) of (E) such that 11u (t}11H is uniformly con-

tinuous for large t we have 

lim E (u(t)) :=0. 

                 PROOF. By (1. 1) and the definition of solution, E(u(t)) is continuous 

in t and

E (u (t)) = lim sup E (u(t +h)) - E (u(t)) 
h-•+ oh

_ - (B (t)u'(t) , u'(t)) 
-h(t)I1u'(t)14+2 <-hIlu'(t)llw+2 . (2.2) 

Therefore, by a standard argument of stability (see, Lasalle [2]), we have 

lim E(u(t))=co(const.) and limllu'(t)IIH=O(2. 3) 

                 - 

  t-t-f00 

We claim that there is a monotonic increasing sequence of integers n1, n2, 

...... ni—>oo as i- .00, such that
 n +1 

   (B(t)u'(t), u(t))dt-->O (na->oo). (2.4) 
 ni

Suppose that it were false; then there would exist a 8>0 and no such that

0«<( (B(t)u'(t), u(t)) dt)2 for n>no.
Then we have, by H1 and H2,

8(r+2)/2<ff+lk1h(t)Ilu'(t)Ilwt111u(t)IIwdt)r+2 

             n

   ~a+1Th+1r+1r+1 <ki+2(h(t)dth(t)Ilu'(t)IIW+211u(t)IIW+2dtl 

                          x

<const.~J"`+lh(t)dt)(fn.+lh(t)IIu'(t)lliv+2dt)r+1. 
  ux

           n+11  Thus, setting an=( h(t)dt)r+1, we have
1<const..1 h(t) Il u'(t) llw+2 dt a„—              n

<const.fn+1(B(t)u'(t), u'(t)) dt.(2. 5)

Hence, again by (1. 1),

1<const . (E(u(n)) -E(u(n+1))

and



 E 1 <const. E  (u  (no))  <oo. 
n=no a.—

(2. 6)

However, by our assumption on h(t), we have

n n z+1 
r+1  ai i(ih (t)dt)-

< nr+1(r+I 
--- Jh(t) dt)r+1N;n2. 

which means,by Lemma, (2. 6) is a contradiction. 

   Now, by (1. 2) and (2. 5), we have.

limJni+1(Au(t), u(t)) dt=0 
i~ooni

which together with H1 rules out the possibility c00. The proof of Theorem 

is now completed.

3. Examples

   In this section we give two typical examples. 

   EXAMPLE 1. Consider the ordinary differential equation 

1(0 +h(t) I x(t) I rx(t) +k l x(t) ax(t) =0, (3.1) 

t>0, (k>0, a, r>0). 

In this case we can take V= W=H=R (real line) and 

Au=klulau, B(t)u=h(t)luIru. 

The equations (1.1), (1.2) are, of course, valid for any usual solution x(t) 

and 1 (t)1 is uniformly continuos on R. Therefore, if h(t) satisfies the 

growth condition (2.1), we have

E (x(0)=—21 x(t) 12+-------a+2I x(t) I a+2-->0 as t-÷oo,that is, lim 1(t)I=lim c—t—

l x(t)1=0. This is a direct generalization of the result of [1]. 

  Analogeously as in [1], we consider for any e>0

h(t) =t(+1)(Y+1){a(8+1)t-°-2+(1+t-8)a+1}, where 8= e   sr+1'

Then

TZlr-------+eJoh(t) dt const. and x(t)=1+(1+t)-e/(7+1)
is a solution of (3.1). Since x (t) does not approach to 0 as t-)oo, this 

shows that condition (2.1) is sharp and can not be replaced by

JTh(t)dtNoT 2+r+e 

 0



EXAMPLE 2. Consider the nonlinear wave equation

 a2---u—du+h(t) p(x, -----u)+8(x, u) =0 on .QxR+               at

and (3. 2)

ui a0=0,

where Sd is a bounded domain in the n dimensional Euclidean space R" and 

0,Q its boundary. 

   Regarding p and Q we assume: 

0<3(x, s)s<const. (1+ sI)"+2 

and

Co i s i r+2<p (x, s) s<C1 I s i 7+2 (Co, C1 : const. )

with

0<a, r<-----n!2  if n>2 and 0<a, r<oo if n=1,2. 

Then, under some additional conditions of measurability, continuity, and 

monotonicity on Q(x, s) and p(x, s), the existence of (generalized) solutions 

u satisfying 

uEC(R+;11-1(Q)), tee C(R+; L2(2)) nLr+2(R+; Lr+2(2)) 

is well known (see e. g. Lions and Strauss [3], Nakao [4], etc. ). In this 

case we can take 

H=L2(S2), V= 14(2), W=Lr+2(S2), 
Au= —du+Q(x, u) and B(t)v=h(t)p(x, v). 

Moreover, the equations (1. 1) — (1. 2) are known to be valid (cf. Strauss [7]) . 
Thus if h(t) satisfies (2. 1) and Il u'(t) II H is uniformly continuous on R+, we have

E(u(t))=ZIlu'(t)I1 2ca>+ —2111u Ct) IIH1+JQJ7t> 8(x, s)dsdx 
—* 0 as t-- oo.

In particular, let us consider the linear equation i. e. p(x, dtu) = atu,  
and Q (x, u) = u and let q(x) be an eigen function of —4+1'  in 14(2). Then 
u(t) = (1+ (1+ t) (x) (e>0) satisfies the equation (3. 2) with

h (0= (e+1) (1+ 0 + 1 (1+t) + 1 (1+01+e 
     ee

This example (due to essentially [1]) implies that the condition (2. 1) with 

r=0 cannot be replaced by

  1T 
Tz+ejoh(t)dt<Na for T>0.



4. Remark on first order equation

   In a similar and simpler manner it is easily seen that the assertion of 

Theorem in § 2 is valid also for the first order equation with  E(u(t)) re-

placed by F, (u (t)) ; 

B (t)u'(t) +Au=O. 

This result can be applied, for example, to the equation

h(t)-----u—,~ax,-----(-~ up-Zaxz----u) —0 onSlxR+(p?2)

where 2 is a bounded domain in R. We omit the details.
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