九州大学学術情報リポジトリ
Kyushu University Institutional Repository

A remark on the initial－value problems for some quasi－linear parabolic equations

蛯原，幸義
九州大学教養部数学教室
南部，徳盛
九州大学教養部数学教室
https：／／doi．org／10．15017／1448999

出版情報：九州大学教養部数学雑誌． 11 （1），pp．47－51，1977－10．九州大学教養部数学教室 バージョン：
権利関係：

Math. Rep.
XI-1, 1977.

A remark on the initial-value problems for some quasi-linear parabolic equations

Yukiyoshi Ebihara and Tokumori Nanbu
(Received May 18, 1977)

Let (x, t) be a variable in $\boldsymbol{R}^{n} \times[0, \infty)(n \geqq 3)$.

Consider the Initial-Value Problem for the equations of the form:
(1)

$$
\begin{gathered}
u_{t}-\Delta u+g u+G\left(u, u_{x_{i}}, u_{x_{i} x_{j}}\right)+F\left(u, u_{x_{i}}\right)=f(x, t), \\
(x, t) \in \boldsymbol{R}^{n} \times(0, \infty),
\end{gathered}
$$

with the initial condition
(2) $u(x, 0)=u_{0}(x), x \in \boldsymbol{R}^{n}$,
where $u_{t}=\frac{\partial u(x, t)}{\partial t}, u_{x_{i}}=\frac{\partial u}{\partial x_{i}}, u_{x_{i} x_{j}}=\frac{\partial^{2} u}{\partial x_{i} \partial x_{j}}, \Delta$ is the n-dimensional Laplacian, g is a nonnegative constant and G, F, f are the followings:

$$
\begin{equation*}
G\left(u, u_{x_{i}}, u_{x_{i x j}}\right)=C_{10} u^{p_{1}}\left(1+C_{11}|\nabla u|^{2 q_{1}}+C_{12} u^{r} u^{r}\right) \sum_{i, j}^{n} a_{i j} u_{x_{i x y}}, \tag{3}
\end{equation*}
$$

(4) $F\left(u, u_{x_{i}}\right)=C_{20} u^{p_{2}}\left(1+C_{21} u^{\tau_{2}} e^{u}\right)+C_{22}|\nabla u|^{2 q_{2}}\left(1+C_{23} u^{r_{3}}+C_{24} u^{r_{4}} e^{u}\right)$, where $a_{i j}$, $C_{i j}$ are constants and p_{i}, q_{i}, r_{i} are positive integers with $p_{2}>1$,
(5) $f=f(x, t)$ is a given function satisfying some smoothness and smallness conditions described below.

Previously, in [1] the authors obtained a global smooth solution for the problem (1)-(2) when n : arbitrary, $g>0$ and $f \equiv 0$ and showed the exponential stability of the trivial solution $u \equiv 0$. In [1], the positivity of the operator $(g-\Delta)^{k}$ on $L^{2}\left(\mathbf{R}^{n}\right)$ played the essential role.

And quite recently in [2], the authors established to obtain such solutions in the cases involving n : arbitrary, $g=0, f \neq 0$ and $F_{0}(u) \cdot u \geqq 0$ where $F_{0}(u)=C_{20} u^{p_{2}}\left(1+C_{21} u^{\tau} e^{u}\right)$ which is a part of $F\left(u, u_{x_{i}}\right)$ in (4). The technical point is the application of the positivity of the operator $1+(-\Delta)^{k}$ on $L^{2}\left(\boldsymbol{R}^{n}\right)$.

However, we did not succeed to cases without such monotonicity condition on $F_{0}(u)$. But we can report here that in the special cases, using the general version of Sobolev Lemma by L. Nirenberg the problem (1)-(2) will admit global solutions with small data.

We use the usual notations concerning the function spaces as L^{p}, H^{k},
$L^{p}(0, T ; H), \quad \mathscr{E}_{[0, T]}^{p}(H)$, etc.
Lemma 1. (L. Nirenberg [6]) Suppose $u \in H^{i}$ with $n \geqq 3$. Then $u \in L^{r}$ with $r=\frac{2 n}{n-2}$ and
(6) $\left[\int_{R^{n}}|u|^{r} d x\right]^{\frac{1}{r}} \leqq \frac{1}{\sqrt{n}} \cdot \frac{2(n-1)}{n-2}\left[\int_{R^{n}}|\nabla u|^{2} d x\right]^{\frac{1}{2}}$
where ∇u is a gradient of u.
Now, as in the previous manner (cf. [1], [2]) we use:
$(., . .)_{l} \equiv<(-\Delta)^{l} ., . .>,|\cdot|_{i}^{2} \equiv(., .)_{l}$,
$((., . .))_{l} \equiv<\left(1+(-\Delta)^{l}\right) ., . .>,\|\cdot\|_{i}^{2} \equiv((., .))_{l}$
for each positive integer l.
Lemma 2. Suppose $u \in H^{l}\left(l \geqq\left[-\frac{n}{2}\right]+1, n \geqq 3\right)$. If $p \geqq 1+\frac{4}{n}$, then we have
(7) $\int_{R^{n}}|u|^{p+1} d x \leqq$ Const. $|u|_{1}^{2}\|u\|_{i}^{p-1}$
where the constant depends only on n, l, p.
Proof. We have by Hölder Inequality that

$$
\begin{aligned}
& \int_{R^{n}|u|^{p+1}} d x=\int_{R^{n}}|u|^{2} \cdot|u|^{p-1} d x \\
& \quad \leqq\left[\int_{R^{n}}|u|^{r} d x\right]^{\frac{2}{r}}\left[\int_{R^{n}}|u|^{(p-1) \frac{r}{r-2}} d x\right]^{1-\frac{2}{r}}, \quad \text { where } r=\frac{2 n}{n-2} .
\end{aligned}
$$

Here we can see that

$$
(p-1) \frac{r}{r-2} \geq \frac{4}{n} \cdot \frac{\frac{2 n}{4-2}}{\frac{4}{n-2}}=2
$$

and therefore we can put,

$$
(p-1) \frac{r}{r-2}=2+\alpha \quad(\alpha \geqq 0) .
$$

Thus we get,

$$
\int_{R^{n}}|u|^{p+1} d x \leqq\left[\int_{R^{n}}|u|^{r} d x\right]^{\frac{2}{r}}\left[\int_{R^{n}}|u|^{2}|u|^{\alpha} d x\right]^{1-\frac{2}{r}}
$$

With the use of Lemma 1 and the standard Sobolev Lemma we should have,

$$
\int_{R^{n}}|u|^{p_{+1}} d x \leqq C|u|_{1}^{2}|u|_{\infty}^{\alpha\left(1-\frac{2}{r}\right)}\left[\int_{R^{n}}|u|^{2} d x\right]^{1-\frac{2}{r}}
$$

and further we have,

$$
\begin{aligned}
\int_{R^{n}}|u|^{p+1} d x & \leqq C|u|_{1}^{2}\|u\|_{i}^{\alpha\left(1-\frac{2}{r}\right)}\|u\|_{2}^{2\left(1-\frac{2}{r}\right)} \\
& =C|u|_{2}^{2}\|u\|_{2}^{p-1} .
\end{aligned}
$$

This completes the proof.

Lemma 3. Suppose that the number p_{2} appeared in $F_{0}(u)$ in
(4) satisfies

$$
p_{2} \geqq 1+\frac{4}{n},
$$

then there exists an increasing continuous function $\phi_{k}(s)(s \geqq 0)$ with $\phi_{k}(0)=0$ such that for $u \in H^{k} \quad\left(k \geq\left[\frac{n}{2}\right]+3\right)$,

$$
\begin{align*}
& \left|\left(G\left(u, u_{x_{i}}, u_{x_{i} x_{j}}\right), u\right)_{0}+\left(F\left(u, u_{x_{i}}\right), u\right)_{0}\right| \tag{8}\\
& \leqq|u|_{1}^{2} \phi_{k}\left(\|u\|_{k}\right) .
\end{align*}
$$

Proof. For the first term, we have, ($\left.G\left(u, u_{x_{i}}, u_{x_{i} x_{j}}\right), u\right)_{0}$

$$
\begin{aligned}
& =C_{10} \int_{R} u^{{ }^{p}{ }_{1}+1}\left(1+C_{11}|\nabla|^{2 q_{1}}+C_{12} u^{r_{1}} e^{u}\right) \sum_{i, j}^{n} a_{i j} u_{x_{i x} x_{j}} d x \\
& =C_{10} \sum_{i, j}^{n}-a_{i j} \int_{R}{ }_{R} u_{x_{i} i} \cdot\left[u^{p_{1}+1}\left(1+C_{11}|\nabla u|^{2 q_{1}}+C_{12} u^{r_{1}} e^{u}\right)\right]_{w_{j}} d x,
\end{aligned}
$$

and hence it suffices to know that

$$
\begin{aligned}
& \left|\int_{R^{n}} u_{x_{i}} u^{p} \cdot u_{x_{j}} d x\right| \leqq \text { Const. }|u|_{1}^{2}\|u\|_{k}^{p}, \\
& \left|\int_{R^{n}} u_{x_{i}}\left(u_{x_{j}}\right)^{q} u_{x_{j} x_{i}} d x\right| \leqq \text { Const. }|u|_{1}^{2}\|u\|_{k}^{q}, \\
& \left|\int_{R^{n}} u_{x_{i}}\left(u^{p} e^{u}\right) u_{x_{j}} d x\right| \leqq \text { Const. }|u|_{1}^{2}\|u\|_{k}^{p} e_{\|}^{G_{\|} \|_{k}} .
\end{aligned}
$$

These are true because that $|u|_{\infty},\left|u_{x_{i}}\right|_{\infty},\left|u_{x_{f} x_{i}}\right|_{\infty}$ are bounded by $\|u\|_{k_{k}}$. For the second term, we also have,

$$
\begin{aligned}
& \left|\int_{R^{n}} F\left(u, u_{z_{i}}\right) u d x\right| \\
\leqq & \left|\int_{R^{n}} C_{20} u^{p_{2}+1}\left(1+C_{21} u^{r} e^{u}\right) d x\right|+\left.\left|\int_{R_{n}} C_{22}\right| \nabla u\right|^{2 q}{ }_{2} u\left(1+C_{23} u^{r_{3}}+C_{24} u^{r} e^{u}\right) d x \mid
\end{aligned}
$$

$$
\begin{aligned}
& \leqq\left|C_{20}\right|\left|1+C_{21} u^{r} 2 e^{u}\right|_{\infty} \int_{R^{n}}|u|^{p_{2}+1} d x \\
& +\left.\left.\left|C_{22}\right|\left|u\left(1+C_{23} u^{r_{3}}+C_{24} u^{r_{4}} e^{u}\right)\right|_{\infty}| | \nabla u\right|^{2 q_{2}-2}\right|_{\infty} \int_{R^{n}}|\nabla u|^{2} d x .
\end{aligned}
$$

Thus applying Lemma 2 we should have

$$
\begin{aligned}
& \left|\int_{R^{n}} F\left(u, u_{x_{i}}\right) u d x\right| \\
& \leqq \text { Const. }|u|_{1}^{2}\left\{\|u\|_{k^{p}}^{p^{-1}}\left(1+\|u\|_{k}^{r} e^{\sigma\|u\|_{k}}\right)+\|u\|_{k}^{2 q_{2}-1}\left(1+\|u\|_{k}^{r_{k}^{s}}\right.\right. \\
& +\|u\|_{k}^{\left.\left.\|_{k}^{s} e^{C{ }^{G u} \|_{k}}\right)\right\} .}
\end{aligned}
$$

Thus, adding these estimates we will get a function $\phi_{k}(s)$ which satisfies the properties of this lemma.
(q.e.d.)

Then we have our statement in this note.

Theorem. Suppose that k is larger than $k_{0}+3 \quad\left(k_{0}=\left[\frac{n}{2}\right]+2\right)$, $u_{0} \in H^{k+4}$, and

$$
f(x, t) \in \bigcap_{i=0}^{2} \mathscr{E}_{[0, \infty]}^{t}\left(H^{k+3-i}\right) \cap L^{1}\left(0, \infty ; H^{k+3}\right)
$$

Then there exists a positive constant δ_{0} such that if,

$$
\int_{0}^{\infty}\|f(t)\|_{k+3} d t+\left\|u_{0}\right\|_{k+3}<\delta \leqq \delta_{0}
$$

the problem (1)-(2) will have one and only one solution in the class

$$
\mathscr{E}_{[0, \infty]}^{0}\left(H^{k}\right) \cap \mathscr{E}_{[0, \infty]}^{1}\left(H^{k-2}\right) .
$$

Sketch of the proof.

The details will follow from the arguments in §2 in [2].
A priori, we have two equalities,

$$
\begin{aligned}
& \frac{1}{2}\left(|u|_{0}^{2}\right)^{\prime}+|u|_{1}^{2}+(G+F, u)_{0}=(f, u)_{0}, \\
& \frac{1}{2}\left(|u|_{k}^{2}\right)^{\prime}+|u|_{k+1}^{27 A}+(G+F, u)_{k}=(f, u)_{k},
\end{aligned}
$$

by multiplying u^{\prime} to both sides of the equation (1). And adding these equalities we get,

$$
\begin{aligned}
& \frac{1}{2}\left(\|u\|_{k}^{2}\right)^{\prime}+\left(|u|_{1}^{2}+|u|_{k+1}^{2}\right) \\
& \leqq\|f\|_{k}\|u\|_{k}+\left|(G+F, u)_{0}\right|+\left|(G+F, u)_{k}\right| .
\end{aligned}
$$

Therefore, using Lemma 2.3 in [2] and Lemma 3 in this note, we will have an increasing continuous function $\bar{\phi}_{k}(s)(s \geqq 0)$ with $\bar{\phi}_{k}(0)=0$ such that

$$
\frac{1}{2}\left(\|u\|_{k}^{2}\right)^{\prime} \leqq\left\{-1+\bar{\phi}_{k}\left(\|u\|_{k}\right)\right\}\left(|u|_{1}^{2}+|u|_{k+1}^{2}\right)+\|f\|_{k}\|u\|_{k} .
$$

Thus, by integrating, it follows that

$$
\begin{aligned}
& \|u(t)\|_{k}^{2} \leqq\left\|u_{0}\right\|_{k}^{2}+2 \int_{0}^{t}\left(|u|_{1}^{2}+|u|_{k+1}^{2}\right)\left\{-1+\bar{\phi}_{k}\left(\|u\|_{k}\right)\right\} d t \\
& \quad+2 \int_{0}^{t}\|f\|_{k}\|u\|_{k} d t
\end{aligned}
$$

From this inequality, the conclusion will follow.
(q. e. d.)

REMARK 1. Though we treat the equations in the cases $n \geqq 3, p_{2} \geqq$ $1+\frac{4}{n}$ in this note, one can see that there exist bounded smooth solutions in the semi-linear cases when $n=3, p_{2}=2$. (This is well known by H. Fujita [3].)

REMARK 2. When $p_{2}=1$ and $C_{20}<0$, we get a global solution without such restrictions to n and nonlinearities. (See [1], [2].)

Remark 3. For equations (1) we can not always obtain a global solution when the norm of the initial value is growing. (cf. H. Fujita [3], S. Kaplan [4], H. Levine [5], etc.) In particular, S. Portnoy [7] showed the instability of $u \equiv 0$ to the equation

$$
u_{t}=\Delta u+u^{2} \quad(n=2)
$$

This means that we can not obtain the global solution for any non-zero initial values. However, in the case of initial-boundary value problem in the bounded domain for these equations we can show the stability of $u \equiv 0$ for any n. (See [1].)

References

[1] Y. Ebihara, T. Nanbu: On the global solution of some nonlinear parabolic equation, Funkcial. Ekvac., 20(1977), 23-38.
[2] - On the global solution of some nonlinear parabolic equation II, (to appear).
[3] H. Fujita: On the blowing $u p$ of solutions to the Cauchy problem for $u_{t}=\Delta u+$ $u^{1+\alpha}$, J. Faculty Science, U. of Tokyo., 13(1966), 109-124.
[4] S. Kaplan: On the growth of solutions of quasilinear parabolic equations, Comm. Pure Appl. Math., 16(1963), 305-330.
[5] H. Levine: Some nonexistence and instability theorems for the form $P u_{t}=-A u$ $+\mathscr{L}(u)$, Arch. Rat. Mech. Anal., 51 (1973), 371-386.
[6] L. Nirenberg: On elliptic partial differential equations, Ann. Scuola Norm. Sup. Pisa (3), 13(1959), 116-162.
[7] S. Portnoy: On solutions to $u_{t}=\Delta u+u^{2}$ in two Dimensions, J. Math. Annal. Appl., 55(1976), 291-294.

