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 1 Introduction

   As one of the fundamental theorems playing the important role so as to 

determine the topological structures of compact Riemannian manifolds of 

positive curvatures, it is well-known, the so-called Toponogov's comparison 
theorem. This theorem was asserted by V. A. Toponogov [6] and comple-

tely proved by Y. Tsukamoto and T. Yamaguchi [8] and by D. Gromoll, W. 

Klingenberg and W. Meyer [3] (and we can find the more generalized form 

in J. Cheeger and D. G. Ebin [2]). This is expressed as follows; 

   (A) Let M be an m(>2)-dimensional complete Riemannian manifold 
whose sectional curvatures are not less than the constant k. Then for every 

geodesic triangle d of M there exists a geodesic triangle d of Em(k) (or 
S2(k)) isometric to d such that each angle of d is not less than the cor-

responding one of d, where Sm(k) is the m-dimensional space form, i.e., 

the complete simply-connected Riemannian manifold with constant sec-

tional curvature k. 

   On the other hand the corresponding case where curvatures are bounded 

above by a constant was investigated by A. D. Alexandrov [1] and he 

obtained; 

   In a metric space RK with curvature<K, the angles in every triangle 

d are not greater than the corresponding angles in the isometric triangle 

4K of K-plane, where K-plane denotes for K=0 the euclidean, for K<0 

the hyperbolic plane of curvature K, and for K>0 an open hemisphere 

of curvature K. 

   However, in his definitions the notion of metric space RK with curvature 
<K does not necessarily equal to that of the sectional curvature<K in the 

case of Riemannian manifold even though of dimension 2, and it is clear 

that this proposition is not true in the Riemannian case. For example, 

consider the triangle whose three sides are equal length and compose a



closed geodesic of perimeter  r on the real projective space with the standard 

metric of constant curvature 1. That is to say, in the Riemannian case this 

proposition is true for "local" but not "global". Considering this point, Y. 
Tsukamoto [7] proved the following two theorems which relate to the com-

parison of geodesic triangles on Riemannian manifolds whose sectional 

curvatures are upper-bounded; 

   (B) If the sectional curvature Ka of compact simply-connected Riem-

annian manifold M satisfies the inequalities 0<Ka<1 for all a, then the 

following two propositions (a) and (b) are equivalent; (a) The angle of 

geodesic triangle d on M is not larger than the corresponding angle of 

the corresponding triangle 4' on S2(1), where the sum of length of three 

sides of d is less than 27r. (b) d(p, C(p))>rr for all p of M where C(p) 

is the cut locus of p. In particular, if (1) m=even or (2) (*) 1/4<Ka<1 

for all a, then (b) and hence (a) are satisfied by W. Klingenberg [4] and 

[5].

   (C) If the sectional curvature Ka of complete simply-connected Riem-
annian manifold M satisfies the inequalities Ka<k<0 for all a, where k 
is a constant, then the angle of a geodesic triangle on M is not larger 
than that of the corresponding triangle on 2-dimensional hyperbolic space 
with constant curvature k. 

   From these theorems we find that if sectional curvatures are bounded 
above, the comparison of angles of geodesic triangles is closely related 
to the estimate of the injective radius or to the simply-connectedness of 
manifold, that is different from the case of curvatures to be bounded below. 
From this point of view, in the present paper we generalize the above (B) 
and (C) and prove the following main theorem corresponding to (A). 

   MAIN THEOREM Let M be an m(>2)-dimensional complete Rieman-
nian manifold such that Ka<k for all a where k is a constant. Then 
the following conditions (a), (b) and (c) are equivalent to each other; 

(a) Given a geodesic triangle 4= (co, c1, c2) on M such that the perimeter 
of d is not greater than 2n11/ k if k>0, there exists a geodesic triangle 

2= (co, cl, c2) on Sm(k) (or S2(k)) such that L(ci) =L(cz) and r,<?, (i=0, 
1, 2).

(*) In his paper [5] he claims that the condition (2) may be replaced by (2) 1/4<K, 
<1 for all a.



(b) There exists no non-trivial geodesic loop c on M such that L(c)< 
 2n/1/  h if k>0. 

(c) If k>0, d(p, C(p))>n/,,/ k for all p of M, namely, any geodesics 
of length<,r/,,/ a are shortest. And if k<0, C(p) is empty for all p of 

M, namely, any geodesics of M are shortest, and this is equivalent to "M 

is simply-connected". 

   Especially when M is compact, "geodesic loop" of (b) may be replaced 

by "closed geodesic". However in the case of k<0, all the conditions (a), 

(b) and the amended (b) are not statisfied since M is not simply-connected. 

   The author thanks to Prof. T. Suguri for his kind encouragement.

§ 2 Notations and known results

   In the following, let M be a connected complete Riemannian manifold 

of dimension m(�2) and Mp the tangent space of M at p. The sectional cur-

vature of M with respect to 2-dimensional subspace a of Mp generated by 

two linearly independent vectors v and w is denoted by Ka or K(v, w). All 

the geodesics are assumed to be parametrized by arc-length. The arc-length 

(resp. tangent vector) of any curve c is denoted by L(0) (resp. c/) and the 
distance between two points p and q by d(p, q). A geodesic c: [0, .l]-3M 

(1>0) is called a geodesic loop if c(0) =c(t), and a closed geodesic if c(0) 
=c. (t) . Given distinct three points p, and geodesics c,: [0, £11—M(i = 0, 1, 2) 
such that c(l1) = cs+1(0) = pi+2 (mod 3) and L(c) = d (c1(0) , c,(1„)), the triple 

{co, c1, c2} is said to form a geodesic triangle and denoted by 4, (co, cl, c2) 

or (Po, pl, P2). For each i=0,  1, 2, r1=7C— L (cti+l (ii+i), ci+2 (0)) (mod 3) is 

called the (interior) angle at pz, and Pi and cs are called the vertex and 

the side of d respectively, where for v, w of Mp, / (v, w) means the angle 

(of [0, 7c]) between v and w. When there are geodesic triangles on two 
Riemannian manifolds respectively, whose corresponding sides are of equal 

lengths, these two geodesic triangles are said to be isometric to each other. 

  For any r>0 and p of M we set Br(P) = {v E Mp l I l v I l <r} and U,. (p) _ 

{gEM1 d(p, q)<r}. For a geodesic c: [0, oo)-->M the point c(to) such that 
to =sup {t E R d (c (0), c(0)=4  is called the cut point of c(0) along c, and 

the set of all cut points of p is called the cut locus of p and denoted by 

C(p). Moreover inf{d(p, C(p)) 1 pEM} is called the injective radius of 

M and denoted by c (M) , where we assume d(p, C(p)) = co if C(p) is empty. 

For a geodesic c, the point c(to) is called the conjugate point of c(0) along



c if the exponential map  exp  (c  (0))  : Mc (0) —>M is not of maximal rank at 

toc.(0). 

   By Sm(k) we mean the m (�2)-dimensional complete simply-conncted 

Riemannian manifold of constant curvature k, i. e. , the Euclidean space Rm 

with natural Riemannian metric if k=0, the m-dimensional sphere of radius 

1/,,/ k in Rm+1 with Riemannian metric induced from the natural one of 

Rm+1 if k>0, and the m-dimensional open ball of radius 1/,,/ I k I centered 

at the origin in Rm with Riemannian metric

ds2=  4  E (dxi) 2 if k<0. 
(l+k E (x1)2)2 t=1 

                t=1

   It is well-known that in Sm(k) the cosine formula holds for a geodesic 

triangle 4= (co, cl, c2), that is to say, 

cos.,/kL(co) =cos,,/kL(c1) • cos,,/kL(c2) +sin,,/kL(c1) • sin,,/a(c2) • cos ro 

if k>0,

L(co)2=L(c1)2+L(c2)2-2L(c1)L(c2)•cos To if k=0, 

cosh,/ I k-----I L(co) =cosh,s/ k L(cl) •cosh,,/ I k L(c2) 

—sinh,/ I k I-----L(c1) •sinh4/ k l-----L(c2) •cos ro if k<0 .
   The following propositions are essential to prove our main theorem. As 

to the proofs of these propositions we refer to for example D. Gromoll, W. 

Klingenberg and W. Meyer [3].

PROPOSITION 1 Let c:[0,11-->M be a geodesic and k be any positive 

constant. 

(a) If K6k for any t of [0, 1] and c such that c(t) belongs to a, and if 
l<7.1.1-^k, then c has no conjugate Point of c(0). 

(b) If Kv<0 for any t of [0, 1] and a such that c(t) belongs to a, then 
c has no conjugate point of c(0).

  PROPOSITION 2(a) Let p and q be two Points of M such that d 

(p, q) =d(p, C(p)) and q belongs to C(p). If q is not a conjugate point 

of p along any minimal geodesic from p to q, there exists one and only 

one geodesic loop c: [0, 2d(p, q)]-->M such that c(0) =p and c(d(p, q)) =q, 

except the directions. 

(b) Suppose M is compact, then min d(p, C(p)) coincides with the mi-
                                             p®M



nimum of the set  {II there exists a geodesic c: [0, .t1-->M such that c(1) 

is a conjugate point of c(0) along c} U {1/21 there exists a closed geodesic 

c:[0, tj--+M}.

   PROPOSITION 3 Let M(k) be an m-dimensional complete Rieman-
nian manifold of constant curvature k and c: Mp-41V1(k) p be an isometric 
isomorphism for a point p (resp. p) of M (resp. 1171(k)). For a piecewise 
differentiable curve q: [a, b1-*Mp we set cb=exp(p) •c and -i) •c•c6. 
Now if Kc<k for all 2-dimensional tangent vector subspace c of M and 
if one of the following (a) or (b) is satisfied; 
(a) k<0 
(b) k>0 and IIc (t)II�ir/-^ k for all t of [a, b], 
then we have L(cy)cL(cy).

  PROPOSITION 4 Let p be a point of M. Then the map exp(p) : Mp 
-4M is injective if and only if M is simply-connected and exp(p) is of 

maximal rank at every point of Mp.

 3 Proof of the main theorem 

  To prove the main theorem we consider the following condition (b') ; 

(b') There exists no geodesic loop c on M such that it can be divided into 
a geodesic triangle and that, if k>0, L(c)<27c/k./k. 

  At first in the case of k>0 we prove that (a), (b') and (c) are mutually 

equivalent. 
   Let's show that (a) implies (b') ; Suppose that there is a geodesic loop 

c of length<2r/, /k which forms a geodesic triangle 4= (co, c1, c2). Then 

by (a) we can construct a geodesic triangle 2= (co, cl, c2) on S""'(k) such that 

L(ci) =L(ci) and rt_<?1,(i=0,1, 2). However since r.t=n for at least two i, 

d is a geodesic loop and hence a closed geodesic. This contradicts L(c0) + 

L(cl) +L(2) <27c/N/k. 

   Next, (b') implies (c) ; Suppose that d(p0i C(po)) = po<n?/ / k for a fixed 

Po of M and that d(p0, q) =d(po, C(po)) for a point q of C(p0)• Then since 

proposition 1(a) means that there is no conjugate point of pc, in U.i^k (p0), 
there exists uniquely except orientations a geodesic loop c: [0, 2p0]-*M such 

that c(0)=p0  and c(P0)=q  by proposition 2(a).  Clearly .d=   (Cl Co,po_'] 

C CPO_e,po+E], C I CP0+e,2p0]) is a geodesic triangle for any small e>0. This 

implies 2p0=L(c)>2n1,/k by (b') and contradicts our assumption.



   (c) implies  (a)  ; We may assume L(co) +L(c1) +L(c2) <2r/8/ k . 
Hence 4 is contained in U7vvi (po) , and by our assumption the map 

exp(p) I Ba,v (po) • Bn/vk (p0)—*M is an into-diffeomorphism. Regarding M(k) 

as S' (k) we apply proposition 3 and set by .2-1=  (co, el, c2) the image of 4= 

(c0, c1, c2) under the map exp(po) •e• (exp(p0) I Ba/yk (po)) -1 and,on the one 
hand, constract a geodesic triangle 2= (co, C1f c2) on Sm(k) isometric to 4 . 
We have trivially L(c1) =L(c1) and L(c2) =L(c2), and L(c0)<L(c0) =L(c0) 

by proposition 3, hence ro=7o<7o by applying the cosine formula on Sm(k). 

The same arguments imply rl<fi and r2<—r2• 
   It is trivial that (b) implies (b') and (c) implies (b). Hence (a) , (b'), 

(c) and (b) are equivalent. 
   In the case of M compact, we have only to prove that the amended (b) 

implies (c). In the process of proof of (c) from (b') we may assume po= 
min{d(p, C(p) )1 p belongs to M} because M is compact. Then proposition 

2(b) means that c is a closed geodesic, hence we may apply the amended 

(b). 
   Assume k<0. Since M has no conjugate point along any geodesics by 

proposition 1(b), C(p) is empty, that is, exp(p) : Mp-->M is an onto-dif-
feomorphism if and only if M is simply-connected for an arbitrarily fixed 

p of M by proposition 4. And clearly Sm(k) has no non-trivial geodesic 
loop. The proof for the case of k<0 is similar as the above.
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