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§1. Introduction and summary

Let us consider the initial value problem for the Navier-Stokes equations
which is written in its classical form as
du_
ot
(1.2) dive=0, x=.9, t>0,
(1.3) uls0=0, >0,
(L4 u|.=a 289,

¢ vdu+ (u-P)u=f—rp, x€0, t>0,

with the usual notations. Here #(x,t) is the velocity field, p(x,?¢) is the
pressure, a(x) is the initial velocity, f(x,?) is the external force. In these
equations #, p are unknown, and @, f are given.

For the problem, E. Hopf [3] (1951) succeeded in showing that there -
exists a global weak solution and that for an arbitrary domain in n-dimen-
sional Euclidean space R*(#=2), but he left the investigation on the unique-
ness and the smoothness of his solution for later works. Except the case
n=2 no one has yet succeeded in proving or disproving the uniqueness
theorem for his solution. To establish the uniqueness theorem together with
an existence theorem, various researches on strong solutions have been made
by many authors, especially by A.A. Kiselev and O.A. Ladyzhenskaia [5]
(1957), P.E. Sobolevskii [9] (1959), S. Ito [4] (1961), H. Fujita and T.
Kato [2] (1964) and others. Their strong solutions have been shown to be
unique for the case #=3 in which we are interested, although none of them
is global (in time) unless some smallness restriction on prescribed data is
assumed.

In this paper, assuming that @2 is a bounded domain in R® with a suffi-
ciently smooth boundary 62 and that the external force f is absent, we will
study, in some sense, the differentiability with respect to the time variable



16 H. Kato

t concerning the Hopf’s weak solutions.
Now, we explane some notations and concepts.

DEFINITION 1.1. The space

J@ ={u(x) lucsCe(2), div u= ég_zz_zo},

t=1

and the associated Hilbert space
J(2) =the closure of j(2) in L,(2),
and also the Hilbert space
Ji(@) =the closure of f(2) in Wi(Q).
Here, for the vector-valued functions #=u#(x), v=v(x) inner products are
defined by

3
(u, v) =I S utvidx
Ri=1

L2(2)

(u’ U)W%(!)) - Ja[tgl uv +¢§11¢§1 x* Gx"]dx
=, V) L2¢0y + (P U, FV) L2y,
where #* denotes the i-th component of the vector u.

DEFINITION 1.2. We denote by W,"(2)=W,"(2x(0,T)) the
totality of vector-valued functions #=u(x,#) which are measurable in Q=
£2x%(0,T) and have the properties:

Q) ueL,(®)

(ii) Vu=(g%, i,k=1,2,3) €L,().

The space W}'(2) becomes a Hilbert space with the inner product
T
u,v) 4 4 =J {4, V) 1o00) + P2, V) 1200} dE.
W2 (@) 0

Therefore, concerning the derivative Fx it holds the equality:

(15) I:Inuig;’k dxdt= —J:L%wdxdt,

for any scalar test function w=w(x, t)eC3(D) (4, k=1,2, 3).
DEFINITION 1.3. - The space
J(2x% (0, 00)) = {u(x, 1) |uc C*(X[0, 0)), div #=0 and}

# is of compact support in 2 for any ¢
and the associated Hilbert space
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3(@)=J1' (2% (0, T))=the closure of J(2x (0, )) in Wi ().

DEFINITION 1.4. Let P be the orthogonal projection from L,(2)
onto f(2). By A we denote the Friedrichs extension of the symmetric
operator—P4 in f(2) defined for every u=f(2). Aisa strictly positive self-
adjoint operator in j(2) whose domain D(A) is contained in J}(@).

The relation Au=w (ucD(A), wej(Q)) is true if and only if uej}(Q),
wej(2), and
1.6) P, P0) 10y = (W, V) 220, for any ve}(2).

Since the operator A is self-adjoint it admits a uniquely determined
spectral resolution:

(L7 A= j:xdE ).

Moreover, since it is strictly positive:

(1.8) (Au, u) 10 =IP%l|320)=201[0t] 20, usD(4),
where o=inf{(Au, #) 12| ttllzsy<1, u= D(A)}
1.9 =inf{A|Z is a spectrum of A}

=the Minimum spectrum of A,

it holds the relations

w10 A=[TWE®M=[" 1EW, Ee-2=0,
L1) DA ={usf@ [ FdEWUIFLa<+oo].

The inverse operator A~! is defined in f(2) and it is bounded. The fractional
power of the operator A is defined as follows,

112y Au=[ 2dEQu, 0<a<l,

(L13)  DAD={usi@ |, #dEWU 0 <-+eo]

and also it holds

(1.14) A-luzj:” xidE(z)u for any ucf(Q),

(1. 15) Au= j " T{dE(x)u for any us/f(Q).

1
With respect to the relation between the domain D(A?) and the space J1 (2)
which are introduced in the above, the following lemma is well known.
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LemMA 1.1, It holds
DAY =]1(9) and | A U 10 =P ull12c0r.

Secondly, we state the properties of the Hopf’s weak solution which
have been proved ([3I[7]).

LEMMA 1.2 For an initial value a(x)e J(Q) there exists a
global weak solution u(x,t) of the Navier-Stokes equations, i.e. the vector-
valued function wu(x,t) is measurable in 2x(0,00), and for any finite
T>0 satisfies the relations

(1) ue]Ji’ (@x(,7T)),
(ii) wu(x,t)ej(Q) for any ts[0, T],
W16 ) [ 10T e v dp)ainr + 0P Q) rrm

=(u(x, 1), (%, 1)) 12000 — (@ (%), (%, 0)) L2
for any ¢(x, 1) J (2% (0,00)) and for any t[0, T],

where by the notation (u,u-Vsﬁ)L ,, we mean the integral
2(2)

01
i‘, i}uiu" %?T dx, wmore generally, by the notation (f, g-Vh)Lt
2

Ai¢=1%k=1 2)

we will denote the integral L %}l ki‘.l fig* %%;dx in this paper, and moreover
{m -

(Gv) u(x, )el}(Q) a.e.ts[0,0),
W1 () 1w Dlitae+2 [ IPuCx, DIt dt<la@) L

Sfor any te[0, o),

(vi) l‘l_'”;l (u(x, 1), @(*))r2car=(U(x, 1), P(%)) L200)

for any t, €[0,0) and for any ¢(x)=j(Q),
(vii) {iﬂtl]u(x, t) —a(@)llLy @ =0.

In this situation we will show the following theorem.

THEOREM. Let u(x,t) be the weak solution in the above lemma.
Then we have
(i) The function (A'v'i'u(t), @) 120y 1S absolutely continuous with respect
to te[0, T] for any o< j(Q).
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(ii) There exists the derivative dit(A-%u(t),GD)Lzm) a.e.t.

(iii) The vector-valued function A"}u(x, t) is measurable and locally in-
tegrable in 2% (0, T) and there exists the derivative —g—[ A—'}'u(x, t)

i.e. there exists the measurable and locally integrable vector-valued
Junction g(x,t) such that

T - t T
w1’ [ At 228D grar= [ g, Do Hdrdt
Jor any test vector-valued function w(x,)eC3(2x (0, T)).

(iv) It holds the relation

%A‘%u(x, £)=—vAbu(x, t) — A Pu.pu(x, 1), a.e.(x,)cax 0, T).

§2 Proof of Theorem

We will give the proof of the theorem step by step.
[1°] We note that there exists an absolute constant C, such that the in-
equality ([2] [9])

@1 A 3PP wl] 220y <Cill A0l 1200 | AT 0] 22

holds for any v, wejf(Q) and therefore we may define the operator Hw=
A_*P(w-V)w for every weD(A}) as follows. For any weD(A’l‘) =J1(2)
there exists a sequence w,&J(2)(#=12,3,...) tending to w in Ji(2) and
it holds
@2 1A P(w, 7).~ AP YWl 22000

I APw, (Pwa— P lzsor +1| AP0~ 1,) P10, 220

<Cill A w,~ A¥w, )|z (1AW, 120+ | A0 2200}

By the inequalities (2.2) we have that the sequence A-%P(wn-V)w, tends to

an element v</(2) in j(2), and then we define Hw by v, i.e.

@2.3) Hw=lim A*P(w,-r)w,.

We remark that Hw is determined uniquely for w. In fact if there exists
N =1

another sequence #,&/(2) tending to w in J}(R) the sequence A *P(,-p)i,

tends to an element v<j(2). Since we have the inequalities
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15— 0llz0c0r <UD~ A 4P, P, 10000+ AP P) 10— 0l 22001
AP (@) i, — A P(w, )Wl 2201,
and
I AP (@, 7)) B~ AP e ) W 2200
<Cll A, — Abw, ) 200 11 AT 2000 + 1 AFW, ) 2o},
it gives the equality v=uv.

[2°]7 We will show the identity
@.4) (w-rw, A49) 1y = (A4 HW, ) 12101
for any weD(A%) =7J1(2) and for any ¢=j(Q).
For the w e](.Q) in [1°] Wthh tends to wE]z (2), it holds
(W, -VW,.,,A z¢)L2(m (A IP(W ‘V)wmA Sl’)Lz(an
and
| @ae P10, A7) 100 — o7, A7) 1200
=| (Wnr Pw—F W) + Wo—w)Fw, A 2) 15:0) |
<CIPw,— Pl zacor (P04l 22car + 170l 2200017 AP 22
Therefore, by letting n—oo it gives (2.4) i.e.
(w-rw, A 4) 130 = (Hw, A4P) 0or = (A Y HW, §) 11100
[3°] For the fweak solution #(x,¢) in the theorem, we will show the
identity
(2.5) (@), )12 —(@, @) L2y
‘J:{V(Vuy V@) 2y + (WP, @) 1oy} dE
for any @& J1(Q) and for any ¢=0.
In the weak equation (1.16) in the lemma 1.2 since we may set ¢ (x,t)=
P(x)EJ(Q) especially, we get

@8 [ A e+ @ TP mddl

=), P2 — (@, ) 1200
for any ¢&J (L) and for any £=0.
For any ¢ J1(2) there exists a sequence ¢,&J(2) tending to ¢ in J}(Q)
and the identity (2.6) holds for ¢, (#=1,2,...) also, and following relat-
ions hold
[Lw a9 nwdt=—[ u,rgd namdt>—{ Fu,re) nwmdt n-c0),
(@), ) L2y (@), P 120>, (@, Pr) 20y (@, P) 1200y  (B—>00),

]Io(u’ u'VS/’n)Lz(a)dt—L (%, P P) 120, |
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t t
= ]Jo(u' “‘[Vsbn“VGD])Lz(mdt!§Cz||7¢n—VGDHLﬂmJo“Vu|]2Lz(a)dt

g%Czuauzl‘“‘””’7¢7«»_V¢”Lz<m—>0 (n—o00).
It gives the identity (2.5)

[4°] Let us show the identity
-1 -1
@7 (A 2u(t), )iy — (A4 %a,9) 12

=—[ At @)+ A HY, @) 10 at

for any ¢=/(2) and for any ¢=0, where the operator H is defined in [1°],
_1
[2°]. By this fact we obtain that the function (A 2« (), ¢)1, is absolutely

-1
continuous and thereby that there exists the derivative %(A 2u(t), @) L.

In fact, for any ¢& J(2) we set A_’l‘qo=<,b and then ¢ED(A%)=]§(.Q).
Consequently, from the identity (2.5) we have
-1 -1
@), A 2Q) 1200 — (@, A Q) 130)
t -1
=—[ At o + AT U, @) o} .

Here we used the relations (2.4) in [2°], and

u(x,t) €J1(2) a.e. t, and

1 1 - -1

(A%, @) 1,00y = (A%u, A%A %SD)Lz(D): Fu, v (A 2¢)) r200).

This means (2.7).

[5°] We will note that A_%u(x, t) is measurable and locally integrable

in @%x (0,T). For, since the function

(A8 (), @) tacor= (A H(®), 0 1200+ (A4 D), @) 20

= (A_%u @, D120
is continuous function with respect to ¢ for any ¢ZL,(2), which is rep-
resented as o=¢,+¢, 0] (@), ©CJ@*, (A ), ) a0 is measu-
rable. ] (2)* is an orthogonal complement of ] (2 in L,(2). Moreover

[[14 @ bwat<C| 4@ bo=CTlalt .

Hence A"}u(t) belongs to the space L,((0,T); L,(2)). Since L,((0,T);
L,(2)=L,(2x (0, 7)) ([1] [8]), we have A"i'u(x, HE L,(@x, T)).
[6°] We note that A%u(x, D), A_*Hu(x, t) are measurable and locally
integrable in 9x (0, T). In fact, for any ¢ J(@) the function
1 =1
(A%u(?), @) Loy = (P4, F(A EQP))Lz(a)
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is measurable with respect to ¢ and

[laturiz  =[irulr  at<-alr
0 Lz 0 L

= 2v Ly’

Hence A%“ELz((Oy T); L,(@)=L,(2x (0, T)). For any ¢EL.(DL,(2)
the function

[, 47 U, Do dr= (A7 H1, 0) 120 = (A" U, Po) 1o

=(u-ru, A-%PGD) L2(2)
is measurable with respect to ¢ and

T _* T __1_ , T
[C1atauueat=c| 14 Hul o dt<C [ 1 Bl acordt

gC'CI |abuit dt< lu 2

PR
Hence A *HuCL,((0, T); L,(2)=L,(@x (0, T)).

[7°]1 Let us show that it holds
@8 [ [ A tuc, 52280 gugr—| | watue + A, Do, 1 drat
for any w(x,t) &C35(2x 0, T)).

In fact, from the identity (2.7) in [4°] it gives
@.9) B Hu), @)1= —v(AHu®), @) 120 — (A U, @) or ..,
for any ¢=/(2). For any ¢(x)E C7(2) it holds

L atu®, 910 =240, Po) aa

= —v(A(D), P) 1o, — (A HU(), Po) 1oy
= —v(AYu), @) oo — (A HUW), ©) 12 cor.
Hence we have

@10) [ @hu®, 9uay®dt=[ vAau®, 9 na

+ A W), 9w} gt
for any = C3(2) and for any ¢=C3(0, T). Equivalently,

(2.11) I:L Aty(x, ()¢’ () dxdt:j: j ,,‘ A u(x, £)

+ A Hu(x, Yo (%) P () drdt.
The Hilbert space W% (2) which is the closure of C7(2) being separable,
there exists a complete orthonormal system {¢,(x), [=1,2,3,,,} in W§ @
consisting of the elements belonging to the space C5(2). For any w(x, $)E
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Cy(2x 0, 1)), let

(2.12) o= él‘/’z<t)¢z(x), where ¢,(f) = (w(x, t),%(x))wg(g)

be the Fourier expansion of w(x,?) and w,(x, )= Elsbz(t)%(x) be the corr-
esponding partial sum. According to the theory of Fourier series it holds
for fixed t& [0, T

@213) wn (5= ReBe® >0 1) in W),

6a>(x t) .

2.19 W

~2¢ O @u(x) >——7 in Wi(Q),

as it holds ¢i(1)=(22LE, 0.m),, o)

More precisely, we can show that the convergence in (2.13), (2.14) is uni-
form in ¢€[0, 7). Because of the uniform continuity of w(x,#) with respect
to ¢ €[0, 7] as an element of W3(2), for any >0 there exists a partition
O0=¢,<t,<lsee<ty_<ty=T of the interval [0, 7] such that it holds

lo(, ) = (%, 8l 3 gy <—5- for any #, €[ty 4],
Using Minkowski’s inequality we have
me(x’ t) _w(x’ t)”Wg (Q)gllwm(xi t) —(Dm(x, t")“W%(,Q)

Flwalx, &) —o(x, tk)”n,g @ +lo(x, ty) —wlx, t)ng(‘Q)
Let t& [0, T] belong to the subinterval [#,.,, ¢,]. Then we have

llo(x, £) = (5, D),y 3 gy <5
and

llon (#,2) —wn (%, 8l 3 gy S5, ) =0 (%, 1) I3 gy <5
As for the quantities ||w,, (%, t;) —~o (%, toll,, 3(0) (k=1,2,...N) we can choose
a sufficiently large index m,(¢) such that

llwm (%, 8) — (%, te) ng(g)<% (k=1,2,3,...,N) for m=m,(e).

Thus, we have a uniform approximation in [0, 7] such that
llows Cx, t)—w(x,t)ilwg(g)<e for m=m,(e).
Similarly we have uniformly in [0, T]

‘ aw,,é(tx, t) aa)(x t) “

Finally, applying the Sobolev’s lemma we have in [0, 7]

z(g)<5 for m=m, ().
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(2- 15) M_axlwm(xr t) —w(xy t) |§C3”wm(x: t) "‘(D(x, t)”Wg (.Q),

g

0wn(%,8) Ow(x, ) “
ot ot wi(9).

Max!|Bwn(x,8)  dw(x,1) |
@18 " e T e =0

The uniform convergence follows from these estimates. For wn(x, )=
Lé%(t)%(x). where ¢,(H)ECT0, T), ¢,(x)EC5(2), it holds the relation

(2.11). Hence it holds also for any w(x,)EC% (2% (0, T)). This means
that the weak solution #(x,¢) satisfies the relation (2.8)
and moreover

—(%A'%u(x, = —vAbux, ) — A Hu(x,t)  ae (e 2x©,T).

The proof of the theorem is complete.
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