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§ 1. Introduction and summary

   Let us consider the initial value problem for the Navier-Stokes equations 

which is written in its classical form as

(1.1) I_v4u+(v)t€—_f—vP, xE.Q, t>0, 
(1.2) divu=0, xED, t>0, 

(1. 3) u I a a= 0, t>0, 

(1. 4) u l t-o=a, xE.SQ,

with the usual notations. Here u (x, t) is the velocity field, p (x, t) is the 

pressure, a(x) is the initial velocity, f(x, t) is the external force. In these 

equations u, p are unknown, and a, f are given. 

  For the problem, E. Hopf [3] (1951) succeeded' in showing that there 

exists a global weak solution and that for an arbitrary domain in n-dimen-

sional Euclidean space R'(n2), but he left the investigation on the unique-

ness and the smoothness of his solution for later works. Except the case 

n=2  no one has yet succeeded in proving or disproving the uniqueness 

theorem for his solution. To establish the uniqueness theorem together with 

an existence theorem, various researches on strong solutions have been made 

by many authors, especially by A. A. Kiselev and 0. A. Ladyzhenskaia [5] 

(1957), P. E. Sobolevskii [9] (1959), S. Ito [4] (1961), H. Fujita and T. 

Kato [2] (1964) and others. Their strong solutions have been shown to be 

unique for the case n=3 in which we are interested, although none of them 

is global (in time) unless some smallness restriction on prescribed data is 

assumed. 

   In this paper, assuming that a is a bounded domain in R3 with a suffi-

ciently smooth boundary a.Q and that the external force f is absent, we will 

study, in some sense, the differentiability with respect to the time variable



t concerning the Hopf's weak solutions. 

   Now, we explane some notations and concepts. 

   DEFINITION 1. 1.The  space,

I(12)_{u(x) IuECo(s2), div u= aui =0},                                   =1ax

and the associated Hilbert space 

J(D) =the closure of 1(12) in L2(2), 
and also the Hilbert space 

JZ (2) = the closure of J(12) in W1 (12) . 
Here, for the vector-valued functions u=- u (x) , v=v  (x) inner products are 
defined by

                3 

u,v    )L2(A)=Q=1x

(u, v)1=JL uZvi+ Eaukavk Jdx     W2 (A)Ai=1s=lk=laxax

= (u, V)L2(A)+(Pu, Pv)L2(A),

where u1 denotes the i-th component of the vector u.

   DEFINITION 1. 2. We denote by W21' (0) = W21' (S2 x (0, T)) the 

totality of vector-valued functions u = u (x, t) which are measurable in 1)-- 

                                                         12 x (0, T) and have the properties: 

   (i) uEL2( )

(ii) Pu — (axi, i, k =1, 2, 3) E L2 CO) •
   The space W 'CO)Z becomes a Hilbert space with the inner product 

T (u, v) Ivy (A) —J O{(u, V)L2(A)+(Pu, VV) L2(a)}dt. 
Therefore, concerning the derivative Pu it holds the equality:

(1.5)J 0JQ uidxk dxdt= —J of Aaxkwdxdt,
for any scalar test function co=co(x, t) ECo (Q) (i, k=1, 2, 3).

   DEFINITION 1.3. The space 

J(S2x (0, oo)) = fu (x t) I uEC°°(O x [0, oo)), div u=0 and 
              u is of compact support in S2 for any t 

and the associated Hilbert space

1



 Jz'(o) =J"(.sa  x (0, T)) =the closure of J(Sa x (0, oo)) in W2'(.6).

   DEFINITION 1.4. Let P be the orthogonal projection from L2(12) 
onto J(SQ). By A we denote the Friedrichs extension of the symmetric 
operator—Pd in J(Q) defined for every uEJ(SQ). A is a strictly positive self-
adjoint operator in j(S2) whose domain D(A) is contained in J1(12). 
The relation Au = w (u E D(A), w E J(2)) is true if and only if u EJZ (Sa) , 
wJ(12), and 

(1. 6) CGu, vv)L2(a) = (w, u)L2(Q) for any v,[1(12).

   Since the operator A is self-adjoint it admits a uniquely determined 

spectral resolution:

(1. 7) A= Ji:AdE (A) .
Moreover, since it is strictly positive: 

(1. 8) (Au, u)L2(Q) =11Pull i2(Q)-�Sllulll2(Q), uED(A), 

where 8=inf{(Au, u)L2(0) I IIuIIL2(Q)1, uED(A)} 

(1. 9)=inf {A IA is a spectrum of Al 
= the Minimum spectrum of A,

it holds the relations

(1. 10) A= f+.AdE (2) =Ja~E AdE(A), E(8—e) =0,
(1. 11) D(A) _ {uEJ(2) I f "E A2dIIE(A)uli2L2(Q)<+00}.
The inverse operator A-1 is defined in J(S2) and it is bounded. The fractional 

power of the operator A is defined as follows,

(1. 12) Aau= Ja~AadE(A)u, 0<a<1, 

  E

(1. 13) D(Aa) _ {uEJ(S2) I f -_EA2adlIECA)uII2L2(Q)<+00}
and also it holds

(1. 14) A-1u=JaE----dE(A)u for any uEJ(Sa),

(1. 15) A-au= Il              fE+* --))1-dE(A)ufor any uEJ(S2). 

        J

With respect to the relation between the domain D(AT) and the space Jz (Sa) 

which are introduced in the above, the following lemma is well known.



LEMMA  1.  1. It holds

D(A7)= .11(12) and IIA7uIIL2 (a) = IIGuIIL2(Q).

   Secondly, we state the properties of the Hopf's weak solution which 

have been proved ([3][7]).

   LEMMA 1.2. For an initial value a (x) E J(D) there exists a 
global weak solution u (x, t) of the Navier-Stokes equations, i. e. the vector-
valued function u(x, t) is measurable in .9x (0, oo), and for any finite 
T>0 satisfies the relations

(1) uE J2' (.9x (0, T)), 
(ii) u(x, t) EJ(.9) for any t E [0, T],

(1. 16)(iii) Jf0{(u,at)L2(a)+v(u,4T)L2(a)+(u, u•179)L2(a)Idt
_ (u (x, t) , 7' (x, t)) L2 (Q) — (a (x) , T (x, 0))L2 (0) 
for any co (x, t) E J (.9 x (0, oo)) and for any t E CO, Ti,

where by the notation (u, u•pco) we mean the integral 
L2 (D)

J 12‘...2k=1EEuiuka~kdx,moregenerally,bythenotation(f, g• ph) L2(a)

we will denote the integralJat3kEfzgkOh'dx in this paper, and moreover

        (iv) u(x, t) E IZ (.9) a. e. t EEO, oo), 

(1.17) (v) IIu(x,t)IIL2(a)+2v j 
         for any t E [0, oo), 

(vi) lim (u(x, t), 9(x))L2(a) = (u(x, to), so(x))L2(a) 

                        0 

        for any to E [0, oo) and for any co(x) EJ(.9), 
         (vii) liml^u(x, t)—a(x)IIL2(a)=0. 

a10

In this situation we will show the following theorem. 

   THEOREM. Let u(x, t) be the weak solution in the above lemma. 
Then we have 

(i) The function (A-7u(t), ~D)L2(a) is absolutely continuous with respect 
    to tE [0, T] for any coE./(a).



(ii) There exists the derivatived(A1u (t), cv) L2 (A)  a.  e.  t.
(iii) The vector-valued function A3u (x, t) is measurable and locally in- 

    tegrable inSax (0, T) and there exists the derivativeat A7u (x, t) 
i. e. there exists the measurable and locally integrable vector-valued 

    function g(x, t) such that

(1.18) jofAA u (x,t) flo(x,t) dxdt = —fufAg(x, t) co (x, t) dxdt
    for any test vector-valued function m (x, t) E C o (Sa x (0, T) ). 

(iv) It holds the relation 

   atATu(x,        t)= —vAlu(x, t) —A-7Pu• pu(x, t), a. e. (x, t) E.Q x (0, T).

 2 Proof of Theorem 

   We will give the proof of the theorem step by step. 

   [1°] We note that there exists an absolute constant Ci such that the in-
equality ([2] [9])

(2.1) IIA 4P(v•V)wIIL2(12)CCl!I A4viIL2(T) lI A4wII L2ca)

holds for any v, wEJ(sd) and therefore we may define the operator Hw= 

A 1P(w•p)w for every weD(A') as follows. For any wED(Ai) =J1(a) 
there exists a sequence wnEJ(2) (n =1, 2, 3, ...) tending to w in JZ (12) and 
it holds

(2.2) IIA  
    _1_1  ;P(w ,.p)w.—A TP(wm•p)wmIIL2(0) 

<IIA ;Pw. .• (pw,.—pwm.)II L2(m +IIA-1P(wn—wm) •pwmlI L2CD) 

<ClIIA4w',—A4wmIIL2(A) {II A4w72IlL2(n)+IIA4wmll L2(a)}.

By the inequalities (2. 2) we have that the sequence A;P(w • p) w,, tends to 
an element vEJ(SQ) in J(Q), and then we define Hw by v, i. e. 

_1 

(2.3) Hw=lim A ;P(w„•p)w„. 

We remark that Hw is determined uniquely for w. In fact if there exists 

     sequence ivE12tendingto w in1 another se        q~.J()gJ? (.sa) the sequence A;P(wm• p)ivn 
tends to an element VEAL?). Since we have the inequalities



  _1 

11v--vIIL2(a)Ilv—A _1         <P(w,,,•P)w.11 L2(a)  +II  A vIIL2cal 

       + II A 1P(w.•P) w —A 4P(w„•P)w.11 L2(o), 
and 

_1_1 

II A ;P(w„•G)w.-A 1P(w„•G)w.IlL2(o) . 
          11 

               <C,11A4w~- Aiw,11L2(o){ifA1wnIlL2(o)+IIA~wnIIL2co>}, 

it gives the equality V= v. 

[2°] We will show the identity 
_1_1 

(2. 4) (w. VW, A TOL2(0) = (A /Hw, (11)L2(9) 
for any wED(Ai)=J1(9) and for any 0bEJ(12). 

  For the w,,,EJ(sa) in [1°] which tends to wEJ1(S2), it holds 
(w9.• Pwpi, A TO L2 (o) = (A IP(wn• P) w%,, A TO L2 (o), 

and 

(w7•Pwn, A7cb)L2(o) — (w•Pw, A 70) L2(0) 
                                          = (wn.(Pw.—Pw) +(wn.—w). w, A 10)14 (D) 

      <-C21IPw72-PwII L2(a) {I1 Pw,,11 L2(o) +10)IIL2(2)}11VA 70IlL2(o)• 
Therefore, by letting n-*oo it gives (2. 4) i. e. 

         _1(
w•Pw, AL2(o) = (Hw, A_1_1                                L2(A) = (A;         4')Hw, 0)L2 (12). 

[3°3 For the [weak solution u(x, t) in the theorem, we will show the 
identity 
(2. 5) (u(t), c) L2 (a) - (a, CO L2 (12) 

          =—jo{v(P',Pc)L202)+(u•Pu,SP)L2 (DJdt 
for any 9E11(14 and for any t>0. 

   In the weak equation (1. 16) in the lemma 1. 2 since we may set 9 (x, t) _ 

0 (x) E J (Sd) especially, we get 

(2.6)  {v(u, dc')L2(o) +(u, u•P0)L2(a)}dt 

0 

        = (u(t), 0)1,2 (I?)- (a, 0)L2(a) 
for any 0E1  (S2) and for any t>0. 
For any co E J1(12) there exists a sequence 0 E J (9) tending to co in J1(12) 
and the identity (2. 6) holds for c„ (n=1, 2, ...) also, and following relat-
ions hold 

(t J (u, 400L2(A) dt= -J 
o (Pu, Psb,,)L2(a)dt-+-  (Pu, v9)L2(a)dt (n-*oo), 

(u(t), S!',y)L2(a)-3(u(t), 9)L202), (a, cb)L2(o)-->(a, 9)L2 (a) (n-*oo), 

1 f(u, u.I7b•)L2(a)dt-J0(u, u•Pc)L2(a)dtl 



 =1 J0(u,  u' [PSG.—Pco])L2(A)dt I <C2IIPqn—PcoIIL2(A)J OII PuI 2L2(A)dt
  1  
  2vC2II all2L2(0) IIP~G92—PSPII L2(A)->0 (n—>00).

It gives the identity (2. 5)

  [4°] Let us show the identity 
_1_1 

(2. 7)(A 2u(t), L2 (a) — (A 1a, Co) L2(12)

=—fu{v (ATu, q) L2 (A)+(A;Hu, co) 1.2(11)} dt
for any coEJ(SQ) and for any t_0, where the operator H is defined in [1°], 

[2°]. By this fact we obtain that the function (A lu(t), 7')L2                                                   (a) is absolutely 

continuous and thereby that there exists the derivative d (ATu(t),   c)L2(A).
  In fact, for any coE J(.Q) we set A ico=ci and then sGED(A1) = Ja (Sa). 

Consequently, from the identity (2. 5)we have 

            (u(t), A 'co)L2(A) — (a, A 2.7'ln)L2(A)
 —

J{v(A'u, co) L2(A) + (A'Hu, SP)L2(A)}dt.
Here we used the relations (2. 4) in [2°], and 

u (x, t) E J1(.12) a. e. t, and 
    11 1 _1_1 

(ATu, cc)L2(A) = (Alu, ATA~cP)L2(A) = (Pu, P(A 7SP))L2(A). 

This means (2. 7).

   [5°] We will note that A-iu(x, t) is measurable and locally integrable 

in fax (0, T). For, since the function 
  _1_1_1  

 (A 7//rrnnu(t),cP)L2(A) = (A~u(t),cP1)L2(A) + (A 7u(t),r2)L2(9) 
_1 

       = (A u(t) C 1) L2 (A) 

is continuous function with respect to t for any coEL2(fa), which is rep- 
                     j resented as co=C91+CP2,cP1EJ(12), S92EJ(sa)1,(A_iu(t), cP)L2(A) is measu-

rable. J (12)1 is an orthogonal complement of J (fa) in L2 (Sa) . Moreover 

J oIIA1u(t)IIL2(9)dtf0llu(t)I12(A)<CTIIalII2(A). 
Hence A 2-u(t) belongs to the space L2 ((0, T) ; L202)). Since L2( (0, T) ; 

_1 

L2(Sa))=L2(12x (0, T)) ([1] [8]), we have A 3u(x, t)E L2(12x (0, T)). 

   [6°] We note that Alu(x, t), A-1Hu(x, t) are measurable and locally 
integrable in Sax (0, T). In fact, for any cPE J(Sa) the function 

_1 

(A'u(t), co)L2(12) = (Pu, P(A 'q'))12(0)



is measurable with respect to t and

1 

 

11A7u(t)112IL2(9)—JoIIGuIIL2(n>dt- 2vI1(1112(n).
Hence  AYuEL2((0, T); L2(Q))=L2(sax (0, T)). For any TEL. (Sa)cL2(Q) 

the function

JA-1Hu(x, t)So(x)dx= (A;Hu, Sp)L2(9) _ (A- I Hu, Psp)L2(n) 
                   = (u • pu, A- PSo) L2 (n)

is measurable with respect to t and

JTIIA-HuIIL1c~)dt<CJTIIA4'HuIILl mdt<C'JTIIHullL2c9)dt 00— o

r 
 TCC 
 C'C1 J 0II AT ulli2co,dt< 2v1I1alli•                                       zcn>

Hence A ;HuEL1((0, T);L1(S2))=L1(Sax (0, T)).

[7°] Let us show that it holds

(2. 8)jJAAYu(x, t)  aw(x' t)  dxdt=fof{v AT t) +A-   oHu(x,t)}cv(x, t) dxdt

for any co(x, t) ECo(2x (0, T)). 

  In fact, from the identity (2. 7) in [4°] it gives

(2. 9) dt (A 1(t), go) L2(0) = —v(A7u(t), g)L2(0) — (A 1Hu(t), go)L2(o,a.e.t,

for any TEJ(2). For any So(x)E C7(12) it holds

dt (A~u(t) ,  co)L2 cn> =dt(Au(t) 'PSP)L2(n)
= —v(Ai u(t), PT) L2(o) — (A ;Hu(t) , PSP)L2(11)

= —v(Au(t), go) L2(Q) — (Al Hu (t), (0)L2(o)•

Hence we have

(2. 10)Jo (A~u(t)'Co) L2(.0)c(t)dt= fo{v(A1u(t), (P)L2(n)
                   + (Al Hu(t), CD) L2(n)}cfi(t)dt 

for any goEC° Q) and for any OE CVO, T). Equivalently,

(2. 11)JoJDA-~u(x, t)cp(x)cb'(t) dxdt =fJD{vA1u(x, t)
+ AI Hu (x, t) } cp (x) (t) dxdt.

                                   ° 

The Hilbert spaceWI (Q) which is the closure of CV S2) being separable, 
there exists a complete orthonormal system {co1(x) ,  1=1, 2, 3, , , } in Wi (,Q) 
consisting of the elements belonging to the space C o (SQ). For any cv(x, OE



 Co  (sa  x  (0,  T))  , let 

(2.12) w(x, t) = i i01(t)c 1(x), where 01(t) = (w(x, t), co (x))W2 (a) 
be the Fourier expansion of co (x, t) and com(x, t) = 0/(050/(x) be the corn 

                                                                               =1 

esponding partial sum. According to the theory of Fourier series it holds 

for fixed tE [0, T]

             A0/(0C0/(x)—>co(x, (2. 13) com (x,t)= t) in W 2(sa),
(2.14)acv~tx,t> =lE0i040/(X)—>at 

                             t)i
n W2 (-Q),

as it holdsci (t) = (--------Oat' t), S0i(x))WZ (Q).
More precisely, we can show that the convergence in (2. 13), (2. 14) is uni-

form in tE[0, T]. Because of the uniform continuity of co(x, t) with respect 

to t E [0, T] as an element of W2 (sa), for any e)'0 there exists a partition 

to<tl<• • •<tN_1<tN= T of the interval [0, T] such that it holds

Ilco(x, t')—co(x, t")IIWZ (s)< 3----for any t', t"E[tk-1, tk]•

Using Minkowski's inequality we have

Ilwm(x, t)—Co(x, t)IIWZ (sa)~II wm(x, t)—wm(x, tk)II ,Z(sa) 

+IiUom(x, tk) —w(x, tk)IIW2 (sa)+Ilco(x, tk) —ao(x, 011)1 0) . 
Let tE [0, T] belong to the subinterval [tk _1f tk]. Then we have 

Ilco(x, tk) —w(x, t)IIW2 (Q)< 3 '

and

1I corn (x, t) —wm(x, tk)IIWZ (,sa)<Ilw(x, t) —w(x, tk) II W2 (sa)< 3 .

As for the quantities I I wm (x, tk) — co (x, tk) I I W 2 (a) (k= 1, 2, ... N) we can choose 

a sufficiently large index mo (e) such that 

ilwm(x, tk) —w(x, tk) Ii,2 (12)< 3 (k=1, 2, 3, ... , N) for m>ma(e). 

Thus, we have a uniform approximation in [0, T] such that 

I f cvm (x, t) — co (x, t) I I W 2 (a) <e for m> mo (e) .

Similarly we have uniformly in [0, T]

awatx, t) _ awat, t) W2 (Q)<e for m�_m1(e).
Finally, applying the Sobolev's lemma we have in [0, T]



 (2.15) Max J wm(x, t) —cO(x, t)1 t) —co(x, t) IIWI (•a),

      Max acwm(x, t) _ am(x, t)8aom(x, t) acv(x, t)  (2.16)7,2at dt~~31at at w (S2).
The uniform convergence follows from these estimates. For cvm(x, t) = 

E 01(t)ivi(x), where 0/ (t) ECo (0, T), cpl(x) EC , (,Q), it holds the relation 
-1

(2. 11) . Hence it holds also for any co (x, t) E C u (SQ x (0, T)) . This means 

that the weak solution u(x, t) satisfies the relation (2. 8) 

and moreover

at---Au(x, 1)_—vA7u(x, t)— A IHu(x, t) a. e. (x, t) ED (0, T).
The proof of the theorem is complete.
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