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§ 1. Introduction

   Let V and W be two real separable reflexive Banach spaces and H be 

real Hilbert space with Vc WcH. Let V be dense in W and in H and let 

the natural injections from V into W and from W into H be compact and 

continuous, respectively. In this paper we shall consider the following 

abstract evolution equation of parabolic type:

u'(t)+Au+Bu=f(t),(1.1)

where A is the Freshet derivative of a continous convex functional FA(u) 

on V and B is the one of a continuous functional FB(u) on W. Precise 

conditions on them will be given in § 2. 

   The aim of this paper is to give sufficient conditions under which a 

bounded solution on R+= [0, 00] for (1. 1) with initial value u (0) = uo E V or 

a bounded solution on R= (—oo, co) for (1. 1) without initial condition exists. 

   By our assumption A is a monotone operator from W into W* (the dual 

space of W). If we assume moreover B is monotonic, related problems 

have been considered by several authors: L. Amerio G. Prouse [1], M Biroli 

[2, 3, 4], J. L. Lions [5] and others. However if B is not monotonic our 

problem seems to be unsolved and here we shall treat such case. 
   In a previous paper [6] the present author has investigated the bounded-

ness, periodicity, and almost-periodicity of solutions of heat equations with 

nonlinear (possibly non monotonic) terms, but in case the principal parts 

are linear. There the linearity of the principal parts has played an es-

sential role and the differential inequalities have been used effectively. As 

a matter of course that method is not applicable to our problem and we 

must employ another approach. Here some integral inequalities will be used

(*> The result of this paper was announced at the spring conference of the mathe-

  matical society of Japan at Osaka University in April, 1975.



to obtain a bounded solution for  (1.  1). A typical example of our equation is:

at u s axi\ 1 axiu 1 P-2  a iu) +Q (x, u)= f(x, t) (1. 2)
with u =0, where 2 is an open bounded domain in the n-dimensional 

Euclidean space RTh and 82 its boundary. 

   Regarding the initial-boundary problem for (1. 2) Tsutsumi [8] gave ex-

istence and non-existence theorems concerning global non-negative solution 

in the case f-0 and Q(x, u) _ ±u1", a>0. In [8] so-called the method of 
`potential well' was used

, and it is easy to see that the method is also 

available to our problem if we assume J~ II f (t) I12L2 (Q) dt is sufficiently small. 
But this assumption is too restrictive and not so meaningful for the exis-

tence of bounded solution because all the periodic (in time) functions except 

trivial one do not satisfy this condition. Our method here will require 
                                 t+1 

instead of this that sup tIlf(s)II2L2(o) ds is small. This improvement seems 
to be important because it enables us to proceed to the research of periodic 

solution for (1. 1). In general under appropriate conditions bounded solutions 

of differential equations become periodic (almost-periodic) if the data are so. 

However we do not know at this time if our bounded solution for (1. 1) 

is periodic or not, and this problem is open for future research.

§ 2. Preliminaries and results 

 Regarding A, B, FA, FB, and f we shall assume that the following condit-

ions are satisfied. 

H1. 

 A is the hemicontinuous Freshet derivative of a continuous convex fun-

ctional FA(u) on V with the properties: 

COW y<(Au, u)<Clllu4 for uEV 

and 

                 C2IIullf<FA(u) _<<CZIIuIIf for uEV, 

where Co, C1, C2, C3 and P(>2) are constants, 11•11v denotes the norm in 

V, and ( , ) denotes the relationship between V* and V etc.. 

H2. 

   B is the continuous Freshet derivative of a continuous functional FB on



W with the properties 

 IIBuw*II<kollull1+1 for uE W 

and 

I FB(u) I <k111uIIW+2 for uE W

for some constants ko, k1 and a(>0). 

H3.

ffS2 (R;H), that is, fEL2loe(R;H) andM-supr`+i Ilf(s)IIHds<+oo. 
t6R 6

Now we state our definitions of bounded solutions.

  DEFINITION 1. Let uo E V. A function u (t) on V is said to be a boun-

ded solution for (1. 1) with initial value u0 if the following conditions are 

fulfilled:

(i) uEL°°(R+; V) (R+=CO, oo))

(ii) Au E L°° (R+; V*) 

(iii) u'ES2(R+;H) (f- dt)
(iv) u'(t)+Au(t)+Bu(t)=f(t) for almost all tER+ (in V*) and 

u(0)=u0.

For notation see e. g. Lions [5].

   DEFINITION II. A function u(t) on V is said to be a bounded solution 

on R for (1.1) if the conditions (i)—(iv) above with R+ replaced by R are 

fulfilled except that u(0) =u0. 

   To state our result some preparations are needed. We shall introduce 

certain functionals on V and some specific notations. Let us define fun-

ctionals Jo (u), J1(u), .10(u) and J1 (u) on V as follows.

Jo(u) _ (Au, u) + (Bu, u), 
Jj(u)=FA(u)+FB(u), 
.10(u)=Collullj —koSa+2llulla+2, 
J1(u) =C211u11;—k1Sa+211uIIy+2.

Here S denotes the imbedding constant from V into W, that is, the mini-

mum constant satisfying

Ilullw<_Sllully for uE V.



By our assumptions it follows easily that

 J°  (u)  SJ°  (u) and J1(u) SJ1(u)

For a moment let p<a+2. Associated with above functionals we determine 

D° and D1 as follows:

D°=max (C°xp—k°Sa+2xa+2) 
      x2° 

  =C°2o —k°Sa+2k. +2' 

D1=max(C2xP—k1Sa+2xa+2) 
xZ° 

—C2 )1—k1C~a+221a+2'

where

PC° 1/(a+2 -v) 'l0—(k°(a+2)Sa+2)
 _ PC2k1(a+2)S2)i#ica+_,

Put

{uEVIJ1(u)<D1 and Ilully<~1}•

   The set is closely related to the so called `potential well' (see 

Sattinger [7] and Tsutsumi [8]). 

   Now we are ready to state our Theorems.

   THEOREM 1. Let us assume H1—H3 with R replaced by R+ and let 

P>a+2. Then the initial-value problem (1.1) with initial value u°EV 
admits a bounded solution in the sense of Definition 1.

   THEOREM 2. Let H1—H3 with R replaced by R+ be satisfied and let 
2<p<a+2. Then for any u°E z.there exists a constant M°-M° (D 1—J1 

(u0)) such that if M<M° the problem (1.1) admits a bounded solution u 
with initial value u° in the sense of Definition 1, u satisfying 

Ilu(t)IIv<K1(M)A1 for tER+, 

where K1(M) is a constant depending on M and J1(u0)• 

   THEOREM 3. Under the hypotheses H1—H3f 

(i) if p>a+2 the problem (1.1) admits a bounded solution u for any M 
in the sense of Definition 2,



and 

(ii) if  2sp<a+2 the same result holds when M<Mo=Mo (D1), and 
moreover u satisfies

Ilu(t)I^ K2(M) for tER.

where K2 (M) is a constant depending on M and tending to 0 (as M—*0)

  REMARK. The precise value of Mo in Theorem 2 (or 3) will be given 

in the proof in § 3.

 3. Approximate solutions

   In this section we shall construct approximate solutions. For this pur-

pose we employ the Galerkin's method of approximation. Let {wJ} 
i=1,2,3,• • • 

be a basis of V and consider the following system of ordinary differential 

equations: 

(u'm(t), wj) + (Aum,(t), wi) + (Bum(t), w>) = (f(t), wj), (3. 1) 

j=1, 2, 3, .. , m, with initial condition

um (0) = E &i(0) w j,(3. 2)

where;

um(t) _ af(t)w,~.

Here initial values um(0), m=1, 2, 3,... , are chosen so that um(0)*u, st-

rongly in V as m—>00. The standard theory of ordinary differential equa-

tions ensures that a solution um(t) of (3. 1), (3. 2) exists on an interval, 

say, [0, tm]. To prove um(t) exists on [0, co) we must obtain a priori es-

timate of um(t).

   LEMMA 3.1. Let p<a+2. Then um(t) exists on R+ and the estimate 

Ilum(t)lly <— Ko(M,J1(u0))(3.3) 

holds, where Ko (M, J1(uo)) is a constant depending on M and J1(uo) but 

independent of m and t.



   PROOF. In order to prove the lemma it suffices to show  (3.  3) for 

VtE CO, tm]. Multiplying (3. 1) by af'(t) and summing over j from 1 to m 

we obtain

ft  oau'm.(s) IIH+ (Au,n(s), u'm(s)) + (Bum(s), u'm(s)))ds

= JQ (f (s), u'm(s))ds.(3.4)

Since (Au,n, u',1,) =d FA(um(t)) and (Bum,u'm) =dt FB(u(t))it follows
from (3. 4) that

JU'rn(5)Id5+Ji(Urn(t)) _Ji(Urn(0)) +J0C.(s),u',n(s))ds (3.5)
and hence, by Young's inequality,

Ji(um(t))<Jl(um(0))+----41 for t<min(tm,1).(3.6)

Therefore our assumptions H1 and H2 together with p>a+ 2 yield

IIUm(t)IIVSC4(M,J1(uo)) for 0<t<min(tm,1),(3.7)

where C4 (M, J1(uo)) is a constant depending on M and J1(u0) and other con-

stants but independent of m and t. (In what follows we denote by CC (Q), i 

= 4, 5, 6, ... , constants depending on Q) 

   By (3. 7) we may assume tm>1 and obtain

Ilum,Ct)IIv<C4(111,Jl(uo)) for tE[0,1]. (3.7)'

We shall show that there exists a constnat C5 (M, J1(uo)) such that

Ji(um(t))<max (max Ji(um(t)), C5(M)), t<tm,(3.8) 
                     Le [0,1]

which will give (3. 3) by changing the notation. For (3. 8) it suffices to 

prove

J1(um.(t+1))<max(L.(um(t), C5(M)) (3. 9)

for V t<tm-1. This is trivial if Ji (um.(t + 1)) J1(um(t)) , and we assume 

Jl(um(t+1))>Jo(um(1))• Then as in (3.5) we have

Jr+l iIu'm(s)IIHds<J~ +1(f(s), u'm(s)) ds (3.10)
and



JT !U'm(S)dSsJ+lllf(s)i1Hds<M2.(3.11)
   On the other hand multiplication of  (3.1) by a; (t), summation over j 

and integration from t to 1+1  give

J a'±1J0(um(s))ds=—J±1±1                  (u'm(s), um+J(s))ds (f(s), um(s))ds

J
<1112-14,C+1llum(s)IIHds (by (3.11)),

and.

JTt+1  {Jo(um(s))—Ilum(s)IIH}ds <M2. (3. 12)

Hence by (3.12) there exists a number t* E [t, t+1] such that 

Jo(um(t*)) —Ilum(t*) IIH_<M2.(3. 13) 

The inequality (3.13) together with the assumption P>a+2 implies

ll um(t*) Il v<_C6 (M).(3. 14)

Thus as in (3.5) we have

Jl(um(t+1)_-Jlllu'm(s)IIHds+Ji(um(t*))+Jl                                    (f(s),u'm(s))ds

< 4M2+Jl(um(t*))

<-4M2+ C31Ium(t*)llv+k1Sa+zllum(t*)l1V+a

<C, (M) (by (3.14)) .

   Since C, (M) is independent of m and t, the inequality (3.9) and con-

sequently (3. 8) are now proved with C5(M) = C, (M) . q. e. d. 

   In case p<a+2 an argument somewhat complicated is needed.

   LEMMA 3.2 Let 2<p<a+2. Then for u0E `'~there exist constants 

M0=Mo(D1—J1(u0)) and mo(e) such that if M<Mo u„,(t) with m)'mo is 

defined on [0, +oo) and the following estimate holds:



 

I  l  um  (t)  I  I  vSKI  (M,  e)  <21 for t and for m>mo (e) ,(3. 15) 
where a is a small constant and K1 (M, e) is a certain constant depending 

on M and e.

   PROOF. We shall show that there exists a constant Mo such that if 

M<Mo and m>mo we have

(J1(um(t))S)Ji(um(t))<D1f t<tm.(3. 16)

  Then this inequality together with the initial condition Ilu(0) IIv= Ilually 

<A1 will imply II u„,, (t) I I v<21, t<tm, and the former part of Lemma 3. 2 

will follow. Also (3. 15) will be seen from the procedure of the proof of 

(3. 16) . 

   Let us begin with showing tm>1. By (3.6) we know for M<M'o=

2A/D1—J1(uo)

Ji(um(t))SJl(um(0)) + 4  1112(3. 17)

<J1(uo)+4M2+e<D1 (e: small)
for 0<t<min(1, tm) and for m>mo(e). Here we have used the fact that Jl 

(um(0)) may be assumed to be as close to J1(u0) as one wants because J1(u) 

is continuous with respect to u in the norm II • IIv Hereafter we assume 

M<M'o. Then the inequality (3. 17) implies tm>1. Let us assume (3. 16) 

was false. Then there would exist a number t1(>1) such that J1(um(t1)) 
=D1 and J1(u m(t))<D1 for t<tl. Thus by the same argument as in (3. 5) 
we have

Jtl_,IIu'm(s)IIHds+Ji(um(tl))=J1(u.,(tl-1))+ jtl_1(f(s), u'm(s))ds
and hence by the definition of t1

Jtl_lllu'm(s)IIH ds tl_1(f(s), u'm(s))ds,
and moreover

Jti_i1ki'm(5)ii5~Li_i(f(5), u'm(s)) ds, M2.
Also as in (3. 12) we have

 J:_1Jo(um(s))dsSJ~l_1(II u'm(s)IIH+IIf(s)IIH)Ilum(s)IIHds



 S2M max Ilu77,(t)IIHS2MSiAl,(3.18) 
to Cti-1,t1]

where S1 is the imbedding constant from V into H. Therefore there exists 

a time t*E[t1-1, t1] such that 

Jo(um(t*))<Jo(um(t*))S2MS1,11 

and hence, if we choose M<34";=Do/2S1A1, 

               Il um(t*) IIv<_ro(M),(3. 19) 

where ro (M) is the smaller root of the numerical equation

CoxP—koS'+2xa+2 =2MS121i x>0. 

Note that ro (M) ->0 as M-40. Now from (3. 5) with t and 0 replaced by t1 

and t*, respectively, we have

f1I//{ t ,llu'm(s)IlHds+Jl(um(ti)) =J1(um(t*))+~t*(1, u'pyy)ds
SC3Ilum(t*) Il;+kiSa+211um(t*) Ilv+2

       t 

+----4 I*1If(s)11ds+I   IIu'm(s) Il,ds,

and hence

D1=J1(um(ti))�C3ro(M)J+k1Sa+2ro(M)a+2+  1  M2

K2(M). (3.20)

This is a contradiction if we choose M<M"', Mo"' being the smallest con-

stant such that 

K2 (Mo"') = D1, 

which is possible since K2(M) tends to 0 and oo as M-+0 and -+oo, respec-

tively. Thus if we choose Mo as

Mo=min(M0', Mo", Mo"'),

the inequality (3. 17) is valid for M<Mo. Also (3. 15) follows evidently if 

we define

K1(M, e) =max(J1(ue) +e+----4 M2, K2(M)).
q. e. d.



 § 4. Proofs of theorems

   Theorems 1 and 2 can be proved by the same way on the basis of Lem-

mas  3.1 and 3. 2, respectively, and we shall carry out the proofs simul-

taneously. 

   Let {um(t)} be approximate solutions constructed in § 3. {um(t)} exist 

and satisfy a priori estimates (3. 3), (3. 15) under our assumptions. From 

these estimates we can obtain easily

      t+1 s ep+  Il u'm(s) II Hds<C8(M)<+oo.(4.1)

Then by standard compactness and monotonicity arguments (Lions [5]) we 

can extract a subsequence from {um(t)}, which will be denoted by the same 

symbol, such that 

um(t)—>u(t) weakly star in L°°10 (R+;V),(4.2) 

u',n(t)—nu'(t) weakly in L2loc(R+;H),(4.3) 

um(t)—>u(t) strongly in L'loc(R+; W), r>1, (4. 4) 

um(t)—>u(t) a. e. in W,(4. 5) 

Aum(t)—Au(t) weakly star in L°°loc(R+, V*),(4. 6) 

Bum(t)-->Bu(t) weakly star in L°°Ioc(R+; W*), (4.7) 

and the limit function u(t) satisfies 

u' (t) + Au(t) + Bu(t) = f(t) a. e. in V*

and

u (0) =u0.

Moreover the inequalites (3. 3) (or (3. 15) with K1(M) =K1(M, 0)) and (4. 1) 

remain valid for um=u. Thus the proofs of Theorems 1 and 2 are complet-

ed. 

   Next we shall proceed to the proof of Theorem 3. Consider the system 

of ordinary differential equations: 

(u'm,r(t), w.) + (Aum,r(t), w>) + (Bum,r(t), wf) = (f, w(4. 8) 

   on [ — r, oo) with initial condition

um,r(—r) =0,(4. 9)



where

 um,r  = E=a1,r(t)w>.         !=1

Then we know by Lemmas 3.1 and 3.2 that if p>a+2 we have

I I um,r (t) I I vKa (M, 0), — r<t<oo, (4.10)

and if 2<pa+2 we have for M<Mo=Mo(D1)

II um,r(t)v2(M), —r<t=oo,(4. 11)

where we recall

K2(M) =C3r0(M)p+k1S°+2r0(M) a+2+.-----41

In both cases we have

supp Jt+1IIum,r(s)IIds<C9(M)<+oo. (4.12) 

      t

From (4. 10), (4. 11) and (4. 12) we conclude that after appropriate prolonga-

tions of um,r(t) and u'n,,,r(t) for t<—r, we can extract subsequence of {um,r 

(t)} with respect to r (r=1, 2, 3, 4, ...) to obtain (4. 2)—(4. 7) with um(t), 

u(t), m, and R+ replaced by um,r, um(t), r and R, respectively, where um 

(t) is the limit function of um,r(t) as r—+oo. Since the estimates (4. 10), 

(4. 11) and (4. 12) remain valid for ur,,r (t) = um (t) on t E R, we can extract 

once more again a subsequence from {um(t)} which satisfies the same con-

vergency properties as in (4. 2)—(4. 7) with R+ replaced by R. Then the 

limit function u(t) becomes the required bounded solution on (—co, oo).

§ 5. An example 

  As was mentioned in the introduction let us cosider the equation;

          n 

at----u— dx¢(~------o'xiul P-2 ax~u)+8(x, u)=f(x, t), xES2, (5.1)
together with boundary condition

u l a n = 0,(5.2)

where S2 is an open bounded domain in R„ and 8SQ is its boundary. We assume 

supf`+lIlf(•,s)II2L2(Q)ds-M<+oo, and f (x, u) is defined on9><R and me- 
asurable in x for each u and continuous in u for each x and satisfies



 

1Q(x, u) I Sk0 I u I "1 with 0<a<np/ 02— p) —2 if n>p>2 

and 0<a<+00 if 1<n<p.

Put

V= Wo1^p(Sd), W=L"+2 (Id), H=L2(12),

Au= — t~ ax----( ,ax,-u 1 P2ax~----u) and Bu—$(x, u) . 

 z

Note that

HUH 1,P(0)—\{m1f1axuipdx)p 

                       t

   Then all the hypotheses in §2 are satisfied in this case with C0 = C1=1, 

C2 = C3 = p and k1=-----a+2 . S and S1 are defined as the Sobolev constants 
of the imbeddings from W o,P into L"+2 (Sa) and L2(,a), respectively. Thus 

our results are applicable directly to (5.1)—(5.2).

   FINAL REMARK. 

   In case p=a+2 the conclusions of Theorems 2 and 3 are valid under 

the assumption that S and S1 are sufficiently small.
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