九州大学学術情報リポジトリ Kyushu University Institutional Repository

On the global classical solutions of nonlinear hyperbolic-parabolic systems

Ebihara, Yukiyoshi Department of Mathematics, College of General Education, Kyushu University

https://doi.org/10.15017/1448985

出版情報:九州大学教養部数学雑誌. 10(2), pp.91-97, 1976-11. 九州大学教養部数学教室

バージョン: 権利関係:

On the global classical solutions of nonlinear hyperbolic-parabolic systems

By Yukiyoshi EBIHARA (Received April 1, 1976)

§ 0. Introduction

Let Ω be a smooth bounded domain in \mathbb{R}^n . Points in Ω are denoted by $x=(x_1, x_2, \dots, x_n)$ and the time variable by t.

In this article we consider the Initial-Boundary Value Problem;

(1)
$$u'' - \triangle u + u' (\gamma + (u)^{b_1} + (u')^{a_1} + (v)^{r_1}) = 0$$

$$v' - \triangle v + (u)^{b_2} + (u')^{a_2} + (v)^{r_2} = 0$$

$$x \in \mathcal{Q}, \ t > 0$$
(2)
$$u(x, \ 0) = u_0(x), \ u'(x, \ 0) = u_1(x), \ v(x, \ 0) = v_0(x)$$

$$x \in \mathcal{Q}$$
(3)
$$u|_{\partial \mathcal{Q}} = v|_{\partial \mathcal{Q}} = 0 \quad t \ge 0$$

where \triangle is the Laplacian in \mathbb{R}^n , $'=\frac{\partial}{\partial t}$, p_t , q_i , r_i , are positive integers and γ is a positive constant.

A question of a global existence of a classical solution of (1) - (3) is investigated in this article.

Previously, B. K. Kalantarov [3] has obtained classical solutions for more complicated equations with some growth restrictions to nonlinear terms.

It seems to be impossible to obtain a global classical solution for (1) -(3) with no conditions of initial values u_0 , u_1 , v_0 if we do not put such restrictions to nonlinear terms but here we can see that if the initial values are sufficiently smooth and have small norms then it admits a global classical solution.

The aim of the article is to give such sufficient condition under which (1)-(3) is globally solved.

The method is the analogous one used in Y. Ebihara [2] to obtain classical solutions for systems of equations;

$$\begin{cases} u'' - \triangle u + u'(1 + (u)^{p_1} + (v)^{q_1} + (u')^{r_1} + (v')^{s_1}) = 0 \\ v'' - \triangle v + v'(1 + (u)^{p_2} + (v)^{q_2} + (u')^{r_2} + (v')^{s_2}) = 0 \end{cases}$$

$$\begin{cases} u' - \triangle u + u^{p_1} + v^{q_1} = 0 \\ v' - \triangle v + u^{p_2} + v^{q_2} = 0 \end{cases}$$

§ 1. Auxiliary Concepts

Notations of function spaces are as usual.

Let us fix positive integer m as $m \ge \left[\frac{n}{2}\right] + 1$.

we know from the positivity of $-\triangle$ in $\overset{\circ}{H}^{1}(\Omega)$,

$$(1. 1) \qquad (\cdot, \cdot\cdot)_k = \langle (-\triangle)^k \cdot, \cdot\cdot \rangle, \ |\cdot|_k^2 = (\cdot, \cdot)_k$$

defines equivalent inner product of the space $\mathring{H}^k(\Omega)$ where k is a positive integer and $\langle \cdot, \cdot \rangle$ is the duality bracket of $H^{-k}(\Omega) \times \mathring{H}^k(\Omega)$.

In this article we identify this space equipped with the inner product as $\overset{\circ}{H}{}^{k}(\Omega)$.

Then we have by Sobolev lemma;

LEMMA 1. It holds for $u \in \overset{\circ}{H}^{m}(\Omega)$ that

(1)
$$|u|\beta_{m0}(\overline{\Omega}) \leq c(n, m)|u|_{m} \qquad \left(m = \left[\frac{n}{2}\right] + 1 + m_{0}\right)$$

(2)
$$|(u)^{p} \cdot (v)^{q}|_{m} \leq c(n, m, p, q) |u|_{m}^{p} \cdot |v|_{m}^{q}$$

where p, q are positive integers.

Now, we consider a system of differential inequalities;

(1. 2)
$$\begin{cases} \varphi'(t) \leq f(\varphi(t), \ \psi(t)) \left\{ -\gamma + \varphi^{p}(t) + \psi^{q}(t) \right\} \\ \psi'(t) \leq g(\varphi(t), \ \psi(t)) \left\{ -\psi(t) + \varphi^{r}(t) + \psi^{s}(t) \right\} \\ t \in [0, \infty) \end{cases}$$

where $\varphi(t)$, $\psi(t)$ are unknown nonnegative functions and γ , p, q, r, s are positive numbers with s>1 and $f(\cdot, \cdot\cdot)$, $g(\cdot, \cdot\cdot)$ are given functions which are nonnegative, continuous in \mathbb{R}^2 .

This plays an important role to the Problem (1) - (3) and the following Lemma 2 is a key estimate to obtain our theorem in § 2.

LEMMA 2. For $\varphi(t)$, $\psi(t)$ in (1. 2), there exists a positive number δ such that if $\varphi(0) + \psi(0) < \delta$, then $\varphi(t)$ should be decreasing and it holds that $\varphi(t) + \psi(t) < K(\delta)$ $(t \in [0, \infty))$

where $K(\delta)$ is some constant depending only on δ .

PROOF.

At first we consider the curve:

$$y(\alpha, x) = x^s - x + \alpha$$

where
$$0 < \alpha < \alpha_0 = \left(\frac{1}{s}\right)^{\frac{1}{s-1}} \left(1 - \frac{1}{s}\right)$$
 (\$\alpha_0\$: depth).

Put x_{α} , x_{α}' as minimum and maximum root of the equation $y(\alpha, x) = 0$

Now we divide into two cases.

1 If we assume

$$(1. 3) \varphi^{p}(0) + \psi^{q}(0) < \gamma, \quad \varphi^{r}(0) < \alpha, \quad x_{\alpha} \leq \psi(0) < x_{\alpha}',$$

then $\varphi(t)$ should be decreasing and

$$\psi(t) < x_{a'}$$
 for $t \in [0, \infty)$

that is,

$$\varphi(t) + \psi(t) < \varphi(0) + x_{\alpha}'$$
.

In fact, for some neighborhood of t=0, it holds from (1. 3)

$$\varphi'(t) < 0, \ \psi'(t) < 0$$

that is, $\varphi(t)$, $\psi(t)$ are decreasing.

Therefore for some $t_0>0$ we have

(1. 4)
$$\begin{cases} y(\varphi^{r}(t_{0}), \ \psi(t_{0})) = 0 \\ \varphi^{p}(t) + \psi^{p}(t) \leq \varphi^{p}(0) + \psi^{q}(0) < \gamma \quad (t \leq t_{0}) \\ \psi'(t_{0}) = 0, \ \varphi'(t_{0}) < 0 \end{cases}$$

At this time, since $\varphi(t_0) < \varphi(0) < \alpha^{\frac{1}{r}}$, it should hold $\psi(t_0) < x_{\alpha}$.

And moreover since $\varphi'(t_0) < 0$, the curve $y(\varphi'(t), x)$ goes down.

Therefore for every $t \ge t_0$, we have

$$\psi(t) \leq \psi(t_0) < x_{\alpha}$$
.

Thus observing these considerations we can conclude for $t \in [0, \infty)$

$$\varphi'(t) < 0, \quad \psi(t) < x_{\alpha}'.$$

2) If we assume,

$$\varphi^{\mathfrak{p}}(0) + \psi^{\mathfrak{q}}(0) < \varphi^{\mathfrak{p}}(0) + x_{\mathfrak{q}}^{\mathfrak{q}} < \gamma, \ \varphi^{\mathfrak{r}}(0) < \alpha,$$

(This is possible by taking α sufficiently small for γ .) then $\varphi(t)$ should be decreasing and

$$\psi(t) < x_{\alpha}, \text{ that is,}$$

$$\varphi(t) + \psi(t) < \varphi(0) + x_{\alpha} \text{ for } t \in [0, \infty).$$

In fact, since $\varphi'(t) < 0$ for a neighborhood of t=0, the curve $y(\varphi^r(t), x)$ should get down, so even though $\psi'(t) > 0$ in this neighborhood $\psi(t)$ can not cross over x_{α} i.e. $\psi(t) < x_{\alpha}$. Therefore it holds that

$$\varphi^{p}(t) + \psi^{q}(t) < \gamma$$
.

This shows that the situation continues for any t in $[0, \infty)$. Thus we have

$$\varphi'(t) < 0, \ \psi(t) < x_{\alpha}.$$

Consequently, from ①, ② we have the statement of the lemma.

(q. e. d.)

§ 2. Theorem.

In this section we prove the following theorem by the aid of the preliminary concepts of section 1 and the theorems in [1], [2].

THEOREM. If the initial values u_0 , u_1 and v_0 satisfy the following conditions:

$$(2. 1) u_0, v_0 \in \overset{\circ}{H}^{m+3}(\Omega), u_1 \in \overset{\circ}{H}^{m+2}(\Omega)$$

$$(2. 2) |u_0|_{m+1} + |v_0|_m + |u_1|_m < \delta$$

for some $\delta > 0$,

then we have a pair of solutions $\{u(x, t), v(x, t)\}\$ of (1)—(3) satisfying

$$(2. 3) u(x, t) \in \mathcal{E}_{[0,\infty)}^0[\overset{\circ}{H}^{m+1}(\Omega) \cap H^{m+2}(\Omega)] \cap \mathcal{E}_{[0,\infty)}^1[\overset{\circ}{H}^{m+1}(\Omega)] \cap \mathcal{E}_{[0,\infty)}^2[\overset{\circ}{H}^{m}(\Omega)]$$

$$(2. 4) v(x, t) \in \mathcal{E}_{(0,\infty)}^0[\mathring{H}^{m+1}(\Omega) \cap H^{m+2}(\Omega)] \cap \mathcal{E}_{(0,\infty)}^1[\mathring{H}^m(\Omega)].$$

Proof.

Put $\{\varphi_i\}$ as a system of eigen functions of $(-\triangle)^{m+3}$ considered in the space $H^{m+3}(\Omega)$.

Then since, u_0 , $v_0 \in \mathring{H}^{m+3}(\Omega)$, $u_1 \in \mathring{H}^{m+2}(\Omega)$ we have sequences of numbers (A_i) , (B_i) and (D_i) with

(2. 5)
$$\begin{cases} u_{0.} = \sum_{j=1}^{k} A_{j} \varphi_{j} \longrightarrow u_{0} \text{ (s) in } \overset{\circ}{H}^{m+3}(\Omega) \\ v_{0,k} = \sum_{j=1}^{k} B_{j} \varphi_{j} \longrightarrow v_{0} \text{ (s) in } \overset{\circ}{H}^{m+3}(\Omega) \\ u_{1,k} = \sum_{j=1}^{k} D_{j} \varphi_{j} \longrightarrow u_{1} \text{ (s) in } \overset{\circ}{H}^{m+2}(\Omega). \end{cases}$$

Here we put $u_k(t) = \sum_{j=1}^k \lambda_{kj}(t)\varphi_j$, $v_k(t) = \sum_{j=1}^k \mu_{kj}(t)\varphi_j$

where $\{\lambda_{ki}(t)\}$, $\{\mu_{ki}(t)\}$ are solutions of the systems of ordinary differential equations:

(2. 6)
$$\begin{cases} (u_{k}'', \varphi_{j})_{m} + (u_{k}, \varphi_{j})_{m+1} + (u_{k}'(\gamma + (u_{k})^{p_{1}} + (u_{k}')^{q_{1}} + (v_{k})^{r_{1}}), \varphi_{j})_{m} = 0 \\ (v_{k}', \varphi_{j})_{m} + (v_{k}, \varphi_{j})_{m+1} + ((u_{k})^{p_{2}} + (u_{k}')^{q_{2}} + (v_{k})^{r_{2}}, \varphi_{j})_{m} = 0 \\ j = 1, 2, \dots, k \\ u_{k}(0) = \sum_{j=1}^{k} A_{j} \varphi_{j}, u_{k}'(0) = \sum_{j=1}^{k} D_{j} \varphi_{j}, v_{k}(0) = \sum_{j=1}^{k} B_{j} \varphi_{j}. \end{cases}$$

It suffices to verify the following:

(2. 7)
$$\sup_{k \geq k_0} \sup_{t \in [0,T]} \{ |u_k(t)|_{m+1} + |u_k'(t)|_m + |v_k(t)|_m \} < C(T)$$

for large k_0 and for every fixed positive number T.

(The remaining part of the proof is done by the quite analogous reasoning of the proofs of the theorems in [1], [2].)

Now we prove (2. 7).

From (2. 6), we have for each t in existence interval $[0, \varepsilon_k]$,

$$\begin{cases} \frac{1}{2} \frac{d}{dt} \left\{ |u_{k'}|_{m}^{2} + |u_{k}|_{m+1}^{2} \right\} + \gamma |u_{k'}|_{m}^{2} + \\ (u_{k'}((u_{k})^{p_{1}} + (u_{k'})^{q} + (v_{k})^{r_{1}}), u_{k'})_{m} = 0 \\ \frac{1}{2} \frac{d}{dt} |v_{k}|_{m}^{2} + |v_{k}|_{m+}^{2} + ((u_{k})^{p_{2}} + (u_{k'})^{q_{2}} + (v_{k})^{r_{2}}, v_{k})_{m} = 0 \end{cases}.$$

Moreover from (2) of Lemma 1, it follows that

$$\begin{cases} \frac{d}{dt} \left\{ |u_{k'}|_{m}^{2} + |u_{k}|_{m+1}^{2} \right\} \\ \leq 2|u_{k'}|_{m}^{2} \left\{ -\gamma + c_{1}|u_{k}|_{m+1}^{b_{1}} + c_{2}|u_{k'}|_{m}^{q_{1}} + c_{3}|v_{k}|_{m}^{r_{1}} \right\} \\ \frac{d}{dt} |v_{k}|_{m}^{2} \leq |v_{k}|_{m} \left\{ -c_{4}|v_{k}|_{m} + c_{5}|u_{k}|_{m+1}^{b_{2}} + c_{6}|u_{k'}|_{m}^{q_{1}} + c_{7}|v_{k}|_{m}^{r_{2}} \right\}. \end{cases}$$

Therefore if we put

$$\varphi_k(t) = |u_k'(t)|_m^2 + |u_k(t)|_{m+1}^2$$

$$\psi_k(t) = |v_k(t)|_m$$

then they satisfy:

$$\begin{cases} \varphi_{k}'(t) \leq 2|u_{k}'|_{m}^{2}(-\gamma + c_{8}\varphi_{k}^{p}(t)(1+\varphi_{k}^{p'}(t)) + c_{9}\varphi_{k}^{p}(t)) \\ \psi_{k}'(t) \leq c_{10}(-\psi_{k}(t) + c_{11}\varphi_{k}'(t)(1+\varphi_{k}''(t)) + c_{12}\varphi_{k}^{s}(t)) \end{cases}$$

for some positive numbers $c_8 \sim c_{12}$ and p, q, r, s, p', r'.

Here we note these numbers are independent of k. Thus from the analogous way of Lemma 2 (taking no account of the difference of coefficients of equations), there exists $\delta > 0$ such that, if,

$$\varphi_k(0) + \psi_k(0) < \delta$$

then, $\varphi_k(t)$ is decreasing and $\psi_k(t) < K_0(\delta)$ that is,

$$\varphi_k(t) + \psi_k(t) < K(\delta)$$

for some positive number $K(\delta)$. This shows the existence interval $[0, \varepsilon_k)$ can be extended as far as desired.

Here, if we set for the number δ such that

$$|u_0|_{m+1}^2 + |u_1|_m^2 + |v_0|_m < \delta$$

then from the continuity of the functionals $|\cdot|_m$, $|\cdot|_{m+1}$ and the conditions (2. 5), we obtain for $k \ge k_0$ that

$$|u_{0,k}|_{m+1}^2 + |u_{1,k}|_{m}^2 + |v_{0,k}|_{m}$$

$$= \varphi_{k}(0) + \psi_{k}(0) < \delta.$$

Therefore we can conclude that $u_k(t)$, $v_k(t)$ $(k \ge k_0)$ exist globally and satisfy

$$\sup_{k\geq k0} \sup_{t\in[0,T)} \{|u_k(t)|_{m+1} + |u_k'(t)|_m + |v_k(t)|_m\} \leq c(\delta, T).$$

This completes the proof.

(q.e.d)

Cor. If, $m = \left[\frac{n}{2}\right] + 1 + m_0$, then the solution u(x, t), v(x, t) of the theorem

belong to

$$\mathcal{E}_{[0,\infty)}^{0}[c^{m_0+2}(\overline{\mathcal{Q}})]\cap\mathcal{E}_{[0,\infty)}^{1}[c^{m_0+1}(\overline{\mathcal{Q}})]\cap\mathcal{E}_{[0,\infty)}^{2}[c^{m_0}(\overline{\mathcal{Q}})], \ \mathcal{E}_{[0,\infty)}^{0}[c^{m_0+2}(\overline{\mathcal{Q}})]\cap\mathcal{E}_{[0,\infty)}^{1}[c^{m_0}(\overline{\mathcal{Q}})]$$

respectively.

REMARK. Though it seems that we can not hope a global solution of the Initial Value Problem for (1) for any initial values, if g_1 , g_2 are non-zero constants then we have a global solution by the method introduced here for the equations of the form:

$$\begin{cases} u'' - \triangle u + g_1^2 u + u' (\gamma + (u)^{p_1} + (u')^{q_1} + (v)^{r_1}) = 0 \\ v' - \triangle v + g_2^2 v + (u)^{p_2} + (u')^{q_2} + (v)^{r_2} = 0 \end{cases}$$

References

- [1] Y. EBIHARA; On the local classical solution of the mixed problem for nonlinear wave equation, Math. Rep. College Gen Edu. Kyushu Univ. IX, 2 43-65 (1974).
- [2] Y. EBIHARA; On the global classical solutions of nonlinear wave equations Funkcialaj Ekvacioj 18, 227-244 (1975).
- [3] B. K. KALANTAROV; On the mixed problem for semi-linear parabolic hyperbolic system, Doklady Akademii Nauk Az. SSSR 30, No. 3, 20-25 (1974).