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§ 0. Introduction 

   Let  2 be a smooth bounded domain in  R„. Points in SZ are denoted by 

x= (x1, x2,..., x„) and the time variable by t. 

   In this article we consider the Initial-Boundary Value Problem;

(1) u” — nu + u' (r + (u) P1 + (UT' + (VP) =0 
v'-Ov+ (u)¢2+ (14')Q2+ (v)r2=0 

xES2, t>0 

(2) u(x, 0) =uo(x), u'(x, 0) =u1(x), v(x, 0) =vo(x) 
xE2 

(3) uIa.a=vI0n=0 t>0

where is the Laplacian in R„, '=2t,p,q.,r,, are positive integers 

and r is a positive constant. 

   A question of a global existence of a classical solution of (1) - (3) is 

investigated in this article. 

   Previously, B. K. Kalantarov [3] has obtained classical solutions for 

more complicated equations with some growth restrictions to nonlinear 

terms. 

   It seems to be impossible to obtain a global classical solution for (1) 
-(3) with no conditions of initial values u0, u1, va if we do not put such 

restrictions to nonlinear terms but here we can see that if the initial va-

lues are sufficiently smooth and have small norms then it admits a global 

classical solution. 

   The aim of the article is to give such sufficient condition under which 

(1)-(3) is globally solved. 

   The method is the analogous one used in Y. Ebihara [2] to obtain 

classical solutions for systems of equations;



 +u'(1 +(u)p1+(v)41+(u')ri+(v')S1)=0 

v"— +v'(1+(u)'2+(v)Q2+(u')r2+(v0S2)=0 
            ¢1 u'—Du+u+v41=0\J\/ 

v'—L,v+u¢2+v°2=0

§ 1. Auxiliary Concepts 

   Notations of function spaces are as usual. 

  Let us fix positive integer m as m> [ Z ] +1. 

                                                                    a 

   we know from the positivity of—L~inH1(S2), 

(1. 1) (•, ••)k=<C—o)k•, ••>, • Ik=(•, •)k 

defines equivalent inner product of the space Ilk(S2) where k is a positive 
integer and <•, ••> is the duality bracket of H-k(S2) x Flk(S2). 
In this article we identify this space equipped with the inner product as 

0 Hk (S2) . 

Then we have by Sobolev lemma; 

   LEMMA 1. It holds for u E H'" (S2) that

(1) Iu1Q,ro(Q) <c(n, m)IuI. (m=[-]+1+mo)
(2) I(u)'•(v)°I<c(n, m, p, q)lulr.•Ivl 
where p, q are positive integers. 

   Now, we consider a system of differential inequalities;

(1. 2) fco'(t) <f(cv(t), (b(t)) (—r+co"(t)+s (t)) 
llVb'(t) < g(v(t), 0(t))(-0(t)  +(Qr(t) +Os(t)) 

tE [o, co)

where cp(t), 0(t) are unknown nonnegative functions and r, p, q, r, s are 

positive numbers with s>1 and f(•, ••),  g(• , • •) are given functions which 

are nonnegative, continuous in R2. 

This plays an important role to the Problem (1) - (3) and the following 

Lemma 2 is a key estimate to obtain our theorem in § 2.

   LEMMA 2. For co(t), O(t) in (1. 2), there exists a positive number 8 such 

that if yo(0) +0(0)  <8, then yo(t) should be decreasing and it holds that So (t) + 

cp(t)<K(8) (tE [0, co)) 

where K(8) is some constant depending only on 8.



PROOF. 

 At first we consider the  curve: 

             y(a, x) =xs—x+a

where 0<a<ao = (1)±F (1— 1) (a0 : depth) .
Put xa, xa' as minimum and maximum root of the equation y(a, x) =0

   Now we divide into two cases. 

Q1If we assume
,1 (1. 3) CO(0) +e(0) < r, (pro) < a, xa0(0) < xa', 

then co(t) should be decreasing and 

c/i(t)<xa' for tEE [0, co) 

that is,
,,11 Q(t) +`YCt)< co (0) +x a'• 

In fact, for some neighborhood of 1=0, it holds from (1. 3) 

cp'(t) < 0, cb'(t) < 0 

that is, co(t), O(t) are decreasing. 

Therefore for some 10>0 we have

(1. 4)

(t 0) (t0)) =0 

~'(t) +0'(t) cv'(0) +04(0) < r (tto) 

cb'(to)=0, cP'(to)<O

At this time, since cp(to) < Vp(0) < a r, it should hold cli(to) <xa. 

And moreover since co' (to) < 0, the curve y(cpr(t), x) goes down. 

Therefore for every t > to, we have 

~(t) < kto) < x«. 
Thus observing these considerations we can conclude for tEE [0, co)



 (t) < 0, < xa'. 

22 If we assume, 

(PPM +c(0) < CD' (0) +x° < r, cor (o) <a, 

(This is possible by taking a sufficiently small for r.) 

then yo(t) should be decreasing and 

c~(t) < xa, that is, 

v (t) < co(0) +xa for tE [0, oo). 

In fact, since cp'(t) <0 for a neighborhood of t=0, the curve y((pr(t), x) 

should get down, so even though (P'(t) > 0 in this neighborhood O(t) can 

not cross over xa i.e. %(t) <xa. Therefore it holds that 

wp(t)+cb°(t) <r. 

This shows that the situation continues for any t in [0, co). 

Thus we have 

c2'(t)<0, <xa• 

Consequently, from 10, ® we have the statement of the lemma. 

                                                          (q. e. d.)

§ 2. Theorem.

   In this section we prove the following theorem by the aid of the pre-

liminary concepts of section 1 and the theorems in [1] , [2] . 

THEOREM. If the initial values uo, u1 and vo satisfy the following conditions: 

    rO (2. 1) uo, v0Ellm'3(Q),

Iu1EHm+2(J2) (2. 2)Iu0Im+1+~v0lm+Iullm<~ 

        for some 8> 0,

then we have a pair of solutions (u(x, t), v(x, t)) of (1)—(3) satisfying 

                                             \ (2. 3) u(x, t)E 60.00) [Hm+1(Q(1 H                         )m+2(2)] n 
          ~^0/~              V[o.-) [1-1"1(S2)] n (Q)] 

   00 

(2. 4) v(x, t) °o~> [Hm f 1(S2) (1 Hm+2(S2)] fl ~~0~) [Hm(Q)] 

PROOF. 

   Put (co,) as a system of eigen functions of (—.Qm13 considered in the 

           0 spaceHm+3(.Q) 

O Then since, uo, vo cHm+3(2), u1EHm+2(SQ) we have sequences of numbers 

(A3), (B3) and (D,) with



(2. 5)

 ~k1O uo.=~AigP1—' u0 (s) inHm+3(Q)  iall 

 DHo v0.k=.,coJvo (s) inm+3(Q) /kB/ 
 k 7~O u1.k=~iDJS~i—*ul(s) inHm+2(2). 

 i=1\/

           \/\\\—Lk Here we putuk(t)=Ak(t)Cvi, vk(t)aki(t)(o) 
i=1i=1

where (2k,(t)), (14,(t)) are solutions of the systems of ordinary different-

ial equations:

(2. 6)

(uk", coi) m+ (uk, co,) m+1+ (uki (r+ (uk)pl+ (uki)Q"+ (vk)rl), SPi) m=O 

(vk~, coi)m+(vk, ci)m+1+((uk)p2+(uk')Q2+(14)r2, 4Pi)m=O 

                          j=1, 2,•.., k
                             k 

uk (0) = AJ~f, uki (0) =JDici, vk (0) = EB,cP, •

It= suflices to verify the following: 

(2. 7) sup-- sup (I uk(t) I m+l+ I uk'(t)1,,,+ 114(0 I m) < C(T) 
k2k0 1 ECO.T3 

for large ko and for every fixed positive number T. 

(The remaining part of the proof is done by the quite analogous reason-
ing of the proofs of the theorems in [1] , [21.) 

   Now we prove (2. 7) . 

From (2. 6), we have for each t in existence interval [0, ek),

2 l 1 Iuk7Im+I uklm+11 +rlukjlm+

(uk'((uk)pl+ (uk') q + (vk)rl), uk')m=O

2 dt I zit Im+IvkIm+ +((uk)P2+(uk')92+(vk)r2, Vk)m=0.

Moreover from (2) of Lemma 1, it follows that

-
,d,- t l

~2lukilm( r+Cliuklm+l+C2luk'Iml+C3lvklml)

dt Ivi,12. Ivkim(_C4IvkIm+C5IukIm+1+c6Iuk'Im1+C7lvklm)

Therefore if we put 

             ,cOk(t) = I uk,(t) I m+I uk(t) Im+l              Wk(t)` I vk(t) I m 

then they satisfy:



(
'c'(t)C21 uk' Im(—r+c,co (t) (1+ cot(t)) +c,`1'(t) lISbk'(t)C10(—(Pk (t)+c11cok(t)(1+c(t))+c12c (t))

for some positive numbers  c8—c12 and p, q, r, s, p', r'. 

Here we note these numbers are independent of k. Thus from the anal-

ogous way of Lemma 2 (taking no account of the difference of coefficients 

of equations), there exists 8> 0 such that, 

if,

,/,            wk CO) +c1k(0) <8 

then, cok(t) is decreasing and cbk(t) <K0(8) 

that is, 

cPk(t) +Ok(t) < K(8) 

for some positive number K(8). This shows the existence interval [0, ek) 

can be extended as far as desired. 

Here, if we set for the number 8 such that 

Iu0Im+1+Iullm+IVOlm <o 

then from the continuity of the functionals I • I., I • I m+1 and the conditions 

(2. 5), we obtain for k > ko that 

I u0.kI m+1+ I u1,kI m+ I vO,k l m 

=cPk(0)+ (Pk (0) <8. 

Therefore we can conclude that 14 (0, v, (t) (k > ko) exist globally and sa-

tisfy

sup sup (I uk(t) I m+1+ I u,/(01,,,+ m+ I vk(t) I m) <c(8, T). 
k2k0 tECO.T)

This completes the proof.(q.e.d)

COR. If, m= [ 2 ] +1+mo, then the solution u(x, t), v(x, t) of the theorem
belong to

GCO.') [Cm0+2(Q)]I Ia).—) [cm0+1
n(Q)]nCiCO~)[Cm0(i1G)] EL.—) [cm0+2(Q))] n~CO.~)[cm0(`)~')]

respectively. 

REMARK. Though it seems that we can not hope a global solution of the Initial 

Value Problem for (1) for any initial values, if g1f g2 are non-zero constants then 

we have a global solution by the method introduced here for the equations of the 

form:



 ru" —Du+giu+u'  (r+ (uY'+ (u')v'+ (v)rl) =0 
 `v' -Ov+g2v+ (u)P2,+ (u')92+ (v)r2=0
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