九州大学学術情報リポジトリ
Kyushu University Institutional Repository

Correction to＂On the complex bordism group of a semi－direct product S＾1 •Z＿2＂<br>Kamata，Masayoshi<br>Department of Mathematics，College of General Education，Kyushu University

https：／／doi．org／10．15017／1448983

出版情報：九州大学教養部数学雑誌． 10 （1），pp．85－89，1975－08．College of General Education， Kyushu University
バージョン：
権利関係：

# Correction to "On the complex bordism group of a semi-direct product $S^{1} \cdot Z_{2}$ " 

By Masayoshi Kamata<br>(Received April. 30, 1975)

In the preceding paper "On the complex bordism group of a semidirect product $S^{1} \cdot Z_{2}$ " of this journal, we attacked to compute the bordism group $U_{*}\left(\boldsymbol{S}^{1} \cdot \boldsymbol{Z}_{2}\right)$ of free $\boldsymbol{S}^{1} \cdot Z_{2}$-actions on weakly almost complex manifolds. To accomplish the computation, we used an incorrect isomorphism $U_{*}\left(S^{1}\right.$. $\left.\boldsymbol{Z}_{2}\right) \cong \boldsymbol{U}_{*-1}\left(\boldsymbol{B} \boldsymbol{S}^{1} \cdot \boldsymbol{Z}_{2}\right)$. As Lazarov and Wasserman showed in [3], $U_{*}\left(\boldsymbol{S}^{1} \cdot \boldsymbol{Z}_{2}\right)$ is not isomorphic to $U_{*-1}\left(B S^{1} \cdot \boldsymbol{Z}_{2}\right)$ because the adjoint representation of $\boldsymbol{S}^{1} \cdot \boldsymbol{Z}_{2}=\boldsymbol{O}(2)$ is not trivial. In the paper [2] we computed only $U_{*}\left(\boldsymbol{B} \boldsymbol{S}^{1} \cdot \boldsymbol{Z}_{2}\right)$. In this paper we compute $U^{*}\left(\boldsymbol{S}^{1} \cdot \boldsymbol{Z}_{2}\right)$ again.

I am grateful to Professor R. E. Stong and Doctor K. Shibata for catching the above embarrassing errors and their useful suggestions.

1. Take $g t^{t} \in S^{1} \cdot Z_{2}$, where $t$ is the generator of $Z_{2}$. The adjoint representation of $S^{1} \cdot Z_{2}=O(2)$ is described by

$$
\operatorname{Ad}\left(g t^{i}\right) x=(-1)^{t} x, x \in R^{1}
$$

Let $\xi: \boldsymbol{Y} \longrightarrow \boldsymbol{B}$ be a principal $\boldsymbol{O}(2)$-bundle over $\boldsymbol{B}$. We put

$$
A d(Y)=Y \times_{o(2)} R^{1}
$$

where $Y \times{ }_{0(2)} R^{1}$ is the quotient space of $Y \times R^{1}$ under the identification $(y, x)=\left(y b^{-1}, A d(b) x\right), b \in O(2)$, and have a line vector bundle $A d(\xi):$ $\operatorname{Ad}(Y) \longrightarrow B$.

Let $M^{m}$ be a weakly almost complex manifold with a free $O(2)$-action preserving the complex structure on $\tau\left(M^{m}\right) \oplus \varepsilon^{r}$ for some $r$, where $\varepsilon^{r}$ is the $r$-dimensional trivial bundle. We then have the complex vector bundle

$$
\begin{equation*}
\left(\tau\left(M^{m}\right) \oplus \varepsilon^{r}\right) / O(2) \cong \pi^{*} \tau\left(M^{m} / O(2)\right) \oplus \operatorname{Ad}\left(M^{m}\right) \oplus \varepsilon^{r} \tag{1.1}
\end{equation*}
$$

where $\pi: M^{m} \longrightarrow M^{m} / O(2)$ is the canonical projection and $\tau()$ denotes the tangent bundle.

Denote by $U_{m}(O(2), A d)$ the bordism group of pairs ( $W^{m-1}, \eta$ ) consisting of an ( $m-1$ )-dimensional differentiable manifold $W^{m-1}$ and a differentiable principal $O(2)$-bundle $\eta$ over $W^{m-1}$ with a complex structure on $\tau\left(W^{m-1}\right) \oplus$ $\operatorname{Ad}(\eta) \oplus \varepsilon^{r}$ for some $r$. Sending an element $\left[M^{n}\right] \in U_{m}(O(2))$ to an element
$\left[M^{m} / O(2), \eta\right] \in U_{m}(O(2), A d)$, where $\eta: M^{m} \longrightarrow M^{m} / O(2)$ is the canonical principal $O(2)$-bundle, we can see that $U_{m}(O(2))$ is isomorphic to $U_{m}(O(2)$, $A d$ ) [3]. For the universal principal $O(2)$-bundle $\gamma: E O(2) \longrightarrow B O(2)$ we consider the bundle

$$
\xi=A d(\gamma): E O(2) \times_{0(2)} R^{1}=A d(E O(2)) \longrightarrow B O(2)
$$

Let $D(\xi)$ and $S(\xi)$ be the total spaces of the disk bundle and the sphere bundle of $\xi$ respectively and $T(\xi)$ the Thom complex of $\xi$. It follows that $U_{*}(D(\xi), S(\xi)) \cong \tilde{U}_{*}(\boldsymbol{T}(\xi))$. We then have

Theorem 1.1. $\quad U_{m}(O(2), A d)$ is isomorphic to $U_{m}(D(\xi), S(\xi))$.
Proof. We first define the homomorphism $\mathscr{D}: U_{m}(O(2), A d) \longrightarrow U_{m}$ $(D(\xi), S(\xi))$. For $\left[W^{m-1}, \eta\right] \in U_{m}(O(2), A d)$, we have a bundle map

$$
A d(\eta) \longrightarrow \xi=A d(\gamma)
$$

and the bundle map of the disk bundles

$$
f_{\eta}: D(A d(\eta)) \longrightarrow D(\xi) .
$$

Here $D(A d(\eta))$ is a weakly almost complex manifold, because

$$
\tau\left(D(A d(\eta)) \cong \pi^{*}\left(\tau\left(W^{n-1}\right) \oplus A d(\eta)\right)\right.
$$

where the $\tau(\quad)$ are the tangent bundles and $\pi: D(A d(\eta)) \longrightarrow W^{m-1}$ is the projection. We put

$$
\mathscr{D}\left[W^{m-1}, \eta\right]=\left[D(\operatorname{Ad}(\eta)), f_{\eta}\right]
$$

Next we shall define $\Psi: U_{m}(D(\xi), S(\xi)) \longrightarrow U_{m}(O(2), A d)$. Suppose that $\left[M^{m}, f\right] \in U_{m}(D(\xi), S(\xi))$ is represented by a differentiable map $f: M^{m} \longrightarrow$ $D(\xi)$ which is transverse regular to $B O(2)$.
Let

$$
W^{m-1}=f^{-1}(B O(2))
$$

and $\nu$ be the normal bundle of $W^{m-1}$ in $M^{m}$. Note that

$$
\bar{f}^{*} \xi \cong \nu, \xi=A d(r)
$$

and

$$
\operatorname{Ad}\left(\bar{f}^{*}(\gamma)\right) \cong \nu
$$

where $\bar{f}=f \mid W^{m-1} . \quad \bar{f}^{*}(\gamma)$ is the principal $O(2)$-bundle. Since

$$
\tau\left(D\left(\bar{f}^{*}(\xi)\right)\right) \cong \pi^{*}\left(\tau\left(W^{m-1}\right) \oplus \bar{f}^{*}(\xi)\right)
$$

and $D\left(f^{*}(\xi)\right)$ is diffeomorphic to the tubular neighborhood of $W^{m-1}$ which admits a weakly almost complex structure, $\tau\left(W^{m-1}\right) \oplus A d\left(f^{*}(r)\right) \oplus \varepsilon^{r}$ have a complex structure for some $r$. Therefore we can define

$$
\Psi\left[M^{m}, f\right]=\left[W^{m-1}, \bar{f}^{*}(\gamma)\right] .
$$

It is easy to see that $₫ \Psi=i d$ and $\Psi \Phi=i d$. q.e.d.
Corollary 1.2. $\quad U_{m}(O(2)) \cong \tilde{U}_{m}(T(\xi))$.
2. The Dold manifold $D(l, k)$ is a quotient space under the identification $(x, z)=(-x, \overline{\lambda z}), \lambda \in S^{1}$. The universal principal $S^{1} \cdot Z_{2}$-bundle is approximated by the principal $\boldsymbol{S}^{1} \cdot \boldsymbol{Z}_{2}$-bundle $S^{l} \times \boldsymbol{S}^{2 k+1} \longrightarrow D(l, k)$. We consider the line bundle

$$
\xi_{k}: A d\left(S^{k} \times S^{2 k+1}\right) \longrightarrow D(k, k) .
$$

Making use of Theorem 1 of [1], we obtain

$$
T\left(\xi_{k}\right) \approx D(k+1, k) / C P^{k} .
$$

The direct limit space $\lim T\left(\xi_{k}\right)$ is $T(\xi)$. Consider the cofibration $C P^{k} \xrightarrow{i}$ $D(k+1, k) \xrightarrow{;} \boldsymbol{T}\left(\xi_{k}\right)$ and we have the exact sequence

$$
\begin{equation*}
\xrightarrow{\rightarrow H_{*}(B U(1)) \xrightarrow{i *} H_{*}\left(B S^{1} \cdot Z_{2}\right) \xrightarrow{{ }^{* *}} \tilde{H}_{*}(T(\xi))} \tag{2.1}
\end{equation*}
$$

We take the cellular decomposition $\left\{\left(C_{i}, D_{i}\right)\right\}$ of $B S^{1} \cdot \boldsymbol{Z}_{2}$ given in [1].
Proposition 2.2. $\quad \tilde{H}_{*}(T(\xi))$ is a direct sum of the torsion group generated by

$$
j_{*}\left(C_{2 s}, D_{2 t+1}\right) \quad s>0, \quad t \geqq 0
$$

and

$$
j_{*}\left(C_{2 \lambda+1}, D_{2 \mu}\right) \quad \lambda \geqq 0, \quad \mu \geqq 0
$$

whose orders are 2 and the free abelian group generated by

$$
y_{4 t+3} \quad t=0,1,2, \ldots \ldots
$$

such that $\partial y_{4 t+3}=2 D_{2 t+1}$.
Proof. The proposition follows from the diagram(2.1) and Proposition 1.1 of [2].

Denote by $\left\{E_{s, t}^{r}\right\}$ the Atiyah-Hirzebruch spectral sequence for $\tilde{U}_{*}(\boldsymbol{T}(\xi))$.
Proposition 2.3. The element $y_{4 t+3}$ of $E_{*, 0}^{2}$ are parmanent cycles. The 2 -torsion part of $\sum_{i+j=0 d d} E_{i, j}^{5}$ is the $U_{*}$-free module generated by $\left\{\left(C_{2 i+1}, D_{0}\right)\right.$, $i=1,0, \ldots \ldots$.$\} and the free part is generated by y_{4 t+3}$.

Proof. We recall that $D(1, n) / D(0, n) \approx S^{1} \wedge\left(C P^{n}\right)^{+}, D(0, n)=C P^{n}$. The homology group $H_{*}(D(1, n))$ is a direct sum of the free abelian
group generated by the ( $C_{1}, D_{2 k}$ ) and the ( $C_{0}, D_{2 k}$ ) and the torsion group generated by the ( $C_{0}, D_{2 k+1}$ ) which are of order 2 . Considering the exact sequence
$0 \longrightarrow H_{*}(D(1, n)) \longrightarrow \tilde{H}_{*}\left(D(1, n) / C P^{n}\right) \longrightarrow \partial^{\partial^{\prime}} H_{*-1}\left(C P^{n}\right) \longrightarrow H_{*-1}(D(1, n)) \longrightarrow 0$, there exist the element $y^{\prime}{ }_{4 k+3}$ such that $\partial^{\prime} y^{\prime}{ }_{4 k+3}=D_{2 k+1}$.
We consider an inclusion $i:\left(D(1, n), C P^{n}\right) \longrightarrow\left(B S^{1} \cdot Z_{2}, B U(1)\right)$ and


Put $i_{*} y^{\prime}{ }_{4 k+3}=y_{4 k+3}$ which is a desired element of the proposition. Since the homology $\tilde{H}_{*}\left(D(1, n) / C P^{n}\right)$ has no torsion, the edge homomorphism $\mu: \tilde{U}_{*}\left(D(1, n) / C P^{n}\right) \longrightarrow \tilde{H}_{*}\left(D(1, n) / C P^{n}\right)$ is epimorphic. Considering the following diagram


We can see that the $y_{4 k+3}$ are parmanent cycles.
Let $\left\{\tilde{E}_{*, *}^{r}\right\}$ be the spectral sequence with respect to $U_{*}\left(B S^{1} \cdot Z_{2}\right)$. We have that $d_{*, *}^{r} j_{*}=j_{*} d_{*, *}^{r}$, where $j_{*}$ is the homomorphism $\tilde{E}_{*, *}^{r} \longrightarrow E_{*, *}^{r}$ induced by the projection $j: D(k+1, k) \longrightarrow \boldsymbol{T}\left(\xi_{k}\right)$. From Lemma 3.3 of [2] it follows that

$$
d_{i, 0}^{3} j_{*}\left(C_{i}, D_{j}\right)=\left\{\begin{array}{l}
j_{*}\left(C_{i-1}, D_{j-1}\right) \otimes\left[C P^{1}\right] \text { if } i \text { is odd and } j \text { is even }(>0) \\
0 \text { otherwise }
\end{array}\right.
$$

where $i+j=t$. Therefore we have that the $j_{*}\left(C_{2 k+1}, D_{0}\right)$ generate the 2 torsion part of $\sum_{i+j=o d d} E_{t, j}^{5}$. q.e.d.

Proposition 2.4. The 2-torsion part of $\tilde{U}_{\text {odd }}(\boldsymbol{T}(\xi))$ is isomorphic to $\tilde{U}_{\text {odd }}$ ( $B Z_{2}$ ).

Proof. Consider the maps

$$
\begin{aligned}
& i: R P^{k+1} \longrightarrow T\left(\xi_{k}\right)=D(k+1, k) / C P^{k} \\
& i[x]=[x,(1,0, \ldots . ., 0)]
\end{aligned}
$$

and

$$
\begin{aligned}
& \pi: T\left(\xi_{k}\right) \longrightarrow R P^{k+1} \\
& \pi\{[x, z]\}=[x] .
\end{aligned}
$$

Since $\pi i=\mathrm{id}, i_{*}$ is injective. Noting that for sufficiently large $k, \tilde{U}_{n}\left(\boldsymbol{T}\left(\xi_{k}\right)\right)$ $\cong \tilde{U}_{n}(\boldsymbol{T}(\xi))$ and $\tilde{U}_{n}\left(\boldsymbol{R} P^{k+1}\right) \cong \tilde{U}_{n}\left(B Z_{2}\right)$, we have that $i_{*}: \tilde{U}_{*}\left(B Z_{2}\right) \longrightarrow \tilde{U}_{*}(\boldsymbol{T}(\xi))$ is injective. From Proposition 2.3, the order of the 2 -torsion part of $\tilde{U}_{2 t+1}(\boldsymbol{T}(\xi)) \leqq 2^{\sigma}, \sigma=\sum_{k=0}^{t} \pi(k)$ where $\pi(k)$ is the number of the partitions of $k$, and $\tilde{U}_{2 t+1}\left(B Z_{2}\right)$ has order of $2^{\sigma}$. q.e.d.

Therefore we have the following
Theorem 2.5. $\quad U_{2 t+1}(O(2))$ is isomorphic to

$$
U_{2 t+1}\left(Z_{2}\right) \oplus \boldsymbol{Z} \underbrace{\oplus \cdots \cdots \oplus}_{\tau} \boldsymbol{Z}
$$

where

$$
\tau= \begin{cases}\sum_{j=1}^{k} \pi(2 j-1) & \text { if } t=2 k \\ \sum_{j=0}^{k} \pi(2 j) & \text { if } t=2 k+1\end{cases}
$$

Proposition 2.6. $\quad U_{2 t}(O(2))$ is order of $2^{a}$,

$$
\sigma= \begin{cases}\sum_{j=0}^{k-1}(j+1)\{\tilde{\pi}(2(k-j)-1)+\tilde{\pi}(2(k-j)-2)\} & \text { if } t=2 k+1 \\ \sum_{j=1}^{k} \tilde{j}(2(k-j))+\sum_{j=1}^{k=1} j \tilde{\pi}(2(k-j)-1) & \text { if } t=2 k\end{cases}
$$

where $\tilde{\pi}(i)$ is the number of partitions of $i$ containing no 1 .
Proof. Since the elements of $\sum_{i+j=o d d} E_{l . j}^{5}$ are parmanent cycles, it follows that $d_{* .0}^{r}\left(C_{2 \lambda}, D_{2 \mu+1}\right)=0, r \geqq 5$. Take the monomials $g$ of the $x_{i}$ containing no $x_{1}=\left[C P^{1}\right]$, where $U_{*}=\boldsymbol{Z}\left[x_{1}, x_{2}, \cdots \cdots\right]$. From Lemma 3.3 of [2] it follows that $\sum_{i+j=e v e n} E_{i, j}^{5}$ is generated by the $\left(C_{2 \lambda}, D_{2 \mu+1}\right) \otimes g, \lambda>0$.
q.e.d.

## References

[1] M. Fujii: Ring structure of $K_{U}$-cohomologies of Dold manifolds, Osaka J. Math. 6 (1969), 107-115.
[2] M. Kamata: On the complex bordism group of a semi-direct product $S^{1} \cdot Z_{2}$, Math. Rep. of Colledge of General Education Kyushu Uni. vol. VIII, No. 2. (1972) 2127.
[3] Connor Lazarov and Arthur Wasserman : Complex Actions of Lie Groups, Memoirs of Amer. Math. Soc. No. 137 (1973).

Department of Mathematics,
College of General Education Kyushu University.

