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Introduction

In this paper we shall consider the following evolution equations

©OD  u— B ulr ), —4-De B0k w) = f(x,1)

in £x(0, o) together with the initial-boundary conditions;
©2)  uloa=0, u(x, 0) = u(x), and L4 (x,0) = m(x),

where 2 is a bounded domain in R* with a smooth boundary 2£.

It is our purpose here to establish the existence of global (bounded)
solution to the above problem (0.1)-(0.2).

In the case B(x, ©)=0, problem (0.1)-(0.2) was studied by Greenberg
[2] for n=1, and by Tsutsumi [6] for general n. On the other hand,
Clement [1] and Kakita [3] have obtained the existence of weak periodic
solution. (In [3] more general equations has been treated.). But in their
works B(x, ¥)=0 was also assumed. In the case B(x, #)><0, especially
B(x, u) is not monotonic in u, the methods of earier papers do not apply
to our problem and here we shall consider such cases. Our method is
related to Nakao [5], where semilinear hyperbolic equations have been
considered.

1. Preliminaries.

We shall employ usual notations. For brevity we use the notation
P
ulls =(J' |u|de) . The following lemma is well-known.
2

LemMma 1.1. (Sobolev)
If ue W*(82), then ue L'(2) and the inequality

b, 1/?
1)

tp

WD S S0n(@ ) 17wl = Soa(@. (33

i=1
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holds, where q is a number satisfying
2 1=e=xP- ff n>p and 1<q<e if n<p.

Let p be a real number = 2 and « a nonnegative real number.
Our hypotheses are:

H.1. B(x, u) is Lipshitz continuous in # for almost all x€£ and
satisfies
1.3 |B(x, )| < Ky|uj*** for V¥V u€R, aexef,

where K, is a positive constant and
1.4) 2ga+z<n_"j’p_ if n>pand 0<a<o if 1<n<p.

t+1 172
H2  f€C(R: L(@)and M = sup (J uf(s)ngds) < oo,
4 t
Definition 1.  u(x, t) is said to be a bounded solution of (0.1)-(0.2) with
initial value {u,(x), u,(x)) if u€ L*(R*: Wy*(2)),
w € L=(R*: L(2)) (\Loe(R*: Wi*(2)) and for Vg€ CI(R*: Wi (2))
the variational equation

o

. -
(Z luz, [P %u,,, ¢x,)dt+J' W'y, @x)dt
i=1 0

0

Ws [ W e
+[ @G, @t =] (1, o)dr+ G, e, 0))

is valid, where R* =0, o) and (, v)=J' u(x)o(x)dx.P
a

2. Approximate Solutions

In this section, we shall prove an existence theorem concerning ap-
proximate solutions.
For this purpose, we employ the Galerkin’'s approximation procedure.

Let {w;},j=1,2,...... , m,... be the basis of W{*(2) and consider the
system of ordinary differential equations:

2.1 Un(®), w) + < Aun(), w; > + (W a (), w))+ (B, un), w))
= (f(®,w), j=1,2,... ,m,

with initial values

1) For the sake of simplicity, we denote by the symbol’ the differentiation with
respect to t,
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2.2 U, (0) = g Au(Qw,; —> u, strongly in Wg*
(2.3) u',(0) = }Z_;A’,,,,(O)w,eu, strongly in L?,

where u,(x, t) = f_,:/l,,,,(t)w,»(x), ((u, v)) =J pu(x)-pv(x) dx and A is the
= 2
operator from Wi*(82), to W-t#*-3(2) defined by
<Au, v>= J i |z P U, 0, dx for any u, v € Wi*(Q).
a i=1

The solution {4,;(t)}%,, and consequently u,(f) exists on an interval,
say, [0, t,] by the standard theory of ordinary differential equations. We
must give a priori estimates for approximate solutions u,(x,?). First
we shall consider the case where p<la+2.

Now we introduce some functionals on W*(£2) as follows;

u(x.t)
@9 b = a/plipulp+] [ B ) dsdx
@5 h@) = A/ pulls— (Ko Seito/a+ D)l puls”
@6 K@) = lpulls+[ BCx, wu dx
@D L =llruli—KSgt,llpulis .

By the assumption (1.3) and Lemma 1. 1, we have

2.8) Jo(w) < Jy(u) and Ji(u) < J,(u) for V ue Wi*(Q).

Also we put
(2.9) Dy =Max (x"—K.Sgif ,x™*) = x§—KoSEi oxit?
where X, = (p/KoS:tg_p(Z’i‘ a))l/a+2—b ,
and put

(2100 Dy = (1/p)xt— (Ko S35/ +2)x3+ .
We define the stable set W by

@10 W={ (o w) € WX L2 [l < o 11t )l

_1 2
:E‘I|u1||z+Jo(u0) < Do} .

LeEMMA. 2.1. In addition to the hypotheses H.1 and H.2, we assume that (u,,
u,) € W and p<a+2. Then there exists a positive number My=M,(}|(uq, u)|l¥)
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such that if M < M,, approximate solution u,(t) exists on [0, co) and satisfy
2.12)  ||w.OE< 2D, and ||pua(Dll, < X0 for V 1€ [0, o)

and
T+1

(2.13) J | pu' () |Edt < Dy+M/2Dy < 00 for V T >0,
T

where m is a sufficiently large positive integer.

Proor. We shall show that (u,(2),u’',(¢)) staysin the stable set W for all
time as long as they exist. Then (2.12) will follow easily from the
inequality

@18 L IWaOIE+awa(0) < Do < Max (Lot~ (8512, +2)x+7)
Since (u,, u,) € W, we have by the definition of W
@15)  8o=Do—(Lllmli+ ) >0.
Also since (4,(0),u’,(0)) = (o, uy) in Wi*XL?, we may assume
216) L@@ S D~6, 0<V & < &,

for large m.
Suppose that our assertion was false, There would then exist the
smallest time r€ [0, t,] at which

.17 %nu',(i)ltho(u,(F)) =D,.
We shall derive a contradiction. First of all we note that
(218)  Ji(@.(D) < Lua(d)) <D, for 1€]0,1],
and the continuity of J,(u,), with respect to ||pu.|l,, implies

2.19) HPua (Dl < xo for t€ [0, 7] .

Now multipling (2.1) by 4%,.,(#), summing over j from 1 to m and
integrating over [a, 8] C [0, t,], we obtain

@200 LNwa®lHhE )+ [ I olid

b
= W a@Il+ oa(@)+ [ (SO, (D)l
In the above we take b=t and a=0 to get by (2.16)

@my o[ IOl < Sl 1Ol
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Hence we have
+[ ot <[ Npw. ol S [l ol
or
i ) 4
(2.22) [rokaz-¢6 .
Now let us assume

(2.23) MM, =V (4/8) €, .
Then from (2.22) and (2.23), it is easily seen that z>>1 for large m.
Thus we can take b=t and a=f—1 in (2.20), and we have

(2.24) j ||Vu'm<z>||dz;j 1@ 0)]
and hence

3 i
@2) [ Ipwa@kd< s, [ waolid < st
-1 -1

Therefore there exist numbers 2, € [f—1, ?—%] and £, € [,_,, f] such that

(2' 26) ”ulm(tl_)llzézszzd M! l=1r2 .
Next, multipling (2.1) by 2,,(¢), summing over j and integrating over
[t:, t;], we obtain
[ @)t <1 (1), (D) |1 W), 101D+
n
B
[ U O+ 1 a0, P +] SO, w1} de
i

and by virtue of (2.25), (2.26) and (2.19),
< 482,M Max ||u,(D||*+ S;.M?+ S, ., M(mes 2)***x,+M Max ||u.(®)ll.
[t-1.1] [t-1.21

< 8. M?+x,{485,.MS, ,+ 8. . M(mes 2)*7*+MS, ;)
2.27) = C,(M)+x,C.(M) .
On the other hand,

i 7o
f Si(ua(8))dt = J Ji(ua(2))adt
o1 i
f2
= [P - KSEPun@ ) ds
1

by (2.19) and the definition of x,
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> -/t [ Ipu ol

From (2.27) and (2.28), we have
["Iruoigar < 22 j A

(2. 29) < _at2

4m {Cl(M) +xoC2(M)} .

The inequality (2.29) together with (2.25) implies that there exists a
point £*€ [z;, 1,] such that
(2.30) ' WD+ Fua(t)|} < 2C(M) ,

where Cy(M) = S{,M*+(a+2/a+2—p)(C.(M) +x,C,(M)).
In (2.20) we take b=t and a=r* to get by (2.30)

5 1w D I+JoCata (D)

S OO GO
< C(M) = C,(M) + ’f:z S232,(2C,( M)+ 4+ S ,M?

This contradicts (2.17) if we choose MM, M, being the smallest
number satisfying C,(M)=D,.

Thus if we take M,=Min(M,, M,), the proof of (2.12) is completed.
Furthermore if we take b=T+1 and a=T in (2.20), then we have

T+1

[ 1pwa o) [t < LW R T+ 100, a0 e

T+1

<DotM ([ lwacoliar)”,

T+1

and hence '( | pu’ . ()||2dt < Dy+ MV 2D, ,
T

where T is any positive number.
Next we shall consider the case where p>a+2.

LeMMA 2.2. In addition to hypotheses H.1 and H.2., we assume that p>a+2.
Then approximate solutions of the problem (2.1)-(2.3) exist on [0, ©) and
satisfy

2.12)" | s+ Pua (D)} < Cuo, uy, M) for V t€ [0, o),

T+1

(2.13)’ I | pu (DI dt < Clto, w1, M, T for ¥V T>>0 and Vrm.
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Proor. First we can obtain the estimate
é N (D12 + T, (n (D)) < C(uy, u;,M) for t€ [0, o] and large m.

This is verified by the similar way of the Lemma 2.1.
Next, using Lemma 1.1 and Young’s inequality, we have

(1@l + L a0 )< O, M)

which implies (2.12)".

3. Passage to the Limit

By the passage to the limit of approximate solutions, wec shall
obtain;
THEOREM 3.1. In addition to the hypotheses H. 1 and H.2, we assume that
a+2>p, (u,, u,) € Wand M <M, Then the problem (0.1)-(0.2) admits a
bounded solution u with initial data (u,, u,) in the sense of Definition 1. Moreover
the estimates (2.12) and (2.13) hold for u,=u.

THEOREM 3.2. In addition to the hypotheses H.1 and H.2, we assume that
a+2<p and (u,, u,) € Wi* X L*. Then we have the same coclusion as Theorem
3.1 without any restrictions on M and (u,, u,).

We shall verify Theorem 3.1 only, because Theorem 3.2 is verified
in a similar way.

ProOF of Theorem 3.1. We construct the approximate solutions {(u,(?))
by (2.1), (2.2) and (2.3). By the Lemma 2.1 we have
6.1 [| Atn(Ollw-1.0-1 X x8~+ for p t€ [0, ).

Let {T,} be any positive sequence tending to co as n—co. Then by
(2.12), (2.13) and (3.1), we can use the standard compactness arguments
to extract a subsequence from u,(t), which will be denoted also by u,(2),
satisfying;

(3.2) u,(t) —> u(t) weakly star in L*(R*: WP*(2)) and a.e. in
2 XR*,
(3.3) B,u, (1)) —> B(-,u(t)) weakly star in L=(R*: L‘f%f »
(3. 4) uw',(t) — u'(t) weakly star in L*(R*: L*(2)) and a.e. in 2xR",
(8.5)  wa(t) —> w/ (1) weakly in Li. (R': Wi*(@))
(3.6) Au, — yx weakly star in L*(R*: W-t#e-h) |
3.7 un(T,) — u(T,) in L? strongly
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(3.8 w (T,) — uw'(T,) in L* weakly
3.9 u,(T,) — u(T,) in W? weakly .
To show that the function #(¢) is a solution, it is sufficient to prove
that y=Au.
From (2.1), for every T,, we have the identity

T Tn

[ @, Y [ <au), 0 > di+ [ (@a, v @)+

+J (B(',um)0 "/’(t))dt=J (f(t)v V’(t))dt'!—(u’m(o)l 1//(0))'“(”,".(7‘"), "r//'(Tn))

for all functions of the form w=§_]d,,(t)w,,, where d,(t) are smooth
k=1
function on [0, T,].
Taking the limit as m — oo in the above equation, we get
Tn Tn Ty
- @y <xovo>dr] @, vondt
0 0 0

Ty T

[ BC w p = [ (@, e, @)= W Ty T) -

Thus we can replace v by # in the above equation to obtain
Tn 7

@100~ wide | <gu>di+ Lipu@lE- 3 pulit

T, T

[ @G, =] O M) det o, )= W (T, w(T))

Also we have
Ty

X,,.=J CAW)—A®), up—v>dt =0, €I, T,): Wi (D),

and, replacing w; by #, in (2.1),
X, =L u'w(®)|5dt— ; || pun (T DR+ %Hyu,,,(o)1|§+L (B un), uy)dt
RO ma @)+ W (0), 10 (0)) = WalT), un(T))~

_J ”<Av, um—v>dt—J n<A(u,,), v>dt .

Taking the limit as m — o in the above equation, we get

T"
@1 HmX.<[ W @Rd— S puTI 5l puli+

Mmoo
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T

[ BCadd+ [, u@d = G, w)—

'—(u’(Tn)9u(Tn>)—J <A1}, u"v>dt"'J <X» U> dt.
[] 0
From (8.10) and (3.11), we have

Tn

J <y—Av, u—v>dt>=0  for v€ L0, T.): Wi

which gives y = Au.
The limit function u(x, t) satisfies evidently the equality (1.5), and the
estimates (2.12), (2.13) and (3.1) hold for .

Remark 1.  We note that B(x, #) is a monotonic in #, then the Theorem
3.1 holds for arbitrary f satisfying only the hypothesis H. 2.

Remark 2. If we choose the sequence w; as the basis of W),
(s>n(4%—— ;—) +1> , we can easily obtain a priori estimate of u, in ||u, ]|
L, .(R: W~=*) and consequently we have slightly better soltuions. (see [6]).
Remark 3. Under additional appropriate condition, we can obtain the

Theorems 3.1 for more general equation;

iy — 33 (@ (6t )) i — A+ B w) = £ ([11, [3]).
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