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Introduction

In this paper we shall consider the following evolution equations

(0.1)at2----u —~CIuxf-2u)x,—d 331;+Q(x, u)=f(x, t)
in .iZ x (0, co) together with the initial-boundary conditions ;

(0.2) u I eQ= 0, u(x, 0) = uo (x) , and 2t(x, 0) = u1(x) ,
where 2 is a bounded domain in Rn with a smooth boundary 82. 

   It is our purpose here to establish the existence of global (bounded) 

solution to the above problem (0.1)-(0.2). 

   In the case (3(x, u) =0, problem (0. 1)-(0. 2) was studied by Greenberg 

[2] for n=1, and by Tsutsumi [6] for general n. On the other hand, 
Clement [1] and Kakita [3] have obtained the existence of weak periodic 

solution. (In [3] more general equations has been treated.). But in their 

works 3(x, u) =0 was also assumed. In the case 0(x, u) 0, especially 

(3(x, u) is not monotonic in u, the methods of earier papers do not apply 
to our problem and here we shall consider such cases. Our method is 

related to Nakao [5] , where semilinear hyperbolic equations have been 
considered.

1. Preliminaries.

   We shall employ usual notations. For brevity we use the notation 

11 u I Ip = (.1I u Ipdx)1/p . The following lemma is well-known. 
LEMMA 1.1. (Sobolev) 

   If u E K.°(2), then u E L4(2) and the inequality

                          au ni                                      "
(1.1)IIuIIasSq.p(t n) II vuIlp= SQ.p(S2, n)( axf



holds, where q is a number satisfying

(1.2)  1<q‹  nnpif n > p and 1 < q < co if n < p .
   Let p be a real number > 2 and a a nonnegative real number. 

   Our hypotheses are: 

H.1. 3(x, u) is Lipshitz continuous in u for almost all x E S2 and 
satisfies 

 (1.3) 113(x, u)I<KaIu1a+' for V uER, a.e.xES2, 

where Ko is a positive constant and

(1.4) 2<a+2<  np  if n>p and 0<a<co if 1<n<p.                    n—p

t+11/2 

H.2. fEC(R: LZ(S2))and M= sup (J Ilf(s)Ilzds) <co. 
tER

Definition 1. u(x, 1) is said to be a bounded solution of (0.1)-(0.2) with 

initial value (u0(x), u1(x)) if u E L°`(R+ : Wo "(S2)), 

u' E L°`(R : LZ(9)) fl Li0c(R+ • 141-2(.(2))  and for Vcp E Co(R+ : WW.p(,il)) 

the variational equation

                                                     n (1.5) Ja— (u' (t),cP'(t))dt+Jo(I uxt Ia2uxt,C0x,) dt +Ja(u'xt, cpxt)dt
+ J(j3(, u), (p)dt =f (f, cp)dt+ (u1, So(x, 0)) 

00

is valid, where R+ _ [0, co) and (u, v) =f u(x)v(x)dx.' 
12

2. Approximate Solutions

   In this section, we shall prove an existence theorem concerning ap-

proximate solutions. 
For this purpose, we employ the Galerkin's approximation procedure. 

   Let (w,), j= 1, 2,...... , m,... be the basis of Wo.Q(SQ) and consider the 

system of ordinary differential equations:

(2.1) (um(t), w,) + < Aum(t), w,> + ((u'm(t), w,))+69(., um), w,) 
= (f(t), w,), j = 1, 2,...... , m .

with initial values

1) For the sake of simplicity, we denote by the symbol' the differentiation with 
 respect to t.



(2. 2)  um(0) = Am.,(0)w, — uo strongly in W' 
,=1

(2. 3) u'm(0) = A'm.,(0)w, — u1 strongly in L2 , 
                              1=1

where um (x, t) = Am,, (t) w; (x) , ((u, v)) = J pu (x) • pv (x) dx and A is the 
,=1 

operator from WW•p(S2), to W-"p'p-1(Q) defined by

<Au, v> = J I ux11' 2ux{vx{ dx for any u, v E Wo•p(,Q) . 
s, 1=1

   The solution (Am,;(t)). 1, and consequently um(t) exists on an interval, 
say, [0, tm] by the standard theory of ordinary differential equations. We 

must give a priori estimates for approximate solutions um(x, t). First 

we shall consider the case where p<a+2. 

   Now we introduce some functionals on Wo.p(S2) as follows ;
u(x.t) 

(2.4) Jo(u) = (1/P)111714111;+.1 J Q(x, s) dsdx 12 o

(2.5) Jo(u) = (1/P) I I Vu I I¢— (KoSa+z.p/a+2) I I pu I I p+2

(2. 6) J1(u) = II pu IIv + J Q(x, u)u dx

(2. 7) J1(u) = I I Vu Il —KoS«+2.p I I pu I Ip+2

By the assumption (1.3) and Lemma 1. 1, we have

(2.8) J0(u) <J0(u) and J1(u) <J1(u) for V u E WPM •

Also we put

(2. 9) D1 = Max (xp—KoSa+z.pxa+2) = xo —KoSa+z.pxo +2 
x20

where xo = (p/KoSa+Z.p(2+a))"+2-p

and put

(2. 10) Do = (1/P)4— (KoS" .p/a+2)xr2

We define the stable set W by

(2. 11) W = {(u0, u1) E Wo.p X L2 ; II puo l IP < xo• 11(uo, u1) I1 w

2 II u1 IIz+Jo(u0) < D0} .

LEMMA. 2.1. In addition to the hypotheses H. 1 and H. 2, we assume that (u0, 

u1) E W and p<a+2. Then there exists a positive number Mo=M0(II (uo, u1) Ilw)



such that if M  <  Mo, approximate solution um (t) exists on [0, co) and satisfy 

(2.12) II u'm (t) I IZ < 2D0 and II Pum (t) I I p xo for V t E [0, oo) 

and
T+1 

(2.13) J IIPu'm(t)Ilzdt<Do+M^2Do<oo for V T>0, 

           T

where m is a sufficiently large positive integer. 

PROOF. We shall show that (um(t),u'm(t)) stays in the stable set W for all 

time as long as they exist. Then (2.12) will follow easily from the 

inequality

(2.14) -21 Il u'm (t) I l i+Jo(um (t)) < Do < Max{pxp- (KoSS+i.p/+2) xa+2)
   Since (uo, u1) E W, we have by the definition of W 

(2.15) 50 = Do-(2 IIuiIl +Jo(uo)) >0 . 
Also since (um(0),u'm(0)) — (uo, u1) in Wo4'xL2, we may assume 

 (2.16) -12 u'm(0) I Iz+Jo(um0)) < Do— , 0 < 1'' 5 < 50, 

                                                  for large m. 

   Suppose that our assertion was false. There would then exist the 

smallest time t E [0, t, ] at which 

(2.17)-2-1 II u'm(t)Ilz+Jo(um(t)) = Do . 

   We shall derive a contradiction. First of all we note that 

 (2.18) Jo(um(t)) <Jo(um(t)) < Do for t E [0, t], 

and the continuity of fo(um), with respect to II vum II p, implies 

 (2.19) I I Pum (t) I I p < xo for t E [0, t] . 

   Now multipling (2.1) by A'm.j(t), summing over j from 1 to m and 

integrating over [a, b] c [0, tm] , we obtain

(2. 20) -12 II u'm(b)II2+J0(um(b))+ J II Vie m(t)Ilzdt
                                  b 

=  21-iiu'.(a)1N-1-Jo(um(a))+ J(f(t) , u'm(t))dt
In the above we take b=t and a=0 to get by (2.16)

(2. 21) 5 + Jt Il Pu'm (t) I I Zdt < S2.2 ft II f(t) I I2I1 Pu'm (OH I2dt . 
  00



Hence we have

 5 +.11 Il vu'm(t)Ilzdt � Jt II Pu'm(t)IIZdt+  s2.2  J 004

or

 (2.  22) Jo I I f(t) I IZdt? 46.
Now let us assume

(2.23) M < Mi = ^ (4/S7.2) 60

Then from (2. 22) and (2. 23), it is easily seen that t>1 for large m. 

Thus we can take b=t and a=1-1 in (2. 20), and we have

(2. 24) f PW'm(t)IIZdt ~jt I (f(t),u'm(t)) I dt 
t-it-i

and hence

(2. 25) ft 1117/4'.(t)I IZdt sS2.2M2,JtIIu'm (t) I l zdt s2,2M2 
t-ii-1

Therefore there exist numberstiE [t-1,-t--3]  and t2 E [t—4, t] such that

(2. 26) 11 u'„i(ti)I12  < 2S2,2 M , i = 1, 2 .

  Next, multipling (2. 1) by Am,,(t), summing over j and integrating over 

[t1, t2] , we obtain

JJi(Um(t))dt~I (Z4'm(ti), um(ti)) I + I (14' .(t2), um(t2)) 1 + 
 ti

+ j 2 (II u'm(t)II2+ I (Pu'm(t), Pum(t)) I + I (f(t), um(t) I) dt 
    ti

and by virtue of (2. 25) , (2. 26) and (2. 19) , 

4S2,2M Max I 1 um (0112 + S2,2M2 + S2,2M(mes S2)'-212'x0 +M Max IIum(t)112 
Et-i.t]Et-i.t] 

< S2,2M2+xo (4S2,2MS2,p+S2,2M(mes S2) P-2/2° + MS2. ) 

(2. 27) = Ci (M) +x0C2 (M) 

On the other hand,

Jt2Ji(um(t))dt>jt2Ji(um(t))dt 
titi

=jt2IIPum(t)I1p(1—xos«+2.pIIPum(t)IIp+2-')dt 
ti

by (2. 19) and the definition of x0



 > (1—(P/a+2)) Jr2IlPum(t)II dt 
                       rl

From (2. 27) and (2. 28), we have

jrt2IIVum(t)lipdts---------a+22pJr2Ji(um(t))dt 
rlri

(2.29)a+22p(C1(M)+x0C2(M)) .
The inequality (2. 29) together with (2. 25) implies that there exists a 

point t* E [t,, t2] such that 

 (2. 30) II u'm(t*) II+ I 'um (t*) II ¢ S 2C3(M) 

where C3(M) = S2,2M2+(a+2/a+2—p)(C1(M)+x0C2(M)). 

   In (2. 20) we take b=t and a=t* to get by (2. 30)

-
21- IIu'mCt) I Iz+Jo(um(t))

<-2IIum(t*) IIZ+ Jo(um(t*)) +JI Cf(t), u'm(t)) I dt 
                                                 t-1

C C4(M) = C3(M)+a°2S«+z.Q(2Cs(M))2+""+Si.2M2
This contradicts (2. 17) if we choose M< M2, M2 being the smallest 

number satisfying C4(M) =D,. 

 Thus if we take MO=Min(M,, M2), the proof of (2. 12) is completed. 

Furthermore if we take b=T+1 and a=T in (2. 20), then we have

fT+1II vu'm(t) IIdt2II u'm(T)H +Jo(um(T))+JT+~I Cf(t), u'm(t)) Idt
     T+11/2 

sDo+M(JIIu'm(t)II1t) 

              T

T+1 and hence J II pu'm(t)IIZdt <Do+M^2Do , 

                 T

where T is any positive number. 

   Next we shall consider the case where p>a+2. 

LEMMA 2.2. In addition to hypotheses H. 1 and H. 2., we assume that p>a+2. 
Then approximate solutions of the problem (2. 1)-(2. 3) exist on [0, co) and 

satisfy

(2. 12)' I I u'm CO M+ IZ+ I I Pum (t) I I p C(uo, ul, M) for V t E [0, co),
T+1 

(2.13)' J I I Vu'm (t) IIZ dt S C(uo, u1, M, T) for V T > 0 and Vm. 

              T



PROOF. First we can obtain the estimate

2IIu'm(t)II+Jo(um(t))<C(u,, u,,M) for  t  E [0, col and large m.
This is verified by the similar way of the Lemma 2.1. 

Next, using Lemma 1.1 and Young's inequality, we have

2(Ilu'm(t)112+pPum(t)~¢)5C(u~,u,,M) ,
which implies (2. 12)'.

3. Passage to the Limit 

   By the passage to the limit of approximate solutions, we shall 

obtain ; 

THEOREM 3.1. In addition to the hypotheses H. 1 and H. 2, we assume that 

a+2 > p, (uo, u1) E W and M <M0. Then the problem (0.1)-(0. 2) admits a 

bounded solution u with initial data (uo, u1) in the sense of Definition 1. Moreover 

the estimates (2. 12) and (2. 13) hold for um = u. 

THEOREM 3. 2. In addition to the hypotheses H. 1 and H. 2, we assume that 

a+2<p and (uo, u1) E Wo•pXL2. Then we have the same coclusion as Theorem 

3.1 without any restrictions on M and (uo, u,). 

   We shall verify Theorem 3.1 only, because Theorem 3.2 is verified 

in a similar way. 

PROOF of Theorem 3.1. We construct the approximate solutions (um(t)) 

by (2. 1), (2. 2) and (2. 3). By the Lemma 2.1 we have

(3.1) II Au. COI xo-1 for V t E [0, co) .

   Let (T„) be any positive sequence tending to 0o as n-->oo. Then by 

(2.12), (2.13) and (3.1), we can use the standard compactness arguments 
to extract a subsequence from u„,(t), which will be denoted also by um(t), 

satisfying ;

(3. 2) um(t) ---+ u(t) weakly star in L°°(R+ : W,''(SQ)) and a.e. in 
S2xR+ , 

                                                                           a (3. 3) 13 • ,um(t))•Q(• ,u (t)) weakly star in 17 (R+ : L«++21(2) ) 

(3. 4) u'm(t) --> u'(t) weakly star in L°`(R+ : L2(S2)) and a.e. in S2 x R+ , 

(3. 5) u'm(t) u'(t) weakly in L;Oc (R+ : Wo.2(.12)) 

(3. 6) Au„, x weakly star in D° (R+ : W-1,p/h-1) , 

(3. 7) um(T„) u(T) in L2 strongly



 (3.  8) u'm(Tn) u'(Tn) in L2 weakly 

(3. 9) um(Tn) u(Tn) in W,;.° weakly . 

   To show that the function u(t) is a solution, it is sufficient to prove 

that x = Au .

From (2.1), for every T,,, we have the identity

TnTnrTn —~(u'm(t),'~/''(t))dt+J<Aum(t),'~/'(t) > dt+J ((u'm(t), *(t)))dt+ 
O0

`Tn//`Tn/~/, +1Y(Q(•,Ur),(t))dt=J(f(t),Y~(t))dt+(u'm(0),Y'(0))—(U'm(Tn), (Tn)) 
O0

for all functions of the form v_ dk(t)wk, where dk(t) are smooth 
                                                               k=1 

function on [0, Tn] . 

   Taking the limit as m oo in the above equation, we get 

       Tn      T.Tn 

—~ (u'(t),*'(t))dt+ J < x, *(t)> dt+ J ((u'(t), *(t)))dt+ 
O0

T,yT n 

+J(Q(•,u), (t))dt=J(f(t), *(t))dt+(ur,(0))—(U'(T),(T'n)) 
O0

Thus we can replace by u in the above equation to obtain

     TnTn 

(3.10) —f Il u'Il2dt+Jo<x,u> dt+2H vu(Tn)112— -2-11 vuoll2+
TnT 

+J (Q(•, u),u)dt = J (f(t),u(t)) dt+(uo, ui)— (le (TO , u(Tn)) • 

                            0

Also we have

        Tn 

Xm = J <A(Urn)A(V), um—v> dt > 0, v E L°((0, Tn) : K.° (S2)) , 

        0

and, replacing w, by um in (2.1),
 Th

(T„)11+ Tn/ Xm—itu'm(t)112dt—-1IIPUm 1 ll VUm(0)II2+J(Q(•,Ur), Um)dt 
00

  rTn   (f(t) ,Ummm           lt))dt+(U'(0), U(0))—(U'm(Tn), Ur(Tn)) 

   0

TnTn —J<Av, um—v>dt—J<A(um), V> dt . 
00

Taking the limit as m -> co in the above equation, we get

                             Tn 

(3.11)limXms J IIu'(t)IIZdt--2IIpu(Tn)IIz+ 1-•Ilpuoli+ 
      m~~                              0



 T„T„ 

+CQ(•,u),u)dt +(At), u(t))dt = Cul, u0)-
00

    T„ T„ —(u'(Tn), u(Tn))— J <Av, u—v>dt— J <x, v> dt . 
00

From (3.10) and (3. 11), we have
 T„ 

J<x—Av u—v>dt > 0 for v E L2((0, Tn) : WP) 

0

which gives x = Au . 

The limit function u(x, t) satisfies evidently the equality (1. 5), and the 

estimates (2.12), (2. 13) and (3. 1) hold for u.

Remark 1. We note that (x, u) is a monotonic in u, then the Theorem 

3.1 holds for arbitrary f satisfying only the hypothesis H. 2. 
Remark 2. If we choose the sequence w, as the basis of Wo.2(S2), 

(s>n(--1)+1) , we can easily obtain a priori estimate of u'in IIum ii 
P 140,(R: W-s.2) and consequently we have slightly better soltuions. (see [6] ). 

Remark 3. Under additional appropriate condition, we can obtain the 

Theorems 3.1 for more general equation;

utt—?(a,(x,uxt)) xi— dut+Q(x, u, u,) =f. ([1], [3]). 
t=~
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