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§ 1. Introduction.

   In the theory of classical dynamical system we know the Liouville's 

theorem that Hamiltonian systems have an invariant measure. The main 

part of recent ergodic theory is to investigate the metrical and the spec-
tral properties of dynamical systems with a finite invariant measure. In 

1932 E. Hopf [13] formulated the following problem; Let T be an inver-

tible null-measure preserving (we say, nonsingular) transformation of a 

a-finite measure space (S2, .", P) . When does there exist a finite invariant 
measure which is equivalent to a given measure P? Necessary and suf-

ficient conditions for the existence of a finite invariant equivalent measure 

have been given by many authors [2] , [5] , [6] , [8] , [9] , [13] , [16] , [20] . One 

due to E. Hopf [13] is that the space S2 is T-bounded and another one due 

to A. Hajian and S. Kakutani [9] is that there does not exist a weakly 

wandering set. The meaning of the assumption that a non-singular trans-

formation preserves a finite measure was made clear by their works. It 

means, roughly speeking, the strong recurrence and the ergodic conver-

gence of the transformation. On the other hand necessary and sufficient 
conditions for the existence of a a-finite invariant equivalent measure were 

given by P. Halmos [10] and L. Arnold [1] . In 1960 D. Ornstein [21] gave 
an example of an ergodic non-singular transformation without a a-finite 

invariant equivalent measure. 

   We see that among ergodic non-singular transformations there are 
three classes ; The first is the class of ergodic transformations with a 

finite invariant measure. The second is the class of ergodic transforma-

tions with a a-finite, infinite invariant measure. The third is the class 

of ergodic non-singular transformations without a a-finite invariant equiva-

lent measure. Recently more detailed classifications of the third class 

have been given by W. Krieger [15] and Hamachi-Oka-Osikawa [12] . 

They are closely related to the classification of factors in the theory of

* This is the doctoral thesis at Kyushu University.



von Neumann  [3]  , [23] . 

   In this thesis we discuss the existence problem of finite and a-finite 

invariant equivalent measures of non-singular transformations from a new 

point of view of classification of non-singular transformations. For this 
purpose we introduce the notion of T-equivalence among measurable sets 
and a one-parameter flow associated with a non-singular transformation. 

They play important roles in our discussion. 

   In section 2 we introduce fundamental terminologies about non-singular 

transformations and non-singular flows. In section 3 we construct a finite 
invariant equivalent measure under the Hopf's condition that S2 is T-

bounded using the T-equivalence relation among measurable sets. Our 
method of construction of a finite invariant equivalent measure is more 

natural and simple than the Hopf's one In section 4 we prove directly 

the equivalence of the Hopf's condition and the Hajian-Kakutani's condi-

tion (non-existence of weakly wandering set) . It was an open problem. 

In section 5 we define a flow associated with a non-singular transforma-
tion. The associated flow is a nice invariant of non-singular transforma-

tions under weak equivalence and gives many informations about them. 

The weakly equivalent types of non-singular transformations are deter-

mined by the metrical types of their associated flows. We show that a 

non-singular transformation has a c-finite invariant equivalent measure if 

and only if its associated flow is of translation type. As its corollary 

we obtain the L. Arnold's condition [1] which has been most useful for 

the existence of c-finite invariant equivalent measure. In the last section 

we show that a non-singular flow whose point spectrum set is the set of 

all real numbers is of translation type. And we apply it to obtain a new 
existence condition of a a-finite invariant equivalent measure. This method 

of the associated flow is related to the treatment of unbounded vectors 
in the Tomita's theory of generalized Hilbert algebra and makes a begin-

ning of classification of ergodic transformations with a a-finite infinite 

invariant measure.

§ 2. Non-singular transformations and non-singular flows

   By a measure space we mean a triple (S2, .", P) where 9" is a c-field 

of subsets of an abstract set S2 and P is a countably additive non-negative 

set function defined on 91 A set A is called measurable if A e. and a 

real valued function f(c)) defined on S2 is called measurable if for any real 

number a, (co j f(ca) <a) e ." and a complex valued function is called measura-

ble if its real part and imaginary part are measurable. We use the



notations A=B a.e. when  P((AdB))  =0 and f(co)=g(co) a.e.co when PO) I f(ca) 

g(ca))=0. A measure P is called finite if P(S2)<+co and is called a-finite 
if there exist countable subsets SZ„ such that P(S2n)<+co, n=1, 2,...... and 

2 = U 2„ a.e.... If p is a second measure defined on then p is said to 
n-1 

be mutually equivalent to P, p—P, when p(A) =0 if and only if P(A) =0. 

We denote bydP(c)) a Radon-Nikodym derivative of p with respect to P. 
   Let (S2, . , P) be a a-finite measure space. A 1-1 transformation T 

of 2 onto itself is said to be bi-measurable if i.e. A 6.9- implies 

TA e. and T -1Ae. We denote by PT a measure such that PT(A) = 

P(TA), A e A bi-measurable 1-1 transformation T is said to be non-

singular if PT-VP i.e. P(A) =0 implies P(TA) =P(T-1A) =0. A measure p 

is said to be T-invariant if p(TA) =p(A) for each A e.". A measurable 

subset C is T-invariant if TC=C a.e. and a measurable function f(ca) is 

T-invariant it f(Tco) =f(ca) a.e.co. A non-singular transformation T is said 

to be ergodic if every T-invariant function is a constant a.e.ca. T is said 

to be conservative if for any measurable set A, P(A— U T-nA) =0. 
n-1 

   Let T be a conservative non-singular transformation and A be a me-

asurable set such that P(A)>0. Putting A1=AUT-1A and An=AnT-nA— 
n-1 

U T-iA,n=2,3,...... ,we have A= > An a.e.. A transformation TA defined 
i=1n=1 

by TAca=Tnca, coeAn, n=1, 2,...... is non-singular and conservative, and is 

called the induced transformation of T on A. 

   E. Hopf gave the follwing problems.

   Let T be a non-singular transformation of a measure space (2, 9, P). 

   (I) Find necessary and sufficient conditions for the existence of a 
finite T-invariant measure which is equivalent to P. 

   (II) Find necessary and sufficient conditions for the existence of a 
a-finite T-invariant measure which is equivalent to P.

   If T is ergodic there exists a unique T-invariant measure equivalent 
to P except a constant multiple. Indeed, if p and p' are T-invariant measure 

equivalent to P the Radon- Nikodym derivatived (co) is a T-invariant                                     die 
function. Hence, there exists a constant c such as p=cp' if T is ergodic. 

   We denote by (T) the set of all mappings S such that the domain 
D(S) and the range R(S) of S are measurable subsets of 2 with P(D(S)) 

>0 and P(R(S))>0 and there exist a countable partition (A, I i=1, 2,......) 
of D(S) and a sequence (nt I i=1, 2,......) of integers with Sca=Tnico for co e 

At, i=1, 2,........ For S e (T) and S' e (T) with P(R(S) n D(S'))>O, the corn-



posed mapping S'oS  (S'oSo)=S'(Sc))) belongs to (T) with D(S'oS)=S-1(R(S) 
nD(S')) and R(S'oS)=S'(R(S) UD(S')). And for Se (T) the inverse mapp-
ing S-1 belongs to (T) with, D(S-1) =R(S) and R(S-1) =D(S). 

   We denote by [T] the set of all Se(T) such that D(S)=R(S)=S2. [T] 
is a group of non-singular transformations of (2, .r, P) and is called the 
full group of T. 

   Two non-singular transformations T and T' of measure spaces (2, 5, 
P) and (2', .-', P'), respectively, are mutually weakly equivalent if there 
exists a 1-1 mapping L from 2 onto 2' such that 1. =. ', P—P't and 

*[T1 =Mil, where P'(A) =P'(fA), A e.. It is easy to see that a 
measure p is T-invariant if and only if it is S-invariant for any S e (T) . 
If T and T' are mutually weakly equivalent there exists a finite (or a-
finite) T-invariant measure equivalent to P according as there exists a 
finite (or a-finite) T'-invariant measure equivalent to P'. 

   A one-parameter group (Os) <s<+w of non-singular transformations of 
a measure space (X, G', m) is called a non-singular flow. A non-singular 
flow (Os) -.<s<+. of (X, a', m) is said to be measurable if the mapping 
X x RD (x, s)—c5x e X is measurable. Two non-singular flows (0S} _ ,<s<+ . 

and (0's)-.<s<+. of measure spaces (X, .l, m) and (X', M', m'), respective-
ly, are mutually strongly equivalent if there exists a 1-1 mapping k from 
X onto X' such that *M=a", m- 'm'* and for—co<s<+oo, / 0sx=q's*.x, 
a.e.x E X. A non-singular flow (ts} <SA+„ is said to be ergodic if every 
function which is 01-invariant for all —oo<s<+oo is a constant a.e. A 
real number t is said to be a point spectrum of (0s} -<S<+, if there exists a 
measurablefunction expiE(x) such that for all —co<s<+oo, exp iE(0Sx) = 
expits • expic (x) a.e.x e X and we denote by a((03)) the set of all point 
spectra t of (cs)-.<s<+—

   DEFINITION 1. Let (X, M, m) be a measure space. A flow (C) _„<s<+. 

of the product space (X x R, M xas(R) , m x du) defined by cb8 (x, u)—(x, u+ 

s), is called a flow of translation type.

§ 3. A construction of the finite invariant measure.

   Let T be a non-singular transformation of a measure space (2, 5-, P) . 

A measurable set A is said to be countably T-equivalent to a measurable 

set B, A--,B, if there exists a mapping S e (T) such that D(S) =A and 

R(S) =B. We have the following properties.

(1) A--A. 
(2) A— B implies B — A.



 (3) A B and B— C imply A C. 

(4) For any sets A and B which are mutually T-equivalent, and for 
   any subset A' of A, there exists a subset B' of B such that A'—B' 

   and A—A'--B—B'. 

(5) A= E, A;,B= E Band A;—B1 for 1=1, 2,......,imply A—B. 
je1i-~ 

(6) A—B and TC=C imply AnC—BfC.
   A set A is said to be T-unbounded if there exists a subset A' of A 

such that A'.A and A'IA. A set is said to be T-bounded if it is not T-

unbounded. For a pair of sets A, B we use the notation A<B if there 
exists a subset B' of B such that A—B'. We have the following pro-

perties.

(7) A<A. 

(8) A<B and B<A imply A—B. 

(9) A<B and B<C imply A<C. 

(10) A C B implies A < B. 

(11) If a set A is T-unbounded and A <B then B is T-unbounded.
   A proof of property (8) is similar to the Bernstein's method in general 

theory of sets. Property (11) means that the equivalent relation -V pre-

serves T-boundedness of measurable sets. The ordered relation < is not 

totally ordered but we have the following lemma.

   LEMMA 1. For a pair of T-bounded sets (A, B) there uniquely exists 

a pair of subsets (C, D) of U TnA with the following properties. 
                                      n=_~ 

 1) Sets C, D are mutually disjoint and T-invariant. 

 2) CUD=  U T nA. 
                   ns—~ 

 3) For any T-invariant subset C' of C, B n C'<A n C' and B n C' is not 
   T-equivalent to An C'. 

 4) For any T-invariant subset D' of D, A n D'<B n D'.

PROOF. We inductively define sets as follows. 

A°=A, B'=B, A°=AnB, Bo= AnB, 

  A' = A'-1—Ar-i, B' = B'-1—B,_1, 

A. = A' n T'B', B, = T -'A' f B', i = 1, 2,...... , 

 A-'= nA'=A—EA,,B-1= nB'=B—EB., 
i=osmor-oi-o 

A_1= A-1 n T-B-1, B_, = TA- n B-1, 

A-' = A-'+1—A_i+1, B-` = B-i+1—B_{+1, 

A_{ = A-' n T-'B-1, B_, = T`A-' n B-', i= 1, 2,...... ,



 A* =  A—  L  A,, B* = B— L B,,

C U T'A*,D U T nA—C.

Properties 1) and 2) are evident. For any non-vacant T-invariant subset 

C' of C let us assume B* . Since B* n C' = U (B* n TIA* [IC')  we 
                                                                            n=-~ 

have TnA* n B* n C'=q for some n and T'A* n B* n C'CT'A-n n B-n =B_n. This 

contradicts to the definition of B*, and so B* n C' = qS. Since a set B n C' 

E Bi n C' is T-equivalent to a set A n C' —A* n C' = E Ain C' and A* n C' 

   and since a set A is T-bounded, we have property 3) . Since for any 

T-invariant Subset D' of D a set A n D' = E A, n D' is countably T-equiva-

lent to E Bi n D' which is a subset of B n D', we have property 4) . The 

uniqueness of the choice of a pair (C, D) is obvious.q.e.d.

   LEMMA 2. For a pair of T-bounded sets A, B there uniquely exists 

a countable sequence of T-invariant sets S21i ,f22,...... , 2,,,...... which satisfy 

the following properties. 

 1) U 'ln= U TnA and 2nn'~m=95,nm,n, m=1, 2,...... 
n=0n=-~ 

 2) There exist countable disjoint subsets B1, B2,......, B,,...... of B such 
   that J2n11B,-~-S2nnA, 1=1,2,......, n; n=1,2,...... and that for any non-

   vacant T-invariant subset Sd',, of 2,,, B„ n S2'n<A n S2',, and Bn n S2'n is 

   not countably T-equivalent to ACID' for n=1, 2,...... , where Bo =B and 

Bn=B— B,, n=1,2,........ 
                    i=1

   Proof follows from Lemma 1. 

   For a pair of T-bounded sets A, B we define a function which has a 

value n on SZn defined in Lemma 2 and denote it by [B/A] (c)), i.e., [B/A] 

(co) =n for coe Sln, n=1, 2,........ [B/A] ((.o) is a T-invariant measurable fune-

tion defined on U TnA and has the following properties. 
                       n=-~

 LEMMA 3. Let A, B and C be T-bounded sets. 

1) [A/B] (c)) • [B C] (co) < [A/C] (c)) ([A/B] (cs)/C                                 +1) ([B](c)) +1) 

                for co e (OT"B) (
2) If A and B are mutually disjoint, 

[A/C] (co) + [B/C] (co) < [A+B/C] (c)) 
< [A/C] (co) + [B/C] (co) +1 , 

for co U T C. 
                                                                    ri=—oa



3) If  A-VB, [A/C] (a) = [B/C] (a)) , 'forcveUTC . 
                                                                              n~—oo

Proof is omitted.

   LEMMA 4. Let T be a non-singular transformation of a measure 

space (S2, ~, P) . If T is conservative, then there uniquely exists a pair 

of T-invariant sets I7, A with the following properties. 

 1) The space S2 is a disjoint union of II and A. 

 2) There exist countable sets Hi, 1121......, 17„,...... such that

H=E ET lin)(disjoint sum). 
n=1 i=0

3) There exist countable sets A1, A2,...... , A,,,...... such that

A= U T'An, n=1,2, ......

and [An/An+1] (co) > 2 , for cv e A.

PROOF. We put A= (D P(TD,l D) =0) and sup P( U T D= p. 
                                                  DOI

We may assume p>0, and then there exists a sequence of sets D1, D2,...... 

such that D„ e SZI and P( U TiDn)> p — —1,  n=1, 2, ........ Put D= U1(Dn — 
U1 U T'D'), then D e and P( U T D) =0. Put B1=D, C1= U T D and 

i=1n=—.,, ..—oo 

Q1=2—C1f then [C1/B1] ((v)> 2 for co e C1 and TQ'1=Q'1 for any subset Q'1 
of Q1. For n=2,3,...... applying the above discussion to an induced trans-

formation TBn_1 on Bn_1 we obtain sets Bn, Cn= U TBn_1 Bn and Q,=B,i_1— 

C,, such that TBn-1B„nB„=.45 and TBn-1 Q'n=Q'„ for every subsets Q'n of 

Q„. Therefore, [C„/B,,] (m)> 2 for co e U T'B,,, n=2, 3,...... and there exist 

countable disjoint sets Q,,1, Q42,......with the following properties.

Q„= Qni, n=2,3,........ 
i=1 

T Q„i , j = 0, 1, 2, ......, i-1 are mutually disjoint, 

         for i = 1, 2, ......and n = 2, 3, ........ 

T Q'ni=Q'ni for every subset Q'ni of Q„i .

Put II = U n PQ ,„ 111=Q1+Q21+Q,1+...... and II, =Q2;,+Q3n+......, n= 
              n=1 i=—.

2, 3,...... , then property 2) is satisfied. Put A= n U T B,, and A„=B,, n 
                                                                              n=1 i=—”

(ñB1), then properties 1) and 3) are satisfied.q.e.d.   i_1

Sets H and A are said to be the periodic part and non-periodic part,



respectively.

   PROPOSITION 1. (E. Hopf) Let T be a non-singular transformation 

of a  a-finite measure space (2, . , P). There exists a finite T-invariant 

measure p which is equivalent to P if and only if 2 is T-bounded.

   PROOF. It is easy to show that if 2 is T-unbounded there does not 

exist a finite T-invariant measure equivalent to P. 

   Assume that 2 is T-bounded, then T is conservative. We construct a 

finite T-invariant measure p on the periodic part 11 as follow ;

p(E) =—WPM-(T `E), for a measurable subset E of            „)
Tr 11- i=0,1,2, ...... , n=1,2,

From Lemma 3. 1), we have

[E/ A,' (a)  <  ([E/A.,] (co) +1) ([A,/Ak] (c)) +1) 
[A/Ak] (a) LA/ Ad (co) • [Ah/Ak] (a )

for h < k, ECA and co e A.

Lemma 3.1) and Lemma 4. 3) we have [Ak/Ak] (cv)> 2k-h 

Then first making k T co, and making h T co, we have

lim[E/Ak] (w)_< lim[E/Ah](CO 
k~w [A/Ak] (6)) = n-. IA/ Ak] (w)

Put Ma)) = kim-------------[J'Ak~~w)., ECA , EE, then the function fE (co) is 
measurable and 0 < fE (a)) < 1. We can assume P is a finite measure. We 

define a finite set function p as ,u(E) =f fE(a))dp(a)) and show that p is c-

additive, T-invariant and equivalent to P. For any measurable set E with 

P(E)>0 and for any positive integer n, put Cu—{co s U PE [A/E] (a)) <n} . 
From { [A/E] (a)) +1) ([E/Az] (a)) +1) > [A/Ae] (a)) ?2k-', we have [E/Ak] (a))._� 
2' 
n+1 —1' co e Cn, k=1, 2,........ For any integer k such as 2"/(n +1)�2 and 
h>k we have

[E/Ah] (@)  >  [E/Ak] (w) • [Ak/Ak] (a))  
[A/An()) = ([A/Ad] (a)) +1) ([Ak/An] (a)) +1)

  [A/A,~]1(c@) +1X20,weC„ C.
This implies that fE(a)) is positive for a) e U TIE and p is equivalent to 

P. 
   It is easy to verify that fE (w) =fF (a)) for a pair of sets E, F which



are mutually countably T-equivalent, and that if  fE  (co)  S  f, (co) then E<F. 

This implies T-invariance of p. 

   From Lemma 3.2) we have fE+F(co)=fE(co)+fF(co) for any pair of 

mutually disjoint sets E, F. Hence, we have E fEn(co) < f E En (co) for 
                        n=1n=1 

mutually disjoint, countable sets En, n=1, 2,........Assume that P (co 
f En (o) — E fEn (w) > e) > 0 for some positive number e. There exists 

n=1n=1 

integer It such that 0< fAh(ct) <e for co e A, because

lim [Ad Ah] (a))  S lim -------[A,/A;,] (co)  ------ 
k +y [A/Ak] (co)k •ti [A/Ah] (co) • [Ah/Ak] (co)

S21_1.

Choose an integer n such that P(D4)>0 where Dn= (col =E fE{(co) <fAh (co)                                                                                 in+1 

and f E{(cv) — i fE,(cv)>E) . We obtain a subset E'n+1 of Ah f Dn such 
{=1i=1 

that E',2+1 —En+1 fl Dn, because fEn+1nDn (co) SfAh flDf(co) • Inductively we obtain 

mutually disjoint subsets E'n+2, E'n+3,......of An n Dn such that E'1 -E; n Dn, 

i=n+2, n+3,........ It follows that

f E E{ ()) — fE{ ((o) = f E E{ (U)) {—n+LJ1fE{(w) {=1{=1{=n+1

     °°

{ �_fcoEE 
     {=n+1

f E E'{ (Co) 
{=n+1

fA fAh (co) <e, co a Dn .

This is a contradiction. Hence, f E{(0)) = fE{((o) and p is c-additive. 
{=1 i=1 

This completes the proof.q.e.d.

§ 4. Equivalence of the Hopf's condition and the Hajian-Kakutani's condition.

   Let T be a non-singular transformation of a measure space (9,5", P). 

A measurable set A, P(A)>0 is said to be weakly wandering if there 

exists an increasing sequence of positive integers (n1, n2,......, n;,......) such 

that Tn{A 1, j=1, 2,........ 

Hajian-Kakutani [9] showed that T has a finite invariant measure if 

and only if there does not exist a weakly wandering set. In this section 

we directly prove the equivalence of the Hopf's condition (boundedness) 

and the Hajian-Kakutani's condition (non-existence of weakly wandering 

set) without using the finite invariant measure.



   A measurable set A is said to be finitely T-equivalent to a measurable 

set B if there exist a finite partition  A1, A2,...... , Ak of A, a finite parti-

tion B1, B2,......, Bk of B and k integers n1, n2,...... , nk such that TniA1=B1, 

i=1, 2, ........ We define set functions an, n=1, 2,...... and a as follows ;

an(A) _ P(77124) , n=1, 2,...... , 
n i=1

a (A) = lim  an (A) , A e 5 .

   LEMMA 5. 1) a is a super-additive set function, i.e., for any mutual-

ly disjoint, countable sets Ai, i=1, 2,......

a Ai) ? o-(Ai) . 
f=1 i=1

2) If A is finitely T-equivalent to B, a(A)=a(B).

                     L'm    PROOF.1) Since an is finitely additive, i.e., an(LAl=L'an(A1), 
                                  i=11 

m=1, 2,...... , n=1, 2,...... , we have

a (A) = lim an (A1) <  lim an ( A1) 
i=1 - i=1 i=1

=a(~A1)<a(~All, m=1,2, 
                               i=1

   k k 

2) Let A= E Al ,B = B1 and TniA1=B1, i=1, 2,......,k. For any inte- 
        i=1i=1 

ger n larger than max(n, I1<i<k) we have

an(A)-6n(B) I = n P(TiA) — P(T1B)
n-1 k  

 =1E E {P(T iA,) —P(T 1B,) ) 
n i=1 1=1

=1{EP(TiA,)_E               -P(TH-nfA)) 
 n i=1 1=ii=1/

= n 1=1P(T iAt)—niLnn'P(T'A,)kn1
 1 2n;P(S2) 

n ;=1

Since the last term tends to 0 as n--co, we have 2).q.e.d.

   LEMMA 6. If S2 is T-unbounded there exists a measrable set E such 

that P(E)>0 and a(E) =O.



   PROOF. Assume that  2 =  E Ai, TniA, nTniA,=95, i j, i, j=1, 2,...... 
i=1 

and P(S2— TniA,)>0. Put E1=ATniA,S2— and E4=(S2—~E)—~Tn= 
  i=1;=1 i=1 

           n-1 

((a— E) n Ai) , n=2,3,...... then (En I n=1, 2,......) are mutually disjoint              =1

and mutually countably T-equivalent. Since E c (E,,) < a (S2) <+ oo, lim 
n=1 - 

c(E1,) =0. Since E1 is countably T-equivalent to En, n=2, 3,...... there exist 

a subset E1n of E1 and a subset En1 of E, such that E1,, is finitely T-equiva-

ent to En1 and P(E1—E1n) < 2n , n=2, 3,...... where P(E,) =a> 0. Put E= 

n E1n the we have 
n=2

      P(E) > P(E1) — EP(E1—E1n)>a—2> 0and 
a(E) <a(E1n) = (E 1)<c(En) , n = 2, 3,........ 

Since the last term tends to 0 as n- co we have i(E) =0. q.e.d.

  LEMMA 7. (Hajian-Kakutani [9]) If P(E) > 0 and lim P(T„E) = 0, 

there exists a weakly wandering subset of E.

   PROOF. Put P(E)=a>0, ai= i2i+1 , i=1, 2,...... and no Since lim 

P(T" E) =0 we obtain a positive integer n1 such as P(T n1 E) <a1. By the 

same discussion we obtain an increasing sequence of integers ni, i=1, 2,... 
i-1 

such as P(Tni-n'E)<ai,j=0,1,...... ,i-1, i=1, 2,........Put A= UU Tni-n1                                                                                                        1=1 ;=0 

EE, thenPE—Aa  n()~2->0 and E—A is a weakly wandering set. q.e.d.

   PROPOSITION 2. Let T be a non-singular transformation of a measure 

space (2, .", P). The set 2 is T-bounded if and only if there does not 

exist a weakly wandering set.

   PROOF. Assume that E is a weakly wandering set. Then there 

exist a sequence of integers n1, n2,...... , ni,...... such that TniEnTn,E=0, 

     We have s(U TniE)= U TniE where Scv=Tni+1-nia) for co e TniE, i= 
i=1i=2 

1, 2,........ So, U TniE is T-unbounded and then 2 is T-unbounded. If 2 is 
i=1 

T-unbounded, there exists a weakly wandering set by Lemma 6 and 

Lemma 7.q.e.d.



§ 5. Associated flow and  c-finite invariant measure.

   In this section we use the terminologies "Lebesgue measure space" 

and "measurable partition" in the sense of Rohlin [22] . 
   Let T be a non-singular transformation of a Lebesgue measure space 

(2, . ", P). We define a non-singular transformation T of the product 
measure space (S2 x R, . x J(R) , dP x du) as follows; 

-lice, u) = (Tco, u + log dP(a))) , (co, u) e S2 x R .
Let C(T) be the measurable partition which generates all T-invariant 

measurable subsets S2 x R. For —oo<s<+co, put 0s (co , u) = (co, u+s), (ca, u) 

e S2 x R, then the flow (0,)_.<s<+. commute with T, i.e., for —oo<s<+oo,

0s (ca, u) = Ts (c o , u) ,. (ca, u) e S2 x R . 

We can define the factor flow (ls)-.<s<+„ of (00-.<s<+- on the quotient 
measure space S2 x R/C (T) . This is a measurable, non-singular flow with 
respect to any c-finite measure which is equivalent to the image measure 
of dP x du.

   DEFINITION 2. We call the factor flow (0) _.<s<+. the non-singular 
flow associated with the non-singular transformation T, or simply the 

associated flow of T. 

   We note that the associated flow (es) -.<s<+. of T is ergodic if and 

only if T is ergodic.

   THEOREM 1. If non-singular transformations T and T' of Lebesgue 
measure spaces (2, ..9-, P) and (2', 9', P'), respectively, are mutually 

weakly equivalent, then their associated flows are mutually strongly 

equivalent.

   PROOF. Let * be a 1-1 mapping from 2 onto 2' such that *,.F.--- 

. ', *P—P' and *[T]=[r]*.  Put (co, u) = (*co, u+ log  ddp  (o))). Then 
  is a 1-1 mapping from S2 x R onto S2' x R and satisfies that for —oo<s< 

+co,1fiOs(cv, u)=as*(c), u), a.e.(co, u) e Sl xR. It is enough to show that 

Aka , u)) is a [T] -invariant measurable function for any [T'] -invariant 
measurable function. For S e [T] and S'—iS*-' e [T'] ,

f(cif (se, u+logdd S (0)))) = f (*Scv, u+ log 'PS (co) +log  ddP'  (Sc)))



 = f  (S'lr@, u+ log dPS (a)) +log ddpS(w) )
= f (S' cv, u+logddPS (1frw) + logd' (co))

= f S' *co, u+log  dP(co)))
= f ( (w, u))

q.e.d.

   THEOREM 2. Let T be a non-singular transformation of a Lebesgue 

measure space (S2, 5", P). The following three conditions are equivalent. 

   (1) There exists a a-finite T-invariant measure equivalent to P. 

   (2) There exists a measurabl function f(ca) such that

T ((co, u+f(cv)) I co e 12) = ((co, u+f(w)) I cv e S2) 

for —oo<u<+co 

   (3) The associated flow (BS) --<S<+. of T is strongly equivalent to a 
flow of translation type. 

   PROOF. Let p be a c-finite T-invariant measure which is equivalent

to P. Put f(co) = —log  dP (co) we have

f(co)+logdPT(w) = —log du (co)+ log dPT (w)+ log d'uT (cv)+log du-(co)   dPdP d
uTdudP

=logpT(w)
= f(Tco) ,

which means that f(co) satisfies (2). Similarly let f(co) be a function 

satisfying (2) and let p be a measure equivalent to P such that d'uP—(co) = 
exp(—f(cv)), then we have log-71 (co) =0 which means that p is a T-
invariant measure. 

   Let f(co) be a measurable function satisfying the condition (2) and 
let C(T) be the measurable partition of D which generates all T-invariant 
subsets of 12. Then 

C(T) = (((co, u+f((0))IweCc(n)l —co<u<oo, Cc(T) eC(T)) . 

It is easy to see that the associated flow COS)--<s<+. of T is strongly 
equivalent to the flow (0S)_-<S<+. such that 

OS(x, u) _ (x, u+s) , (x, u) e (S2/C(T)) x R



Let  if be a strongly equivalent mapping from the associated flow (Os)_„<S<+. 

of T to a flow of translation type on a product measure space X x R, p be 

the projection mapping from X x R onto R such as p(x, u) =u, (x, u) e Xx R 

and let n be the canonical mapping from S2 x R onto the quotient space 

S2xR/C(T). We have

pOr(w, a) = p'f'neu(w, 0) 
= P*Oun(co, 0) 
= pVin (w, 0) +u, (x , u) e S2 x R .

Then for almost all w e 9,there uniquely exists a real number u such as 

pif ir(w, u)=0 and we denote it by f(o)). Furthermore we have 7L-1t~/-1p-1 

((0))= ((co, f(w)) I w e 9). From nT=n, we have 

T((w, f(w)) I w e SZ) = Tn-1*-1p-1((0)) 
= n-11-1p-1((0)) 

= ((a, f(w))I(0eSZ)

This completes the proof. 

                                                                                           q.e.d.

   LEMMA 8. Let T be a non-singular transformation of a Lebesgue 

measure space (9, .~, P) . If there exists a positive number K such as 

log dTn(w) <K, —oo<n<+co, a.e.we9, then there exists a finite in- 
variant measure ,u equivalent to P.

   PROOF. For a positive number a let A= ((co, u) I I u I <a) and A= 

U T'A. From the asumption we have 
n=-~

Ac ((co, u)I IuI<a+K) . 

This means that for I sI >2(a+K), O5A f A=0. Since U 0SA=12 x R, we 
                                                                                         s=-~ 

can easily show that the associated flow (13,),<+. is strongly equivalent 
to a flow of translation type. Furthermore, since the function in (2) is 
bounded the T-invariant measure ,u is finite. 

                                                                                           q.e.d.

   PROPOSITION 3. (L. Arnold [1]) Let T be a non-singular transfor-

mation of a Lebesgue measure space (9, . , P). There exists a c-finite 

T-invariant measure p equivalent to P if and only if for every e>0 there 

exists a countable decomposition (S2,) of S2 with the following properties ; 

for each i, for each measurable subset B of 9, and for each integer n such 
that T"BCS2;, it holds that



                 n 

1+e~dP------ (w)  <1+e, a.e.cv€B.

   PROOF. Assume that there exists a a-finite T-invariant measure 

equivalent to P and let f(co) be the function of (2) of Theorem 2. Put 
S21=(coJi log (1+e) S/(co) < (1+1) log (1+e)), i=0, ±1,...... , the decomposi-

tion (Di) of S2 satisfies the desired property. Conversely, for each i the 
induced transformation T,Q1 on ,SZ, of T has a finite invariant measure by 
Lemma 8. Therefore T has a a-finite T-invariant measure which is equi-

valent to P.q.e.d.

§ 6. Characterization of flows of translation type and existence of a-finite in-

   variant measure.

   We shall use the following well-known results to prove Theorem 3. 

   LEMMA 9. ([4]) Let I' be a polish group and I'a be a closed sub-

group of T. Then there exists a Borel subset B of T such that B inter-
sects each right To-coset in exactly one point. 

   LEMMA 10. ([22]) Let be a measurable partition of a Lebesgue 

space (X, M, m) . Then there exists a measurable subset M of X such 

that M intersects each element of in exactly one point mod 0. 

   LEMMA 11. ([19]) Let be a 1-1 measurable mapping whose domain 

is a standerd Borel space and whose range is contained in a measurable 
space with a countable and separating base. Then the range of - is a 

measurable subset and *-1 is also measurable. 

   LEMMA 12. ([18]) Let (S2,9", P) and (S2', . ', P') be a-finite measure 

spaces and f(cv, co') be a bounded function such that 

   1) for each co, it is 9.1-measurable and P'-integrable, 

   2) for each E' e.', f EAu), co')dP'(co') is .-measurable. Then there 
exists an 5-x ,."'-measurable function f(co, co') such that for almost all 

co, f (co, co') =f(co, co') except a co'-null set. 

   LEMMA 13. Let E(t) be a real measurable function defined on R 

such that 

           exp ie(t+z) = exp iW(t) •exp ie(r) , a.e.(t, r) , 

then there exists a real constant c such that



expiE(t)  = expict , a.e.t .

Proof is omitted, because it is easy.

   LEMMA 14. Let (cbs) -..<s<+. be a measurable, non-singular flow of a 

probability space (X, ..g, m). Then

(1)Jf(cbsx)}dmS (x) —f(is°x) it~dmS°(x)IZdm(x)--->0
as s s° for fe L2(X, .', m). 

   (2) Jh(çbsx)_h(c5sox)I2dm(x)  --> 0 
as s--> s° for h e L' (X, , m).

  PROOF. (1) We put a(s, x) =dms(x) and for N>0 aN(s, x) = a (s, x) 
if 0<a (s, x)� N and aN(s, x)=N if a(s, x)> N which are (s, x) -measurable 

functions. We denote by US the unitary operator (Usf)(x)=f(0sx)i/a(s, x). 

For I s I <1 and f e .17(X, A m) with 1f(x) I < C,

II Us f(x) —f(x) II LZ(m) = J II Us+u f(x) — Uu f(x) II LZ(m) du 

°

2 

S2C J U Va(u, x)—^aN(u, x) II L2(m) du

+J II f (Ybs+ux) ^aN(s+u, x) —f(c5sx) V aN(s, x) II L2(m)du
For any e>0 there exists N such that

JZ a(u, x)—^aN(u, x) II L2(m) du <e
From the Fubini's theorem

JII f(q5s+ux)1/aN(s+u, x) —f(0ux)^aN (u, x)IIL2(m0 du 

°

lIA/ (x)Jl I AO, ux)2/aN(s+u, x) —f(15ux)^aN(u,x) 12 du} 12 . 

°

From the Riemann-Lebesgue's theorem

r~ JI fak s+ux)/aN(s+u,  f(~                             aN(u, x)12 du -->0 

 °

as s -p 0, a.e.x. 

Therefore from the Lebesgue's convergence theorem

Jdm(x)J I f(&s+ux)^aN (s+u, x) —f(q5ux)^aN (u, x) 12 du --> 0 

0



as s  ---> 0 . Since Us is a unitary operator, 

          H Us f—f I I L2(m) -> 0 as s - - 

                                 for  f e L2 (x, ., m) . 

  (2) For It e .17(x, m) with I h (x) J < C ,

  

II h(cbs+sox) —h(cbsox) II L2(m) 
s II h(cbs+sox) — Ush(csox) II L2(m) + II Ush(/sox) —h(/sox) II L2(m) 

C J 11- U51 II L2(m) + H Ush(csox) —h(Osox) II L2(m) •

From (1), we have 

II h(&Sx) —h(Osox) II L2(m) - 0 as s - so .

q.e.d.

   THEOREM 3. Let (0,) _.<„, be a measurable non-singular flow of 
a Lebesgue measure space (X, .', m). Then it is strongly equivalent to 
a flow of translation type if and only if a((0,)) =R. 

   PROOF. We note the set of all point spectra is invariant under the 
strong equivalence of non-singular flows. Let (00_,,„<„,. be a flow of 
translation type of a product space Yx R. For any t e R put (y, u) =tu, 
then we have 

     exp ie (cbs(y, u)) = expits•exp iE(y, u), (y, u) e YxR, -0.<s<+. 

This means that a((0,)) =R. 
   Assume that a((q5s))=R. First we show that there exists a (t, x)-

measurable function expie(t, x) such that for -°°<s<+-

  (*) exp ie(t, (bsx) = expits•exp ie(t, x), a.e. (t, x) . 

We assume that m is a probability measure. Let r be the set of all 
complex valued measurable functions with absolute value 1 on (X, ~, m) 
and To be the set of all (00-invariant functions of T. T is a complete 
separable metric space under the relative L2(m)-topology on T. Under 
the multiplication, T is a topological group with respect to this topology 
and To is its closed subgroup. From Lemma 9 there exists a Borel subset 
B or T which intersects each coset of the guotient space T/To in exactly 
one point. We denote by n the canonical mapping from T onto r/ro and 
denote by 7r1,3 the restriction to B. For each —oo<s<+co and E e .' we 
denote by rs,E a function

exp ie(•)To-* ( exp i(E(csx)—E(x)), ddms(x) dm(x) 
              J E

defined on T/To. Since



 J  (exp i (E' (95sx) — ' (x)) — exp i (e (Osx) — (x))) / ddms(x) dm(x)
                                              1  2(fIexpiE'(x)—exp ie(x) I zdm(x))2

the function rS,E•nl B defined on B is continuous under the relative D(m)- 

topology on B. Let 5 be the smallest a-algebra of r/ro such that every 

function r$,E, —oo<s<+co, E e M is measurable. We prove that 5 has a 

countably separating base. It is enough to show that for a countably 

separating base (E„)„,, of .' and a countable dense set of R, 5 is 

generated by (z-S.En Is e n�1). From Lemma 14, for s e R and E e a, there 
exist sne?G and Emn such that 

rsn.Emn (exp ie(•)r0) , rS.E(exp ie(•)ro) , as n -> oo . 

Since rS,E • n1 B, —oo<s<+ oo, E e .l is continuous, n I B is measurable under 

the a-algebra generated by the relative D(m)-topology of B and the a-

algebra 5 . From Lemma 11 the inverse mapping n I B' is also measurable. 

For each t e R, let rt be the set of all measurable solutions exp iE(•) of 
the equation, for —oo<s<+oo,

exp (0Sx) = expits • exp 1E(x) , a.e.x .

Then rt is a coset in r/ro. By a we denote a mapping t—>r, from R 

into r/ro. Since the function

rs,E • a (t) =Jexpitsdms (x) dm(x) 
                         F.

is t-continuous for each —oo<s<+co, E e M, the mapping a is measurable. 

For each E e .l we denote by rE a function

exp (•) —)1 exp iE (x) dm(x) 

                E

defined on B. It is continuous under the LZ(m)-topology. Since a, nI B1 

and rE are all measurable, the function rE • n I Bl • a (t) = J exp let(x)dm(x) is 
t-measurable for each E e .l, where exp igt (-) =n l B1rt. From Lemma 12 

there exists a (t, x)-measurable function expie(t, x) such that for almost 

all t, exp Wt, x) =exp iEt(x) holds except an x-null set. Then the function 

expiE(t, x) satisfies the equation (*).. 
   From Lemma 10 there exists a measurable subset M of X such that 

M intesects each element of a measurable partition C((y5s)) which gene-

rates all (Os) -invariant subsets of X, in exactly one point mod 0. We 

denote by V the canonical mapping from X onto M. Then the function 

exp (t, x) = expi(e (t, x) —(t, Vx) )



belongs to the coset  Tt and satisfies for almost all x 

exp i (t+z, x) = exp iE(t, x) •exp i (r, x) , a.e. (t, r) . 

From Lemma 13 there exists a real measurable function (x) such that 
for almost all x 

        exp iE(t, x) = exp itE(x) , a.e.t . 

Since exp iE(t, •) belongs to the coset F,, we have for —oo<s<+oo and 
for almost all x 

        exp ite(Osx)=exp its•exp itE(x) , a.e.t . 

Therefore we have for —oo<s<+oo 

e(Osx) = (x) +s , a.e.x . 

Define a mapping V from X onto Mx R such that 

x=(Vx,$(x)), xeX, 

then is 1-1, bi-measurable and for —co<s<+co 

Osx = (Vcsx, e(Osx)) = (Vx, E(x) +s) . 

This completes the proof.

q.e.d.

   THEOREM 4. Let T be a non-singular transformation of a Lebesgue 

measure space (S2, 9 , P) . Then there exists a a-finite T-invariant measure 

which is equivalent to P if and only if for any real number t there exists 

a real measurable function E(c)) such that

exp iE (Tca) = exp it log dPT (a) • expWu)) , a.e.ca

   PROOF. Let t be a point spectrum of the asociated flow (&) -a<s<+a 

of T. Then there exists a T-invariant measurable function E(cv, u) such 

that for —co<s<+co 

expic(co, u+s) = exp its• exp i (ca, u) , a.e. (a), u) . 

Using the T-invariance of the function we have

exp iE(ca, u) = exp iE(Tca, u+log d T (a)))

= exp it logdP(c•exp iE(Tw, u)a.e. (ca, u) .
This means that —(c), u) satisfies the equation of Theorem 4 for almost 

all u.



Conversely, let  E(co) be a measurable function satisfying the equation of 

Theorem 4. The function expi(tu—e(co)) is T-invariant and satisfies the 

equation which means that t is a point spectrum of the associated fiow 

(!Ss)--<s<+a• Then the proof follows frow Theorem 2 and Theorem 3.
q.e.d.

References

[1] Arnold, L. K., On a-finite invariant measures, Zeit. Wahr. Geb., 9 (1968), 85-
   97. 

[2] Calderon, A. P., Sur les measures invariantes, C. R. Acad. Sci., Paris 240 
  (1955), 1960-1962. 

[3] Connes, A., Une classification de facteurs de type III, Ann. Scient. Ec. Norm. 
  Sup., 6 (1973), 133-252. 

[4] Dixmier, J., Dual et quasi dual d'une algebre de Banach involutive, Trans. 
   A. M. S., 104 (1962), 278-283. 

[5] Dowker, Y. N., Finite and a-finite invariant measures, Ann. of Math., 54 
  (1951), 595-608. 

[6] Dowker, Y. N., Sur les applications measurables, C. Acad. Sci. Paris 242 
  (1956), 329-331. 

[7] Friedman, N. A., Introduction to ergodic theory, Van Nostrand Reinhold C. 
  1970. 

[8] Hajian, A. and Ito, Y., Weakly wandering sets and invariatt measures for a 
   group of transformations, J. Math, and Mech., 18 (1969), 1203-1216. 

[9] Hajian, A. and Kakutani, S., Weakly wandering sets and invariant measures, 
   Trans. A. M. S., 110 (1964), 136-151. 

[10] Halmos, P. R., Invraiant measures, Ann. of Math. 48 (1947), 735-754. 
[11] Halmos, P. R., Lectures on ergodic theory, New York Chelsea, 1956. 
[12] Hamachi, T., Oka, Y. and Osikawa, M., Flows associated with ergodic non-

   singular transformation groups, to appear. 

[13] Hopf. E., Theory of measures and invariant integrals, Trans. A. M. S., 34 
  (1932), 373-393. 

[14] Kakutani, S., Induced measure preserving transformations, Proc. Imp. Acad. 
  Tokyo, 19 (1943), 635-641. 

[15] Krieger, W., On non-singular transformations of a measure space I, II, Zeit. 
  Wahr. Geb., 11 (1969), 83-91, 98-119. 

[16] Neveu, J., Existence of bounded invariant measures in ergodic theory, Proc. 
   Fifth Berkeley Symp. Math. Stat. Prob., Univ. of Calif. Press, 1967, Vol. II, part 

   2, 461-472. 

[17] Murray, F. J., and von Neumann, J., On rings of operators, I, Ann. of Math., 
  (2) 37 (1936), 116-229. 

[18] Mackey, G. W., A theorem of Stone and von Neumann, Duke Math. J., 16 
  (1949), 313-326. 

[19] Mackey, G. W., Borel structure in groups and their duals, Trans A, M. S., 
  85 (1957), 134-165. 

[20] Maharam, D., Invariant measures and Radon-Nikodym derivatives, Trans. A. 
   M. S., 135 (1969), 223-248. 

[21] Ornstein, D. S., On invariant measures, Bull.A. M. S., 66 (1960), 297-300.



[22] Rohlin, V. A., On the fundamental ideas of a measure theory, Mat. Sb. 25 
  (67), (1949), 105-150. =A. M. S.  Transl. 71 (1952). 

[23] Takesaki, M., Duality for crossed products and the structure von Neumann 
  algebras of type III, Acta Math., 131 (1973), 249-310.

Department of Mathematics, 
College of General Education, 

    Kyushu University.


