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§1. Introduction.

In the theory of classical dynamical system we know the Liouville's
theorem that Hamiltonian systems have an invariant measure. The main
part of recent ergodic theory is to investigate the metrical and the spec-
tral properties of dynamical systems with a finite invariant measure. In
1932 E. Hopf [13] formulated the following problem; Let T be an inver-
tible null-measure preserving (we say, nonsingular) transformation of a
o-finite measure space (2, %, P). When does there exist a finite invariant
measure which is equivalent to a given measure P? Necessary and suf-
ficient conditions for the existence of a finite invariant equivalent measure
have been given by many authors [2], [5], [6], [8], [9], [13], [16], [20]. One
due to E. Hopf [13] is that the space £ is T-bounded and another one due
to A. Hajian and S. Kakutani [9] is that there does not exist a weakly
wandering set., The meaning of the assumption that a non-singular trans-
formation preserves a finite measure was made clear by their works. It
means, roughly speeking, the strong recurrence and the ergodic conver-
gence of the transformation. On the other hand necessary and sufficient
conditions for the existence of a ¢-finite invariant equivalent measure were
given by P. Halmos [10] and L. Arnold [1]. In 1960 D. Ornstein [21] gave
an example of an ergodic non-singular transformation without a ¢-finite
invariant equivalent measure.

We see that among ergodic non-singular transformations there are
three classes; The first is the class of ergodic transformations with a
finite invariant measure. The second is the class of ergodic transforma-
tions with a o-finite, infinite invariant measure. The third is the class
of ergodic non-singular transformations without a ¢-finite invariant equiva-
lent measure. Recently more detailed classifications of the third class
have been given by W. Krieger [15] and Hamachi-Oka-Osikawa [12].
They are closely related to the classification of factors in the theory of

* This is the doctoral thesis at Kyushu University,
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von Neumann [3], [23].

In this thesis we discuss the existence problem of finite and o-finite
invariant equivalent measures of non-singular transformations from a new
point of view of classification of non-singular transformations. For this
purpose we introduce the notion of T-equivalence among measurable sets
and a one-parameter flow associated with a non-singular transformation.
They play important roles in our discussion.

In section 2 we introduce fundamental terminologies about non-singular
transformations and non-singular flows. In section 3 we construct a finite
invariant equivalent measure under the Hopf’s condition that £ is T-
bounded using the T-equivalence relation among measurable sets. Our
method of construction of a finite invariant equivalent measure is more
natural and simple than the Hopf’s one In section 4 we prove directly
the equivalence of the Hopf’'s condition and the Hajian-Kakutani’s condi-
tion (non-existence of weakly wandering set). It was an open problem.
In section 5 we define a flow associated with a non-singula: transforma-
tion. The associated flow is a nice invariant of non-singular transforma-
tions under weak equivalence and gives many informations about them.
The weakly equivalent types of non-singular transformations are deter-
mined by the metrical types of their associated flows. We show that a
non-singular transformation has a ¢-finite invariant equivalent measure if
and only if its associated flow is of translation type. As its corollary
we obtain the L. Arnold’s condition [1] which has been most useful for
the existence of ¢-finite invariant equivalent measure. In the last section
we show that a non-singular flow whose point spectrum set is the set of
all real numbers is of translation type. And we apply it to obtain a new
existence condition of a s-finite invariant equivalent measure. This method
of the associated flow is related to the treatment of unbounded vectors
in the Tomita’s theory of generalized Hilbert algebra and makes a begin-
ning of classification of ergodic transformations with a o-finite infinite
invariant measure.

§2. Non-singular transformations and non-singular flows

By a measure space we mean a triple (£, &, P) where # is a o-field
of subsets of an abstract set £ and P is a countably additive non-negative
set function defined on &#. A4 set A is called measurable if 4e¢% and a
real valued function f(®) defined on £ is called measurable if for any real
number a, {]f(®)<a) e and a complex valued function is called measura-
ble if its real part and imaginary part are measurable. We use the
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notations A=B a.e. when P((A4B))=0 and f(w)=g(») a.e.w when P(o|f(®)
s£g(w))=0. A measure P is called finite if P(2)<+oco and is called g-finite
if there exist countable subsets £, such that P(2,)<+o0, n=1,2,...... and
2= G 2, ae.... If y4is a second measure defined on &, then u is said to
be nft-licually equivalent to P, u~P, when u(4)=0 if and only if P(4)=0.
We denote by ff%v(co) a Radon-Nikodym derivative of u with respect to P.

Let (2, #, P) be a o-finite measure space. A4 1-1 transformation T
of 2 onto itself is said to be bi-measurable if TF = ie. Ae¢& implies
TAes and T'4:#. We denote by PT a measure such that PT(A)=
P(TA), Ae¥. A bi-measurable 1-1 transformation T is said to be non-
singular if PT~P i.e. P(A)=0 implies P(TA)=P(T'A)=0. A measure u
is said to be T-invariant if u(TA)=u(A4) for each AeF. A measurable
subset C is T-invariant if TC=C a.e. and a measurable function f(®) is
T-invariant ir f(Tw)=f(w) a.e.w. A non-singular transformation T is said
to be ergodic if every T-invariant function is a constant a.e.w. T is said
to be conservative if for any measurable, set A, P(A—p1 T‘”A> =0.

Let T be a conservative non-singular transformation and A4 be a me-
asurable set such that P(4)>0. Putting 4,=AUT'4 and A4,=ANT "A—

n-1 o
UT 4, n=2,3,...... , we have A= >4, a.e.. A transformation T, defined
i=1 n=1
by Ti0=T"w, wed,, n=1,2,...... is non-singular and conservative, and is

called the induced transformation of T on A.
E. Hopf gave the follwing problems.

Let T be a non-singular transformation of a measure space (2, &, P).

(I) Find necessary and sufficient conditions for the existence of a
finite T-invariant measure which is equivalent to P.

(II) Find necessary and sufficient conditions for the existence of a
o-finite T-invariant measure which is equivalent to P.

If T is ergodic there exists a unique T-invariant measure equivalent
to P except a constant multiple. Indeed, if x and x’ are T-invariant measure
equivalent to P the Radon- Nikodym derivative -gg; () is a T-invariant
function. Hence, there exists a constant ¢ such as u=cy’ if T is ergodic.

We denote by (T) the set of all mappings S such that the domain
D(S) and the range R(S) of S are measurable subsets of £ with P(D(S))
>0 and P(R(S))>0 and there exist a countable partition {4;|i=1,2,...... }
of D(S) and a sequence {n|i=1,2,...... } of integers with Sw=T"w for we
A, i=1,2,...... . For S¢(T) and 8 ¢ (T) with P(R(S)ND(S"))>0, the com-
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posed mapping §'0S (S'oSw=95(Sw)) belongs to (T) with D(5'0S)=S"*(R(S)
ND(S)) and R(5'08)=S"(R(S)UD(S")). And for Se (T) the inverse mapp-
ing S-! belongs to (T) with D(S-)=R(S) and R(S™')=D(S).

We denote by [T] the set of all Se(T) such that D(S)=R(S)=£2. [T]
is a group of non-singular transformations of (£, &#, P) and is called the
full group of T.

Two non-singular transformations T and T’ of measure spaces (£, &,
P) and (2, &7, P’), respectively, are mutually weakly equivalent if there
exists a 1-1 mapping v from £ onto £’ such that ¢&F=%', P~P'y and
w[T] =[T"]y where P'y(A)=P' (yA), AeF. It is easy to see that a
measure g is T-invariant if and only if it is S-invariant for any Se (T).
If T and T’ are mutually weakly equivalent there exists a finite (or o-
finite) T-invariant measure equivalent to P according as there exists a
finite (or o-finite) T’-invariant measure equivalent to P'.

A one-parameter group {@s}-.<s<+. 0Of non-singular transformations of
a measure space (X, &, m) is called a non-singular flow. A non-singular
flow {@s)—wcscs Of (X, &, m) is said to be measurable if the mapping
XXR>(x, s)—>¢.xe X is measurable. Two non-singular flows {¢:}_wcscre
and {¢’s) _wcscr Of measure spaces (X, &, m) and (X', &', m’), respective-
ly, are mutually strongly equivalent if there exists a 1-1 mapping  from
X onto X’ such that v#=2", m~m'y and for—co<ls<{+o0, Yo x=0¢'yx,
a.ex€X. A non-singular flow {@s}-w<sa+= 1S said to be ergodic if every
function which is ¢.-invariant for all —co<(s<+oco is a constant a.e. A
real number ¢ is said to be a point spectrum of {¢;)}-wcics if there exists a
measurablefunction expié(x) such that for all —oo<(s<(+4co, expif(dx)=
expits-expié(x) a.e.xe X and we denote by o({¢;}) the set of all point
spectra ¢ of {@s)-wcscto-

DerINITION 1. Let (X, &, m) be a measure space. A flow {¢;} -wcsciw
of the product space (XXR, #XZ(R), mxdu) defined by ¢,(x, u)=(x, u+
s), is called a flow of translation type.

§3. A construction of the finite invariant measure.

Let T be a non-singular transformation of a measure space (&, &, P).
A measurable set A is said to be countably T-equivalent to a measurable
set B, A~B, if there exists a mapping Se (T) such that D(S)=4 and
R(S)=B. We have the following properties.

(1) A~ A.
(2) A~B implies B~ A.
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(3) A~B and B~ C imply A~C.

(4) For any sets 4 and B which are mutually T-equivalent, and for
any subset 4’ of A, there exists a subset B’ of B such that A4’~B’
and 4A—A'~B—B’.

(5) A=‘i1A,~, B=?"_°,IB[ and A,~B, for i=1,2,......, imply A~B.

(6) A~B and TC=C imply AONC~ BQ\C.

A set A4 is said to be T-unbounded if there exists a subset 4’ of 4
such that A4’~4 and A’'s44. A set is said to be T-bounded if it is not T-
unbounded. For a pair of sets A4, B we use the notation 4<B if there
exists a subset B’ of B such that 4~B’. We have the following pro-
perties.

(7) A< A.

(8) A<B and B< A imply A~ B.

(9) A<B and B<C imply A<C.

(10) Ac B implies A< B.

(11) If a set 4 is T-unbounded and 4 < B then B is T-unbounded.

A proof of property (8) is similar to the Bernstein’'s method in general
theory of sets. Property (11) means that the equivalent relation ~ pre-
serves T-boundedness of measurable sets. The ordered relation < is not
totally ordered but we have the following lemma.

LemMA 1. For a pair of T-bounded sets {4, B) there uniquely exists
a pair of subsets {C, D} of G T"A with the following properties.

1) Sets C, D are mutually disjoint and T-invariant.

2) CUD= U T"A4.

3) For any T-invariant subset C’ of C, BNC'<<ANC’ and BN C’ is not
T-equivalent to AN C'.

4) For any T-invariant subset D’ of D, AND'<BD'.

Proor. We inductively define sets as follows.
A=A, B =B, A,=A B, B,=ANB,
At = A1— 4, B'= Bi-'—B,_,,
A=A T'B, B, =T"4' () B, i=1,2,... ,
A'= (4 =A— 1A, B'= (| B'=B—3B,
=0 i=0

i=0
A, =A'*(T'B' B.,=TA'() B,
At =A4""*1—4 .., Bt'=B—_B .,
A, =A"'"(T'B* B.,=T'A"'() B, i=1,2,.... ,
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A*=A— 3\ 4, B*=B— 3 B,

=00 i=—oo

C= () T'4a*, D= |) T*4A—C.

Properties 1) and 2) are evident. For any non-vacant T-invariant subset
C' of C let us assume B¥(1C'#¢. Since B¥*(1C'= U (B*(\T"A*NC") we
have T"A*(1B*\C'£¢ for some nand T'A*(\B*(\C'CT'A-"(\B-"=B.,. This
contradicts to the definition of B*, and so B*(\C'=¢. Since a set B(\C’'=
SYB,(C is T-equivalent to a set A ﬂC’—A*ﬂC’=timAiﬂC’ and A*(\C’

i=—oo

7¢ and since a set A4 is T-bounded, we have property 3). Since for any
T-invariant Subset D’ of D a set A\D'= i A, D' is countably T-equiva-

1=—o

lent to i B,\D’ which is a subset of B(\D’, we have property 4). The

i=—o0

uniqueness of the choice of a pair {C, D) is obvious. g.e.d.

LemMma 2. For a pair of T-bounded sets A4, B there uniquely exists
a countable sequence of T-invariant sets 2, 2,,...... T S which satisfy
the following properties.

) U2= U T'4and 2,012,~6, ntm, n, m=1,2,......
n=0

n=—o0

2) There exist countable disjoint subsets B,, B,,...... , Bi...... of B such
that 2,NB~2,N4, i=1,2,...... , n; n=1,2,...... and that for any non-
vacant T-invariant subset £/, of 2,, B*N2',<<4ANL’, and BrNL’, is
not countably T-equivalent to AL, for n=1,2,...... , where Bf=B and
B;,“=B—"‘ZIBi, n=1,2,......

Proof follows from Lemma 1.

For a pair of T-bounded sets 4, B we define a function which has a
value n on &£, defined in Lemma 2 and denote it by [B/A](w), i.e., [B/A]
(@)=n for we 2,, n=1,2,...... . [B/A] (®) is a T-invariant measurable func-
tion defined on G T"A and has the following properties.

n=—oco

LeEmMMAa 3. Let 4, B and C be T-bounded sets.
1) [4/B](w)-[B/C](») < [4/C](») < {[4/B] (@) +1) ([B/C] (0) +1)
for we (”QNT"B)n(anT"c) :
2) If A and B are mutually disjoint,
[4/C] (@) + [B/C] (0) < [4+B/C] (@)
< [4/Cl (@) + [B/C] (@) +1,
for we G T C.

fn=—o0
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3) If A~B, [4/C](w)=[B/C](w), for we U T C.

=0

Proof is omitted.

LemMa 4. Let T be a non-singular transformation of a measure
space (£, %, P). If T is conservative, then there uniquely exists a pair
of T-invariant sets II, A with the following properties.

1) The space &£ is a disjoint union of IT and A.

2) There exist countable sets IT,, IT,,...... , I ... such that
n-3(Srm) (disjoint sum).
3) There exist countable sets A4;, 4,,...... s Ayyerenen such that
A= i_DwT’A,, ., n=12 ...
and [A,/A4,.] (@) =2, for weA.

Proor. We put U=(De¢| P(TD\D)=0) and sup P( 0 T D=p.
De

n==—oco

We may assume p>0, and then there exists a sequence of sets D,, D,,......

such that D, e and P( 0 T‘D,,>>p——3'?, n=1,2, ....... Put D= {J (Du—
j=oo n=1
n-1 oo oo oo
U 0 7D,), then D&y and P( T D)=0. Put B=D, C,= [ T D and
=8—C,, then [C,/B)](w)=2 for we C, and TQ',=Q’', for any subset Q’,
of Q,. For n=23,...... applying the above discussion to an induced trans-

formation T, on B,_; we obtain sets B,, C,= D T;,., B,and Q.,=B, ,—
{=—c0
C, such that T,,_ B,N\B,=¢ and T, _, Q',=Q’, for every subsets Q’, of

Q,. Therefore, [C,/B,](@)=2 for we G T'B,, n=2,3,...... and there exist

i=—ca

countable disjoint sets Q,;, Q.z...... with the following properties.

Qa =§‘:in» n=2,3, ...... .

TQ., j=012,.... , i-1 are mutually disjoint,
for i=1,2,.... and n=23,...... .
TQ',,=Q',, for every subset Q’,, of Q. .
Put I= [ N T'Q, H=Qi+Qu+Qut.e and I,=Q,,+Quut..cc.., n=
2,3,..... , then property 2) is satisfied. Put A= ﬁ Lj TB, and A4,=B.,(
n=1l {=-—co
( ﬁ B,) , then properties 1) and 3) are satisfied. g.e.d.

Sets I and A are said to be the periodic part and non-periodic part,
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ProposiTioN 1. (E. Hopf) Let T be a non-singular transformation
of a o-finite measure space (2, %, P). There exists a finite T-invariant
measure u which is equivalent to P if and only if £ is T-bounded.

Proor. It is easy to show that if £ is T-unbounded there does not
exist a finite T-invariant measure equivalent to P.

Assume that £ is T-bounded, then T is conservative. We construct a
finite T-invariant measure u on the periodic part II as follow;

u(E) =§‘(PT(—I'I€§H’ for a measurable subset E of

Tik,,i=012,..... , n=1,2,.... .
From Lemma 3.1), we have
[E/A)(0) - {[E/A.] (@) +1){[A,/A] (@) +1)
[4/4,] (@) = [4/4.]) (@) - [4:/4:] (@)
for h<k, ECA and we A.

Lemma 3.1) and Lemma 4.3) we have [4,/A4,] ()= 2%,
Then first making k1 oo, and making %1 o, we have

T E/ A (@) 1im [E/A4] (@)

e [A/4,] (@) = pew |A/4,] (@)
Put fo(w) = Im s
measurable and 0 < f:(@)<1. We can assume P is a finite measure. We
define a finite set function x as u(E)=[fz(0)dp(w) and show that u is o-
additive, T-invariant and equivalent to P. For any measurable set E with
P(E)>>0 and for any positive integer n, put C,= {m € ;:ll T'E|[A/E] (w)gn}.
From ([A/E](@)+1}([E/A.] (@) +1}=[A4/A4.] (@)=2"", we have [E/A](0)=

z—-1

EcCA, Ee %, then the function f;(w) is

nii -1, e C,, k=1,2,...... . For any integer k such as 2*-'/(n+1)=2 and

h=k we have

[E/Ay] (@) - [E/A] (@) - [Ar/A4] (@)
[4/4,] (@) = {[4/4.] (@) +1} ([4/A44] (@) +1}

1
[4/4.] (@) +1

=

x—%—>0, weC,.

This implies that f;(®) is positive for we Lj T‘E and u is equivalent to
jm—o
P.
It is easy to verify that f:(®)=fr(w) for a pair of sets E, F which
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are mutually countably T-equivalent, and that if f:(®)<fr(®) then EZF.
This implies T-invariance of u.

From Lemma 3.2) we have fi.r(@)=f:(0)+f:(®) for any pair of
mutually disjoint sets E, F. Hence, we have f‘_, Se, (@) Zf %5, (@) for

n=l n=l
mutually disjoint, countable sets E,, n=1,2,...... . Assume that P(m1
f3e,(@— ifgn(cu)> e ) >0 for some positive number ¢. There exists
n=1 n=1

integer & such that 0< f4,(0)<le for we A4, because

[A/A) (@) s [4/A] (@)

Im 7 @) = U2 T4 (@) - [,/ 4] @)
1
S 2h—1 *

Choose an integer n such that P(D,)>0 where D,,={a)

3 f2(@) < fuy (@

and f‘gE,(m)—i‘,fE,(m)>e} . We obtain a subset E’,,, of A4,(1D, such
1=1 =1
that E’,.,~E,..\D,, because fz,, ap, (@)<f1,00,(@). Inductively we obtain

mutually disjoint subsets E’,.; E',i5...... of 4,N\D, such that E',~E,ND,,
i=n+2, n+3,...... . It follows that

[35@=351@) =1 3 a(@— 3 fr,()
S/5.m@
gf-§+15'4 (CD)

i

</ (@) <e, weD,.

This is a contradiction. Hence, f g g,(®) = f‘, fz,(@) and u is o-additive.
f=l i=1
This completes the proof. qged.

§4. Equivalence of the Hopf’s condition and the Hajian-Kakutani's condition.

Let T be a non-singular transformation of a measure space (2, %, P).
A measurable set 4, P(4)>0 is said to be weakly wandering if there
exists an increasing sequence of positive integers {m,, n,,...... s Migeeens } such
that TH*ANT"A=¢, i-#~j, i, j=1,2,...... .

Hajian-Kakutani [9] showed that T has a finite invariant measure if
and only if there does not exist a weakly wandering set. In this section
we directly prove the equivalence of the Hopf’s condition (boundedness)
and the Hajian-Kakutani’s condition (non-existence of weakly wandering
set) without using the finite invariant measure.
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A measurable set A4 is said to be finitely T-equivalent to a measurable

set B if there exist a finite partition A4,, A,,...... , A, of A, a finite parti-
tion B, B,,...... , B, of B and k integers n,, n,,...... , n, such that T*A4,=B,,
i=1,2, ...... . We define set functions ¢,, n=1,2,...... and ¢ as follows;

g,(A) == ZP(T‘A) n=1,2,...... ,
o(4) = ll_rgan(A) R Ae 7.

n-sco

Lemma 5. 1) o is a super-additive set function, i.e., for any mutual-
ly disjoint, countable sets 4,, i=1,2,...... ,

o(54)=3 4.
i=1
2) If A is finitely T-equivalent to B, a(4)=0(B).
Proor. 1) Since ¢, is finitely additive, i.e., an(i A,-)=‘Z,“a,,(A,»),
i=1

i=1
m=1, 2,...... , n=1,2,...... , we have

=g(iA,.)gg(zA,.), m=1,2....

i=1

2) Let A= Z‘,A,, B= ZB and T™A,=B,, i=1,2,...... , k. For any inte-
ger n larger than max{n |1<z<k} we have

0. (D=0, (B = LS ran - Hras)|

I

LISE S (paray - P(TB)}\

_ % 5 {”—IP(T‘A y— Z}P(T“”!A )} ’
(2

P(Ti4)—" z; P(TA,)‘

Since the last term tends to 0 as n—>co, we have 2), qg.ed.

LemMa 6. If 2 is T-unbounded there exists a measrable set E such
that P(E)>0 and ¢(E)=0.
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ProoF. Assume that 2= 3\A, THANT"A=¢, i#j, i, j=1,2 ...
i=1

o0

and p(g— 'Z;T"iAi) >0. Put Ey=@— T4, and E,= (.Q——’ZIE)— A

i=1

n-1
((.Q— EE,)(]A,-), n=2,3,...... then {E,|n=1,2,...... } are mutually disjoint
i=1
and mutually countably T-equivalent. Since i‘,a(E,l) <o)<+, lim
. n=1" - n—oo
g(E,)=0. Since E, is countably T-equivalent to E,, n=2,3,...... there exist
a subset E,, of E; and a subset E,; of E, such that E,, is finitely T-equiva-
ent to E,, and P(El—Em)<2%, n=2,3,..... where P(E)=a>0. Put E=

ﬁ E,, the we have
n=2

P(E) 2 P(E)— S P(E:—E)Z a—§ >0 and
d(E) éf(Eln) = q(Enl) §Q<En) ) n= 2, 3, ...... .

Since the last term tends to 0 as n—oco we have g(E)=0. g.ed.

LemMmA 7. (Hajian-Kakutani [9]) If P(E)>0 and lim P(T,E) =0,
there exists a weakly wandering subset of E.

Proor. Put P(E)=u«>0, a‘:iz%f’ i=1,2,...... and n,=0. Since lim

o0

P(T"E)=0 we obtain a positive integer n, such as P(T"E)<a;. By the
same discussion we obtain an increasing sequence of integers n,, i=1,2,...

such as P(T""E)<et, j=0,1,crer; i=1, i=1,2... Put A= U T

i=1 j=0

ENE, then P(E—A)>%—>0 and E—A is a weakly wandering set. gq.ed.

ProrosiTION 2. Let T be a non-singular transformation of a measure
space (2, #, P). The set £ is T-bounded if and only if there does not
exist a weakly wandering set.

Proor. Assume that E is a weakly wandering set. Then there
exist a sequence of integers ny, n,...... T such that T*ENT"“E=¢,

i#+j. We have S( lj T”‘E)= G T“E where So=T"+" %@ for weT™"E, i=
i=1 im2
1,2,...... . So, G T"E is T-unbounded and then £ is T-unbounded. If £ is
=1

T-unbounded, there exists a weakly wandering set by Lemma 6 and
Lemma 7. g.e.d.
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§5. Associated flow and o-finite invariant measure.

In this section we use the terminologies “Lebesgue measure space”
and “measurable partition” in the sense of Rohlin [22].

Let T be a non-singular transformation of a Lebesgue measure space
(2, #, P). We define a non-singular transformation T of the product
measure space (2XR, FXxZF(R), dPxdu) as follows;

(o, u) = (Tco u+10gdPT(a))), (0, u) e 2xR.

Let ¢(T) be the measurable partition which generates all T-invariant
measurable subsets £xXR. For —oco<ls<+o0, put 6,(o, #)=(w, u+s), (o,n)

e 2xR, then the flow {6} wcscs commute with T, ie., for —oo<s<+oo,

0.T (w, u) = T0,(w,u), (0, u) e 2XR.
We can define the factor flow (f.}-wcscsw Of {05)—wcscsw On the quotient
measure space 2XR/¢ (f). This is a measurable, non-singular flow with

respect to any o-finite measure which is equivalent to the image measure
of dPxdu.

DEFINITION 2. We call the factor flow (8,)_.<s<... the non-singular
flow associated with the non-singular transformation T, or simply the
associated flow of T.

We note that the associated flow () _wcscsw Of T is ergodic if and
only if T is ergodic.

TaeoreEM 1. If non-singular transformations T and T’ of Lebesgue
measure spaces (2, %, P) and (£, &', P'), respectively, are mutually
weakly equivalent, then their associated flows are mutually strongly
equivalent.

Proor. Let y be a 1-1 mapping from £ onto £’ such that v F =
&, YP~P' and y[T]=[T"]y. Put (o, u)=(1//co, u+log dgl';/’ (w)). Then
v is a 1-1 mapping from £XR onto £’ X R and satisfies that for —oo<ls<
+o0, y0,(@, 1) =0y-(0,u), ae(w,u)e2xR. It is enough to show that
f(¥(w, ©)) is a [T]-invariant measurable function for any [T’]-invariant
measurable function. For Se [T] and §'=vSyte [T'],

dPS

f(w,k(sa) u+logdPS (m))) (yrSw u+log (@) +log dP‘[' (Sw))
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= f |8y, ut+log dPS(w)H gdi;}gs‘[’( ))

TdpP

(
f( "yo, u+log = aP's (wa))+logdp V’(w))
(

S’(x/rco u+log ds;}h (w)))
f (o, w) .

II

g.ed.

THEOREM 2. Let T be a non-singular transformation of a Lebesgue
measure space (£, %, P). The following three conditions are equivalent.

(1) There exists a g-finite T-invariant measure equivalent to P.

(2) There exists a measurabl function f(®) such that

T((@, u+f(@)|we ) = ((o, u+f(@)]|we L)
for —co<<u< +oo

(3) The associated flow {ﬁs}_,,q«,, of T is strongly equivalent to a
flow of translation type.

Proor. Let g be a g¢-finite T-invariant measure which is equivalent

to P. Put f(m)=——log—g—"1;— (®) we have

deT ( dPT d/JT

f(0) +log w) = —log dl}i (@) + Iog ((o) +log 2 (w) + log (co )

dPT
logd T (o)

=f(TCO) »
which means that f(w) satisfies (2). Similarly let f(w) be a function
satisfying (2) and let # be a measure equivalent to P such that — (cn)

exp(—f(®)), then we have log (co) 0 which means that g4 isa T-

invariant measure.

Let f(w) be a measurable function satisfying the condition (2) and
let {(T) be the measurable partition of £ which generates all T-invariant
subsets of £. Then

T = {{(0, u+f(@))|we Coir) | —o0 <u< o, Co e &(D)) .

It is easy to see that the associated flow (#.)-wcscs Of T is strongly
equivalent to the flow {¢;)_...;<40 such that

d(x, u) = (x, uts), (x, ) e (/CT))XR.
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Let ¢ be a strongly equivalent mapping from the associated flow {9}} —cos<te
of T to a flow of translation type on a product measure space XX R, p be
the projection mapping from XX R onto R such as p(x, #)=u, (x,u) e XXR
and let = be the canonical mapping from £xR onto the quotient space
2XR/E(T). We have

pyn(w, p) = pynb. (o, 0)
= pyb.7(o, 0)
=pyr (w, 0)+u, (x, ) e 2XR.

Then for almost all we £, there uniquely exists a real number # such as
pyn(w, u)=0 and we denote it by f(w). Furthermore we have z !y ~p-!
(o) ={(o, f(w))|we Q). From zT=z, we have

T{(o, f(®))|we2) =Ty p ' ({0})
= -y~ 1p1({0))
= {(0, fle)|we Q).

This completes the proof.
qg.e.d.

LemMMA 8. Let T be a non-singular transformation of a Lebesgue

measure space (2, #, P). If there exists a positive number K such as

log dfPTl(w) <K, —co<n<+co, ae. we 2, then there exists a finite in-

dpP
variant measure g equivalent to P.

Proor. For a positive number a let A={(o, u)||u|<a) and A=
U T"4. From the asumption we have

AC (o, w||u|<a+K) .
This means that for [s|>2(a+K), 0,40 A=¢. Since G 0,A=82 xR, we

s=Zeo
can easily show that the associated flow {f,}-.<scsw iS Strongly equivalent
to a flow of translation type. Furthermore, since the function in (2) is
bounded the T-invariant measure u is finite.

g.ed.

ProposiTioN 3. (L. Arnold [1]) Let T be a non-singular transfor-
mation of a Lebesgue measure space (2, #, P). There exists a g-finite
T-invariant measure gz equivalent to P if and only if for every &£>0 there
exists a countable decomposition {2,} of £ with the following properties;
for each i, for each measurable subset B of £, and for each integer n such
that T*"BC&,;, it holds that
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1 dPT*
1T5<71T (w) <1+e, ae. weB.

Proor. Assume that there exists a o-finite T-invariant measure
equivalent to P and let f(w) be the function of (2) of Theorem 2. Put
£,={w]i log(1+¢) < flw) < (i+1) log (A+e)), i=0, +1,...... , the decomposi-
tion {£,} of £ satisfies the desired property. Conversely, for each i the
induced transformation T,, on £, of T has a finite invariant measure by
Lemma 8. Therefore T has a ¢-finite T-invariant measure which is equi-
valent to P. q.ed.

§ 6. Characterization of flows of translation type and existence of o-finite in-
variant measure.

We shall use the following well-known results to prove Theorem 3.

Lemma 9. ([4]) Let I' be a polish group and I’y be a closed sub-
group of I'. Then there exists a Borel subset B of I' such that B inter-
sects each right I',-coset in exactly one point.

Lemma 10. ([22]) Let ¢ be a measurable partition of a Lebesgue
space (X, &, m). Then there exists a measurable subset M of X such
that M intersects each element of { in exactly one point mod 0.

LemMma 11. ([19]) Let ¢ be a 1-1 measurable mapping whose domain
is a standerd Borel space and whose range is contained in a measurable
space with a countable and separating base. Then the range of  is a
measurable subset and y-! is also measurable.

LemMA 12. ([18]) Let (2,#, P) and (&', #’, P") be o-finite measure
spaces and f(w, ®’) be a bounded function such that
1) for each o, it is &#’-measurable and P’-integrable,

2) for each E’eﬁ",J f(®, ®")dP'(o') is F-measurable. Then there
N

exists an & x #7’-measurable function f(w,®’) such that for almost all
o, f(®, ®)=Ffo, o) except a w’-null set.

LemMma 13. Let £&(f) be a real measurable function defined on R
such that
exp iE(t+7) = exp i(t)-exp i€(cr), a.e.(t,7),

then there exists a real constant ¢ such that
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expif(t) = expict, a.et.

Proof is omitted, because it is easy.

LemMa 14. Let {¢.)-w<s<s be a measurable, non-singular flow of a
probability space (X, &, m). Then

@ [0V T ) ~ t400Y Ty [amz) > 0
as s— s, for fe LX(X, &, m).

@[50 —h(gex) "dm(x) =0
as s—s, for he L (X, &, m).
Proor. (1) We put a(s, x)= d;"ﬂ?‘(x) and for N>0 ay(s, x)=a(s, x)
if 0<a(s, x)< N and ay(s, x)=N if a(s, x)> N which are (s, x)-measurable
functions. We denote by U, the unitary operator (U.f)(x)=f(¢x)v a(s, x).
For }s|<1 and fe L*(X, &, m) with |f(x)|<C,

018 = [ 1| Vo YU P8 | e

<2c| 11V aln ==/ ay, ) |l o du

+J | f(esux) v an(s+u, x)—f($sx) Viay(s, x5 | 2wy .

For any ¢>0 there exists N such that

2

J | v aCu, x)—v oy, x) || 2 du < €.

From the Fubini’s theorem

[ 17 s 2 =Sy o Gy 3) 1 20

<{[an ] 1eur @ Hw R B a1 )
From the Riemann-Lebesgue’s theorem
[ 17y @GTu 3= 190 @l %) |7 du =0

as s—0, a.e.x.

Therefore from the Lebesgue’s convergence theorem

J'dm (x)J | F( s XYV T (5T, XY —f(bur )V @ (i, %) |2 dit = 0
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as s—0. Since U, is a unitary operator,
HUsf=fll L2y >0 as s—0
for fe L*(x, <&, m).
(2) For he L*(x, m) with |h(x){<C,

H h(¢s+sox) —h<¢sox) “ L%m)y
< ” h(¢s+sox) - Ush(¢sox) I] L2m T ” Ush(¢sox) —h(¢50x) ” L2(m)
S CH1I=Ud || r2m + || Ush(@5g%) — (5% || L2 -

From (1), we have

|| B($sx) —h($sX) || 12w =0 @S $—>5,.
g.ed.

THEOREM 3. Let {¢,}-wcs<+» be a measurable non-singular flow of
a Lebesgue measure space (X, &, m). Then it is strongly equivalent to
a flow of translation type if and only if o({¢;})=R.

Proor. We note the set of all point spectra is invariant under the
strong equivalence of non-singular flows. Let {@;)-w<s<s be a flow of
translation type of a product space YXR. For any teR put &(y, u)=tu,
then we have

exp i& (¢,(y, #)) = expits-exp i&(y, u), (v, u) ¢ YXR, S
This means that o({¢;})=R.

Assume that ¢({¢;})=R. First we show that there exists a (¢, x)-

measurable function expi§(¢, x) such that for -=<s<+=
™ exp i&(t, p;x) = expits-exp if(t, x), a.e. (2, x).

We assume that m is a probability measure. Let I' be the set of all
complex valued measurable functions with absolute value 1 on (X, <, m)
and I', be the set of all {¢)-invariant functions of I'. I' is a complete
separable metric space under the relative L?(m)-topology on I'. Under
the multiplication, I is a topological group with respect to this topology
and I', is its closed subgroup. From Lemma 9 there exists a Borel subset
B or I' which intersects each coset of the guotient space I'/T", in exactly
one point. We denote by = the canonical mapping from I" onto I'/T", and
denote by 7|, the restriction to B. For each —oo<s<(+c and Eec % we
denote by 7, a function

exp ()T~ exp i(8(8,0)~ )Y () dm(x)

defined on I'/I",. Since
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[ (expite (60 —& () —exp (@0 —6C0)) ¥ e (x) dm(x)

gz( J [exp &' (x) —exp i£(x) |*dm(x) )5’

the function 7,;-7w|; defined on B is continuous under the relative L*(m)-
topology on B. Let £ be the smallest ¢-algebra of I'/I", such that every
function 7.z, —oco<s<(+oo, Ee & is measurable, We prove that £ has a
countably separating base. It is enough to show that for a countably
separating base (E,},.. of & and a countable dense set & of R, £ is
generated by {r,,|se 3, n=1}. From Lemma 14, for se R and Ee <7, there
exist s,e% and E, such that

TspEmy (EXD iE()I) > 1o z(expi(-)I), as n—oco.

Since 1y p 7|z, —oo<s<{+oo, Ec & is continuous, =|p is measurable under
the g-algebra generated by the relative L*(m)-topology of B and the o-
algebra £. From Lemma 11 the inverse mapping x|3' is also measurable,
For each te R, let I', be the set of all measurable solutions expié(.) of
the equation, for —oo<{s<{+co,

exp i&(¢.x) = expits-exp if(x), a.e.x.

Then I, is a coset in I'/I",. By a we denote a mapping t—I', from R
into I'/T’,. Since the function

7oz a(l) =J expits d—;,”'% (x) dm(x)

is z-continuous for each —oco<(s<(+oo, Ee &F, the mapping a is measurable.
For each Ee < we denote by yr a function

exp () [ expig(x) dm(x)

defined on B. It is continuous under the L?(m)-topology. Since «, x|z
and 7y, are all measurable, the function TE-n|§‘-a(t)=L exp i&,(x)dm(x) is
t-measurable for each Ee <, where exp i&,(-):nl;‘l’,.‘ From Lemma 12
there exists a (¢, x)-measurable function expi€(¢, x) such that for almost
all 7, exp i&(t, x)=exp i€, (x) holds except an x-null set. Then the function
expi&(t, x) satisfies the equation (*).

From Lemma 10 there exists a measurable subset M of X such that
M intesects each element of a measurable partition ¢{({¢;}) which gene-
rates all {¢@,}-invariant subsets of X, in exactly one point mod 0. We
denote by ¥ the canonical mapping from X onto M. Then the function

exp i&(t, x) = expi{& (¢, x)—£&(, Vx))
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belongs to the coset I', and satisfies for almost all x
exp iE(t+r, x) = exp iE(¢, x)-exp i&(r, x), ae. (t,71).

From Lemma 13 there exists a real measurable function £(x) such that
for almost all x

exp iE(t, x) = exp itE(x) , a.e.t.

Since exp i&(t, -) belongs to the coset I',, we have for —oo<s<{+oco and
for almost all x

exp itE(¢x) =exp its-exp itE(x) , a.e.t.
Therefore we have for —oco<{s<{+o0
E(px) = E(x)+5, a.ex.
Define a mapping v from X onto MXR such that
vx = (Vx, £(x)), xeX,
then v is 1-1, bi-measurable and for —oco<ls<{+o0
vox = (Vosx, §(¢x)) = (¥Vx, £(x)+9) .

This completes the proof.
g.ed.

THEOREM 4. Let T be a non-singular transformation of a Lebesgue
measure space (£, %, P). Then there exists a ¢-finite T-invariant measure
which is equivalent to P if and only if for any real number ¢ there exists
a real measurable function £(w) such that

exp i£(Tw) = exp it log‘% (@) -expif(w), aew.

Proor. Let ¢ be a point spectrum of the asociated flow {@}-ccscse
of T. Then there exists a T-invariant measurable function &(w, #) such
that for —oco<{s<{+oo

expi€(w, u+s) = exp its-exp i§(w, u) , a.e.(w, u) .

Using the T-invariance of the function we have

exp i&(w, ) = exp iE(Ta), u+10g‘£5pl (co))

= exp it log %ZZ: (0)-exp iE(Tw, u) , a.e. (w,u).

This means that —&(w, ) satisfies the equation of Theorem 4 for almost
all u.
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Conversely, let £&(w) be a measurable function satisfying the equation of
Theorem 4. The function expi{tu—&(w)} is T-invariant and satisfies the
equation which means that ¢ is a point spectrum of the associated fiow
{#s) —wcsceer Then the proof follows frow Theorem 2 and Theorem 3.
g.ed.
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