SN KREZZ2MTIER Y R b

Kyushu University Institutional Repository

Equivalence of Measures and Classification of
Groups of Non-singular Transformations

Hamachi, Toshihiro
Department of Mathematics, College of General Education, Kyushu University

https://doi.org/10.15017/1448979

HERIER @ LN KEZHEIRMEMEE. 10 (1), pp.21-44, 1975-08. College of General Education,
Kyushu University
N—=2 3

HEFIBAMR



Math, Rep.
X-1, 1975,

Equivalence of Measures and Classification
of Groups of Non-singular Transformations*

By Toshihiro Hamachi
(Received April, 30, 1975)

Contents

1, INLrOdUCEION sre-vtreterrrmrrerieitieitieae it ibiiiiecasrriartesaetas e enrrnneraniasesasineons
2, PreliMIMATIOS ceeeetrrroranmntmttieateiaitiietiitteetaiii ittt os e aaattaterrieenerreesaeaiannes
3. An invariant TUG) covnreemmmi
4, II1, 0<C2<1, 111, and III, .
5. Equivalence of quasi-product MEaSUIEs s sererrrereerrsiiiiininniiiii 31
6, Clssification of IPT transformation groups I «eeerrreeeiiiiniin.... 37
7. Classification of IPT transformation groups IT.ce.oooeoviiiiiin 39

RO O @ IS v e vttt ittt iit it itiutestnesereaienneiasassseesnnssesssseeresesarsossassossisaron 44

§1. Introduction

By a non-singular transformation of a Lebesgue measure space (2, &,
P) we mean a bi-measurable 1-1 transformation of £ onto itself that
preserves null sets. For a long time, it had been an open problem to find
an example of a non-singular transformation without an invariant measure.
The first example was affirmatively given by D. S. Ornstein [13] in 1960.
This was followed by other examples of R. V. Chacon [4], A. Brunel [3],
L. K. Arnold [2], C. C. Moore [12], O. Takenouchi [15] and D. Hill [6].
It is necessary for us not only to give such an exampl but also to investi-
gate the structure of such transformations. Also it is useful for the
classification problem of factors of type III in the theory of von Neumann
algebras.

This thesis concerns with the classification of groups of non-singular
transformations without an invariant measure under the weak equivalence
relation. Two groups G and G’ of nonsingular transformations of (2, &,
P) and (£’, &' P') respectively, are said to be weakly equivalent with
each other if there exists an isomorphism ¢ from £ onto £’ such that
¢[Gle'=[G'] where [G] ([G']) is the group of all G (G')-orbits preserv-
ing transformations.

* This is the doctoral thesis at Kyushu University.
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W. Krieger [9] [10] introduced an invariant r(G) for the classifica-
tion. We shall obtain a more detailed classification by introducing a new
invariant T(G), the definition of which is based on the homological equa-
tion appearing in the invariant measure problem. By this it becomes
possible to classify groups of nonsingular transformations of type III,, to
which the set r(G) of Krieger is not applicable.

We also discuss the equivalence of measures on an infinite product
space. We shall obtain a nice criterion for the equivalence of a g¢-finite
measure with product property and an infinite direct product probability
measure in terms of some convergence of independent random variables.

We now want to emphasize that this criterion for the equivalence of
such measures and the invariant T(G) are closely related with each other
and make important roles in classifying certain class of non-singular
transformations without an invariant measure, which includes examples
of D. S. Ornstein and others mentioned before.

Before stating our results we note that the algebraic invariant T(M)
of a factor M of A. Connes [5] which is based on the Tomita and Take-
saki's theory of generalized Hilbert algebra, corresponds to T(G) in the
sense that M is a crossed product factor W*(G, L= (£, P)) associated
with a group G of non-singular transformations.

Qur main results are the followings. In section 3 we define the set
T(G) for every group G of non-singular transformations, which is invari-
ant under the weak equivalence relation and is an additive subgroup of
R. Given any countable subgroup I' of R, we construct in section 4 an
ergodic group G of non-singular transformations of type III, such as
T(G)=I" (Theorem 4.2). In section 5 a criterion for the equivalence of
a quasi-product measure and an infinite direct product probability measure
is established in terms of almost sure convergence of infinite direct
products of independent, positively valued random variables (Theorem
5.1). In sections 6 and 7 we concern with a class of groups of non-singular
transformations of infinite product type (hereafter referred to as IPT
transformation groups). Such groups of non-singular transformations
correspond to ITPFI factors of Araki-Woods [1]. Using a useful criterion
for the equivalence of measures of section 5 we obtain a necessary and
sufficient condition for the existence of an invariant measure of an IPT
transformation group in terms of almost sure convergence of infinite
products of independent random variables (Theorem 6.1) and apply it to
show that examples of D. S. Ornstein and others are of type III. In the
last section we characterize the set T(G) of an ITP transformation group
G in terms of almost sure convergence of infinite products of independent
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random variables (Theorem 7.1).

Using this criterion we construct a new example of an IPT transfor-
mation group G of type III,, the set T(G) of which is the countable addi-
tive subgroup generated by dyadic points (Example of section 7).

§2. Preliminaries

Let (2, &, P) be a Lebesgue measure space with P(2)=1([14]). Finite
or o-finite measures # and v defined on % are said to be equivalent with
each other, pu~v, if u(4)=0 if and only if v(4)=0 A€.%. A bi-measurable
1-1 transformation g of £ onto itself, that is g 'F =g =%, is said to be
P-non-singular (or simply non-singular) if Pg~P, where Pg(A)=P(gA) A€
. For a countable group G of non-singular transformations of (2, &, P)

we denote by —dv (w) g€ G the Radon-Nikodym density of a measure Pg

with respect to a measure P. A function %P (w) is positively valued and

satisfiies
P(ehB) = P(g(iB)) = | A8 (@) ap(a) =[ ¥ (ho) & (@)aP(0) BES

So we have

dPgh (@ dPg dPh

)—»— (h) (0) a.s.w, g heG,

A measure g defined on (£, %) is said to be invariant under G if ug(A)=
u(Ad) AeF, geG. A measrable function f(w) on (2, &, P) is said to be
invariant under G if f(gw)=f(®) a.s5.w, g€ G. G is said to be ergordic if
every invariant measurable functions is constant a.s.®. We denote by
[G] the group of all non-singular transformations g€ G of (&, &, P)
satisfying that there exist measurable sets A4, n=1,2, and nonsingular
transformations g, € G n=1,2,--- such that 2= Dl A, (disjoint) and g(w)=
g, a.5.0€A, n=1,2,---. [G] is said to be tﬁwe full group of G. Two
countable groups G and G’ of non-singular transformations of (2, &, P)
and (£2’, &7, P’) respectively, are said to be weakly equivalent if there
exists a bimeasurable 1-1 mapping ¢ from £ onto £’ such that ¢[G]l¢ =
[G’'] and P~Ple.

From now on our arguments are concerned with the case when G is
countable.

§3. An invariant T(G).

In this section we shall introduce a new invariant “T'(G)” for the weak
equivalence,
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DerFINITION 3.1. Let G be a countable group of non-singular transformations
of (2, &, P). We define the set T(P, G) as the set of all t € R with the following
property: There exists a & -measurable function expi &,(®) such that

dPg
exp(i(¢,(gw) —&,(w)) = exp|it log (@) a.s.o, gE€G.
We say “T(P, G)” a T-set of G.

TueoreMm 3.1. T(P, G) is an additive subgroup of R, and is invariant for
the weak equivalence,

Hence we may denote T(P, G) by T(G).

ProoF. Let ¢ and s be in T(P, G). Then

exp (i((£,(gw) —£:(g)) — (§:(@) —&:(@))))
= exp(i(&(gw)—&(w))) exp (—i(£.(gw) —&:(@)))

= exp (z’t log (co)) exp (—ts log dP g (w))

— exp (t(t—s)log dPg (co))

Therefore, t—s€T (P, G). It is shown that if P~Q then T(P, G)=T(Q, G).
Indeed, let f(w) be the Radon-Nikodym density 92 (w). Then,

exp(i((£.(gw) +1t log f(gw)) — (&, (@) +1log f(@))))
= CXUCE ()~ (@) exp Lo (/) )
— exp(it log 278 (@) Jexqit log (f(gw)f-'(@)))

(n log & d0g (w))

Notice that T(P, G)=T(P, [G]). If G and G’ of (2, &, P) and (2, F", P")
respectively, are weakly equivalent under an isomorphism ¢ then

T(P,G) =T(P, [G]) =T(P'e,¢7'[G'l@) =T(P,[G']) =T, G).

ProrosiTioNn 3.1. For the product transformation group GXG': GXG' =
(gR¢g; g€G, g€G) gR g (0w, 0)=(gw, go") (v, ®") € X2 we obtain T(Gx
G)=T(G)NT(G).

Proor. It follows from

exp (it logaup>‘<£><gpc,8> g (o, m’)) = exp(zt 1og (co) )exp (zt log d;};g’ (co’)) .
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ProrosITION 3.2. A real number t € T(G) if and only if there exists a o-
finite measure u, of (2, &, P) such that p,~P and

dug { 2w }
du, (w) € {exp n 0, +1, as. o, gEG.

Proor. “If” part. Let t € T(G) and let £,(w) be a measurable soluton of

exp(i(8:(g0) ~£:(@))) = exp(it 1og 4E (@))a. 5.0, g€G.
Putting dp, (@) = exp(— 5’(%)) dP(®), we have
exp(zt logd/”"g(a))) = exp(zt(log dp, A (ew) +1og £ dPg (@) +10g (m)))

= exp(it(—ﬂfﬂ +log iid};,i (o) + 51_(;0_)_))

=1,
The proof of “only if” part is evident.

Remark. By the virtue of Theorem 1.4.8 of [5] and Proposition 3.2
we have T(G)=T(W*(G, L*(2, P))), where W*(G, L*(2, P)) is the crossed
product von Neumann algebra associated with a group G of non-singular
transformations of (£, &, P) and so T(G) is an algebraic invariant of
W*(G, L*(2, P)).

§4. I, 0<<A<1, IOI, and IIT,.

4.1. Definitions of type III, 0 <21 <1, III, and III,.

Let G be a countable group of non-singular transformations of (2, &,
P). G is said to be of semi-finite type if it admits an equivalent o-finite
invariant measure and is said to be of type IIl if otherwise. It is easy
to see that if G is ergodic and of semi-finite type and if g and v are two
finite or o-finite measures on &, both equivalent with P and invariant
under G then there exists a positive constant « such that g=av.

Let G be an ergodic countable group of non-singular transformations
of (2, &, P), 1 be an equivalent measure on % and H be a subgroup of
[G]. A pair (u, H) is said to be an admissible pair of G if H is an
ergodic subgroup of x4 preserving transformations of [G].

For an ergodic countable group G of non-singular transformations of
type III of (2, &, P) we consider the following cases:

(III,) There exists an admissible pair (u, H) and the smallest number 0 <
A <1 such that
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%/;g’(m)e{x": n=0,+1,+2, -} a.s o, g€G.

(I11,) There exists an admissiblep air (u, H) without satisfying the cases
(III) 0 <A< 1.

(I11,) There is no such an admissible pair (u, H) as in 111, 0<CA<1 or
I11,.

It is clear that these cases are exclusive and exaustive. It is shown
that a parameter 4 of the case (III,) is independent of the chice of an
admissible pair (x4, H). For the proof it is enough to show the follow-
ing lemma.

Lemm 4.1.  Let (u, H) and (¢, H') be two admissible pairs of an ergodic
countable group G of non-singular transformations of (£, .7 P) If for some

0<A<1 gi((u)E{l”' n=0,41,) a5 geG, then % ‘8 @) e s n=
0, +1, «+} asw gEeG.

Proor. Let us denote by f(w) the Radon-Nikodym density d (co)
and by n,(®) the integer valued F#-measurable function such as d'l; g ()=

A"#® g€ G. Then we have

sty = W (@) 9 (@) 25 )

=f(w)/1‘”h ‘@ q.s5.0, WEH

12/
because %‘;’,’—— (w)=1 a.s. 0, B € H'. If 2=1 then f(w) is invariant. Since
H' is ergodic, f(w) is constant a.s. o. If 1 <1 then choose any numbers
A<e<d<1. The set {0; "¢ < f(o) < A"d for some m=0, +1,---} is H’-
invariant and then it has measre 0 or 1 since H’ is ergodic Therefore

for an integer valued measurable function m(w) and a constant ¢, f(e)=
¢ and

98 (@) = 1(50)- %5 (@)-f (@)

= Jr@oi-mwitng) g s, gE€EG.

ReMARK. The proof of this lemma means that if for an ergodic non-
singular transformation group G and a random variable Y(®), Y(gw)— Y (w)
is lattice distributed with span k,c where ¢ is a constant and %, an inte-
ger, g€ G, then there exists a constant a such that Y(o)-—a is lattice
distributed with span c.
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DeriNiTION 4.1. Let G be an ergodic countable group of non-singular trans-
formation of (2, F, P). We say that G is of type III, 0 <1< 1, III,, or III,
accordingly as the case (I11,), (II1,) or (111,) happens.

It is obvious that the type of G is an invariant under the weak
equivalence relation.

4.2. A characterization of type of groups of non-singular transforma-
tions by T(G).

THEOREM 4.1.  Let G be a countable group of non-singular transformations
of (2, %, P). Then
QO 176 = z'f G is of semi-finite type,

@ TG = Z if Gis of type 111, 0 << 1< 1 and

log X
3 T(G) = {0} if G is of type 111, .

LeMMA 4.2. G is of semi-finite type if and only if there exists a positively
valued measurable function f(w) such that

S@_ _dPe 4y 4.5.0, g€G.

f(gw)  dP
ProoF. A positively valued measurable function f(w) satisfies the above
equation if and only if du(w)=f(®)dP(®w) is an equivalent ¢-finite measure
and is invariant under G.

PrOOF of Theorem 4.1. (1). By Lemma 4.2, a measurable function
£(t, o) =—tlog f(w) satisfies

exp(i(E(t, g0) — E(t, @))) = exp(z’t log%l%f- (cu)) a.5.0, g€G and 1€R .
2, (3). Let (4, H) be an admissible pair of G. If

exp(i(€,(gw) —&,(w))) = exp (it log%‘;ﬁ (co)) a.s.o, geG, then

exp(i(€,(hw)—¢&,(®))) =1 a.s.0, h€ H, Since H is ergodic, a measurable
function exp(i§;(®)) is constant a.s. . Thus, t€T(G) if and only if

exp(zt logdﬂg (w)) =1 a.5.0, g€G. If G is of type III, 0<<A<1, then for

an integer valued measurable function n,(®) with ‘i,/;g (@) = 2% a. 3. @,

g€ G it follows that exp(itn,(w) log )=1 a.s.», g€G. Since {(n,(w); a.s. @

€ 2, g€ G} generates the additive group Z, exp(itlog A)=1. Therefore, t€
2

dug
Tog I Z. Let t be a nonzero number of T(G). Then from exp(ztlog dn



28 Toshihiro HAMACHI

(m)) =1 a.s5. 0, g€G, is follows that %/:Tg (w) € {exp %';i; n=0, 4_.1,...} a.5.0,

g€ G. This also means that T(G)={0} if G is of type III,.

4.3. Skew product transformations and type III,.

We are going to construct a group of non-singular transformations of
type III, whose T-set is a given countable subgroup of R. For this we
shall introduce a skew product transformation group due to W. Krieger
([11]).

Let G be an ergodic countable group G of type III, 0<A<1 of non-
singular transformations of (&2, &, P) with an admissible pair (u, H) and
U be an ergodic measure preserving transformation of a o-finite measure
space (X, #,v). We define the G, as the set of all non-singular transfor-
mations gy:

log, “—d"u‘-m)

gv(w, x) = (go, U x) g€G

of the product measure space (XX, Fx&, Pxy). It is shown that the
group Gy is ergodic. Indeed, let f(w, x) be a Gy-invariant & X< -measura-

du
ble function, that is f(gw, U'** 'df'(””x) =f(w, x) a.s. (w,x), g€G. Then we
have f(hw, x)=f(o, x) a.s. (o,x), h€ H. Since H is ergodic there exists a
Z-measurable function f(x) such that f(e, x)=f(x) a.s. (»,x). Thus we

du,
have f(Um"df(mx) =f(x) a.s. (w,x), g€G. Since the set {logl%;& (); a.s.

w€ER, g€ G} generates the additive group Z, f(Ux)=f(x) a.s.x. Since U is
ergodic, f(w, x)=f(x) is constant a.s. (w, x). Therefore, G, is ergodic.

ProrosiTioN 4.1. Let G be an ergodic group of non-singular transformations
of type 111, 0<A<1 on (2, &, P) with an admissible pair (u, H). Then for
sets A€F and B €., and for each integer k there exists g€ [G] such that

u(gANB) >0 and%‘ig_(w) — 1 weANg'B.
Proor. Let U be an ergodic measure preserving transformation of (Z,

m) defined by Ui=i+1 i€Z, m()=1. Then from the ergodicity of Gy,
there exists g, € [G,] such that

Pxm(gs(Ax{0}) NBx{k})>0.

Hence, P(gA\B)> 0 andfg‘ﬂi(m) —1* weANg'B.

PROPOSITION 4.2. Let G be an ergodic countable group of non-singular trans-
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Sformations of type 111, 0<<A<1 on (2, &, P) and p be an egivalent measure on
F  such that —‘2‘:}5 (w) € (A*; k=0,+1, .} a. s.w, g€G. Then the non-singular

transformation group K:
d,
K ——{ ; J’l g = LS.
g€ [G] p(a)) 1 asm}

is weakly equivalent with an induced ergodic non-singular transformation group of
[G,], where Ui=i+1 i€ Z, and hence {p, K} is an admissible pair of G.

Proor. Lét (4, H) be an admissible pair of G and let ifi‘f (@) = Ane®

and f’jp& (@) =A™, Since ,,“}’Zﬁ (go) = Ane@-ngo) —3/{’7 (@) and G is ergodic,
there exists a constant ¢ and an integer valued function /(@) such that
—ZZ— (@) =cA' from Lemma 4.1. Let E=k=l\l{(w, k) €E2%XZ; l(w)=—k)} and
let = be the projection n(w, k) =w from £2xZ onto £. The restriction |
of = on the measurable subset E is a 1-1, measure preserving mapping
from (E, uxvl]z) onto (£2,4). The ergodic non-singular transformation
group G, has the equivalent invariant masure A-du(w) dv(j), where v(j)=
1. The induced transformation group [G,]|:=(gv € [G,]; gvE=E} of the

measure space (E, uXy|gz) is ergodic and has an equivalent invariant
measure and satisfies

| :[Go] |em| 5= (g€ [G] ; I(gw) = (@) —n.(®) a.s.w.}

261613 8 @)= 2 () U @) 9 (@) |

— xl(gw)n&ng(w) -l

=1

P ——

=K

Thus, K is weakly equivalent with the induced ergodic non-singular
transformation group [G,] |z which admits an invariant measure and hence
(p, K) is an admissible pair of G.

REMARK. Let G be aner godic countable group of non-singular transfor-
mations. If T(G) =%Z 0<{A<1 then there exists an equivalent measure
u with —‘fi’;‘f (@) € {A*; k=0, +1,---} by Proposition 3.2. For such a measure

u G is of type III, if {gE [G]; %/Lg (w)=1 a.s. a)} is ergodic and G is of
type III, if otherwise from Proposition 4. 2.
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THEOREM 4.2. Let G be an ergodic countable group of nonsingular trans-
formations of type 111, of (2, %, P) and U be an ergodic finite measure preserving
transformation of (X, &, v). Then

Q) TGy = -—er——a(U), where o(U) is the set of point spectra s of U:
log 4
There existe h(x) € L*(X, v) such that

h(Ux) = exp(2nis) h(x) a.s.x.

(2 Gy is of type 111, if v is non-atomic, and
Gy, is of type 1ll;x if v has k atomic points.

Proor. (1) Let (u, H) bean admissible pair of G and let exp (i (5, (gw,

GHE

U ' au x) —&, (o, x)))-——exp(z‘t luzy‘grffi‘:jSi (co)) a.s.(w,x), g€G. Then exp(i(&

(hw, x) —&,(», x)))=1 a.s.(w, x), k€ H. Since H is ergodic there exists a
Z-measurable function &,(x) such that expif, (@, x)=expi&(x) a.s.(o, x).
Then we have

ool (0 5)-2)
= exp (z’t log% (co))a. s.(w.x) g€G,
and exp(i(€,(Ux) —§&.(x))) = expit a.s.x.

Therefore 2—;;60‘((]). Conversely, let s be a point spectrum of U with

f(Ux) =exp2ris) f(x) f(x) € L} (%, v).

Since U is ergodic, then for a constant ¢ f(x)=cexp(i§(x)). So we have
og dug ] .
exp (1‘ (E (Ul Tdu ¢ )x) —E(x))) = exp(Zn is 1ogffi";g (m))
a. s.(v,x), geG.

(2) Assume that vy is a non-atomic measure. Since ¢(U) is a counta-
ble subgroup, then by Theorem 4.1 we may assume T(G,)= —— - Z k=
1,2,---. If G, has an admissible pair, G, is of type IIl;x>. Since ¢(U)=
1 7 there exists a partition {4,),-o..r 0f X such that Ud,=A,,; 0<i<k—1.

k
Let duxv* (@, x)=4"duxv(w, x), x€ A;, then

U (@,x) € {*; n=0,+1,} a.s5.(o,x).

By Remark of Proposition 4.2
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{gUE[GU] "“i“ﬁgz( -1 a.s.(w,x)}

= {gy € [Gy] ; gv(w, x) = (hw, x) for some h€ H a.s.(w, X))

must be ergodic. But this is a contradiction.
Let v be supported by % atomic points and let ¥=(0,1,---k—1} and v(j/)=1.
duXv*g, (@, /)

It is easy to show that for a measure v*(j)=/11), {gg € [Gy] s Ao @

=1 a.s.(o, j)} is ergodic.

REMARK. W. Krieger ([11]) gave another proof of (2) of Theorem
4.2 using the theorem of L. K. Arnold ([2]).

THEOREM 4.3. Let G be of type 111, 0<<A<{1 and U, and U, be ergodic
measure preserving transformations of measure spaces (X,, #,, v,) and (X,, &,
v,) respectively. Then a product measure preserving transformations U, xU;' is
ergodic if and only if Gy, X Gy, is of type I11,.

Proor Let (u, H) be an admissible pair of G, then

d/,tXwXﬂXUngl@g Uy

X 0 (0, 3, 0, x) = G @) G @) = e,
1 2

For each measurable function f(w, x;, @', x;,) which is invariant under

{g(/1®gll}2; du x;/iiié”;i’i?g’fh
it follows that f(hw, x;, H'o’, x,) =f(®, x,, 0, x,) a.5.(0,x;, @', x,) hQHK € HX
H. Since HxH is ergodic, there exists a measurable function f(x;, x;) on
X, xX, such that f(e, x,, ®, x,)=f(x, x) a. s. (0, x;, @, x;). Therefore
AU x,, Uy~ @0 x,) =f(x, x,) if n,(®)=n,(»"). By Proposition 4.1 we
have f(U, x;, Ujx)) =f(x:, X;) a.s. (x5, x,). If UxU;'is ergodic then f(x,,
x;) is a constant and G, xGy, is of type III,. Conversely if Gy, XGy, is of
type 1II; then

dpuXvi X X Vi85, Q& v }
{glh@gl/zl d,uXVIX,uXVz (Q)s xlyw x2>_1

((l), X1, CD,, x;g) = 1 a.s. (CD, X1, mls XE)}

must be ergodic by Proposition 4.2. Therefore U, xU;' is ergodic.

§5. Equivalence of puasi-product measures.

We now want to discuss a class of equivalent measures on an infinite
direct product probability measure space. A useful condition for the
equivalence of a quasi-product measure and an infinit direct product pro-
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bability measure is obtained and is applied to show that the groups of
non-singular transformations of D. Ornstein ([13]) and L. Arnold ([2])
are of type III.

5.1. Quasi-product measure. Let (2,, %,) be a measurable space and g,
be a o-finite measure on it for each n=1, and let (2, )= 1 L,, 7, be
n=l
the infinite direct product measurable space.

DEFINITION 5.1.  Let u, be a o-finite measure on (£, %,) n=1,2,-. A
g-finite measure p on (2, %) is said to be a quasi-product measure of (Up)pz1 if

there exists for each n=1 a o-finite measure pf., on Il (2, F,) such that
i=n+l
n
u= ‘I;Ilmxui‘“ .

An example of a quasi-product measure is given as follows. For each
n=1, let A, be chosen in &, such that 0<lu,(4,)<cc. We define the

normalized measures u,= 7»!7/(117:1*)_ and the restriction of this to 4,, A,. (i.
e. for all B,e&, Xn(B,,)zé‘-”f(B"ﬂAv”)) . Let pym= I"ll,aix i A; and u be
ﬂﬂ(A”) i=1 j=n+1

the inductive limit measure of u”. Then g is a quasi-product measure
of () n=r

If £,(2,)=1 n=1 then the infinite direct product probability measure
m= E_[lu,, is quasi-product.

Ou: interest is that; let u, be a o-finite measure on &, and let P, be
another probability measure on %, and assume pg,~P, for each n=1.
Under what condition does there exist a quasi-product measre z of (#,) =1

equivalent with the infinite direct product probability measure P=1IIP,?

This problem was first discussed by C. C. Moore ([1]) and 0.” ’II‘ake-
nouchi ([15]) when each £, is a finite or countable set. The general
case was discussed by D. G. Hill ([6]) and a necessary and sufficient con-
dition for the existence was obtained: There exists a quasi-product measure u

Of (Un)nz1 equivalent with P= il P, if and only if there exists, for each n, a mea-
n=1
surable subset A, €., with the following properties:

@M 0 pa(4,) oo
2 f’;il P,(A,)>0 or equivalently, i} (1—-P,(4,)) < o

=1

@ P= ,EI,PI” and p' =§lu’n

are equivalent, where P', and u', are measures defined on ¥, by P',(B,)=F,
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(B, A.)/Ps(A), tn(B)=p.(B.NA)/tin(A4).

Here we shall give another simple criterion for the existence of an
equivalent quasi-product measure. Of course the general Hill’s condition
is easily obtained from our condition.

We denote by X,(®,) the Radon-Nikodym density %ﬁ‘f" (0,). We may
consider that &, and X,(,) are defined on (2, &, P)=11 (2,, F» P.).
n=1

Then X,(®), X,(@),-- are mutually independent random variables and each
X, (®) is & ,-measurable and positively valued.

THEOREM 5.1.  The following conditions are equivalent.
(1) There exists a quasi-product o-finite measure p of (u,) .= equivalent with

the infinite direct product probability measure P= i} P,.

=1

(2) There are positive constants b,, b,,---. such that

= X,(w)
nl_=11 b,

converges almost surely.

Proor. First we remark the condition (1) is equivalent with the
following condition (1)’ through the relation -%4-(w)=X(a).

(1)’ There exists a positively valued, #-measurable random variable
X(w) such that for each n>1

X(@) = I X,(0) X X.1(@)

where X¥, (o) is a{\? ;7 ;-measurable random variable. (The sub g-alge-

n+l

bra \/ &, is the g-algebra generated by F,.1, F n42---.) So it is enough to
i=1

show the equivalence of (1)’ and (2).

LemMma 5.1.  If random variables U,(®), U,(w),-- satisfy
|E{exp(—it U,(@))}| —1 tER
then there are constants a,, a,,---such that

U,(w)—a, —> 0 in probability.

n—o0

Proor. Let U,(®) be anindependent random variable of |J,(®) with
the same distribution. Then
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[ 1= 1E(exp(—it Uu@@))*dt=2E 1~y (Wa@)~T.@))

where

’sinu
u

w(u)___l if w40

1 if u=0.
Choosing small >0,

E(1—y (U, (@) = U.(@))) = (1—v (&)} P(|Un(@) ~U.(@) | >¢)
> (1—v (&) P(U, (@) —a,>¢, U.(0)<a,)
+ (1= (&)} P(Un(w) —a,<—e, U,(@)=a,)

= ;P<|Uﬂ<w>—anl>e>,
where a, is a median of U,(®);

PU () <a) =1L

P(U, ()= a,) =

By the bounded convergence theorem

1

[ 1-1Eexp(=it (@) 2 — 0,
1 noee

and so U,(w)—a, — 0 in probability.

We now continue to give a proof of Theorem 5.1. (1)'—(2).
Let Y,(0)=log X,(®), Y, (0)=log X}, () and Y()=log X(o).

E{exp(—n Y(w))’\”/gf,} — 1T exp(—itY,(0)) x E{exp(—it Yin())} .
=1 =1
By the martingale covergence theorem
E{exp(—it Y(0)) [j\/lﬁ} s exp(—itY(@)) a.s.0,

and so
|E{exp(—itY} (@)} | —1 tER .

By Lemma 5.1 there are constants a,, a,,-+ such that

Y#,.(@)—a, — 0 in probability.

Then for a sequence {c,},. defined by ic,:—a,, n=1
i=1
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i} Y,(®)—c; —> Y(@) in probability.
i=

Since Y,(w), Y,(®),-+ are independent, i Y.(w)—e¢, converges to Y(w)
i=1

almost surely as n — oo,

Therefore, it follows that for b,=expc,

5 Xa(@)
0=,

converges almost surely. Proof of (2) — (1)’ is evident.

REMARK 1. A quasi-product measure g equivalent with the infinite
direct product probability measure P, if it exists, is unique up to constants
by the 0-1 law.

ReMArk 2. If X,(0), X;(®),- are independent identically distributed
(non-deterministic) then, there are no equivalent quasi-product measures

of () nare

5.2. Hill’s condition.
LEMMA 5.2. Let Z (w), Z,(@),-- be a sequence of positively valued in-

dependent random variables of L* (2, %, P). Then I Z,(w) converges in L* (L,
n=1

P)-sense if and only if (1) 0< FLE(Z,L(@)ZKOO and (2) 0< 11 E(Z,(@))<co.

Proor. “If” part. (1) follows from the defirition. Since

i Zx@ .19 ] .
{,,131 Bz "2 } is a Cauchy-sequence of L*(&2, P),

D 2@ 2w R EAO)
,El E(Zi(w)) 21 E(Z.(0)?) \LZ(Q.P)—HI r=n+1 B(Z3)

-v2f-f 53]

tends to 0 as n, m — oo. The proof of “only if” part is the same.

L2(2.P)

Lemma 5.8. (Kakutani .[8]). Two infinite direct product probability
measures P= 1 P, and Q= 1 Q., P.(2,)=0,(2,) =1, are equivalent with each
n=1 n=1
other if and only if

0 <1 E,(v'Z,(@)) < oo

- 40,
where Z,(®)= dP. (@) .
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LemmaA 5.4. (Kolmogorov [7]). Let Y,(w), Y,(w),-- be a sequence of
real independent random variables and put

Y@ if |Yu(0)| <1
v = {

0 if othewise

Then i Y,(w) converges almost surely if and only if the three series
n=1

% P(| Y. (@) >1), éE(Y,,'(m)) and il Var (Y,)) converge.

ProposITION 5.5. Let X,(w0), X,(®),-- be a sequence of positively valued
independent random variables. Then o x .(®) converges almost surely if and only
if there are X,(w)-measurable sets n;;,, n=1 such that the three infinite products
..IiI:P(A")’ uﬁl E(x,: 4,) and nf_fll E(W'x,: A,) converge.

Proor. “Only if” part. Let @%= ﬁ A, and (2%, & ) 2%, P¥) be the

restriction of (2, &, P) onto £*: P*(A)~P}z%k))—— AeF | £*. We define

a sequence of independent random variables X (w) on (2%, F (2%, P*):

_ X, (@)P(4)

X:(w)—ﬁf‘f’(X,,: A) w € 2%,

. et BO/X (@) A)
By the condition, H E»*(‘/X )= a1 PADEX (@) ; 4,)

E;+ (X} (w))=1. By Lemma 5.2, i} v/ X#(w) converges in L2(2%, P*¥)-sence
n=1

coverges and

and converges almost surely, because of independence. Since

:1 B( ; E;i)) iy converges, iIlX,L(co) converges a.s. o€ 2% from 0-1 law,

1 X,(®) converges almost surely on £.
n=1
“If” part. Let Y,(w)=log X,(®) and A4,={w||Y.(®)|<1}. Then we have

Var(Y,)) = E [(exp Yn(w)——E(zY,,(m); Ay) —1)2 ; An}

5 (e (142 ~exo( - 25 A) ) e vaco); )

Il

Y. :
2t ((on( -2 S 2 v )
E{e py(w), A,,}
= P(A,)—

- E{expY,(0); 4,)
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E(vX,(0); A)?
E{X,(0); 4.)

= P(An) -

2
, because u? > (exp —12'4 —1) u€R. Therefore by Lemma 5.4

= E(VX,: 4,)°
0L TEmTA) ST

Since for a large number n [E(Y,; A,‘)|<%— , it holds that

|E(1_(eXp(_E(Yn; A,,)))X,,(G)); AH}I
=[E(1_exp(Yn(m)—E(Yn; A/l)); An}l
< 2Var(Y,”)

, because |expu—1—u|<2lu|? if [u]g%. Therefore by Lemma 5.4
0< I exp(—E(Y,; A)XE(Y,; 4)<oo.
ne=1

By Lemma 5.4, the ratio

I”I E(Xk 3 Ax)
k=1

; — exp( DE(Ys 4)
I exp(~E(Y:; 4))XE(X: 42) i

coverges as n—s o. Thus we have
0< HEWX,: 4) <o and 0< ﬁlE(l/T(;; A4) < .
n=1 n=
THEOREM 5.2 (Hill [6]). There exists an equivalent quasi-product measure
if and only if there exists, for each n, A,€ &, sucht hat (1) 0<u,(4,)<oo (2)

I P,(4)>0 and (38) P'= II P,’ and o= I u,' are equivalent with each other,
n=1 n=1 n=1

where P,’ are u', are the restriction of P, and p, onto A, respectively.
Proor. It follows from Theorem 5.1, Proposition 5.5 and Lemma 5. 3.

§6. Classification of IPT transformation groups I.

In this section and the following section we are going to discuss a
class of ergodic groups of non-singular transformations for which interest-
ing criterions are obtained.

6.1. IPT transformation groups.

Let ((2,, %, P,)|n=1,2,---} be a sepuence of Lebesgue measure spaces
with P,(2,)=1 n=1,2,-. For each n, let G, be an ergodic countable
group of non-singular transformations of (2,, #,, P,). Assume that, for
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each n, there exists a finite or o-finite measure u, defined on &, which
is equivalent with P, and invariant under G,. We denote by X,(®) the

Radon-Nikodym density —Z%i—(co,,).

Let (2, &, P) be the infinite direct product probabilty measure space
1 2,, F. P,). We may consider that G,, #, and X, are defined on the
i’;ﬁnite direct product probability measure space (£, &, P). The group
G= i@ G, generated by GlGﬂ is said to be an ITP transformation group
of (2.5 P). -

ProrosiTION 6.1.  An ITP transformation group G= ,;i:i B G, is ergodic

and non-singular.

Proor. For g=g.g. g, €G with g, € G,

dPg _dP1g1><_P_zg2>< -« XP,g,
ap O = TP xp, (@
7 X, (w)
— 11 2@
i=1 X:(S'i‘”)

If a measurable function f(w) is invariant under G, then for each n>1
fw) is G, X .-« XG, invariant. Since G;X -+ XG, is ergodic, f(@) is \w/
i=n+l

& -measurable. Since n is any, f(w) is tail s-field measurable and is cons-
tant a. s. o, because of the 0-1 law.

PROPOSITION 6.2. Let G=3\® G, be an IPT transformation group of (2,
n=1

Z, P) and let p be a o-finite measure equivalent with P, Then u is invariant
under G if and only if u is a quasi-product measure of (14,) uz1.

Proor. Let X(w)=—;,1%(0)). From Lemma 4.2 x4 is invariant under G
if and only if for g=g.g.--+- g, € G with g, €G,

11 X, (g.0) i X, (o)
=1 i=1

¥ e . ) a. s. o.
11 X, (o) “
Since G, xG;X -G, is ergodic, =t is \/ & ,-measurable,
X(CO) f=n+l

THEOREM 6.1. Let G= il@ G, be an IPT transformation group of (2, %,
P). Then G is of semi-finite type if and only if there are positive constants b,,
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b,, --+ such that

b,

7 X (@)
n=1

converges almost surely,
ProoF is from Proposition 6.2 and Theorem 5.1.

6.2. Examples of groups of non-singular transformations of type IIIL

Let 2,=(0,1,- , k,—1), ghi=i+1 (mod k,), G,={g}; j=0,1,-+- , Ry—
1}, P, be a probability measure with P,({)>0 and u, be a uniform measure
on £,. We note that in this case an IPT transformation group G= i@G,,
is weakly equivalent with a cyclic group generated by a single gjg'odic
non-singular transformation of the usual Lebesgue measure space ({0,1],
Z[0,1], H ([6]).

ExampLe 1 (Ornstein [13]) @,=(0,1,++, ku—1) k=3 P,(i)= ; if i=0, =

1 e s
PO >
ICRS) if i>1.

ExaMpLE 2 (Brunel [3]). 2,=(0,1,2) P,(i) = 1 if i=0 or z,:% if i=1.

ExAMPLE 3 (Arnold [2]). 2,—={0,1), P,,(o)=1—}-r—/1 1),1(1)=1~j’171 0<A<1.

Examples 2,3 are cases of identical distribution and then they are of
type III by Theorem 6.1 and Remark 2 of Theorem 5.1. Next suppose
that Example 1 has an equivalent invariant measure. Then by Theorem
6.1 for some positive constants b, by, , &b(m—) must converge to 1 in

n

probability. For any ¢>0

(

+ ‘%‘ X<~w.1—e)u<1+e.m)(gkt}l) —0

b, neven

1)

?_QE'Z;L) converge to 1, which contradicts to the condition k,=3. There-

where x denotes an indicator function of a set. Then both £~ and

”

fore Example 1 is also of type III.

§7. Classification of IPT transformation groups II.

7.1. T(G) of IPT transformation groups G= 3@ G,.
n=1
THEOREM 7.1. Let G=P G, be an IPT transformation group of (2,
n=1
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F, P). Then a real number t€T(G) if and only if there are real constants a,,,
@y gy tovee , Such that

exp(i é (tlog X,(w) —a,_,)

converges almost surely as n — oo,

Proor. Let a non-singular transformation g=gg, ++«:** g.€G(g. €G,) sa-
. . , dP
tisfy  exp (i(6,(¢0) —£.@))) = exp (itlog TE () -
Then
eXp(i(EA (31501, """ y §nWys wn+11"') +t 10g Xl(glwl) """ Xn(gnwn)))
= exp([(&,((gh ...... y @y WDpagy *oooee )+t10gX1(wl)... Xn(wﬂ)))

Since G,x--xG, is ergodic there exists a \/ #,-measurable function
J=n+1
g¥,41(®) such that

exp(i(§: (@) +1log X, (@) -+ X, (@))) = exp(i§fnn(®)) .

Hence we have that t€T(G) if and only if there exist a #-measurable

function &,(w) and a \7 & ;-measurable function £&¥,,,(®) for each n=1,
J=n+l1

2, ,-+ such that

exp(i£,(0)) = exp( —it 3} 10g X,(@) )exp (i€fun(@)) -
By this

E {exp(z’g,(m))1 V/57} = exp(—it 33 1og X,(@) ) X E( exp igfan) -
Let ¢, ,.1 be the angle in polar coordinate of E{exp &, ,..). We have

lim exp (i(—t’izllog X;(@)+Crpin ))

E{exp i£,(w) j v ﬁ,}
E{exp it (o) ”"\_/1 ﬁ‘,}

= exp i§, (@) a.s. w,

= lim

n-oo

by the martingale convergence theorem, and

1£r°r°1 exp (—iﬁ% (tlog X,(w)—-a,,,)) = exp(i§, () a.5 @,

where a,,=¢;;.1— €1y J=1, 2,20 and ¢;,=0.
Conversely the last equation implies
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exp(ig, () = exp (it 31108 X,(@) ) X exp(i&nni(@))
where
exp(i8tyna(@)) = exp(i 31a,,) lim exp(—7 3 (slogX,(@)—a,.))

a.s.@, n=1,2,---- .

ReEMARK. Let G= i@Gn be an IPT transformation group. If a real
n=1
number t€T(G) then there exist real constants a,,, @, such that

lim exp(i(tlogX,(®)+a,,)) =1 a.5. @.

7.2. A simple proof of the converse of (1) of Theorem 4.1.

ProrosiTiON 7.1. Let G= f}@ G, be an IPT transformation group of (2,
n=1l
F, P). If T(G)=R then G is of semifinite type.

Proor. Since by Theorem 7.1 there are constants a,,, @+ such that
lim exp(—i i (¢ long(co)—a,,,)) =1 as o,
RoM—oo i=n+l

we have

lim

L il

Efexp(~it 3} log X,(w))}]: 1 t€R.

=n+l

By Lemma 5.1 there are real constants c¢,., #,m=1, 2, such that
2 (IOg X,((D)—C,,,,,)
J=n+l

converges to 0 in probability as n,m — oo. And then

lim exp(i( §m] a,_,—tc,,_,,,)) =1 t€R.
i 1

HoM—r oo =%+

Therefore

lim exp(—itlél(log X,(co)—c”_,,,)) =1 a5 o,
=n+

LR el

and
lim ,i (log X,(0)) —Cpn =0 a.5. 0,
Mmoo Jantl
which means that putting b,=X;(w,) for @,€8j=1,2,- , the Iinfinite

product
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< X,(0)
| | ekt A
i=1 b/

converges almost surely. By Theorem 6.1 G is of semi-finite type.

7.3. Examples.

Each non-singular transformation group of type III, 0<{4<1, III, and
111, is given by the infinite product method as follows,

III, and III,. Let £,={0,1, , d-1} g, j=j+1 (mod d) G,=(gk; 0<
k<d}y, P,()=P,(H)>0 and pu, be a uniform measure of £,. Then IPT
transformation group G= "i;lEB G, is of type III, if log X,(w) is lattice
distributed with span -log 0<{A<1 and G is of type III, if it is non-lat-
tice distributed.

III,. Let £,={0,1), g.(J))=j+1 (mod 2), G,={g}; k=0, 1,} and u, be
a uniform measure of 2,. For 0<{A<1, let N,, N be an increasing
sequence of positive integers such that

( - )Nrﬁk-1 Le<l k=0,1, ]

14+ 2%
1 L
Put Pn(o) = m;k‘ and Pn(1)=']t‘:?; if Nk..l <H§Nk k-’=0, 1,e0eeee . Then
X,(0) = - (0) = 144
* dpP,
with probability >—1~7;, and
1+4
14 4%
X, = T
. I i
with probability 1o if N,_;<a<N, £=0,1,-::+-- . We show
2n
= T
T(G) Tog A
where T =[L; Mm=0,1,: - [=0,41,42, 0 } .
’ 2”‘ ) ’ LR L PRS2 )
Putting
= 2 1
log 4 2"
and

- 2n_ 1 ok
a, = Tog A 2,;108'(1“"1 ) Neoaa<n<N,,
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we have

exp(~i§1 (t logX,(a))—aj)>

ko—1

— exp(—i 2n  Lyogpe _2n 1 z»))
exP( l( g Ny_1<isn, log 4 2™ logd +Nko§lsn log 4 2" log 4

wy=1 w;=1

=exp(—i(m§:]‘1 M Zn--mi_—k)
R 2

, N,,o_1<n§N,,o m=<k, By Theorem 7.1 te€T(G).

Assume that a real number ¢ is not in 102%1‘
For the 2-adic expansion
”Lgi—_—ipz Pn€{0,1) m=1,2,eeer ,
2r m-oZ,,,
let
re= 3 _% E=1,2,ee .

m=k+1

Then exp(2niy,) does not converge as k—> . Hence there exists a
positive number ¢ and an increasing sub-sequence k, n=1,2,::- such that

lexp(2riry,)—1]>e¢ n=1,2, .

Putting
b, =tlog(A+"") Nt <j< Ny,
we have
if w;=0
exp(—i(t log X;(w;)—b,)) ={
exp(2riy;) if o,=1
sy Noopy <JE N, k=1,2,0000 . Since

Ng

P(A 1 (e:0-1)

n=1 J-Nk”_1+1

b 1 N, -N
—_—_—”1:;[1 (1+lzk”) kp Tkp—1

=0,

there exist for almost sure ® infinitely often numbers n with ;=1 for
some N, ,<j<N,, because of the Borel-Cantelli lemma. Therefore

exp(—i(tlog X,(®)—b,)) does not converge as j—> oo almost surely. This
implies that ¢ is not in T(G).
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