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 § 1. Introduction 

   By a non-singular transformation of a Lebesgue measure space (S2, 

P) we mean a bi-measurable 1-1 transformation of SZ onto itself that 

preserves null sets. For a long time, it had been an open problem to find 
an example of a non-singular transformation without an invariant measure. 

The first example was affirmatively given by D. S. Ornstein [13] in 1960. 

This was followed by other examples of R. V. Chacon [4] , A. Brunel [3] , 

L. K. Arnold [2] , C. C. Moore [12] , 0. Takenouchi [15] and D. Hill [6] . 
It is necessary for us not only to give such an exampl but also to investi-

gate the structure of such transformations. Also it is useful for the 
classification problem of factors of type III in the theory of von Neumann 

algebras. 

   This thesis concerns with the classification of groups of non-singular 

transformations without an invariant measure under the weak equivalence 

relation. Two groups G and G' of nonsingular transformations of (S2, 
P) and (a', . ' P') respectively, are said to be weakly equivalent with 

each other if there exists an isomorphism c from Sz onto 12' such that 

cp [G] cp-1= [G'] where [G] ([G']) is the group of all G (G') -orbits preserv-

ing transformations.

* This is the doctoral thesis at Kyushu University .



   W. Krieger [9] [10] introduced an invariant r(G) for the classifica-

tion. We shall obtain a more detailed classification by introducing a new 

invariant T(G), the definition of which is based on the homological equa-

tion appearing in the invariant measure problem. By this it becomes 

possible to classify groups of nonsingular transformations of type  IIIo, to 
which the set r(G) of Krieger is not applicable. 

   We also discuss the equivalence of measures on an infinite product 

space. We shall obtain a nice criterion for the equivalence of a c-finite 

measure with product property and an infinite direct product probability 

measure in terms of some convergence of independent random variables. 

   We now want to emphasize that this criterion for the equivalence of 

such measures and the invariant T(G) are closely related with each other 
and make important roles in classifying certain class of non-singular 

transformations without an invariant measure, which includes examples 

of D. S. Ornstein and others mentioned before. 

Before stating our results we note that the algebraic invariant T(M) 

 of a factor M of A. Connes [5] which is based on the Tomita and Take-
saki's theory of generalized Hilbert algebra, corresponds to T(G) in the 

sense that M is a crossed product factor W * (G, L°° (S2, P)) associated 

with a group G of non-singular transformations. 

   Our main results are the followings. In section 3 we define the set 

T(G) for every group G of non-singular transformations, which is invari-

ant under the weak equivalence relation and is an additive subgroup of 

R. Given any countable subgroup T of R, we construct in section 4 an 

ergodic group G of non-singular transformations of type IIIo such as 

T(G)=T (Theorem 4. 2). In section 5 a criterion for the equivalence of 

a quasi-product measure and an infinite direct product probability measure 
is established in terms of almost sure convergence of infinite direct 

products of independent, positively valued random variables (Theorem 
5. 1). In sections 6 and 7 we concern with a class of groups of non-singular 
transformations of infinite product type (hereafter referred to as IPT 

transformation groups). Such groups of non-singular transformations 

correspond to ITPFI factors of Araki-Woods [1] . Using a useful criterion 

for the equivalence of measures of section 5 we obtain a necessary and 

sufficient condition for the existence of an invariant measure of an IPT 

transformation group in terms of almost sure convergence of infinite 

products of independent random variables (Theorem 6. 1) and apply it to 
show that examples of D. S. Ornstein and others are of type III. In the 

last section we characterize the set T(G) of an ITP transformation group 

G in terms of almost sure convergence of infinite products of independent



random variables (Theorem  7.1). 

   Using this criterion we construct a new example of an IPT transfor-

mation group G of type III,, the set T(G) of which is the countable addi-

tive subgroup generated by dyadic points (Example of section 7) .

§ 2. Preliminaries

   Let (2, .~ P) be a Lebesgue measure space with P(S2) =1([14]) . Finite 

or a-finite measures it and v defined on . are said to be equivalent with 

each other, if v, if ft (A) =0 if and only if v(A) =0 A E. . A bi-measurable 

1-1 transformation g of .SZ onto itself, that is g 1. =g. =.~, is said to be 
P-non-singular (or simply non-singular) if Pg-'P, where Pg(A) =P(gA) AE 

.. For a countable group G of non-singular transformations of (2, .", P) 

we denote by 9(co) g E G the Radon-Nikodym density of a measure Pg 
with respect to a measure P. A functiondp (co) is positively valued and 
satisfiies

P((gh)B) = P(g(hB)) = JhB d-PI (cv) dP(w) = JB dP (ha)) dPh (co)dP(c)) B E.
So we have

dPgh (a) =---(ha)dPh (co) a. s . cv , g, h E G . dP dP dP

A measure ,u defined on (2, 9") is said to be invariant un,der G if ,ug(A) _ 

,a (A) A E.r, g E G. A measrable function f(cv) on (2, ., P) is said to be 
invariant under G if f(gco) =f(co) a. s. co, g E G. G is said to be ergordic if 

every invariant measurable functions is constant a. s. co. We denote by 

[G] the group of all non-singular transformations g E G of (2, . P) 
satisfying that there exist measurable sets An n=1, 2, and nonsingular 

transformations gn E G n=1, 2,••• such that 2= U An (disjoint) and g(c)) 
n=1 

gnco a. s. cv E An n=1, 2,-•-. [G] is said to be the full group of G. Two 
countable groups G and G' of non-singular transformations of (2, 9", P) 

and (2', P') respectively, are said to be weakly equivalent if there 
exists a bimeasurable 1-1 mapping co from 2 onto 2' such that cp [G] cp-1= 

[G'] and P—P'cp. 
   From now on our arguments are concerned with the case when G is 

countable.

 § 3. An invariant T(G). 

   In this section we shall introduce a new invariant "T(G)" for the weak 

equivalence.



   DEFINITION  3.  1. Let G be a countable group of non-singular transformations 

of (2, ~ P) . We define the set T(P, G) as the set of all t E R with the following 

property: There exists a -measurable function expi $1(a)) such that

exp (i(e, (gw) — et (co)) = exp (it log dpg (co)) , a. s. co, g E G .
We say "T(P, G)" a T-set of G.

   THEOREM 3.1. T(P, G) is an additive subgroup of R, and is invariant for 

the weak equivalence. 

   Hence we may denote T(P, G) by T(G). 

PROOF. Let t and s be in T(P, G). Then

exp (i((c,(go) —Es(gco)) — (ct(co) — (w)))) 
   = exp(i(Et(gco)—$,(a)))) exp (—i(Es(gco)—Es(co)))

= exp (it log--(co)) exp(—is logdpg(co))

= exp(i(t—s)iogdp(co))
Therefore, t — s E T (P, G) . It is shown that if P,--Q then T(P, G) =T (Q, G) . 

Indeed, let f(co) be the Radon-Nikodym densitydQ- (co) . Then,
exp(i((E1(gco)+t log f(gco))—($,(co)+t log f(a))))) 

   = exp (i ($t (gco) — $1(co))) exp (it log (Ago) f-' (co)) )

= exp(it log--(co))exq(it log (f(gco)f-1(c))))

= exp(itlogdQg(co)) .
Notice that T (P, G) =T (P, [G]) . If G and G' of (S2, .~, P) and (S2', , P') 

respectively, are weakly equivalent under an isomorphism go then 

T(P, G) = T(P, [G]) = T(P'so, co-' [G'] co) = T(P', [G']) = T(P', G').

   PROPOSITION 3.1. For the product transformation group G x G' : G x G' = 

(g ®g' ; g E G, g' E G') g ®g' (co, co') = (gco, g'co') (a), co') E S2 x S2' we obtain T (G x 
G')=T(G)(lT(G').

PROOF. It follows from

exp (it logdPdpp'g'(co,co')) = exp(it iogdP(co)) exp (it log dP~g'(m')) .



   PROPOSITION  3.  2. A real number t E T(G) if and only if there exists a a-

finite measure pt of (SZ, P) such that ,ut---P and

dg(co) E {exp2"; n=0, +1,...) a.s.w, gEG.
PROOF. "If" part. Let t E T(G) and let et (w) be a measurable soluton of

exp(i(Et(g(0) —Ct(co))) = exp(it log dPg (w) )a. s. co , g E G .

Putting d u1(w) = exp (—  Et ()  )dP(co),  we have

exp (it logdg(w))= exp (it (logdP(gw)+logdp(w)+logdP(co)))

= exp (it (— et (8w) +log dPg (w) +  t (w)  ) ) 
       dP t

=1.

The proof of "only if" part is evident.

   REMARK.By the virtue of Theorem 1.4.8 of [5] and Proposition 3.2 
we have T (G) =T (W* (G, L°° (S2, P))) , where W* (G, L°° (S2, P)) is the crossed 

product von Neumann algebra associated with a group G of non-singular 
transformations of (S2, P) and so T(G) is an algebraic invariant of 

W* (G, L-(2, P)) .

§4. 1111 0<A<1, Ill and Mo. 

4.1. Definitions of type III, 0 < A <1, III1 and IIIo. 

   Let G be a countable group of non-singular transformations of (S2, 

P) . G is said to be of semi-finite type if it admits an equivalent a-finite 

invariant measure and is said to be of type III if otherwise. It is easy 

to see that if G is ergodic and of semi-finite type and if ,u and v are two 
finite or a-finite measures on both equivalent with P and invariant 

under G then there exists a positive constant a such that ,u=ay. 

   Let G be an ergodic countable group of non-singular transformations 

of (S2, .", P), ,u be an equivalent measure on .9" and H be a subgroup of 

[G] . A pair (,u, H) is said to be an admissible pair of G if H is an 
ergodic subgroup of ,u preserving transformations of [G] . 

   For an ergodic countable group G of non-singular transformations of 
type III of (Q, .", P) we consider the following cases: 

(IIIO) There exists an admissible pair (p, H) and the smallest number 0 < 
A <1 such that



 dg (co) E (An: n=0, +1, +2, •••) a. s. co , gE G .
(III1) There exists an admissiblep air Cu, H) without satisfying the cases 

(III1) 0 < A <1. 

(IIIo) There is no such an admissible pair Cu, H) as in IIIx 0 < A < 1 or 
III1. 

   It is clear that these cases are exclusive and exaustive. It is shown 

that a parameter A of the case (III2) is independent of the chice of an 

admissible pair (ja, H). For the proof it is enough to show the follow-
ing lemma.

   LEMM 4.1. Let (,u, H) and (a', H') be two admissible pairs of an ergodic 

countable group G of non-singular transformations of (t2, P) . If for some 

0 < A <1d--(co) E (An ; n = 0, ±1, •••)  a. s. co, g E G, then dpg(co) E (An ; n 
0,+1,••-) a. s.co, gEG.

PROOF. Let us denote by f(co) the Radon-Nikodym densitydp (co) 
and by ng (co) the integer valued ,g7= measurable function such as dg(co) = 
Ang(w) g E G. Then we have

f(h'(0) = dduh' (co)ate (co)dh'(co) 
      = f(co) A-nh. (w) a . s. co, h' E H'

        d'h' because d~,(co) =1 a. s. co, h' E H'. If A=1 thenf(co) is invariant. Since 
H' is ergodic, f(co) is constant a. s. co. If A < 1 then choose any numbers 

< c <d <1. The set (co ; Amc < f(co) < Amd for some m=0, +1, •••) is H'-
invariant and then it has measre 0 or 1 since H' is ergodic Therefore 

for an integer valued measurable function m(co) and a constant c, f(co) = 
cAm(w) and

dg ((o) = f(gw)•dg(co)•f-1(w) 
du'du 

_ Amcgwl-m(w)+ng(w) a. s.co g E G .

REMARK. The proof of this lemma means that if for an ergodic non-

singular transformation group G and a random variable Y(co), Y(gco) — Y(co) 

is lattice distributed with span kgc where c is a constant and kg an inte-

ger, g E G, then there exists a constant a such that Y(co) —a is lattice 
distributed with span c.



 DEFINITION 4. 1. Let G be an ergodic countable group of non-singular trans-

formation of (2, . , P) . We say that G is of type III, 0 < 2 < 1, III1f or IIIo 
accordingly as the case (III2), (III1) or (IIIo) happens. 

   It is obvious that the type of G is an invariant under the weak 

equivalence relation.

4.2. A characterization of type of groups of non-singular transforma-
tions by T(G). 

   THEOREM 4.1. Let G be a countable group of non-singular transformations 

of (2, Y, P) . Then 

    (1) T(G) = R if G is of semi-finite type,

(2) T(G) =logZif G is of typeIII, 0 <2< 1 and
(3) T(G) = (0) if G is of type III1 .

   LEMMA 4.2. G is of semi-finite type if and only if there exists a positively 

valued measurable function f(co) such that

f(w) — dPg (co) a. s. cv, g E G . 
.f (gco) dP

   PROOF. A positively valued measurable function f(w) satisfies the above 

equation if and only if d,2(co) =f(w) dP(co) is an equivalent c-finite measure 

and is invariant under G.

   PROOF of Theorem 4.1. (1). By Lemma 4.2, a measurable function 

(t, (0= —t log f(w) satisfies

exp (i (e (t, gw) — e (t, co)) = exp (it logdi (co)) a. s. co, g E G and t E R .
(2), (3). Let (,u, H) be an admissible pair of G. If 

exp(i(et(gw)—et(w)))= exp (itlog4$i(co)) a. s.co, g E G , then 
exp (i (e (ha)) — et (co))) = 1 a. s. co, h E H . Since H is ergodic, a measurable 

function exp (iet (co)) is constant a. s. co. Thus, t E T(G) if and only if 

exp(it log—(co)) = 1 a. s.co, g E G. If G is of typeIII, 0<2<1, then for
an integer valued measurable function ng(w) withd  

                                          g 

 (co) = AY') a. s. co, 

g E G it follows that exp(itng(w) log A) =1 a. s. co, g E G. Since (ng(w) ; a. s. w 
E 2, g E G) generates the additive group Z, exp(it log A) =1. Therefore, t E 

logZ. Let t be a nonzero number of T(G). Then from exp (itlog d 



 (co)) =1 a. s. w, g E G, is follows that d g (co) E (exp 2in ; n=0, +1, •••} a.s.co, 
g E G. This also means that T(G)= (0) if G is of type III'.

4.3. Skew product transformations and type IIIo. 

   We are going to construct a group of non-singular transformations of 
type IIIo whose T-set is a given countable subgroup of R. For this we 

shall introduce a skew product transformation group due to W. Krieger 

([11]). 
   Let G be an ergodic countable group G of type III, 0<1<1 of non-

singular transformations of (SZ, , ", P) with an admissible pair (1e, H) and 

U be an ergodic measure preserving transformation of a a-finite measure 
space (X, .,v). We define the GU as the set of all non-singular transfor-

mations gu:
                           dug 

gu (w, x) = (gro, U1"'ctu(w)x) g E G

of the product measure space (S2 x X, ..x.. , Px v). It is shown that the 

group Gu is ergodic. Indeed, let f(co, x) be a Gu-invariant .lx.-measura- 
                                            du8 

ble function, that is f(gw, U'°gzau-`w'x) =f(w, x) a. s. (0, x), g E G. Then we 
have f(hw, x) =f(co, x) a. s. (co, x), h E H. Since H is ergodic there exists a 

M-measurable function f(x) such that f(co, x) = f(x) a. s. (w, x). Thus we 

have f(U1O$2d`w' x) =f(x) a. s. (co, x), g E G. Since the set flog,dg(co) ; a. s. 
w E 12, g E G} generates the additive group Z, f(Ux) = f(x) a. s. x. Since U is 
ergodic, f(w, x) =f(x) is constant a. s. (co, x). Therefore, Gu is ergodic. 

PROPOSITION 4.1. Let G be an ergodic group of non-singular transformations 
of type III2 0<2<1 on (12, Y", P) with an admissible pair (,a, H) . Then for 

sets A E .- and B E Y-, and for each integer k there exists g E [G] such that

 (gAfB)>0 and'(co)_g=A'oEAng'B.

   PROOF. Let U be an ergodic measure preserving transformation of (Z, 

m) defined by Ui=i+1 i E Z, m(i) =1. Then from the ergodicity of Gu 

there exists gu E [GU] such that

Pxm(gu(Ax (0)) nBx (k))> 0.

Hence, P(gA n B) > 0 andd(w) = AkwE An g 1B.

PROPOSITION 4.2. Let G be an ergodic countable group of non-singular trans-



formations of type  III2 0<2<1 on (2, 9", P) and p be an eqivalent measure on 
. such that dpg(co) E (Ak ; k=0, + 1,•••)a. s. c), g E G. Then the non-singular 

           P transformation group K:

K = (g E [G] ;dpg((o) =1 a. s.~)
is weakly equivalent with an induced ergodic non-singular transformation group of 

[Ge] , where Ui=i+1 i E Z, and hence (p, K) is an admissible pair of G.

   PROOF. Let(,e, H) be an admissible pair of G and letdg (co) = /ing(w) 
and dpg(co) =Amg(w).Sinced'°— (gco) =/lmg(w)-ng(w)d'°— (co) and G is ergodic, d 

pdud~ 
there exists a constant c and an integer valued function 1(co) such that 
dp

- (a)) =cA`(w> from Lemma 4.1. Let E= U ((co, k) E 2 x Z ; 1(a)) = — k) and 
let n be the projection n(a), k) =a) from ,S2 x Z onto P. The restriction n I 
of n on the measurable subset E is a 1-1, measure preserving mapping 
from (E, /2 X v I E) onto (2, p). The ergodic non-singular transformation 

group GU has the equivalent invariant masure A- id u (co) dv (j) , where v(j) = 
1. The induced transformation group [GU] I E= (gU E [GU] ; gUE=E) of the 
measure space (E, /2 x v E) is ergodic and has an equivalent invariant 
measure and satisfies

n I E [GU] I En I E1= (g E [G] ; l (gcv) = l (co) — ng (co) a. s. co.)

g E [G] ; dpg (a)) = dp (ga)) dpg (co) dp (a))     d p du du d p 

_ Al(gw)+ng(w)-l(w) 

=1
=K

Thus, K is weakly equivalent with the induced ergodic non-singular 
transformation group [GUI! E which admits an invariant measure and hence 

(p, K) is an admissible pair of G.

   REMARK. Let G be aner godic countable group of non-singular transfor-

mations. If T(G) =  logA Z 0<2<1 then the/ e exists an equivalent measure 
/2 withdpg(co) E(Ak; k=0, ±1,-••) by Proposition 3. 2. For such a measure 

       p 

                               cg ,G is of type III, if (gE  [G] ; (co) =1 a. s. w} is ergodic and G is of 
type III° if otherwise from Proposition 4.2.



   THEOREM  4.  2. Let G be an ergodic countable group of nonsingular trans-

formations of type of (S2, .", P) and U be an ergodic finite measure preserving 
transformation of (X, . , v) . Then 

   (1) T(Gu) =log-------c(U), where a(U) is the set of point spectra s of U: 
There existe h(x) E L2(X, v) such that

h(Ux) = exp (2n-is) h(x) a. s. x.

(2) Gt, is of type III° if v is non-atomic, and 
Gt, is of type IIIxk if v has k atomic points.

PROOF. (1) Let (,, H) bean admissible pair of G and let exp (i (e, (gco,
        u8 U wgzdd'`(a)x) —Et (co, x))) = exp (it log-kg- (co)) a. s. (w, x) , g E G. Then exp (i (et 
(hw, x) — t(w, x))) =1 a. s. (co, x) , h E H. Since H is ergodic there exists a 
..-measurable function et (x) such that expiE1(co, x) =exps t (x) a. s. (w, x) . 

Then we have

exp (i (et (Ub01 d (w) x) _ ct (x)) )
= exp (it log—dig-(co)) a. s. (co. x) g E G ,

and exp(i(e0(Ux) —Et(x))) = expit a. s. x.

Therefore2nEc(U). Conversely, let s be a point spectrum of U with 
f(Ux) =exp (2iris) f(x) f(x) E L2 (X, v) . 
Since U is ergodic, then for a constant c f(x) =cexp(ic(x)). So we have

exp(i(e (Ub0 2c``0' x) — (x))) = exp (27r is log d g (co))
a. s. (co, x) , g E G.

   (2) Assume that v is a non-atomic measure. Since a (U) is a counta-

ble subgroup, thenbyTheorem 4.1 wemayassume TGU2_n     pYY()=1°2AZ k = 

1, 2,—.    If GU has an admissible pair, Gt, is of type IIIIk. Since c (U) = 

kZ,there exists a partition (Ai) i-3.1,...k_1 of X such that UAt =A;+1 0<i<k-1. 
Let duxv* (co, x)=A-'duxv(co, x), x E A;, then 

d x   
            dax V*  v gv (co, x) E (Äk" ; n = 0, ±1,.•-) a. s.(w, x). 

By Remark of Proposition 4.2



 {giE [Gtr];dit X v*gv(co, x) =1 a. s. (c), x))           duxv

= (gu E [Gu] ; gu (co, x) = (hcv, x) for some h E H a. s. (c), x) ) 

must be ergodic. But this is a contradiction. 
Let v be supported by k atomic points and let x=(0,1,.••k-1) and v(j)=1. 

It is easy to show that for a measure v* (j) _A,, {gu E [Gu] ;diaXv* (c), j) 
=1 a. s.(cv, j)) is ergodic.

   REMARK. W. Krieger ([11]) gave another proof of (2) of Theorem 

4.2 using the theorem of L. K. Arnold ([2]) .

   THEOREM 4.3. Let G be of type III, 0<2<1 and U1 and U2 be ergodic 

measure preserving transformations of measure spaces (X1, .i1, vi) and (X2, 

v2) respectively. Then a product measure preserving transformations U1 x U21 is 

ergodic if and only if Gu1 x Gu2 is of type III1.

PROOF Let Cu, H) be an admissible pair of G, then

du x v1 X x v2gU1®g'UZd/~gd/ag'(a)' _ Ang(W)+ng,(W') 
d,aXv1X/cXv2

For each measurable function f(co, x1, (o', x2) which is invariant under

  dxvxxvl           ,u1/~Zgulg u2(~xco'x)=1a.s.(co x cv'x2)) gUl gU2, d~xv
1x,uxv21,, 2,1,,2

it follows that f(hco, x1, h'co', x2) =.1(a), x1f co', x2) a. s. (co,x1 i co', x2) h® h'  E Hx 
H. Since Hx H is ergodic, there exists a measurable function f(x1, x2) on 
X1 xX2 such that f(c), x1, co', x2)— f(x1, x2) a. s. (c), x1, o', x2). Therefore 

f(U1 g(W) x1, U2-ng'(W") x2) =f(x1f x2) if ng(co) =ng.(co'). By Proposition 4.1 we 
have f(U, x1, U2 1x2) =.axi, x2) a. s. (x1, x2). If U1 x U2-1 is ergodic then f(x1f 
x2) is a constant and Gu1 x Gu2 is of type III1. Conversely if Gu1 x Gu2 is of 
type III, then 

f gul,uxv2gul®g'u21)    u.,_
2dpxvlx            '-ddz x v1 x,,iX v2(~,xl,co', x2) = 1)

must be ergodic by Proposition 4.2. Therefore U1 x U21 is ergodic.

§ 5. Equivalence of puasi-product measures.

   We now want to discuss a class of equivalent measures on an infinite 

direct product probability measure space. A useful condition for the 

equivalence of a quasi-product measure and an infinit direct product pro-



bability measure is obtained and is applied to show that the groups of 

non-singular transformations of D. Ornstein ([13]) and L. Arnold  ([2]  ) 

are of type III.

5.1. Quasi-product measure. Let (S2„, 3n) be a measurable space and pn 

be a c-finite measure on it for each n>1, and let (S2, 5")---= II (D„,9",) be 
n=1 

the infinite direct product measurable space.

   DEFINITION 5.1. Let pn be a a-finite measure on (S2„, n) n=1,2,•••  . A 

c-finite measure p on (S2, 5-) is said to be a quasi-product measure of (pn)n2, if 

there exists for each n>1 a a-finite measure pn+ on fl (S21, .rt) such that 
i=n+1

P = l Pt X /-1n+1 • 
J=1

   An example of a quasi-product measure is given as follows. For each 

n>1, let An be chosen in .9'n such that 0<kcn(A8)<oo. We define the 

normalized measures 72n= ---------'unand the restriction of this to An, An. (i. 
l~,Z(An) 

e. for all Bn E n An (B n) =__  (Bn n ̀4n~) Let ,u `n' = II ~ut x H A, and p be 
                pn (An)1 =1 1=n+1 

the inductive limit measure of p(n). Then p is a quasi-product measure 

of (P„).1. 

   If pn(S2,) =1 n>1 then the infinite direct product probability measure 

p = II pn is quasi-product. 
n=1 

Oui interest is that; let pn be a a-finite measure on 9n and let Pn be 

another probability measure on .9"n and assume p,, 'Pn for each n?1. 

Under what condition does there exist a quasi-product measre p of (/2n)n21 

equivalent with the infinite direct product probability measure P= II Pn ? 
n=1 

   This problem was first discussed by C. C. Moore ([1]) and 0. Take-

nouchi ([15]) when each 'rG, is a finite or countable set. The general 

case was discussed by D. G. Hill ([6]) and a necessary and sufficient con-

dition for the existence was obtained: There exists a quasi product measure p 

of (pn) n2, equivalent with P= H Pn if and only if there exists, for each n, a mea-
                                                   n=1 

surable subset An E.5n with the following properties:

(1) 0 < 12n(An) < oo 

(2) H Pn(An) > 0 or equivalently,° (1—Pn (An)) <o0 
n=1n=1 

(3) P' = H P' n and p' = II p' n 
    n=1n=1

are equivalent, where P',, andp',, are measures defined on .,"n by P',, (Bn) —F,,



 (Bn  I  I  An)/Pn(An), P'.(Bn) —/-in(Bn I I AnMan(An)• 
   Here we shall give another simple criterion for the existence of an 

equivalent quasi-product measure. Of course the general Hill's condition 

is easily obtained from our condition.

We denote by Xn(con) the Rador~-Nikodym densitydPH(con). We may
consider that 9"n and X„ (co„) are defined on (.2, P) = ll (S2n, sn, Pn) • 

n-1 

Then X 1(c)) , X2(@),... are mutually independent random variables and each 

Xn(co) is 91-measurable and positively valued.

   THEOREM 5.1. The following conditions are equivalent. 

   (1) There exists a quasi product a-finite measure p of (pn)nzl equivalent with 

the infinite direct product probability measure P= II Pn. 
                                                                                  n=1 

   (2) There are positive constants b1, b2,•••. such that

rlXn(w) 
n=1 bn

converges almost surely.

   PROOF. First we remark the condition (1) is equivalent with the 

following condition (1)' through the relationdP  (co)=X(w). 
   (1)' There exists a positively valued, 9"-measurable random variable 

X(co) such that for each n>1

             n 

X(co) =IIxi (a))x X+1(o) 
             t=1

where X;i`t1(0)) is a V fi-i-measurable random variable. (The sub a-alge-
                                 i=n+1 

      n+1 

bra V .", is the a-algebra generated by fi-n+1, 5n+2,•••.) So it is enough to 
i=1 

show the equivalence of (1)' and (2).

LEMMA 5.1. If random variables U1 (w) , U2 (w) , ... satisfy 

E(exp(—itUn(co)))I 1 tER

then there are constants a1i a2,-.-such that 

U(a) — an k 0 in probability. 
                                                   n~oo

   PROOF. Let Un(co) be an independent random variable of U n(co) with 

the same distribution. Then



 l 
U„ (co)))I 2dt=2E{1-1fr(Un(co) —(7n(c)))}

where

     sin uif u~0 
*Cu)—Iui

i if u=0.
Choosing small e>0,

E{1— (Un(c)—U4(w))) > {1— (e)}P(I (In (co)—U,(co)I>s) 

((1—~v'((e))P((Un(co) —an>e,Un(w)<an)                    +{1—i(e))P(UU(()—an<—e, U(ü)_�an) 

1 P(IU n(C.0)—and>e),

where an is a median of U.(0));

P(U,,(w) < an) >12_

P(UU(w)>a)> 2-
By the bounded convergence theorem

1— I E{exp(—it U„ (co)))12dt —> 0 , 
J 1n~~o

and so Un(w) —an 0 in probability.

We now continue to give a proof of Theorem 5.1. (1)'- -(2).

Let Y„ (co)=log X4(co), M1(w)=log X, +,(cv) and Y(co) =log X(cv).

E{exp(—it Y(w)) \/. ;} = II exp ( — it Y, (co)) x E{exp(—it)1+,(w))) • 
!=1J=1

By the martingale covergence theorem

E[exp(—it Y(w)) V.9-;} b exp(—itY(w)) a. s. Co, 
J=1 n~w

and so

IE{exp(—itY,*+1(w))}I--b1 tER.

By Lemma 5.1 there are constants a1, a2,••• such that

M1(c0)—an 0 in probability.

Then for a sequence (c.).�1 defined by cZ = —an n > 1 
                                                                   i=1



 Y,  (co)  —c,  --> Y(co) in probability. 
i=1

Since Y1(co) , Y2 (co) , • • • are independent, Y, (co) — ct converges to Y(co) 
{=1 

almost surely as n co. 

Therefore, it follows that for bn = expcn

r!1 bn
converges almost surely. Proof of (2) -- (1)' is evident.

   REMARK 1. A quasi-product measure p equivalent with the infinite 

direct product probability measure P, if it exists, is unique up to constants 

by the 0-1 law. 

   REMARK 2. If X1(co), X2(co),••• are independent identically distributed 

(non-deterministic) then, there are no equivalent quasi-product measures 
of (an)n21.

5.2. Hill's condition. 

   LEMMA 5. 2. Let Z1(co) , Z2 (co) , • • • be a sequence of positively valued in-

dependent random variables of L2 (S2, , P) . Then II Z„ (co) converges in 12 (S2, 
n=1

P) -sense if and only if (1) o< II E (Z,, (co) 2) <co and (2) 0 < II E (Z,, ((o)) <co . 
n=1„=1

PROOF. "If" part. (1) follows from the definition. Since

II Zk(co)   E(41(0))), n=1, 2, •••is a Cauchy-sequence ofL2(2, P), ~k=1
   Zkl

/~) — Zk(~)= 1—IIZk(~)  k=1r+(Zk\0))k=1 E(Zk(co)2)IL2(S.P)k=n+1 E(•k) L2(S.P)

=^2 
11— IIE(Zk)  k=n+1 E(Zk) J

tends to 0 as n, m co. The proof of "only if" part is the same.

   Lemma 5. 3.(Kakutani [8] ). Two infinitedirect product probability 

measures P= II Pnand Q= II Q, , Pn (S2n) = Qn (S2n) =1, are equivalent with each 
     n=1 n=1 

other if and only if

0 < II Ep (^ Zn (o)) < co 
n=1

where Zn (co) = dQn (co) .              dP
n



   LEMMA 5. 4. (Kolmogorov  [7])  . Let Y1(co), Y2 (co),... be a sequence of 

real independent random variables and put

       JJYn (a) if IYn (a))I<1 Yin (co) =l 
         0if othewise .

Then E Yn(co) converges almost surely if and only if the three series 
n=1 

E P(I Yn(co) I >1),E E(Y4'(co)) and E Var (IC') converge. 
ns1n=1n=1

   PROPOSITION 5.5. Let X1(co) , X2 (co) , . . . be a sequence of positively valued 

independent random variables. Then H X,, (co) converges almost surely if and only 
n=1 

if there are Xn(o )-measurable sets An n>1 such that the three infinite products 

II P(A ,2), H E(xn : An) and II E(/x„: An) converge. 
n=1u=1n=1

   PROOF. "Only if" part. Let 2*= n An and (2*, 9 (1 2*, P*) be the 
n=1 

restriction of M."-, P) onto 2*: P*(A) =---PC()A E.n2*. We define 
a sequence of independent random variables Xn (co) on (S2*, ."-n SZ*, P*) :

Xn(co)=E~X)P(A) coE2*. 

By the condition, H Ep*(^X71 )2 = IIE(^X (co)
                                           • Ay

coverges and 
n=1n=1 P(A,)E(Xn(co) ; An)

Ep* (Xn (co)) =1. By Lemma 5. 2, II ^Xn (co) converges in L2(2*, P*)-sence 
n=1 

and converges almost surely, because of independence. Since 

II - P(A) converges,H Xn (co) converges a. s. co E 2*, from 0-1 law, 
n=1 E(X,~(co) ; Ad)n-1 

II Xn (co) converges almost surely on 2. 
n=1 

"If" part . Let /CM—log Xn (co) and An---(0)I I r.(0)) I �1). Then we have

                Yn(co) — E (Yn (co) ; An) —z Var( /CO>E((exp21)An)
= E ((exp(_  Yn())_exp(_ E(Y2 An)))2 exp Yn(co); An)

                    —17
2'1-;2          YcoE (eXp-----  ----- A;2) >E~Cexp(—())--)exp Y4(co) ;An~ —2JE( exp Yn :A)

      E{expYn2; An}z 
= P(An) ----E 

(exp Yn (a)) ; An)



 = P(An) — EE{X(c0));An}) z
                                 z 

 

, because uz > (exp- 2 —1 u E R. Therefore by Lemma 5.4
    °°E(VX n : A„)2  

                            o0 0 nI1 E(Xn: An) < .

Since for a large number n I E(Y4; An) I <2-,it holds that

IE(1—(exp(—E(Yn; A,z)))Xn((o) ; An) 
=1E(1—exp(Y4((0)—E(Y4; An)); An) 

2Var(Yn')

, because Iexpu—l—ul<2!u12 if I u I <  . Therefore by Lemma 5.4

0< II exp(—E(Yn; A4))xE(Yn; A.)< C° • 
n=1

By Lemma 5.4, the ratio

II E(Xk ; Ak) 

    

k-------------------------------------------=1 exp( E(Yk; Ak)) 
II exp(—E(Yk; Ak)) x E(Xk: Ak)k 
k~1

coverges as n — co. Thus we have

0 < II E(X4 : An) < oo and 0 < II E(^Xn ; An) <C° 
n=1n-1

   THEOREM 5.2 (Hill [6]) . There exists an equivalent quasi-product measure 

if and only if there exists, for each n, An E 5n sucht hat (1) 0<un(An)<oo (2) 

II Pn (An) >0 and (3) P' = H Pn' and p' = II pn' are equivalent with each other, 
n=1n=1n=1 

where P,' are l'n are the restriction of Pn and ,un onto An respectively.

PROOF. It follows from Theorem 5.1, Proposition 5.5 and Lemma 5.3.

§ 6. Classification of IPT transformation groups I.

   In this section and the following section we are going to discuss a 

class of ergodic groups of non-singular transformations for which interest-

ing criterions are obtained. 

6.1. IPT transformation groups. 

   Let ((S24,9"., Pn) I n=1, 2,...) be a sepuence of Lebesgue measure spaces 

with Pn(S2n) =1 n=1, 2,••• . For each n, let Gn be an ergodic countable 

group of non-singular transformations of (S2n,n, Pa). Assume that, for



each n, there exists a finite or  a-finite measure ,un defined on 5-n, which 

is equivalent with Pa and invariant under G. We denote by Xn(m) the 

Radon-Nikodym densitydPn-----(Con). 
   Let (2, .', P) be the infinite direct product probabilty measure space 

  Vi  

 II   (s2„, 5,, Pa). We may consider that Gn, 9"„ and Xn are defined on the 
n=1 

infinite direct product probability measure space (2, 5", P) . The group 

G = EGG, generated by U Gn is said to be an ITP transformation group 
        n=1n=1 

of (2, .~', P) .

PROPOSITION 6.1. An ITP transformation group G=E ED G„ is ergodic 
n=1 

and non-singular.

PROOF. For g=g1g2 ••• gn E G with g, E Gi

dP _ dP1g1  xP2g2x•••x r
lP(0)dP1 xP2x..,xPnPngn (co)

  nXi(a) 

= i=i X, (gi0))

If a measurable function f(w) is invariant under G,then for each n>1 

Au)) is G1 x • • • x Gn-invariant. Since G1 x • • • x Gn is ergodic, f(w) is V 
i=n+1 

9-i-measurable. Since n is any, f(cv) is tail c-field measurable and is cons-

tant a. s. 0), because of the 0-1 law.

   PROPOSITION 6.2. Let G= Gn be an IPT transformation group of (D, 
n=1 

   P) and let ,u be a c-finite measure equivalent with P. Then p is invariant 

under G if and only if p is a quasi product measure of (Un) n21.

   PROOF. Let X(@) =  dP (o). From Lemma 4.2 p is invariant under G 
if and only if for g=g1g2 • • • gn E G with g, E Gi

                    TnT IIXi (gico)IIXi (c) 

 X(g0)------=i°X(0)) a. s.a).

II Xi (0)) 
Since G1 x G2 x • • • Gn is ergodic,i X()is

jV19-2-measurable.

   THEOREM 6.1. Let G= EGG„ be an IPT transformation group of (2,9-, 
n=1 

P) . Then G is of semi-finite type if and only if there are positive constants b1,



 b2i • • • such that

n Xn(w) 
n-1 bn

converges almost surely. 

   PROOF is from Proposition 6.2 and Theorem 5.1.

6.2. Examples of groups of non-singular transformations of type III. 

   Let ,i2n= (0,1,...... , k, 1), gni=i+1 (mod kn), G;2= (g4; 1=0,1,...... , k,,— 

1), P, be a probability measure with P(i)>0 and p ,, be a uniform measure 

on 2n. We note that in this case an IPT transformation group G= E EBGn 
n=1 

is weakly equivalent with a cyclic group generated by a singleergodic 

non-singular transformation of the usual Lebesgue measure space ([0,1] , 

M[0,1] , A) ([6]) .

EXAMPLE 1 (Ornstein [13]) S2n= (0,1,•••, k„-1) k„�-3 Pn(i) =11 if 1=0, =

1  if i>1 . 2(k
n —1)

EXAMPLE 2 (Brunel [3]) . S2„-= (0, 1, 2) P(i)= -4 if 1=0  or 2, = 12 i=1.
   EXAMPLE 3 (Arnold [2] ). SZn= (0,1), P„ (0) =  1+A P(1)=--0<A<1. 
   Examples 2, 3 are cases of identical distribution and then they are of 

type III by Theorem 6.1 and Remark 2 of Theorem 5.1. Next suppose 

that Example 1 has an equivalent invariant measure. Then by Theorem 

6.1 for some positive constants b1, b2,......,Xb)must converge to 1 in 
probability. For any s)'0

  Xn---- —1 1 P(--bn1 >~)=-2x(-00.1-e)Ua+e.")b2n)
+1xc-y.l-e)U(1+e,~)bn ) „—2(k-1) 2(0

, where x denotes an indicator function of a set. Then bothb~, and 
2(kn-1) converge to 1

, which contradicts to the condition kn>3. There-   by, 
fore Example 1 is also of type III.

§ 7. Classification of IPT transformation groups II.

                                                             ti 

7.1. T(G) of IPT transformation groups G= E Gn. 
n=1

THEOREM 7.1. Let G= EGn be an IPT transformation group of (S2, 
n=1



 P)  . Then a real number t E T(G) if and only if there are real constants at.1, 

at ,2, ......, such that

exp (i ± (t log X, (co) — at,,) 
! 1

converges almost surely as n--> co.

   PROOF. Let a non-singular transformation g=g1g2 ......g,, E G(gt E G,) sa-

tisfy exp (i(et (gco) —et(co))) = exp (it log dPg----(co)) 
Then

exp(i(E, (g1co1, ......,gncon, con+1,•••)+t log X,(g101)......Xn(gncon))) 
   = exp(i(E(col, ......, con, con+1, ......) +t log XI (col).— Xn(con)))

Since G1 x • • • x Gn is ergodic there exists a V 5'2-measurable function 
i-n+1 

S*n+10)) such that

exp (i(e,(c)+t log X1(co)......Xn(w))) = exp(iV..+1(a)) •

Hence we have that t E T(G) if and only if there exist a 5--measurable 

function e (co) and a V .9",-measurable function V*n+10o) for each n=1, 
.t-n+1 

2, , • • • such that

exp (iet (c))) = exp( — it Alog X, (c))) exp(1 .n+1(@)) • 
                                  i-1

By this

E (exp(iE(o)) :/,,r;)=               exp (—it log X; (cv)) x E( exp ie .n+l).  !=1

Let ct.n+1 be the angle in polar coordinate of E(exp iet,n+1) . We have

lim exp (i(_tlogxi(co)+ct.+i ) )
E {exp iEt (c)) \/ 9i ) 

= lim J=1  

E teXp iet (co) V ~~} 
!=1

= exp iEt (co) a. s. co,

by the martingale convergence theorem, and

lirn exp (— i (t log X, (co) — at,,)) = exp (iet (co)) a. s. co , 
1=1

where at,,=ct,t1—ct, j=1, 2,...... and ct,1=O. 

   Conversely the last equation implies



 exp(iE1(co)) = exp (— it log X,(co)) x exp(i *n+1(o))) 
i-1

where

exp (ict.n+1(o)) = exp (i at.,) lirn exp (_t (tlogX, (co) — at.,) ) 
1=1 m-= i-n+1

a.s.cv, n=1,2,......

   REMARK. Let G= ED Gn be an IPT transformation group. If a real 
n=1 

number t E T(G) then there exist real constants a1,1, at,2,...... such that 

lim exp (i (tlogXn (co) + (21. n)) =1 a. s. co .

 7.2. A simple proof of the converse of (1) of Theorem 4.1. 

PROPOSITION 7.1. Let G= E ED Gn be an IPT transformation group of (S2, 
n=1 

P) . If T(G)=R  then G is of semi finite type.

PROOF. Since by Theorem 7.1 there are constants at,1, at.2t ••• such that

lim exp(—i (t logX,(o.)) —at.i) = 1 a. s. co , 
i=n+1

we have

lun E{exp(—it log X,(co))}l=1 tER. 
n.m •~i=n-F1

By Lemma 5.1 there are real constants cn,m n,m=1, 2,...... such that

   (log X,(co)—c„,) 
!-n+1

converges to 0 in probability as n,m oo . And then

lim exp i ( at,i— tcn.,, = 1 t ER . 
n.m-•~i-n+1

Therefore

lim exp —it(log X,(co)—cn..)) = 1 a. s. Co , 
n.m +wi-n+1

and

       m 

lim" (log X,(co))—c„,„, = 0 a. s. co , 
n.m-• ' i-n+1

which means that putting b,=X,(coo) for coo E S2j-1, 2,...... , the infinite 

product



11   X;  (co) 
1=1 Ui

converges almost surely. By Theorem 6.1 G is of semi-finite type.

7.3. Examples. 

   Each non-singular transformation group of type III, 0<2<1, III, and 

III° is given by the infinite product method as follows, 

IIIx and III,. Let S2n=(0,1,...... , d-1) gnj=j+1 (mod d) Gn=(gn; 0< 

k<d), Pn(j)=Pm(j)>0 and ,un be a uniform measure of Q. Then IPT 

transformation group G= E ED Gn is of type III, if log Xn (c0) is lattice 
n=1 

distributed with span -log A 0<2<1 and G is of type III, if it is non-lat-

tice distributed. 
III°. Let SZn=(0,1), gn(j) =j+1 (mod 2), G„—(8,1; k=0, 1,) and ,un be 

a uniform measure of SZn. For 0<2<1, let No, N1,...... be an increasing 

sequence of positive integers such that

      )Nk—NI C 1+220<c<1 k = 0,1,...... .
AZk Put P

n(0) = ------AZk and Pn(1)= 1-------±22k if N0_1 <n<N0 k=0, 1,....... Then

X„(0)— dP
n (0) = 1 + 22k

with probability 1+2' , and

Xn (1) =1 + 72k           ~Zk

A2k with probability 
1+A2kifNk_1<n<N0k=0,1,....... We show

T(G) = 2n      i
ogA >,

, where P = l2m ; m=0,1,...... , 1=0,±1,±2,......} . 
Putting

2n  1 t_ 
log A 2'n

and

an= log1 log (1 + 22k) N0_1 < n<Nk ,



we have

 exp  (—  i (t log X, (w) — a,) ) 
            !=1

= exp (— i (k~2 gn l_logA2k + EacZ_log AZk )1             k=1Nk_1<INklog2mNk0_1<J nlog A 2m 
w,=1w1=1

                  m-1 = exp(—i(~E 2n• 1 
             k=1 Nk-1<J5Nk2m-k 

w,=1

Nk0_1 < n < Nko m <120. By Theorem 7.1 t E T(G). 

                                       Assume that a real number t is not in log A  F 
For the 2-adic expansion

t log A = y Pm 27r ~ ZmPm E {0,1} m=1, 2,...... ,
let

rk - EPmk=1, 2,...... rn=k+1 2m-k

Then exp(27cirk) does not converge as k - - oo. Hence there exists a 

positive number e and an increasing sub-sequence kn n=1,2,...... such that

I exp (2nirkn) —1 I > e n = 1, 2,...... .

Putting

b, = t log(1+012kn) Nk_1 < j < Nk ,

we have

                1if co, =0 
exp(—i(t log X,(cv,)—b,)) _ 

exp (2nirk) if co, = 1

Nk_1 < j Nk k=1, 2,...... . Since
          Nn P(nn (a; co, =1) 

     n=1 3-Nk
n_1+1

         1
]Nkn—N1n-1  n-1 (i+) 

=0,

there exist for almost sure co infinitely often numbers n with a), =1 for 

some Nkn_1 < j S Nkn, because of the Borel-Cantelli lemma. Therefore 
exp(—i(t log X,(co) —b,)) does not converge as j --> co almost surely. This 

implies that t is not in T (G) .
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