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‘Introduction

With respect to the Cauchy Problem for the equation of the parabolic
type:

1) %=,Z::’i( |u|v%l-a-’i>+f(x,t,u) (m>1)

X4 ox,
J. A. Dubinskii [2] proved the existence of weak solutions. In the case of

n=1, especially, O. A. Oleinik, A. S. Kalashnikov and Chzhou Yui-lin’ [4]
proved the existence of the continuous weak solution for the equation:

dou ou"
@ Bt Bxt (m>1)
Moreover, it was established that the solution of the above is Hglder
continuous, by D. G. Aronson [1] and S. N. Krujkov [3]. In this paper,
we will show the existence of the continuous weak solution of the Cauchy

Problem:
® =S —e<a<too,  OIST, (m>1),
@ . u(x,0) = ¢(x) .

It is assumed that functions f and ¢ satisfy the conditions described in
the following § 1.

§ 1. The Theorem

In the Cauchy Problem (3),- 4), ¢(x) is a given function bounded
(sup ¢(x)=L,) and nonnegative in (—co, +0), for which ¢(x)" is Lipshitz
continuous, i.e.,

an le" ()~ (M | < K|x—y],
and
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f=f(2) is a given function belonging to the class C® in [0, o) which
satisfies the following conditions:
(1.2) 0=/ =L IfDI=1in[0,00),
1.3 f(L) =0, here, L= (2K+L';’)"l",
(for example, f(A)=(1/2) sin?*(A—L) and f(A)=(A-L)?/(1+(A—-L)?).

Then, there exists a continuous weak solution u(x, ) in S=(—o0, +) X [0,
T]. Namely, u(x,t) is a nonnegative and bounded continuous function, for
which the generalized derivative (u™), exists and is bounded, and which

satisfies the identity
° ou"d oo
1.4 ”S{ug[l _owse +f(u)up}dxdz+ J'quo(x)p(x, 0)dx = 0
for all p(x, )€C=(S) that vanish for sufficiently large |x| and at ¢=T.

§ 2. The Lemma and its Proof

If we set v=u" in (3), it follows that

az 1= ma
@2.1) or=1y —fmyvn .
Now, in R=[a, b] X [0,T] we consider the problem (2.1) under the condi-
tions:
(2.2) v(x,0) = yo(x), v(a,t) = y(#), v(b, 1) = v,(1)

LemMa. In the initial-boundary value problem (2.1) (2.2), if v,€C*,
¥, €C? (i=1,2) and the compatibility conditions are satisfied, i.e.,

vo(@) = 1//1(0) Vo(8) = v.(0)

d'yo(a) _ 0 FHO sy, %) i) =
. S = 9 (0) ) ) 1 (0)
o)~ Ly =D sy, 0) %)y (0)

and if f=f(A)€C’® with the condition (1.2), and moreover
ey 0<I<y, <L (i=012),

then there exists a classical solution v(x,?) of the problem and it holds
the estimate 7§v(x, t)gie’” for any (x,t)€ER.
Proof. Here we use the method of O. A. Oleinik, A.S. Kalashnikov
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and Chzhou Yui-lin’ [4]. Considering the “truncating function” we can
construct the functions 4(4) and F(A) belonging to the class C? in (—o
+o0) which satisfy the following relations.

W) (1= goker <2)

AQR) =
1.5 (1< 1< Lenm)
m
%A‘_EgA(A);;’%(z)T (%gxgl,ie gagzLew)
(%)5’” (1;7’1 2Le”‘T+1</1>
FQ) =

,2Ler < A< 2Le"m+1 )

Now, we consider the problem

9%y

2.5) B

= A(v) N —F(v)v in R.

Since it follows that A(4)=const.>0 and (—F(A)A)'=const.,, we can apply
the main theorem of O. A. Oleinik and T. D. Venttsel’ [5] under the
assumption of the lemma.

Thus, we have a classical solution »(x,?) of the problem (2.5), (2.2).
Setting v=we* (a>>m) it follows that

olw

2.6) o

——A()at—i—{A(v)a F(@))w in R.

Here, it holds that wgf, on the boundary I'(t=0, x=a, x=>5).
If the function w had a positive maximal value inside the R—1T, it
would follow thalta =0 and 8 3 < 0 at the point. Since A(@)a—F(v) >0,

the left-hand side of (2.6) would be nonpositive and the right-hand side of
(2.6) would be positive. It is inconsistent.
Hence we have

w(x, t)gi, or v(x, t)gie“ in R.

Setting v = l~+we‘”(ﬁ>m), it follows that
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@n T 4) at+(A(v)B F@))yw—F(0)ie-* .

Here, it holds that 0<<w on the boundary r.
If the function w had a negative minimal value inside the R-I', rela-

2
tions%%}go and %‘:go would be satisfied at the point. In (2.7), the left-
hand side would be nonnegative and the right-hand side would be negative.
It is inconsistent. Hence we have
w(x,1) =0, or v(x,t) =! in R.

Thus, with respect to the problem (2.5), (2.2), we have a classical
solution satisfying the estimate
(2.8) I<v<ILe™ in R.
Next, we return to the equation (2.1). Since the function v(x, ) of
the above satisfies the relation (2.8), it holds

A@) =0, F@) =0 % [,

Consequently, the function v satisfies the equation (2.1), and the proof of
the lemma is complete.
§ 3. The Proof of the Theorem
If we set v, (x)=¢(x)" and
von () = | 0, (x=E)P(§)dE+27 K, (—oco<xl+00) .

(here, p.(x) is a Friedrichs mollifier), we have the following relations.

IxélZ”Z

Vons1(X) L 0, (%), Uon(X)EC™, 0 < v,,(x) < L™,
a'v[,,,(x)

ISK for any x€(—o0, + ), vp,(x)>0,(x) (n—00)

(uniformly convergence on any compact set).
:Further, we can construct the function 1;,,(x)EC°° which satisfies the
following relations.
1~1,,(x) =0, (x), |x|<n-2, .;),,(x) =L*, |x|=n—1, and

Do (%) < 2y (6) < 2, () < L, [‘L”‘;%)-lgk in (—co, +0) .

Now in G,=[—n,n] X [0,T] we consider the problem

o _ 1 1m0y
3.1 o= Ly wmyom,
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(3.2 v(x,0) = 0,(x), v(m 1) =L".

Taking notice of the assumption f(L)=0, we find that the compatibility
conditions are satisfied. Moreover it holds 0< inf z?n(x)g;,,(x)gﬂ", and so
we have the classical solution v,(x,?) of the problem (3.1), (3.2) satisfy-
ing the estimate

inf v,(x) < v.(x,t) < Le"” .

This is established by the lemma. Next, setting

wn == Dn(x’ z) —UVH—l(xv t).y
we have the equality

1 2w, Owa. 1

Blvy ax: — ot By

{ B (0;1) avnﬂ el (bn) } w,,
where
B) =A%, C) = fAm)A, 0<inf 0,.,(0) < 0,(5,0), B,(x ) < Lres”.

In consideration of the boundedness

1
B(v,)

avn+1

B'(0.) -C' ) |< M, in G,,

and the boundary values w,(x,0) =0, w,(+n, ) =0, we have w, (x, ) =0
inG,, orv,(x,t)=v,..(x1).

. ov, ., . .
Setting P, =5Z;7‘ it gives the equality

P,
ox — BC

)aP B'(v,)
U5t T Bl

n ( ﬂ) '’
g+ (G cwy—cw )P,
in G,
in which it holds «,B(v,) + ( B<(UU")) C,)—-C (21,,)) > C,>0, where a,=2(m+

Le™. Hence, the function P,l=P,;e Tl gives the equality

o'P, aPn B (v,) 0. Pt B p 0P pu
Tt =B G+ (@B + FE Co)—C @) Pt PP, Fhremw.

Applying the maximum principle, we have the estimate
3.3) [P, (x, )| < Max|P,(x,0)|ex, I'y= (x = +n, t=0).
Tn

To investigate the property of v,(x,?) in S,=[n—1,n] X [0, T}, put w,(x, )=
v.(x, 1) +ef1=-n+b I then it gives the equality
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az,w” _ ,1 1—;,,""’87’”” _ L x 2,K1(x=n+1)

axt " m? " = —f@am)uam o+ Kieh ,

where, K, is a sufficiently large number to hold inequalities
Ki—Le™ >0, and L"e""+1 < eX?

Thereby it gives that w,(x,?) has a maximal value %! on the boundary

x=n, and so %—u;”‘ =0, equivalently, P,(n,t) =—K,e. By the discussion
analogous to the above, it follows |P,(+n, t)}glw(e;, tef0, T1.

Noting the estimate |P,(x,0)|=

f??"d%)»;glc XE(—oco, +00)

we have estimations

| ow,

(3. 4) E ouy

ox

<C, or | 2%|<C, in G, (n=1.2, )

ox

1
where u, = v,n.

Moreover functions u%(n=1,2,---) satisfy the inequalities
(3.5) lun(x+h, 0) —up(x, )| < Clhl, n=1,2,3,

On the other hand, since v,(x,t)=v,.,(x, ), there exists a limit function
v(x,t) of v,(x,0).

Let n—>oc0 in the above (3.5), then we have the relation
(3.6) lo(x+h t)—v(x, )| Clh|, (x, DES.

1
Hence, putting v(x, 1) » =u(x,?), there exists a generalized derivative (&™),

and we have
| our .
3.7 15; <C, 0<ulx,t)< Le™ in S,

and it is easily verified that the function u(x, t) satisfies the weak equation
(1.4).

Finally, we investigate the continuity with respect to z. Let (x,, %)
belong to S. If the function u(x,, ) =v(x,, z)i'n' was not continuous at t=t¢,,
then there would exist a positive number ¢, and a sequence ¢,(k=1,2, )
tending to t, such that u(x,, t,) —u(x,, t,)=¢e, and t,>t,(k=1, 2, ---).

Considering that u(x,¢) is continuous with respect to x, there would
exist a interval [§,, &] containing x,, such that

u(x, 1) —u(x ) =7 for any x€|é, &) .
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Set G;=(—o0, +0) X [4, T] (A=0) and let p(x, 1)€C> be a function satis-
fying the relations
o(x,T) =0, p(x,8) =0, x€(—o0, +0)—[£,&], 1€[0,T],
o0, 020, (x, €8s & X [t 10+3],
(where 6>0 is a sufficiently small number).

Since the function »,(x,?)=u?(x,t) is a classical solution of the problem
(3.1) (3.2) in G,, we have

%0, _9p0u; 2 -
JJG:O [ 34 Bx Bx +pf(u,,)u,,]dxdt+ Llp(x, t)u,(x, t)dx = 0.

Let n—co in the above equality and further considering G,, instead of

G, we have the equality

%0 _2u"%p - J " -
”%_%[u S — Sy o H/Gueldxdr = [ (uCx, )0 Cx 1) —(x, 1) p (e, 1) dx

Here, the left-hand side tends to zero as k—oo, and with respect to
the right-hand side we would have the estimate from below

ggﬁMxmw.

It is inconsistent. Thus, the proof of the theorem is complete,

College of General Education
Kyushu University.
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