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Introduction 

   With respect to the Cauchy Problem for the equation of the parabolic 

type:

(1)au=~'aIuIm1ax---- {)+f(x, t, u) (M>1)         atax,

J. A. Dubinskii [2] proved the existence of weak solutions. In the case of 

n=1, especially, 0. A. Oleinik, A. S. Kalashnikov and Chzhou Yui-lin' [4] 

proved the existence of the continuous weak solution for the equation:

(2)au=a2um(m>1)                       at axz

Moreover, it was established that the solution of the above is Holder 

continuous, by D. G. Aronson [1] and S. N. Krujkov [3] . In this paper, 

we will show the existence of the continuous weak solution of the Cauchy 

Problem:

          au azu'" uu,-oox (3)ai-axz+f(0<t<T, (m>1) ,)<<+~,

 (4)u(x, 0) = (p (x) . 

It is assumed that functions f and yP satisfy the conditions described in 

the following § 1.

 § 1. The Theorem 

   In the Cauchy Problem (3), (4), co(x) is a given function bounded 

(sup v(x) = Li) and nonnegative in (—co, + co) , for which c o(x)"'  is Lipsfiitz 
continuous, i.e., 

(1.1) kpm(x)—wm(Y)I<Kix-yI, 
and



 f=f(A) is a given function belonging to the class C5 in [0, co) which 
satisfies the following conditions : 

 (1. 2)0 < f(A) < 1, If' (A) I < 1 in [0, oo) , 

                                                                         1 (1.3)f(L) = 0, here, L = (2K+Li)m, 

   (for example, f(A) = (1/2) sin2(A—L) and f(A) = (A--L)2/(1+ (A—L)2). 

Then, there exists a continuous weak solution u(x, t) in S= (—co, +oo) x [0, 

T] . Namely, u(x, t) is a nonnegative and bounded continuous function, for 

which the generalized derivative (um)x exists and is bounded, and which 

satisfies the identity

(L4)if sluap—aumap+f(u)up}dxdt+1+cp(x)p(x,0)dx=0 atax ax

for all p(x, t)EC°(S) that vanish for sufficiently large I x I and at t=T. 

 § 2. The Lemma and its Proof 

   If we set v=um in (3), it follows that

32v _1 1-m av11 (2. 1)3 x2— m v m at — f(v m) v m

Now, in R= [a, b] x [0, T] we consider the problem (2. 1) under the condi-

tions : 

(2. 2) v (x, 0) = o (x), v (a, t) = •1(t), v (b, t) = p2 (t) 

   LEMMA. In the initial-boundary value problem (2. 1) (2. 2), ifoEC4, 

 =EC3 (i=1, 2) and the compatibility conditions are satisfied, i.e.,

(2. 3)

Vr0(a) = 11,1(0),0(b) = '2(0) 
d2 (a) 1(0)l mmddt0)—f(1(0)m) *1(0) dx 

-------2

d 2 fr o (b) = 1 2 (0)1-; d2(0)f(2(0) m)Y2(0) m d
x2mdt

and if f=f(A)EC5 with the condition (1.2), and moreover

(2.4)0 < l <, < L (i = 0, 1, 2) ,

then there exists a classical solution v(x, t) of the problem and it holds 

the estimate l <v (x, t) <LemT for any (x, t) ER. 

   Proof. Here we use the method of O. A. Oleinik, A. S. Kalashnikov



and Chzhou Yui-lin'  [4]  . Considering the "truncating function" we can 

construct the functions A(A) and F(A) belonging to the class C' in (—co, 

+co) which satisfy the following relations.

A(A) = 

         m

 (1;fl  (A-,2ILemTA)
1dlmrn (l<A<LemT)

I-mlt-m 1,1tm< A(A) <1m .4)nt(-12A <-1, Lemr < A < 2LemT), 

m

(±)rnm     ('1<4,2LemT +1 < A)
F(A)= 5...

mA(A)f (A m) (_A~2LemT)

mA(A)f (A m)<F(A) < ( _-)m(4<A<2, 2LemT<A< 2LemT +1).
Now, we consider the problem

(2. 5)8x2= A(v)at82v8v—F(v)v in R.

Since it follows that A(A)>const.>0 and (—F(A)A)'>const., we can apply 

the main theorem of O. A. Oleinik and T. D. Venttsel' [5] under the 

assumption of the lemma. 

   Thus, we have a classical solution v(x, t) of the problem (2. 5), (2. 2). 

Setting v=weat (a>m) it follows that

                       Z 

(2. 6)8z= A(v)at + {A(v) a— F (v))  w in R.

Here, it holds that w<L on the boundary I'(t=0, x=a, x=b). 

   If the function w had a positive maximal value inside the R—I', it 

2 would follow that              3w                 t>0andax < 0 at the point. Since A(v)a—F(v) > 0, 

the left-hand side of (2. 6) would be nonpositive and the right-hand side of 

(2. 6) would be positive. It is inconsistent. 

Hence we have

w (x, t) < L, or v(x, t) < LemT in R.

Setting v = l+we't(19>m), it follows that



                     2 

(2. 7)3x=  A(v)at +(A(v)Q—F(v))w—F(v)le-at
Here, it holds that 0<w on the boundary T. 

   If the function w had a negative minimal value inside the R-T, rela- 

                        2 tions-~—wt<0 andaz>0 would be satisfied at the point. In (2. 7), the left- 
hand side would be nonnegative and the right-hand side would be negative. 

It is inconsistent. Hence we have •

w(x, t) > 0 , or v(x, t) > 1 in R.

   Thus, with respect to the problem (2. 5), (2. 2), we have a classical 

solution satisfying the estimate 

(2. 8) 1 <v<LemT in R. 
   Next, we return to the equation (2. I). Since the function v(x, t) of 

the above satisfies the relation (2. 8), it holds

A(v) =mvmm, F(v) = v1.-mmf (v ) .
Consequently, the function v satisfies the equation (2. 1), and the proof of 

the lemma is complete.

§ 3. The Proof of the Theorem 

 If we set vo (x) = cp (x) m and

von(x) = J e)co )mds+2-n+2K, (-00<x<+co)

(here, to is a Friedrichs mollifier), we have the following relations. 

von+i(x)<_von(x) , von(x)EC- , 0 < von(x) < Lm ,

dvon(x) < K for any xE( —oo, +co) , von(x)vo(x) (n-›co)  dx

        (uniformly convergence on any compact set) . 
   Further, we can construct the function ;n(x)EC- which satisfies the 

following relations.

vn(x) = von(x) , I x l < n-2 , vn(x) = Lm , Ix'  ? n-1, and

von+i(x)<vnii(x) < vn(x) < Lm ,ad xx)< K in (—co,-E°0)

Now in Gn= [—n, n] x [0, T] we consider the problem

(3.1)aXz—mv1_2_nat— f(v m) v m ,



 (3. 2) v(x, 0) = vn(x) , v(+n, t) = Lm 

   Taking notice of the assumption f(L) =0, we find that the compatibility 

conditions are satisfied. Moreover it holds 0< inf vn(x)<vn(x)<Lm, and so 

we have the classical solution vn(x, t) of the problem (3. 1), (3.2) satisfy-

ing the estimate

                    inf vn(x) < vn(x, t) < LmemT 

   This is established by the lemma. Next, setting 

                            wn = vn(x, t)—vn+1(x, t) , 

we have the equality

B(vn)ax2n=awn.+B(vn)B'Cen)aat1—C'(en) )wn
where

B(A) =  ~m, C(A) = .f(A )Am , 0 < inf v, (x) < 0„(x, t) , 0„(x, t) < LmemT

In consideration of the boundedness

B(vn)B'(0 )3-'—C'(On) <Mn in Gn,

and the boundary values wn(x, 0) ?0, wn(+n, t) = 0, we have wn (x, t) >0 

in Gn, or vn(x, t) > vn,. 1(x, t) .

Setting Pn =ax,itgives the equality
a2Pn = B (vn)aParn +B'vn)  Pn aPaxB(n+(B'Cvvn) C(vn) —C' (vn) )Pn ax=B(vn)n)

in Gn,

in which it holdsa,B(vn)+(B' (vn) B(vn)C(vn) —C' (vn)) > Co>0, where a0=2(m+
LeT). Hence, the function Pn=Pne-a0T gives the equality

3213n= B(vn)aPn + {aoB(vn)+B'_(t'C(vn)_C(vn)"1 P Pn+B (vn)n aPnwwax2aB(v)B(vn)ax
Applying the maximum principle, we have the estimate 

(3. 3)I Pn (x, t) I < Max I Pn (x, t) I eaOr , I n = (x = ' n, t = 0) . 
rn

To investigate the property of vn(x, t) in Sn= [n-1, n] x [0,T] , put wn(x, t)=- 

vn(x, t) +elocx-n+l' —Lm, then it gives the equality



 a2wn 1 v
nlmmawn=_(vn m) vnm+ KjeK1(x-n+1) aX2—m_at-,

where, K1 is a sufficiently large number to hold inequalities

Ki—LeT > 0, and Lmemr+1 <-eK'

   Thereby it gives that wn(x, t) has a maximal value eKl on the boundary 

x=n, and so aw'Z> 0, equivalently, Pn(n, t)>—K1eKl. By the discussion ax x---n 

analogous to the above, it follows I P„(-F- n, t) I <Keh, tE [0, T] .

{dvn(x) Noting the estimate IP
n(x, 0) I = dx <K xE(-00, +co)

we have estimations

       avnaun (3
. 4)ax<C,orax <C, in Gn, (n=1, 2, ••.) 

                  1 

where un_vnm .

Moreover functions un(n=1, 2, •••) satisfy the inequalities 

(3. 5) Iun(x+h,t)—un(x,t)1<<CIhi, n=1,2,3,... 

On the other hand, since v,t(x, t)>vn41(x, t), there exists a limit function 

v(x, t) of vn (x, t) . 

   Let n-->co in the above (3. 5), then we have the relation 

(3. 6)I v (x + h, t)—v(x, t) I < C I h I , (x, t) ES . 

Hence, putting v(x, t) m =u(x, t), there exists a generalized derivative (um), 

and we have

aum  (3
. 7)8x< C,0 < u(x,t)<LeT in S,

and it is easily verified that the function u(x, t) satisfies the weak equation 

(1.4). 
   Finally, we investigate the continuity with respect to t. Let (xo, t0) 

belong to S. If the function u (xo, t) = v (xo, t) m was not continuous at t= to, 

then there would exist a positive number eo and a sequence tk(k=1, 2, •••) 

tending to to such that u (xo, tk) — u (x0, to) >e0 and tk> to (k =1, 2, ...) . 

   Considering that u(x, t) is continuous with respect to x, there would 

exist a interval [$1i E21 containing x0, such that

u(x, tk) —u(x, to) .�-2--e°  for any xE] el, e2] •



   Set  G1= (—co, +oo) x [A, T] (A 0) and let p(x, t)EC'° be a function satis-

fying the relations

p(x,T) = 0, p(x, t) = 0, xE(—co, +co)— $2], tE[0,T],

p(x, t)>0, ap ? 0, (x, t)E [E1, $2] x [t0, to+8] ,
(where 3>0 is a sufficiently small number).

   Since the function vn(x, t)=un(x, t) is a classical solution of the problem 

(3. 1) (3. 2) in Gn, we have

J J Gto [fu n ax ax+pf(un)un i dxdt+J~1p(x, to)un(x, to)dx = 0 .
   Let n--->oo in the above equality and further considering Go, instead of 

Gto, we have the equality

TJGtoGlk  [a ----X+f(u)up]dxdt =J~[u(x, tk)p(x, tk)—u(x, to)p(x, to)]dx 
   Here, the left-hand side tends to zero as k—oo, and with respect to 

the right-hand side we would have the estimate from below

  Eo rez 

  2 J p (x, to) dx

It is inconsistent. Thus, the proof of the theorem is complete.
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