The existence of a local classical solution of the initial－boundary value problem for D＾2＿tu－ $\Delta u+\left(D _t u\right)^{\wedge} 3=0$

Kato，Hisako
College of General Education，Kyushu University
Nanbu，Tokumori
College of General Education，Kyushu University
https：／／doi．org／10．15017／1448955

出版情報：九州大学教養部数学雑誌．9（1），pp．11－25，1973－11．College of General Education， Kyushu University
バージョン：
権利関係：

The existence of a local classical solution of the initial-boundary value problem for $\mathbf{D}_{\mathbf{t}}^{\mathbf{2}} \mathbf{u}-\Delta \mathbf{u}+\left(\mathbf{D}_{\mathbf{t}} \mathbf{u}\right)^{\mathbf{3}}=\mathbf{0}$

by

Hisako Kato and Tokumori Nanbu

(Received Jul. 31, 1973)

§ 1 Problems and notations

J. Sather proved the existence of a global classical solution for the initial-boundary value problem for $D_{i}^{2} u-\Delta u+u^{3}=f([5])$. For the equation considered here, will be able to verified the results analogous to the ones that J. Sather established? This problem was proposed by Lions in his book ([2]). In this paper we will show the existence of the classical but local solution $\boldsymbol{u}=\boldsymbol{u}(x, t)$ satisfying the following equation and conditions:

$$
\begin{array}{ll}
D_{t}^{2} u-\Delta u+\left(D_{t} u\right)^{3}=0, & x \in \Omega, t>0 \\
u(x, 0)=u_{0}(x) & x \in \Omega \\
D_{t} u(x, 0)=\left(D_{t} u\right)_{0}(x) & x \in \Omega \\
u(x, t)=0 & x \in \partial \Omega, t>0 . \tag{1.4}
\end{array}
$$

Here $u_{0}(x),\left(D_{i} u\right)_{0}(x)$ are the data of the problem, and Ω is a bounded domain in R^{3} with a sufficiently smooth boudary $\partial \Omega$.

In this paper we shall use the following notations:

$$
\begin{array}{cc}
(u, v)=\int_{\Omega} u(x) v(x) d x, \quad\|u\|=\sqrt{(u, u)} \\
(\nabla u, \nabla v)=\sum_{i=1}^{3} \int_{\Omega} \frac{\partial u}{\partial x_{i}} \frac{\partial v}{\partial x_{i}} d x, \quad\|\nabla u\|=\sqrt{(\nabla u, \nabla u)} \\
\|u\|_{p}=\left\{_{\Omega}|u|^{p} d x\right\}^{1 / p} & (p>1, p \neq 2) .
\end{array}
$$

Sobolev space $W_{2}^{1}(\Omega)$ is the Hilbert space with the inner product $(u, v)+$ $(\nabla u, \nabla v)$. The space $\stackrel{\circ}{W}_{2}^{1}(\Omega)$ is the closure of $C_{o}^{\infty}(\Omega)$ in $W_{2}^{1}(\Omega)$.
§ 2 A priori estimates
We have the following a priori estimates.

$$
\begin{equation*}
\left\|D_{i} u\right\|^{2}+\|\nabla u\|^{2} \leqq\left\|\left(D_{t} u\right)_{o}\right\|^{2}+\left\|\nabla u_{o}\right\|^{2} \equiv C_{0} \tag{2.1}
\end{equation*}
$$

$$
\begin{align*}
& \left\|D_{l}^{2} u\right\|^{2}+\left\|\nabla D_{l} u\right\|^{2}=\left\|\left(D_{t}^{2} u\right)_{o}\right\|^{2}+\left\|\nabla\left(D_{t} u\right)_{o}\right\|^{2}=C_{1} . \tag{2.2}\\
& \left\|D_{t}^{3} u\right\|^{2}+\left\|\nabla D_{t}^{2} u\right\|^{2}= \tag{2.3}
\end{align*}
$$

$$
\left\|\left(D_{i}^{3} u\right)_{o}\right\|^{2}+\left\|\nabla\left(D_{i}^{2} u\right)_{o}\right\|^{2}
$$

$$
\left\{1-6(4 / v 3)^{3} T\left(\left\|\left(D_{l}^{2} u\right)_{o}\right\|^{2}+\left\|V\left(D_{l} u\right)_{o}\right\|^{2}\right)^{1 / 2}\left(\left\|\left(D_{l}^{3} u\right)_{o}\right\|^{2}+\left\|\boldsymbol{V}\left(D_{l}^{2} u\right)_{o}\right\|^{2}\right)^{1 / 2}\right\}^{2}
$$

$$
\equiv C_{2}
$$

where a positive number T is chosen sufficiently small to hold the inequality
$1-6(4 / \downarrow 3)^{3} T\left(\left\|\left(D_{i}^{2} u\right)_{o}\right\|^{2}+\left\|\nabla\left(D_{l} u\right)_{o}\right\|^{2}\right)^{1 / 2}\left(\left\|\left(D_{i}^{3} u\right)_{o}\right\|^{2}+\left\|\nabla\left(D_{i}^{2} u\right)_{o}\right\|^{2}\right)^{1 / 2}>0$.

$$
\begin{equation*}
\left\|D_{l}^{4} u\right\|^{2}+\left\|\nabla D_{l}^{3} u\right\|^{2} \leqq\left\{C_{3}^{\prime} T+\left\|\left(D_{l}^{4} u\right)_{o}\right\|^{2}+\left\|\nabla\left(D_{l}^{3} u\right)_{0}\right\|^{2}\right\} e^{c_{3}^{\prime \prime} T} \equiv C_{3}, \tag{2.4}
\end{equation*}
$$ where C_{3}^{\prime} and $C_{3}^{\prime \prime}$ are constants depending only on C_{1} and C_{2}.

$\left\|D_{i}^{5} u\right\|^{2}+\left\|\nabla D_{l}^{4} u\right\|^{2} \leq\left\{C_{4}^{\prime} T+\left\|\left(D_{i}^{5} u\right)_{o}\right\|^{2}+\left\|\nabla\left(D_{i}^{4} u\right)_{o}\right\|^{2}\right\} e^{C_{4}^{\prime} T} \equiv C_{4}$,
where C_{4}^{\prime} and $C_{4}^{\prime \prime}$ are constants depending only on C_{1}, C_{2} and C_{3}.
In the above $\left(D_{l}^{k} u\right)_{o}$ denotes the function $D_{l}^{h} u(x, 0)$.

Proof. Inequalities (2.1) and (2.2) are easily verified. Now, differentiate the equation (1.1) two times with respect to t, multiply by $D_{i}^{3} u$ and integrate over Ω. Then it follows that

$$
\left(D_{l}^{4} u, D_{l}^{3} u\right)-\left(\Delta D_{l}^{2} u, D_{l}^{3} u\right)+\left(D_{t}^{2}\left(D_{t} u\right)^{3}, \quad D_{l}^{3} u\right)=0 .
$$

Hence we have

$$
\begin{aligned}
& \frac{d}{d t}\left\{\left\|D_{i}^{3} u\right\|^{2}+\left\|\nabla D_{l}^{2} u\right\|^{2}\right\}+6 \int_{\Omega}\left(D_{l} u\right)^{2}\left(D_{i}^{3} u\right)^{2} d x \\
= & -12 \int_{\Omega} D_{l} u\left(D_{i}^{2} u\right)^{2} D_{i}^{3} u d x \\
\leq & 12\left\|D_{l} u\right\|_{G}\left\|D_{i}^{2} u\right\|_{6}^{2}\left\|D_{l}^{3} u\right\| \\
\leq & 12(4 / \sqrt{3})^{3}\left\|\nabla D_{t} u\right\|\left\|\nabla D_{l}^{2} u\right\|^{2}\left\|D_{l}^{3} u\right\| \\
\leq & 12(4 / \sqrt{3})^{3}\left(\left\|\left(D_{l}^{2} u\right)_{o}\right\|^{2}+\left\|\nabla\left(D_{i} u\right)_{o}\right\|^{2}\right)^{1 / 2}\left(\left\|D_{l}^{3} u\right\|^{2}+\left\|\nabla\left(D_{l}^{2} u\right)\right\|^{2}\right)^{3 / 2}
\end{aligned}
$$

In the above we integrated by parts, since u vanishes on the boundary, and applied Hölder's inequality and Sobolev's imbedding theorem ([3]). We set $C=12(4 / \sqrt{3})^{3}\left(\left\|\left(D_{i}^{2} u\right)_{o}\right\|^{2}+\left\|\nabla\left(D_{i} u\right)_{o}\right\|^{2}\right)^{1 / 2}$ and $y(t)=\left\|D_{t}^{3} u\right\|^{2}$ $+\left\|\nabla D_{i}^{2} \boldsymbol{u}\right\|^{2}$. Then it follows that $\frac{d y}{d t} \leqq C(y(t))^{3 / 2}$, which implies

The existence of a local classical solution of the initial-boundary value problem

$$
v^{\prime} y(t) \leq \frac{\sqrt{ } y(0)}{1-1 / 2 C T \sqrt{ } y(0)}
$$

This inequality gives (2.3). Next we show the inequality (2.4). Differentiate the equation (1.1) three times, multiply by $D_{i}^{4} u$ and integrate over Ω, then it follows that

$$
\left(D_{l}^{5} u, D_{i}^{4} u\right)-\left(\Delta D_{i}^{3} u, D_{i}^{4} u\right)+\left(D_{i}^{3}\left(D_{l} u\right)^{3}, D_{i}^{4} u\right)=0 .
$$

Hence we have

$$
\begin{aligned}
& \quad \frac{d}{d t}\left\{\left\|D_{t}^{4} u\right\|^{2}+\left\|\nabla D_{i}^{3} u\right\|^{2}\right\}+6 \int_{g}\left(D_{t} u\right)^{2}\left(D_{i}^{4} u\right)^{2} d x \\
& \leqq 12\left\|D_{t}^{2} u\right\|_{6}^{3}\left\|D_{t}^{4} u\right\|+36\left\|D_{t} u\right\|_{6}\left\|D_{t}^{2} u\right\|_{6}\left\|D_{t}^{3} u\right\|_{6}\left\|D_{t}^{4} u\right\| \\
& \leq 12\left(4 / \checkmark 3^{3}\right)^{3}\left\{\left\|\nabla D_{t}^{2} u\right\|^{3}\left\|D_{t}^{4} u\right\|+3\left\|\nabla D_{t} u\right\|\left\|\nabla D_{t}^{2} u\right\|\left\|\nabla D_{l}^{3} u\right\|\left\|D_{l}^{4} u\right\|\right\} \\
& \leqq 6(4 / \checkmark 3)^{3}\left\{\left\|\nabla D_{t}^{2} u\right\|^{4}+\left\|\nabla D_{t}^{2} u\right\|^{2}\left\|D_{t}^{4} u\right\|^{2}\right. \\
& \left.+3\left\|\nabla D_{t} u\right\|\left\|\nabla D_{l}^{2} u\right\|\left(\left\|\nabla D_{t}^{3} u\right\|^{2}+\left\|D_{i}^{4} u\right\|^{2}\right)\right\} .
\end{aligned}
$$

These relations give (2.4). Finally, an argument analogous to the above gives the inequality (2.5).

§ 3 Estimates of approximate solutions

Consider the eigenfunctions $\left\{\boldsymbol{\psi}_{k}\right\}$ for the Laplace operator Δ with zero boundary conditions; $\psi_{k} \in \stackrel{\circ}{W_{2}^{1}}(\Omega)$,

$$
\Delta \psi_{k}=\mu_{k} \psi_{k} \text { in } \Omega(k=1,2, \ldots \ldots)
$$

With respect to the regularity of the eigenfunctions ψ_{k}, it is well known that $\left\{\psi_{k}\right\}$ is involved in the space $W_{2}^{6}(\Omega)$ for the bounded domain Ω with sufficiently smooth boundary. $\left\{\psi_{k}: k=1,2, \ldots \ldots\right\}$ is a complete orthonormal system in $L^{2}(\Omega)$

Next we introduce the spaces of admissible initial data.

$$
\begin{aligned}
& \left\{\phi_{k}: k=1,2, \ldots \ldots\right\} \equiv \text { orthonormalization of }\left\{\psi_{k}\right\} \text { in } W_{2}^{6}(\Omega) . \\
& \left\{\chi_{k}: k=1,2, \ldots \ldots\right\} \equiv \text { orthonormalization of }\left\{\psi_{k}\right\} \text { in } W_{2}^{4}(\Omega) \\
& V_{0} \equiv \text { closure of }\left\{\sum_{k=1}^{m} \alpha_{k} \phi_{k}: \alpha_{k} \text { is a real number }\right\} \text { in } W_{2}^{6}(\Omega) \\
& V_{1} \equiv \text { closure of }\left\{\sum_{k=1}^{m} \beta_{k} \chi_{k}: \beta_{k} \text { is a real number }\right\} \text { in } W_{2}^{4}(\Omega)
\end{aligned}
$$

For any element u_{0} belonging to the space V_{0} it holds that

$$
u_{0}=\sum_{k=1}^{\infty}\left(u_{0}, \phi_{k}\right)_{w_{2}^{6}(\Omega)} \phi_{k}
$$

where ϕ_{k} is a linear combination of $\psi_{j}(j==1,2, \ldots \ldots, k)$. Hence there exists the linear combination of $\psi_{k}(k=1,2, \ldots \ldots, m)$ such that

$$
\left\|\sum_{k=1}^{m} \lambda_{k}^{m} \psi_{k}-u_{0}\right\|_{w_{2}^{6}(Q)} \longrightarrow 0(m \longrightarrow \infty)
$$

By the argument analogous to the above it follows that for any element ($\left.D_{1} u\right)_{0}$ belonging to the space V_{1} there exists the linear combination of $\psi_{k}(k=1,2, \ldots \ldots, m)$ such that

$$
\left\|\sum_{k=1}^{m} L_{k}^{m} \psi_{k}-\left(D_{t} u\right)_{0}\right\|_{w_{2}^{4}(g)} \longrightarrow 0 \quad(m \longrightarrow \infty)
$$

V_{0} and V_{1} are Hilbert spaces, and are dense linear subsets in $L^{2}(\Omega)$.
We turn to estimate the approximate solutions;

$$
u_{m}=u_{m}(x, t)=\sum_{k=1}^{m} \lambda_{k}^{n}(t) \psi_{k}(x) \quad(m=1,2, \ldots \ldots)
$$

which are determined by the following system of differential equations.

$$
\begin{equation*}
\left(D_{i}^{2} u_{m}, \psi_{k}\right)+\left(\nabla u_{m}, \nabla \psi_{k}\right)+\left(\left(D_{l} u_{m}\right)^{3}, \psi_{k}\right)=0, \quad(k=1,2, \ldots \ldots m), \tag{3.1}
\end{equation*}
$$ or

$$
\begin{equation*}
\frac{d^{2} \lambda_{k}^{m}}{d t^{2}}+\sum_{j=1}^{m} \lambda_{j}^{m}(t)\left(\nabla \psi_{j}, \nabla \psi_{k}\right)+\left(\left\{\sum_{j=1}^{m} \frac{d \lambda_{j}^{m}}{d t} \psi_{j}\right\}^{3}, \psi_{k}\right)=0, \quad(k=1,2, \ldots \ldots . m) . \tag{3.2}
\end{equation*}
$$

Here, initial date $\lambda_{k}^{m}(0), D_{t} \lambda_{k}^{m}(0)$ are chosen in such a way that as $m \rightarrow \infty$ we have

$$
\begin{gather*}
u_{m 0}=u_{m}(x, 0)=\sum_{k=1}^{m} \lambda_{k}^{m}(0) \psi_{k}(x) \longrightarrow u_{o}(x) \text { in } W_{2}^{\mathrm{t}}(\Omega), \tag{3.3}\\
\left(D_{t} u_{m}\right)_{0}=D_{t} u_{m}(x, 0)=\sum_{k=1}^{m} D_{t} \lambda_{k}^{m}(0) \psi_{k}(x) \rightarrow\left(D_{t} u\right)_{o}(x) \text { in } W_{2}^{4}(\Omega) \tag{3.4}\\
u_{o} \in V_{0},\left(D_{t} u\right)_{o} \in V_{1} . \tag{3.5}
\end{gather*}
$$

As is indicated later, we have

$$
\begin{equation*}
\left|\frac{d \lambda_{k}^{m}}{d t}\right|,\left|\sum_{j=1}^{m} \lambda_{j}^{m}(t)\left(\nabla \psi_{j}, \quad \nabla \psi_{k}\right)\right|,\left|\left(\sum_{j=1}^{m} \frac{d \lambda_{j}^{m}}{d t} \psi_{j}, \quad \psi_{k}\right)\right| \leqq C \tag{3.6}
\end{equation*}
$$

where C is a constant independent of k, m and t.
Hence $\lambda_{k}^{m}(t)(k=1,2, \ldots \ldots, m)$ are defined in $[0, T]$ for any $T>0$.

$$
\begin{equation*}
\left\|\left(D_{t}^{k+1} u_{m}\right)_{o}\right\|,\left\|\nabla\left(D_{i}^{k} u_{m}\right)_{o}\right\| \leq C, \quad(k=0,1,2,3,4), \tag{3.7}
\end{equation*}
$$

where C is a constant independent of m.
Proof. Denote by $\boldsymbol{P}_{\boldsymbol{m}}$ the orthogonal projection onto m dimensinal subspace of $L^{2}(\Omega)$ with basis $\left\{\psi_{1}, \psi_{2}, \ldots \ldots, \psi_{m}\right\}$.
Since $u_{m 0} \rightarrow u_{0}$ in $W_{2}^{6}(\Omega)$ and $\left(D_{i} u_{m}\right)_{0} \rightarrow\left(D_{t} u_{0}\right.$ in $W_{2}^{4}(\Omega)$, we have

$$
\begin{gather*}
\left\|\left(D_{i} u_{m}\right)_{0}\right\|,\left\|\nabla u_{m 0}\right\| \leqq C, \tag{3.8}\\
\left|D_{x}^{\alpha} u_{m o}(x)\right| \leqq C\left\|u_{m 0}\right\| \|_{w_{2}^{\xi}(\Omega)} \leqq C, \quad x \in \bar{\Omega}|\alpha| \leqq 4, \tag{3.9}\\
\left|D_{x}^{\alpha}\left(D_{l} u_{m}\right)_{0}(x)\right| \leqq C\left\|\left(D_{t} u_{m}\right)_{0}\right\|_{w_{2}^{4}(\Omega)} \leqq C, \quad x \in \bar{\Omega}|\alpha| \leqq 2 . \tag{3.10}
\end{gather*}
$$

Here C is a constant independent of m. To prove (3.7), we will frequently use (3.9) and (3.10).
The differential equations (3.1) give the following equality.

$$
\left(D_{i}^{2} u_{m}\right)_{0}-\Delta u_{m 0}+P_{m}\left(D_{i} u_{m}\right)_{o}^{3}=0 .
$$

Here we applied the equality $P_{m} \Delta w=\Delta P_{m} w$ for any element $w \in W_{2}^{2}(\Omega) \cap$ $\stackrel{\circ}{W}_{2}^{1}(\Omega)$. Hence we have

$$
\begin{equation*}
\left\|\left(D_{i}^{2} u_{m}\right)_{0}\right\| \leq\left\|\Delta u_{m 0}\right\|+\left\|\left(D_{i} u_{m}\right)_{0}^{3}\right\| \leq C+(4 / V \overline{3})^{3}\left\|\nabla\left(D_{i} u_{m}\right)_{0}\right\|^{3} \leq C, \tag{3.11}
\end{equation*}
$$

(3. 12) $\left\|\nabla\left(D_{i} u_{m}\right)_{0}\right\| \leq C$.

Also, (3.1) gives

$$
\left(D_{i}^{3} u_{m}\right)_{0}-\Delta\left(D_{t} u_{m}\right)_{0}+3 P_{m}\left(D_{t} u_{m}\right)_{j}^{2}\left(D_{i}^{2} u_{m}\right)_{0}=0
$$

and hence we have

$$
\begin{align*}
& \left\|\left(D_{i}^{3} u_{m}\right)_{0}\right\| \leqq\left\|\Delta\left(D_{i} u_{m}\right)_{0}\right\|+C\left\|\left(D_{i}^{2} u_{m}\right)_{0}\right\| \leqq C \tag{3.13}\\
& \left\|\nabla\left(D_{i}^{2} u_{m}\right)_{0}\right\| \leqq C\left\|\Delta\left(D_{t}^{2} u_{m}\right)_{0}\right\|=C\left\|\Delta\left(\Delta u_{m 0}-P_{m}\left(D_{i} u_{m}\right)_{0}^{3}\right\}\right\| \\
& \leqq C\left(\left\|\Delta^{2} u_{m 0}\right\|+\left\|\Delta\left(D_{i} u_{m}\right)_{0}^{3}\right\|\right\} \leqq C+C\left\{\| \Delta\left(D_{i} u_{m}\right)_{0}\right\}\left(D_{i} u_{m}\right)_{0}^{2} \| \\
& +\left\|\left(D_{i} u_{m}\right)_{0}\left\{\nabla\left(D_{i} u_{m}\right)_{0}\right\}^{2}\right\| \leqq C .
\end{align*}
$$

In (3.14) we applied the relation $\|\nabla w\| \leqq C\|\Delta w\|$ for any element $w \in$ $W_{2}^{2}(\Omega) \cap \stackrel{\circ}{W}_{2}^{1}(\Omega)$.
Similarly, (3.1) gives the following relation

$$
\left(D_{i}^{4} u_{m}\right)_{0}-\Delta\left(D_{i}^{2} u_{m}\right)_{0}+6 P_{m}\left(D_{i} u_{m}\right)_{0}\left(D_{l}^{2} u_{m}\right)_{0}^{2}+3 P_{m}\left(D_{i} u_{m}\right)_{0}^{2}\left(D_{i}^{3} u_{m}\right)_{0}=0 .
$$

Hence we have

$$
\begin{align*}
& \left\|\left(D_{i}^{4} u_{m}\right)_{0}\right\| \leqq\left\|\Delta\left(D_{i}^{2} u_{m}\right)_{0}\right\|+C\left(\left\|\left(D_{i} u_{m}\right)_{0}\left(D_{i}^{2} u_{m}\right)_{0}^{2}\right\|+\left\|\left(D_{i} u_{m}\right)_{0}^{2}\left(D_{i}^{3} u_{m}\right)_{0}\right\|\right\} \tag{3.15}\\
& \leqq C+C\left\{\left\|\left(D_{i}^{2} u_{m}\right)_{0}^{2}\right\|+\left\|\left(D_{i}^{3} u_{m}\right)_{0}\right\|\right\} \leqq C+C\left\|\nabla\left(D_{i}^{2} u_{m}\right)_{0}\right\|^{2} \leqq C,
\end{align*}
$$

$$
\begin{align*}
& \left\|\boldsymbol{\nabla}\left(D_{i}^{3} u_{m}\right)_{0}\right\| \leq C\left\|\Delta\left(D_{i}^{3} u_{m}\right)_{0}\right\| \tag{3.16}\\
& \quad \leq C\left\|\Delta\left\{\Delta\left(D_{t} u_{m}\right)_{0}-3 P_{m}\left(D_{t} u_{m}\right)_{0}^{2}\left(D_{t}^{2} u_{m}\right)_{0}\right)\right\| \\
& \quad \leq C\left\{\left\|\boldsymbol{\Delta}^{2}\left(D_{t} u_{m}\right)_{0}\right\|+\left\|\Delta\left[\left(D_{t} u_{m}\right)_{0}^{2}\left(D_{t}^{2} u_{m}\right)_{0}\right]\right\|\right\} \\
& \quad \leq C+C\left\{\left\|\left\{\Delta\left(D_{t} u_{m}\right)_{0}\right\}\left(D_{t} u_{m}\right)_{0}\left(D_{i}^{2} u_{m}\right)_{0}\right\|\right. \\
& \quad+\left\|\left(D_{t} u_{m}\right)_{0}^{2} \Delta\left(D_{i}^{2} u_{m}\right)_{0}\right\|+\left\|\left(D_{t} u_{m}\right)_{0}\left\{\boldsymbol{V}\left(D_{i} u_{m}\right)_{0} \boldsymbol{V}\left(D_{i}^{2} u_{m}\right)_{0}\right\}\right\| \\
& \left.\quad+\left\|\left(D_{i}^{2} u_{m}\right)_{0}\left(\boldsymbol{V}\left(D_{t} u_{m}\right)_{0}\right)^{2}\right\|\right\} \\
& \quad \leq C+C\left\{\left\|\left(D_{t}^{2} u_{m}\right)_{0}\right\|+\left\|\Delta\left(D_{t}^{2} u_{m}\right)_{0}\right\|+\left\|\boldsymbol{V}\left(D_{t}^{2} u_{m}\right)_{0}\right\|\right\} \leq C,
\end{align*}
$$

Finally, (3.1) gives the equality;

$$
\begin{aligned}
\left(D_{t}^{5} u_{m}\right)_{0}-\Delta\left(D_{i}^{3} u_{m}\right)_{0} & +6 P_{m}\left(D_{t}^{2} u_{m}\right)_{0}^{3}+18 P_{m}\left(D_{t} u_{m}\right)_{0}\left(D_{i}^{2} u_{m}\right)_{0}\left(D_{i}^{3} u_{m}\right)_{0} \\
& +3 P_{m}\left(D_{t} u_{m}\right)_{0}^{2}\left(D_{i}^{4} u_{m}\right)_{0}=0
\end{aligned}
$$

Hence we have firstly

$$
\begin{align*}
& \left\|\left(D_{i}^{5} u_{m}\right)_{0}\right\| \leq\left\|\Delta\left(D_{i}^{3} u_{m}\right)_{0}\right\|+C\left\{\left\|\left(D_{i}^{2} u_{m}\right)_{0}^{3}\right\|\right. \tag{3.17}\\
& \left.+\left\|\left(D_{t} u_{m}\right)_{0}\left(D_{i}^{2} u_{m}\right)_{0}\left(D_{i}^{3} u_{m}\right)_{0}\right\|+\left\|\left(D_{t} u_{m}\right)_{0}^{2}\left(D_{i}^{4} u_{m}\right)_{0}\right\|\right\} \\
& \leq C+C\left(\left\|\boldsymbol{V}\left(D_{t} u_{m}\right)_{o}\right\|\left\|\boldsymbol{V}\left(D_{i}^{2} u_{m}\right)_{0}\right\|\left\|\boldsymbol{V}\left(D_{i}^{3} u_{m}\right)_{0}\right\|\right. \\
& \left.+\left\|\nabla\left(D_{i}^{2} u_{m}\right)_{0}\right\|^{2}+\left\|\left(D_{i}^{4} u_{m}\right)_{0}\right\|\right\} \leq C .
\end{align*}
$$

Secondly we have

$$
\begin{align*}
&\left\|\boldsymbol{V}\left(D_{i}^{4} u_{m}\right)_{0}\right\| \leqq C\left\|\left(\Delta D_{i}^{4} u_{m}\right)_{0}\right\| \tag{3.18}\\
& \leqq C\left\{\left\|\Delta^{2}\left(D_{i}^{2} u_{m}\right)_{0}\right\|+\left\|\Delta P_{m}\left[\left(D_{t} u_{m}\right)_{0}\left(D_{i}^{2} u_{m}\right)_{0}^{2}\right]\right\|+\left\|\Delta P_{m}\left[\left(D_{t} u_{m}\right)_{0}^{2}\left(D_{i}^{3} u_{m}\right)_{0}\right]\right\|\right\}
\end{align*}
$$

Here, each term of the right side is estimated as follows.
Noting that

$$
\Delta\left(D_{t} u_{m}\right)_{0}^{3}=3\left\{\Delta\left(D_{t} u_{m}\right)_{0}\right\}\left(D_{t} u_{m}\right)_{0}^{2}+6\left(D_{t} u_{m}\right)_{0}\left\{\nabla\left(D_{t} u_{m}\right)_{0}\right\}^{2} \in W_{2}^{2}(\Omega) \cap \dot{W}_{2}^{1}(\Omega),
$$

we have

$$
\begin{aligned}
& \left\|\Delta^{2}\left(D_{i}^{2} u_{m}\right)_{0}\right\| \leq\left\|\Delta^{3} u_{m 0}\right\|+\left\|\Delta^{2} P_{m}\left(D_{t} u_{m}\right)_{0}^{3}\right\| \leq C+\left\|\Delta^{2}\left(D_{i} u_{m}\right)_{0}^{3}\right\| \\
& \leqq C+C\left\|\left(D_{t} u_{m}\right)_{0}\right\|_{\|_{2}^{4}(Q)} \leq C, \\
& \left\|\Delta P_{m}\left[\left(D_{i} u_{m}^{2}\right)_{0}^{2}\left(D_{i}^{3} u_{m}\right)_{0}\right]\right\| \leqq\left\|\Delta\left[\left(D_{t} u_{m}\right)_{0}^{2}\left(D_{i}^{3} u_{m}\right)_{0}\right]\right\| \leq C,
\end{aligned}
$$

and by an application of Sobolev's imbedding theorem:
$\left\|\Delta\left(D_{i}^{2} u_{m}\right)_{0}\right\|_{\sigma} \leq \boldsymbol{C}\left\|\boldsymbol{V}\left\{\Delta\left(D_{i}^{2} u_{m}\right)_{0}\right\}\right\| ;\left\|\boldsymbol{V}\left(D_{i}^{2} u_{m}\right)_{0}\right\|_{\sigma} \leq \boldsymbol{C}\left\|\boldsymbol{\nabla}\left(D_{i}^{2} u_{m}\right)_{0}\right\|_{W_{2}^{1}(\Omega)}$,
we have
$\| \Delta P_{m}\left[\left(D_{i} u_{m}\right)_{0}\left(D_{i}^{2} u_{m}\right)_{0}^{2}\|\leqq\| \Delta\left[\left(D_{i} u_{m}\right)_{0}\left(D_{i}^{2} u_{m}\right)_{0}^{2}\right] \|\right.$
$\leqq\left\|\left\{\Delta\left(D_{i} u_{m}\right)_{0}\right\}\left(D_{i}^{2} u_{m}\right)_{j}^{2}\right\|+2\left\|\left(D_{t} u_{m}\right)_{0}\left(D_{l}^{2} u_{m}\right)_{0} \Delta\left(D_{i}^{2} u_{m}\right)_{0}\right\|$
$+2\left\|\left(D_{t} u_{m}\right)_{0}\left\{\nabla\left(D_{i}^{2} u_{m}\right)_{0}\right\}^{2}\right\|+4\left\|\left(D_{t} u_{m}\right)_{0}\left\{\nabla\left(D_{t} u_{m}\right)_{o} \nabla\left(D_{i}^{2} u_{m}\right)_{0}\right\}\right\|$

$$
\begin{aligned}
& \leq \boldsymbol{C}\left(\left\|\boldsymbol{\nabla}\left(\boldsymbol{D}_{t}^{2} u_{m}\right)_{0}\right\|^{2}+\left\|\boldsymbol{\nabla}\left(D_{i}^{2} u_{m}\right)_{0}\right\|\left\|\boldsymbol{V}\left\{\Delta\left(\boldsymbol{D}_{i}^{2} \boldsymbol{u}_{m}\right)_{0}\right\}\right\|\right. \\
& \left.+\left\|\boldsymbol{\nabla}\left(D_{i}^{2} u_{m}\right)_{0}\right\|_{w_{2}^{2}(Q)}^{2}+\left\|\boldsymbol{V}\left(D_{i}^{2} u_{m}\right)_{0}\right\|\right\} \\
& \leq C+C\left\{\left\|\Delta^{2}\left(D_{l}^{2} u_{m}\right)_{0}\right\|+\left\|\left(D_{i}^{2} u_{m}\right)_{0}\right\|_{w_{2}^{2}(\theta)}^{2} \leq C+C\left\|\Delta\left(D_{i}^{2} u_{m}\right)_{0}\right\|^{2} \leqq C .\right.
\end{aligned}
$$

Consequently estimates (3.7) are established.

Moreover, we have

$$
\begin{align*}
& \left(D_{i}^{2} u_{m}\right)_{0}=\Delta u_{m 0}-P_{m}\left(D_{t} u_{m}\right)_{0}^{3} \longrightarrow \Delta u_{0}-\left(D_{t} u\right)_{0}^{3} \text { in } L^{2}(\Omega), \\
& \nabla\left(D_{i} u_{m}\right)_{0} \longrightarrow \nabla\left(D_{t} u\right)_{0} \text { in } L^{2}(\Omega), \\
& \left(D_{i}^{\prime} u_{m}\right)_{0}=\Delta\left(D_{t} u_{m}\right)_{0}-3 P_{m}\left\{\left(D_{t} u_{m}\right)_{0}^{2}\left(D_{i}^{2} u_{m}\right)_{0}\right\} \tag{3.19}\\
& \longrightarrow \Delta\left(D_{i} u\right)_{0}-3\left(D_{t} u\right)_{0}^{2}\left\{\Delta u_{0}-\left(D_{t} u\right)_{0}^{3}\right\} \text { in } L^{2}(\Omega), \\
& \text { and } \\
& \nabla\left(D_{i}^{2} u_{m}\right)_{0}=\nabla\left\{\Delta u_{m 0}-P_{m}\left(D_{t} u_{m}\right)_{0}^{3}\right\} \longrightarrow \nabla\left(\Delta u_{0}\right)-\nabla\left(D_{t} u\right)_{0}^{3} \text { in } L^{2}(\Omega),
\end{align*}
$$

Let's verify (3.19)

$$
\begin{aligned}
& \left\|\left(D_{t}^{2} u_{m}\right)_{0}-\left\{\Delta u_{0}-\left(D_{i} u\right)_{0}^{3}\right\}\right\|=\left\|\Delta u_{m 0}-P_{m}\left(D_{i} u_{m}\right)_{0}^{3}-\left\{\Delta u_{0}-\left(D_{i} u\right)_{0}^{3}\right\}\right\| \\
& \quad \leq\left\|\Delta u_{m 0}-\Delta u_{0}\right\|+\left\|P_{m}\left(D_{i} u_{m}\right)_{0}^{3}-P_{m}\left(D_{i} u\right)_{0}^{3}\right\|+\left\|P_{m}\left(D_{t} u\right)_{0}^{3}-\left(D_{t} u\right)_{0}^{3}\right\| .
\end{aligned}
$$

Here, $\quad\left\|P_{m}\left(D_{t} u_{m}\right)_{0}^{3}-P_{m}\left(D_{t} u\right)_{0}^{3}\right\| \leq C\left\|\left(D_{i} u_{m}\right)_{0}-\left(D_{t} u\right)_{0}\right\|$.
$\left\|\left(D_{t}^{3} u_{m}\right)_{0}-\left[\Delta\left(D_{i} u\right)_{0}-3\left(D_{t} u\right)_{0}^{2}\left\{\Delta u_{0}-\left(D_{i} u\right)_{0}^{3}\right\}\right]\right\|$

$$
\begin{aligned}
& \leq\left\|\Delta\left(D_{t} u_{m}\right)_{0}-\Delta\left(D_{t} u\right)_{0}\right\|+C\left\|P_{m}\left(\left(D_{t} u_{m}\right)_{0}^{2}\left(D_{t}^{2} u_{m}\right)_{0}\right)-\left(D_{t} u\right)_{0}^{2}\left\{\Delta u_{0}-\left(D_{t} u\right)_{0}^{3}\right\}\right\| \\
& \leq\left\|\Delta\left(D_{i} u_{m}\right)_{0}-\Delta\left(D_{t} u\right)_{0}\right\|+C\left(\left\|\left(D_{t} u_{m}\right)_{0}^{2}\left(D_{t}^{2} u_{m}\right)_{0}-\left(D_{t} u\right)_{0}^{2}\left\{\Delta u_{0}-\left(D_{t} u\right)_{0}^{3}\right\}\right\|\right. \\
&\left.+\left\|P_{m}\left[\left(D_{i} u\right)_{0}^{2}\left\{\Delta u_{0}-\left(D_{t} u\right)_{0}^{3}\right\}\right]-\left(D_{t} u\right)_{0}^{2}\left\{\Delta u_{0}-\left(D_{t} u\right)_{0}^{3}\right\}\right\|\right\} .
\end{aligned}
$$

Here,

$$
\begin{aligned}
& \left\|\left(D_{t} u_{m}\right)_{0}^{2}\left(D_{t}^{2} u_{m}\right)_{0}-\left(D_{t} u\right)_{0}^{2}\left\{\Delta u_{0}-\left(D_{t} u\right)_{0}^{3}\right\}\right\| \\
& \leqq \|\left\{\left(D_{t}^{2} u_{m}\right)_{0}-\left(\Delta u_{0}-\left(D_{t} u\right)_{0}^{3}\right\}\left(D_{t} u_{m}\right)_{0}^{2}\|+\|\left\{\left(D_{t} u_{m}\right)_{0}^{2}-\left(D_{t} u\right)_{0}^{2}\right\}\left\{\Delta u_{0}-\left(D_{t} u\right)_{0}^{3}\right\} \|\right. \\
& \leq C\left\{\left\|\left(D_{t}^{2} u_{m}\right)_{0}-\left\{\Delta u_{0}-\left(D_{t} u\right)_{0}^{3}\right\}\right\|+\left\|\left(D_{t} u_{m}\right)_{0}-\left(D_{t} u\right)_{0}\right\|\right\} . \\
& \left\|\boldsymbol{V}\left(D_{t}^{2} u_{m}\right)_{0}-\left\{\nabla\left(\Delta u_{0}\right)-\nabla\left(D_{t} u\right)_{0}^{3}\right)\right\| \\
& \leqq\left\|\boldsymbol{V}\left(\Delta u_{m 0}-\Delta u_{0}\right)\right\|+\left\|\nabla P_{m}\left(D_{t} u_{m}\right)_{0}^{3}-\nabla\left(D_{t} u\right)_{0}^{3}\right\| \\
& \leq\left\|\nabla\left(\Delta u_{m 0}-\Delta u_{0}\right)\right\|+C\left\{\left\|\Delta P_{m}\left(D_{t} u_{m}\right)_{0}^{3}-\Delta\left(D_{t} u\right)_{0}^{3}\right\|\right. \\
& \leq\left\|\nabla\left(\Delta u_{m 0}-\Delta u_{0}\right)\right\|+C\left\{\| P_{m}\left\{3 \Delta\left(D_{i} u_{m}\right)_{0}\left(D_{t} u_{m}\right)_{0}^{2}+6\left(D_{t} u_{m}\right)_{0}\left\{\nabla\left(D_{t} u_{m}\right)_{0}\right\}^{2}\right.\right. \\
& \left.-3 \Delta\left(D_{t} u\right)_{0}\left(D_{t} u\right)_{0}^{2}-6\left(D_{i} u\right)_{0}\left\{\nabla\left(D_{t} u\right)_{0}\right\}^{2}\|+\| P_{m}\left\{\Delta\left(D_{t} u\right)_{0}^{3}\right\}-\Delta\left(D_{t} u\right)_{0}^{3} \|\right\} .
\end{aligned}
$$

Estimates of the above give (3.19).
By a priori estimates in $\S 2$, estimates (3.7) and relations (3.19), the approximate solutions are estimated as follows.

Proposition 1. It holds that for $k=0,1,3,4$

$$
\left\|D_{t}^{k+1} u_{m}\right\|^{2}+\left\|\boldsymbol{\nabla} \boldsymbol{D}_{t}^{k} u_{m}\right\|^{2} \leq \boldsymbol{C}\left\{\left\|\left(\boldsymbol{D}_{t}^{k+1} \boldsymbol{u}_{m}\right)_{0}\right\|^{2}+\left\|\boldsymbol{\nabla}\left(\boldsymbol{D}_{t}^{k} u_{m}\right)_{0}\right\|^{2}\right\}+\boldsymbol{C} \leqq \boldsymbol{C}
$$

and specially for $k=2$

$$
\leq \frac{\left\|D_{i}^{3} u_{m}\right\|^{2}+\left\|\nabla D_{i}^{2} u_{m}\right\|^{2}}{\left\{1-6\left(4 / \sqrt{ } 3^{3} T_{0}\left(\left\|\left(D_{i}^{2} u_{m}\right)_{0}\right\|^{2}+\left\|\nabla\left(D_{t} u_{m}\right)_{0}\right\|^{2}\right)^{1 / 2}\left(\left\|\left(D_{i}^{3} u_{m}\right)_{0}\right\|^{2}+\| \nabla D_{i}^{2} u_{m}\right)_{0} \|^{2}\right)^{1 / 2}\right\}^{2}}
$$

where a positive number T_{0} is chosen sufficiently small to satisfy the inequality

$$
\begin{aligned}
& 1-6(4 / \sqrt{3})^{3} T_{0}\left(\left\|\Delta u_{0}-\left(D_{t} u\right)_{0}^{3}\right\|^{2}+\left\|\boldsymbol{V}\left(D_{t} u\right)_{0}\right\|^{2}\right)^{1 / 2} \\
& \times\left(\left\|\Delta\left(D_{t} u\right)_{0}-3\left(D_{t} u\right)_{0}^{2}\left\{\Delta u_{0}-\left(D_{t} u\right)_{0}^{3}\right\}\right\|^{2}+\left\|\boldsymbol{V}\left(\Delta u_{0}\right)-\nabla\left(D_{t} u\right)_{0}^{3}\right\|^{2}\right)^{1 / 2}>0 .
\end{aligned}
$$

Remark. As is explained before, in the differential equations (3.2) $\lambda_{k}^{m}(t)$ $(k=1,2, \ldots \ldots, m)$ are determined in $[0, T]$ for any finite $T>0$, from the following boundedness

$$
\begin{aligned}
&\left|\frac{d \lambda_{k}^{m}(t)}{d t}\right|^{2}=\left\|D_{t} u_{m}\right\|^{2} \leq C, t \in[0, T], \quad(m=1,2, \ldots \ldots, k=1,2, \ldots \ldots, m), \\
&\left|\sum_{j=1}^{m} \lambda_{i}^{m}(t)\left(\nabla \psi_{j}, \nabla \psi_{k}\right)\right|=\left|\left(\nabla u_{m}, \nabla \psi_{k}\right)\right| \leqq\left\|\Delta u_{m}\right\|\left\|\psi_{k}\right\| \\
& \leqq\left\|D_{i}^{2} u_{m}\right\|+\left\|P_{m}\left(D_{t} u_{m}\right)^{3}\right\| \leqq C+C\left\|\nabla\left(D_{t} u_{m}\right)\right\|^{3} \leqq C
\end{aligned}
$$

and

$$
\left(\left\{\sum_{j=1}^{m} \frac{d \lambda_{j}^{m}}{d t} \psi_{j}\right\}^{3}, \psi_{k}\right)\left|=\left|\left(\left\{D_{t} u_{m}\right\}^{3}, \psi_{k}\right)\right| \leqq\left\|\left(D_{t} u_{m}\right)^{3}\right\|\left\|\psi_{k}\right\| \leqq C .\right.
$$

Here, we applied the proposition 1 for $k=0$ and 1 .
§ 4 Compactness of approximate solutions and some properties of the limit function
Now we introduce some conceptions. Let \mathscr{H} be a separable Hilbert space. Here $L^{2}(\Omega)$, Sobolev spaces $W_{2}^{m}(\Omega)(m=1,2,3, \ldots \ldots$.$) are considered.$ We denote by $w:[0, T] \longrightarrow \mathscr{C}$ the function defined in $[0, T]$ with values $w(t)$ in $\mathscr{\mathscr { C }}$. The function w is said to have the strong derivative in $[0, T]$ if there exists a function $v:[0, T] \longrightarrow \mathscr{C}$ such that $\| \frac{1}{h}\{w(t+h)-w(t)\}-$ $v(t) \|_{\infty} \longrightarrow 0$ for any $t \in[0, T]$, as $h \rightarrow 0$. The function w is said to be in the class $C^{m}([0, T]: \mathscr{C})$ if there exist strong derivatives $D^{k} w(k=1,2, \ldots . .$.

The existence of a localcl assical solution of the initial-boundary value problem 19
$m)$ and they are continuous i.e. $\left\|D^{k} w(t+h)-D^{k} w(t)\right\|_{x} . \rightarrow 0$ for any $t \in[0$, $T]$, as $h \rightarrow 0$. In this section we will apply the following relations. ([1], [7], [9].)

If $w \in C([0, T]: \mathscr{C})$ it holds $\frac{d}{d t}$ (B) $\int_{0}^{t} w(s) d s=w(t)$ for any $t \in[0, T]$, which implies $\left\|\frac{1}{h}(\mathrm{~B}) \int_{t}^{t+h} w(s) d s-w(t)\right\|_{\mathscr{X} \rightarrow 0}$, as $h \rightarrow 0$. Here, (B) denotes the Bochner integral.

In the first place we have the following convergence:

$$
\begin{equation*}
D_{i}^{k} u_{m} \longrightarrow D_{i}^{k} u \text { in } L^{2}\left(\Omega \times\left[0, T_{n}\right]\right), \text { as } m \longrightarrow \infty(0 \leq k \leq 4), \tag{4.1}
\end{equation*}
$$

where $D_{i}^{k} u$ is the generalized derivative.
In fact, the proposition 1 gives the boundedness:

Hence by Rellich's theorem it is possible to extract a subsequence which is Cauchy sequence in $L^{2}\left(\Omega \times\left[0, T_{0}\right]\right)$.

In the next place we have the following relations.

$$
\left\{\begin{array}{l}
D_{l}^{k} u_{m}(\cdot, t) \longrightarrow D_{l}^{k} u(\cdot, t) \text { in } L^{2}(\Omega), \text { uniformly for } t \in\left[0, T_{0}\right] .(0 \leq k \leq 3) \tag{4.2}\\
D_{t}^{k} u(\cdot, t)-\left(D_{t}^{k} u\right)_{0}=(\mathrm{B}) \int_{0}^{t} D_{l}^{k+1} u(\cdot, s) d s(0 \leq k \leq 2)
\end{array}\right.
$$

Here, $D_{i}^{k} u(\cdot, t)$ denotes the strong derivative in $L^{2}(\Omega)$ and (B) denotes the Bochner integral in $L^{2}(\Omega)$

$$
\left\{\begin{array}{l}
D_{t}^{k} u(\cdot, t) \in \mathscr{W}_{2}^{1}(\Omega) \text { for any } t \in\left[0, T_{0}\right],(0 \leqq k \leqq 3) \\
\nabla D_{i}^{k} u_{m}(\cdot, t) \longrightarrow \nabla D_{i}^{k} u(\cdot, t) \text { weakly in } L^{2}(\Omega),(0 \leq k \leqq 3) \\
\left\|\nabla D_{t}^{k} u(\cdot, t)-\nabla D_{t}^{k} u(\cdot, \tau)\right\| \leqq C|t-\tau|,(0 \leqq k \leqq 3) .
\end{array}\right.
$$

$$
\begin{align*}
& D_{t}^{k}\left(D_{t} u_{m}\right)^{3} \longrightarrow D_{t}^{k}\left(D_{t} u\right)^{3} \text { in } L^{2}(\Omega), \text { uniformly for } t \in\left[0, T_{0}\right](0 \leq k \leq 2) . \tag{4.4}\\
& \left\{\begin{array}{l}
D_{i}^{4} u_{m}(\cdot, t) \longrightarrow D_{i}^{4} u(\cdot, t) \text { weakly in } L^{2}(\Omega), \text { as } m \rightarrow \infty \\
\left\|D_{i}^{4} u(\cdot, t)-D_{i}^{4} u(\cdot, \tau)\right\| \leqq C|t-\tau| \\
D_{i}^{3} u(\cdot, t)-D_{i}^{3} u(\cdot, 0)=(\mathrm{B}) \int_{0}^{t} D_{i}^{4} u(\cdot, s) d s
\end{array}\right. \tag{4.5}
\end{align*}
$$

Proof. From the equality $D_{l}^{k} u_{m}(x, t)=D_{t}^{k} u_{m}(x, 0)+\int_{0}^{t} D^{k+1} u_{m}(x, s) d s$ it follows that

$$
\begin{aligned}
\int_{\Omega} \mid D_{i}^{k} u_{m}(x, t) & -\left.D_{t}^{k} u_{n}(x, t)\right|^{2} d x \leqq 2 \int_{\Omega}\left|D_{i}^{k} u_{m}(x, 0)-D_{i}^{k} u_{n}(x, 0)\right|^{2} d x \\
& +T_{0} \int_{0}^{T_{0}} \int_{\Omega}\left|D_{t}^{k+1} u_{m}(x, s)-D_{t}^{k+1} u_{n}(x, s)\right|^{2} d x d s
\end{aligned}
$$

Here, by (3.19), $\left(D_{i}^{k} u_{m}\right)_{0}(k=0,1,2,3)$ converge in $L^{2}(\Omega)$ as $m \longrightarrow \infty$. The second term of the right side converges to zero as $m, n \longrightarrow \infty$, by (4.1)
when $0<k$.
Hence, there exist functions $v_{k}(0, k)$ such that

$$
D_{k}^{k} u_{m}(\cdot, t) \longrightarrow v_{k}(\cdot, t) \text { in } L^{2}(\Omega), \text { uniformly for } t \in\left[0, T_{0}\right]
$$

If we set $v_{0}=u$, then it follows that $v_{k}=D_{i}^{k} u$. In fact

$$
u_{m}(x, t)-u_{m}(x, 0)=\int_{0}^{t} D_{t} u_{m}(x, s) d s
$$

or

$$
u_{m}(\cdot, t)-u_{m 0}=(\mathrm{B}) \int_{0}^{t} D_{t} u_{m}(\cdot, s) d s .
$$

Here

$$
\begin{aligned}
& \| \text { (B) } \int_{0}^{t} D_{t} u_{m}(\cdot, s) d s-(\mathrm{B}) \int_{0}^{t} v_{1}(\cdot, s) d s \| \\
& \quad \int_{0}^{t}\left\|D_{t} u_{m}(\cdot, s)-v_{1}(\cdot, s)\right\| d s \longrightarrow 0, \text { as } m \rightarrow \infty
\end{aligned}
$$

It gives that $u(\cdot, t)-u_{0}=(\mathrm{B}) \int_{0}^{1} v_{1}(\cdot, s) d s$. Moreover, $D_{t} u=v_{1}$. Similarly (4.2) is shown. With respect to (4.3), we apply the following Lemma:

If w is the weak limit in $L^{\prime \prime}(\Omega)$ of a sequence $w_{m} \in W_{2}^{1}(\Omega)(m=1,2, \ldots \ldots)$ with bounded norm $\left\|w_{m}\right\|_{W_{2}^{1}(\Omega)}<C$, then $w \in W_{2}^{1}(\Omega)$ and $\nabla w_{m} \longrightarrow \nabla w$ weakly in $L^{2}(\Omega)$ ([4]).
Since, $\left\|D_{t}^{k} u_{m}(\cdot, t)\right\|,\left\|\nabla D_{i}^{k} u_{m}(\cdot, t)\right\| \leq C(0 \leq k \leq 3)$ and $D_{t}^{k} u_{m}(\cdot, t) \longrightarrow D_{t}^{k} u(\cdot, t)$ in $L^{2}(\Omega)$, uniformly for $t \in\left[0, T_{0}\right](0 \leqq k \leq 3)$ it follows that $D_{i}^{k} u(\cdot, t) \in W_{2}^{1}(\Omega)$ for $t \in\left[0, T_{0}\right] \quad(0 \leq k \leq 3)$, and $\nabla D_{i}^{k} u_{m}(\cdot, t) \longrightarrow \nabla D_{i}^{k} u(\cdot, t)$ weakly in $L^{2}(\Omega)$ $(0 \leqq k \leq 3)$. By the result of the above, it holds that $D_{t}^{k} u_{m}(\cdot, t) \longrightarrow D_{t}^{k} \boldsymbol{u}(\cdot, t)$ weakly in $W_{2}^{1}(\Omega)$, as $m \rightarrow \infty$. Noting that $D_{t}^{k} u_{m}(\cdot, t) \in \stackrel{\circ}{W}_{2}^{1}(\Omega)$ for $t \in\left[0, T_{0}\right]$, we have $D_{t}^{k} u(\cdot, t) \in \stackrel{\circ}{W}_{2}^{1}(\Omega)$ for $t \in\left[0, T_{0}\right](0 \leq k \leq 3)$ and

$$
\begin{aligned}
& \mid\left(\nabla D_{i}^{k} u_{m}(\cdot, t)\right.\left.-\nabla D_{i}^{k} u_{m}(\cdot, \tau), w\right)\left|=\left|\left(\int_{\tau}^{t} \nabla D_{t}^{k} u_{m}(\cdot, s) d s, w\right)\right|\right. \\
& \leq \int_{\tau}^{t}\left\|\nabla D_{t}^{k} u_{m}(\cdot, s)\right\| d s\|w\| \\
& \leq C\|w\||t-\tau| \quad \text { for any } w \in L^{2}(\Omega), 0 \leq k \leq 3
\end{aligned}
$$

which implies $\left\|\nabla D_{i}^{k} u(\cdot, t)-\nabla D_{t}^{k} u(\cdot, \tau)\right\| \leqq C|t-\tau|$.
To prove (4.4), we verify the boundedness:

$$
\left|D_{i}^{k} u_{m}(x, t)\right| \leq C \text { in } \Omega \times\left[0, T_{0}\right]
$$

where C is a constant independent of m, x, t.
From (3.1) it follows that

$$
D_{t}^{k+2} u_{m}-\Delta D_{t}^{k} u_{m}+P_{m} D_{t}^{k}\left(D_{i} u_{m}\right)^{3}=0 \quad(0 \leqq k \leqq 3) .
$$

Here, $\quad\left\|\left(D_{t} u_{m}\right)^{3}\right\| \leq C\left\|\nabla\left(D_{t} u_{m}\right)\right\|^{3} \leq C$,
$\left\|D_{l}\left(D_{i} u_{m}\right)^{3}\right\| \leq C\left\|\nabla D_{i} u_{m}\right\|^{2}\left\|\nabla D_{i}^{2} u_{m}\right\| \leq C$,
$\left\|D_{t}^{2}\left(D_{i} u_{m}\right)^{3}\right\| \leq C\left\{\left\|\nabla D_{t} u_{m}\right\|\left\|\nabla D_{t}^{2} u_{m}\right\|^{2}+\left\|\nabla D_{i} u_{m}\right\|^{2}\left\|D_{i}^{3} u_{m}\right\|\right\}=C$,
$\left\|D_{i}^{3}\left(D_{t} u_{m}\right)^{3}\right\| \leq C\left\{\left\|\nabla D_{i}^{2} u_{m}\right\|^{3}+\left\|\nabla D_{i} u_{m}\right\|\left\|\nabla D_{i}^{2} u_{m}\right\|\left\|\nabla D_{i}^{3} u_{m}\right\|\right.$
$\left.+\left\|\nabla D_{t} u_{m}\right\|^{2}\left\|D_{t}^{4} u_{m}\right\|\right\} \leq C$.
Hence

$$
\begin{aligned}
&\left|D_{l}^{k} u_{m}(x, t)\right| \leq C\left\|D_{t}^{k} u_{m}(\cdot, t)\right\| w_{2}^{2}(,) \\
& \leq C\| \| D_{t}^{k} u_{m}(\cdot, t) \| \\
&\left.D_{t}^{k+2} u_{m}(\cdot, t)\|+\| P_{m} D_{t}^{k}\left(D_{t} u_{m}\right)^{3} \|\right\} \leq C(0 \leq k \leq 3) .
\end{aligned}
$$

Consequently,

$$
\begin{aligned}
& \left\|\left(D_{t} u_{m}\right)^{3}-\left(D_{t} u\right)^{3}\right\|=\|\left(D_{t} u_{m}-D_{t} u\right)\left(\left(D_{l} u_{m}\right)^{2}+\left(D_{t} u_{m}\right) D_{t} u+\left(D_{i} u\right)^{2} \|\right. \\
& \leq C\left\|D_{t} u_{m}-D_{i} u\right\| \\
& \left\|D_{t}\left(D_{i} u_{m}\right)^{3}-3\left(D_{i} u\right)^{2}\left(D_{i}^{2} u\right)\right\| \leq C\left\{\left\|\left(D_{l} u_{m}\right)^{2}\left\{D_{i}^{2} u_{m}-D_{l}^{2} u\right\}\right\|\right. \\
& \left.+\left\|\left\{\left(D_{t} u_{m}\right)^{2}-\left(D_{i} u\right)^{2}\right\} D_{t}^{2} u\right\|\right\} \\
& \leq C\left\{\left\|D_{i}^{2} u_{m}-D_{l}^{2} u\right\|+\left\|D_{i} u_{m}-D_{i} u\right\|\right\} \\
& \left\|D_{i}^{2}\left(D_{t} u_{m}\right)^{3}-6\left(D_{t} u\right)\left(D_{t}^{2} u\right)^{2}-3\left(D_{t} u\right)^{2} D_{i}^{3} u\right\| \\
& \leq C\left\{\left\|D_{i} u_{m}\left(\left(D_{i}^{2} u_{m}\right)^{2}-\left(D_{i}^{2} u\right)^{2}\right\}\right\|+\left\|\left(D_{t} u_{m}-D_{t} u\right)\left(D_{i}^{2} u\right)^{2}\right\|\right. \\
& \left.+\left\|\left(D_{i} u_{m}\right)^{2}\left\{D_{i}^{3} u_{m}-D_{i}^{3} u\right\}\right\|+\left\|\left\{\left(D_{t} u_{m}\right)^{2}-\left(D_{i} u\right)^{2}\right\} D_{i}^{3} u\right\|\right\} \\
& S C\left\{\left\|D_{i}^{2} u_{m}-D_{i}^{2} u\right\|+\left\|D_{t} u_{m}-D_{t} u\right\|+\left\|D_{i}^{3} u_{m}-D_{t}^{3} u\right\|\right\} .
\end{aligned}
$$

These inequalities give (4.4) by application of (4.2).
Finally, we will show (4.5).

$$
\begin{aligned}
\left(D_{i}^{4} u_{m}(\cdot, t), w\right) & =\left(\left(D_{i}^{4} u_{m}\right)_{0}, w\right)+\left(\int_{0}^{t} D_{i}^{5} u_{m}(\cdot, s) d s, w\right) \\
& =\left(\left(D_{i}^{4} u_{m}\right)_{0}, w\right)+\int_{0}^{t}\left(D_{l}^{5} u_{m}(\cdot, s), w\right) d s \text { for } w \in L^{2}(\Omega)
\end{aligned}
$$

Here,

$$
\begin{gathered}
\left\|\left(D_{i}^{4} u_{m}\right)_{0}\right\| \leqq C \\
\left\|D_{i}^{5} u_{m}\right\|_{L^{2}(\Omega) \times\left(0,0, T_{0]}\right)} \leqq C .
\end{gathered}
$$

Hence, it is possible to choose convergent subsequences of $\left(\left(D_{i}^{4} u_{m}\right)_{0}, w\right)$, $\int_{0}^{t}\left(D_{l}^{s} u_{m}(\cdot, s), w\right) d s$, which implies the subsequence $D_{i}^{4} u_{m j}(\cdot, t)$ converges weakly in $L^{2}(\Omega)$. Denote the limit function by $v_{4}:\left[0, T_{0}\right] \longrightarrow L^{2}(\Omega)$, then

$$
\begin{aligned}
& \left(D_{i}^{3} u_{m}(\cdot, t)-\left(D_{i}^{3} u_{m}\right)_{0}, w\right)=\left(\int_{0}^{t} D_{i}^{4} u_{m}(\cdot, s) d s, w\right)=\int_{0}^{t}\left(D_{i}^{4} u_{m}(\cdot, s), w\right) d s \\
& \quad \longrightarrow \int_{0}^{t}\left(v_{4}(\cdot, s), w\right) d s, \text { as } m \rightarrow \infty, \text { for any } w \in L^{2}(\Omega),
\end{aligned}
$$

Since it holds $\left\|v_{4}(\cdot, t)\right\| \leqq C$ for any $t \in\left[0, T_{0}\right], v_{4}(\cdot, t)$ is a Bochner integrable function. Hence we have

$$
\left(D_{t}^{3} u(\cdot, t)-\left(D_{t}^{3} u\right)_{0}, w\right)=\left((\mathrm{B}) \int_{0}^{t} v_{1}(\cdot, s) d s, w\right)
$$

Consequently (4.5) is completely shown.

§ 5 The existence of the classical solution

First, we show equalities

$$
\begin{align*}
& \left(D_{t}^{++i} u(\cdot, t), w\right)+\left(\nabla D_{t}^{j} u(\cdot, t), \nabla w\right)+\left(D_{l}^{i}\left(D_{t} u\right)^{3}(\cdot, t), w\right)=0 \tag{5.1}\\
& \quad \text { for any } w \in \stackrel{\circ}{W}_{2}^{1}(\Omega) .\left(t \in\left[0, T_{0}\right], 0 \leq j \leq 2\right)
\end{align*}
$$

Here, $u(\cdot, t)$ is the limit function in § 4.
In fact, for approximate solutions $u_{m}(x, t)$ it holds

$$
\begin{gathered}
\left(D_{t}^{2+j} u_{m}(\cdot, t), \psi_{k}\right)+\left(\nabla D_{i}^{j} u_{m}(\cdot, t), \nabla \psi_{k}\right)+\left(D_{t}^{j}\left(D_{t} u_{m}\right)^{3}(\cdot, t), \psi_{k}\right)=0 \\
\text { for } m \geqq k .
\end{gathered}
$$

Hence, there results

$$
\begin{gathered}
\left(\boldsymbol{D}_{t}^{2+j} \boldsymbol{u}(\cdot, t), \psi_{k}\right)+\left(\boldsymbol{\nabla} D_{t}^{j} \boldsymbol{u}(\cdot, t), \nabla \psi_{k}\right)+\left(D_{t}^{j}\left(D_{t} u\right)^{3}(\cdot, t), \psi_{k}\right)=0 \\
(k=1,2,3, \ldots \ldots)
\end{gathered}
$$

by the convergence relations (4.2), (4.3), (4.4) and (4.5).
Here, $W_{2}^{2}(\Omega) \cap \stackrel{\circ}{W}_{2}^{1}(\Omega)$ is dense in $\stackrel{\circ}{W}_{2}^{1}(\Omega)$, and finite linear combinations of eigenfunctions $\left\{\psi_{k}\right\}$ is dense in $W_{2}^{2}(\Omega) \cap \stackrel{\circ}{W}_{2}^{1}(\Omega)$.
Consequently (5.1) is shown.

Next we have properties of u as follows,

$$
\begin{equation*}
D_{i}^{j} u \in C\left(\left[0, T_{0}\right]: W_{2}^{2}(\Omega)\right) \cap C\left(\bar{\Omega} \times\left[0, T_{0}\right]\right)(j=0,1,2) \tag{5.2}
\end{equation*}
$$

Indeed, set $j=0$ in (5.1), it follows that for any $w \in \stackrel{\circ}{W_{2}^{1}}(\Omega)$

$$
-(\nabla u(\cdot, t), \nabla w)=\left(D_{i}^{2} u(\cdot, t)+\left(D_{t} u\right)^{3}(\cdot, t), w\right) .
$$

Hence, $u(\cdot, t)\left(\in \stackrel{\circ}{W}_{2}^{1}(\Omega)\right.$ for $\left.t \in\left[0, T_{0}\right]\right)$ is a weak solution of the equation

$$
\Delta v=D_{t}^{2} u(\cdot, t)+\left(D_{t} u\right)^{3}(\cdot, t) \in L^{2}(\Omega)
$$

Consequently

$$
u(\cdot, t) \in W_{2}^{2}(\Omega)
$$

and

$$
\|\boldsymbol{u}(\cdot, t)\|_{w_{2}^{2}(\Omega)} \leqq \boldsymbol{C}\left\{\left\|\boldsymbol{D}_{l}^{2} \boldsymbol{u}(\cdot, t)\right\|+\left\|\left(\boldsymbol{D}_{t} \boldsymbol{u}\right)^{3}(\cdot, \boldsymbol{t})\right\|+\|\boldsymbol{u}(\cdot, \boldsymbol{t})\|\right\}
$$

Moreover it holds

$$
\begin{aligned}
\| \boldsymbol{u}(\cdot, t) & -\boldsymbol{u}(\cdot, \tau)\| \|_{w_{2}^{2}(\Omega)} \leq \boldsymbol{C}\left\{\left\|D_{t}^{2} \boldsymbol{u}(\cdot, t)-D_{t}^{2} \boldsymbol{u}(\cdot, \tau)\right\|\right. \\
& \left.+\left\|\left(D_{t} \boldsymbol{u}\right)^{3}(\cdot, t)-\left(D_{t} u\right)^{3}(\cdot, \tau)\right\|+\|\boldsymbol{u}(\cdot, t)-\boldsymbol{u}(\cdot, \tau)\|\right\} .
\end{aligned}
$$

Since $u, D_{t}^{2} u$ and $\left(D_{t} u\right)^{3} \in C\left(\left[0, T_{0}\right]: L^{2}(\Omega)\right)$ by the convergence relations (4. 2) and (4.4), we have $u \in C\left(\left[0, T_{0}\right]: W_{2}^{2}(\Omega)\right)$. Also the inequality

$$
|\boldsymbol{u}(x, t)-\boldsymbol{u}(\xi, \tau)| \leq \mid \boldsymbol{u}(x, t)-\boldsymbol{u}(\xi, t)) \mid+\boldsymbol{C}\|\boldsymbol{u}(\cdot, t)-\boldsymbol{u}(\cdot, \tau)\|_{w_{2}^{2}(\xi)}
$$

gives the relation $u(x, t) \in C\left(\bar{\Omega} \times\left[0, T_{0}\right]\right)$ by the notice of $u(x, t) \in C(\bar{\Omega})$ for fixed $t \in\left[0, T_{0}\right]$. Similarly, set $j=1,2$ in (5.1), then we have (5.2), since $D_{t}^{3} u+D_{t}\left(D_{t} u\right)^{3}, D_{t}^{4} u+D_{t}^{2}\left(D_{t} u\right)^{3} \in C\left(\left[0, T_{0}\right]: L^{2}(\Omega)\right)$.

Finally, we have the following properties of u;

$$
\begin{gather*}
\left(D_{1} u\right)^{3} \in C\left(\left[0, T_{0}\right] ; W_{2}^{1}(\Omega)\right) \cap C\left(\left[0, T_{0}\right] ; W_{2}^{2}(\Omega)\right) \tag{5.3}\\
u \in C\left(\left[0, T_{0}\right] ; W_{2}^{4}(\Omega)\right) \tag{5.4}\\
D_{t} u \in C\left(\left[0, T_{0}\right] ; W_{2}^{3}(\Omega)\right) \tag{5.5}
\end{gather*}
$$

Proof. Relations $D_{t} u \in C\left(\bar{\Omega} \times\left[0, T_{0}\right]\right), \nabla D_{t} u \in C\left(\left[0, T_{0}\right] ; L^{2}(\Omega)\right)$ and $D_{t} u$ $\in C\left(\left[0, T_{0}\right] ; W_{2}^{2}(\Omega)\right)$ imply that equalities $D_{x_{k}}\left(D_{t} u\right)^{3}=3\left(D_{t} u\right)^{2} D_{x_{k}}\left(D_{t} u\right)$ and $D_{x_{j}} D_{x_{k}}\left(D_{t} u\right)^{3}=6\left(D_{t} u\right) D_{x_{j}}\left(D_{t} u\right) D_{x_{k}}\left(D_{t} u\right)+3\left(D_{i} u\right)^{2} D_{x_{j}} D_{x_{k}}\left(D_{t} u\right)$ hold. Here, we applied the fact that if $f, \nabla f \in L^{p}(\Omega)$ and $g, \nabla g \in L^{q}(\Omega)(1 / p+1 / q=1)$ it holds $\nabla(f g)=(\nabla f) g+f(\nabla g)$. Noting that $f g \in C\left([0, T] ; L^{2}(\Omega)\right)$ for $f \in C(\bar{\Omega}$ $\times[0, T])$ and $g \in C\left([0, T] ; L^{2}(\Omega)\right)$ we have (5.3).

If we set $j=0$ in (5.1), $\mathrm{u}(\cdot, t)$ is a weak solution of the equation Δv $=D_{t}^{2} u(\cdot, t)+\left(D_{t} u\right)^{3}(\cdot, t)$, where $D_{t}^{2} u+\left(D_{t} u\right)^{3} \in C\left(\left[0, T_{0}\right]: W_{2}^{2}(\Omega)\right)$. Hence, $u \in C$ ([0. T_{0}]: $W_{2}^{4}(\Omega)$). Also we set $j=1$ in (5.1), then $D_{t} u(\cdot, t)$ is a weak solution of the equation $\Delta v=D_{t}^{3} u(\cdot, t)+D_{t}\left(D_{t} u\right)^{3}(\cdot, t)$. Here $D_{t}\left(D_{t} u\right)^{3}=$ $3\left(D_{t} u\right)^{2}\left(D_{t}^{2} u\right) \in C\left(\left[0, T_{0}\right] ; L^{2}(\Omega)\right)$ and $D_{x_{k}}\left(D_{t} u\right)^{2} D_{t}^{2} u=2 D_{t} u D_{x_{k}}\left(D_{t} u\right) D_{t}^{2} u+\left(D_{t} u\right)^{2} D_{x_{k}} D_{t}^{2} u$ $\in C\left(\left[0, T_{0}\right]: L^{2}(\Omega)\right), D_{t}^{3} u \in C\left(\left[0, T_{0}\right]: W_{2}^{1}(\Omega)\right)$. Hence, $D_{t} u \in C\left(\left[0, T_{0}\right]: W_{2}^{3}(\Omega)\right)$.

Now, we take notice of the following relations (5.6) and (5.7).
(5.6) If u belongs to the space $C^{m}\left([0, T]: L^{2}(\Omega)\right)$ and the strong derivatives $D_{l}^{k} u$ in $L^{2}(\Omega)(k=0,1,2, \ldots \ldots, m)$ are belong to the space $C\left([0, T]: W_{2}^{t}(\Omega)\right)$ it follows that $u \in C^{m}\left([0, T]: W_{2}^{t}(\Omega)\right)$ and

$$
\left\|\frac{1}{h}\left(D_{t}^{k-1} u(\cdot, t+h)-D_{t}^{k-1} u(\cdot, t)\right)-D_{t}^{k} u(, t)\right\|_{w_{2}^{l}(\Omega)} \rightarrow 0 \text { as } h \rightarrow 0, \quad(k=1,2
$$

\qquad
We verify for $m=1$. From the assumption $D_{l} u \in C\left([0, T] ; W_{2}^{l}(\Omega)\right)$,
there exists the Bochner integral ($\left.W_{2}^{t}, \mathrm{~B}\right) \int_{0}^{t} D_{s} u(\cdot, s) d s$ in $W_{2}^{t}(\Omega)$. Hence, the Bochner integral ($L^{2}, \mathrm{~B}$) $\int_{0}^{t} D_{s} u(\cdot, s) d s$ in $L^{2}(\Omega)$ exists, and

$$
\left(L^{2}, \mathrm{~B}\right) \int_{0}^{t} D_{s} u(\cdot, s) d s=\left(W_{2}^{t}, \mathrm{~B}\right) \int_{0}^{t} D_{s} u(\cdot, s) d s
$$

as an element of $L^{2}(\Omega)$. On the other hand

$$
\left(L^{2}, \text { B) } \int_{0}^{t} D_{s} u(\cdot, s) d s=u(\cdot, t)-u(\cdot, 0) . \quad(\text { See }[7])\right.
$$

By the above equalities we have

$$
u(\cdot, t)-u(\cdot, 0)=\left(W_{2}^{t}, \mathrm{~B}\right) \int_{0}^{t} D_{s} u(\cdot, s) d s
$$

as an element of $W_{2}^{l}(\Omega)$ or

$$
\left\|\frac{1}{h}(u(\cdot, t+h)-u(\cdot, t))-D_{t} u(\cdot, t)\right\|_{w_{2}^{t}(\theta)} \rightarrow 0, \text { as } h \rightarrow 0
$$

$$
\begin{equation*}
\bigcap_{k=0}^{2} C^{k}\left([0, T]: W_{2}^{4-k}(\Omega)\right) \subset C^{2}(\bar{\Omega} \times[0, T]) \tag{5.7}
\end{equation*}
$$

This relation is given by Sather [5] or Wilcox [8]. We give an outline of the proof. Since $u \in C\left([0, T]: W_{2}^{4}(\Omega)\right)$, we have

$$
\left|D_{x}^{\alpha} u(x, t)\right| \leqq C\|u(\cdot, t)\|_{w_{2}^{4}(Q)}, \quad(|\alpha| \leqq 2,(x, t) \in \bar{\Omega} \times[0, T \mid)
$$

and

$$
\left|D_{x}^{\alpha} u(x, t)-D_{x}^{\alpha} u(\xi, \tau)\right| \leqq C\|u(\cdot, t)-u(\cdot, \tau)\|_{w_{2}^{(}(\Omega)}+\left|D_{x}^{\alpha} u(x, \tau)-D_{x}^{\alpha} u(\xi, \tau)\right|
$$

Hence, $D_{x}^{\alpha} u \in C(\bar{\Omega} \times[0, T])(|\alpha| \leqq 2)$. The relation $u \in C^{1}\left([0, T]: W_{2}^{3}(\Omega)\right)$ gives $D_{t} u \in C\left([0, T]: W_{2}^{3}(\Omega)\right)$ and $D_{x}^{\alpha} D_{t} u \in C(\bar{\Omega} \times[0, T])(|\alpha| \leqq 1)$.
Hence $D_{t} u, D_{x} D_{t} u \in C(\bar{\Omega} \times[0, T])$. The relation $u \in C^{2}\left([0, T]: W_{2}^{2}(\Omega)\right)$ give $D_{i}^{2} u \in C(\bar{\Omega} \times[0, T])$. Moreover

$$
\begin{aligned}
& \left|\frac{1}{h}\left\{D_{x}^{\alpha} u(x, t+h)-D_{x}^{\alpha} u(x, t)\right\}-D_{x}^{\alpha} D_{t} u(x, t)\right| \\
& \quad \leqq C\left\|\frac{1}{h}\{u(\cdot, t+h)-u(\cdot, t)\}-D_{t} u(\cdot, t)\right\|_{w_{2}^{3}(\varphi) \rightarrow 0, \text { as } h \rightarrow 0,} \\
& \left|\frac{1}{h}\left\{D_{i} u(x, t+h)-D_{t} u(x, t)\right\}-D_{i}^{2} u(x, t)\right| \\
& \quad \leqq C\left\|\frac{1}{h}\left\{D_{t} u(\cdot, t+h)-D_{t} u(\cdot, t)\right\}-D_{i}^{2} u(\cdot, t)\right\|_{w_{2}^{2}(\varphi)} \rightarrow 0, \text { as } h \rightarrow 0 .
\end{aligned}
$$

Consequently, (5.7) is verified.

We attain the following existence theorem of the classical solution: Theorem. Let Ω be a bounded domain in R^{3} with a sufficiently smooth boundary. Suppose that the initial data u_{0} belongs to the space V_{0}, and $\left(D_{t} u\right)_{0}$ belongs to the space V_{1}, where $V_{i}(i=0,1)$ are defined in $\S 3$. Then there exists a function u belonging to the class $C^{2}\left(\bar{\Omega} \times\left[0, T_{0}\right]\right)$, which satisfies the equation (1.1) in $\Omega \times$ ($0, T_{0}$) and conditions (1.2)-(1.4). Here T_{0} is a positive number depending on u_{0} and $\left(D_{i} u\right)_{o}$.

Proof. The equation (5.1) gives the equality

$$
\left(D_{i}^{2} u(\cdot, t), w\right) \cdots(\Delta u(\cdot, t), w)+\left(\left(D_{i} u\right)^{3}(\cdot, t), w\right)=0
$$

for any $w \in \stackrel{\circ}{W}_{2}^{1}(\Omega), t \in\left[0, T_{0}\right]$.
On the other hand, $u \in \bigcap_{k=0}^{n} C^{k}\left(\left[0, T_{0}\right]: W_{2}^{4-k}(\Omega)\right) \subset C^{2}\left(\bar{\Omega} \times\left[0, T_{0}\right]\right)$.
Indeed, $u \in C^{1}\left(\left[0, T_{0}\right]: L^{2}(\Omega)\right)$ by (4.2) and $u, D_{t} u \in C\left(\left[0, T_{0}\right]: W_{2}^{3}(\Omega)\right)$ by (5.5). Hence $u \in C^{1}\left(\left[0, T_{0}\right] ; W_{2}^{3}(\Omega)\right)$ by noting (5.6). Also, $u \in C^{2}\left(\left[0, T_{0}\right]\right.$: $\left.L^{2}(\Omega)\right)$ by (4.2) and $u, D_{t} u, D_{i}^{2} u \in C\left(\left[0, T_{0}\right]: W_{2}^{2}(\Omega)\right)$ by (5.2). Hence $u \in C^{2}$ ($\left[0, T_{0}\right] ; W_{2}^{2}(\Omega)$) by noting (5.6). u $\boldsymbol{u} C\left(\left[0, T_{0}\right]: W_{2}^{4}(\Omega)\right)$ was shown in (5.4).

Consequently, $D_{i}^{2} u-\Delta u+\left(D_{i} u\right)^{3}=0$ in $\Omega \times\left(0, T_{0}\right)$, since $\stackrel{\circ}{W}_{2}^{1}(\Omega)$ is dense in $L^{2}(\Omega)$. By virtue of (4.2) it holds that $u(x, 0)=u_{0}(x), D_{t} u(x, 0)=$ $\left(D_{t} u\right)_{0}(x), x \in \Omega . u(\cdot, t) \in \dot{W}_{2}^{1}(\Omega) \cap C^{1}(\bar{\Omega})$ implies that u vanishes on the boundary in the natural sense.

College of General Education, Kyushu University.

References

[1] E. Hille and R. S. Phillips, Functional analysis and semigroups. Amer. Math. Soc. (1957).
[2] J. L. Lions, Quelques methodes de résolution de problemes aux limites non linéaires. Paris, Dunod, (1.969).
[3] C. B. Morrey Jr., Multiple integrals in the calculus of variations. Springer, Berlin, (1966).
[4] L. Nirenberg, Remarks on strongly elliptic partial differential equations, Comm. Pure Appl. Math. 8, (1955) 649-675.
[5] J. Sather, The existence of a global classical solution of the initial boundary value problem for $\square u+u^{3}=f$. Archive for Rat. Mech. Anal. 22 (1966) 292-307.
[6] C. H. Wilcox, Initial-boundary value problems for linear hyperbolic partial differetial equations of the second order. Arch. Rat. Mech. Anal. 10 (1962) 361-400.
[7] C. H. Wilcox, Uniform asymptotic estimates for wave packet in quantum theory of scattering. J. Math. Phys. 6 (1965) 611-620.
[8] K. Yoshida, Functinal analysis. Springer-Verlag New york Inc. (1968).

