On the complex K－group of certain manifold
Fujino，Tsutomu
Department of Mathematics，Fukuoka Technological University
Ishikawa，Nobuhiro
Department of Mathematics，College of General Education，Kyushu University
Kamata，Masayoshi
Department of Mathematics，College of General Education，Kyushu University

https：／／doi．org／10．15017／1448953

出版情報：九州大学教養部数学雑誌．9（1），pp．1－6，1973－11．九州大学教養部数学教室 バージョン：
権利関係：

Math. Rep.
XI-1, 1973.

On the complex K-group of certain manifold

By
Tsutomu Fujino, Nobuhiro Ishikawa and Masayoshi Kamata

(Received Jul. 28, 1973)

1. Let D_{p} be a dihedral group of order $2 p$ which is generated by g of order p and t of order 2 such that $\operatorname{tg} t=g^{-1}$. We consider an action of \boldsymbol{D}_{p} over a product space $\boldsymbol{S}^{2 l+1} \times \boldsymbol{S}^{m} \subset \boldsymbol{C}^{l+1} \times \boldsymbol{R}^{m+1}$ of spheres, given by

$$
\begin{equation*}
g^{k} t^{j}(z, x)=\left(\rho^{k} c^{j}(z),(-1)^{j} x\right) \tag{1.1}
\end{equation*}
$$

where c is the conjugation and $\rho=\exp 2 \pi \sqrt{ }-1 / p$. Denote by $D_{p}(l, m)=\left(S^{2 l+1}\right.$ $\left.\times \boldsymbol{S}^{m}\right) / \boldsymbol{D}_{p}$ the orbit space [3]. We are concerned with the complex K-group of $D_{p}(2 k+1,2 n+1)$ where p is an odd prime.

Consider an action of Z_{2}, a cyclic group of order 2 , over the complex K-group $K(X)$, given by the conjugation automorphism $[\xi]=[\bar{\xi}]$. Let $K(X)^{z_{2}}$ be the invariant subgroup of $K(X)$ under the involution. In this paper we obtain

Theorem 1.1. Suppose that p is an odd prime. Then, there exists an isomorphism

$$
\widetilde{K}\left(\boldsymbol{D}_{p}(2 k+1,2 n+1)\right) \simeq \boldsymbol{Z} \oplus \tilde{K}\left(\boldsymbol{L}^{2 k+1}(p)\right)^{z_{2} \oplus \tilde{K}\left(\boldsymbol{R} P^{2 n+1}\right), ~}
$$

where $L^{2 n+1}(p)$ is a standard ($4 k+3$)-dimensional lens space and $R P^{2 n+1}$ is a $(2 n+1)$-dimensional real projective space.
2. Denote by $K_{G}(X)$ the equivariant K-group of G-space X. It is well-known that if the action of G is free then $K_{G}(X) \cong K(X / G)$. There is a canonical homomorphism from the representation ring $R(G)$ to $K_{G}(X)$ which maps a representation space M to a equivariant G-bundle $X \times M$. If X is free G-space then there is a homomorphism

$$
\pi: R(G) \longrightarrow K_{G}(X) \cong K(X / G)
$$

Let $\alpha: H \longrightarrow G$ be a homomorphism and $f: Y \longrightarrow X$ be an equivariant map from \boldsymbol{H}-space Y to G-space X, that is, $f(h \cdot y)=\alpha(h) \cdot f(y)$. The equivariant map f induces the homomorphism

$$
f!: K_{G}(X) \longrightarrow K_{H}(Y)
$$

We take a Z_{2}-action on S^{m} by

$$
t^{i} \cdot x=(-1)^{i} x, t \in Z_{2} \text { a generator, }
$$

a Z_{p}-action on $S^{2 l^{2}+1}$ by

$$
g^{j} \cdot z=\rho^{j} z, \quad \rho=\exp 2 \pi \checkmark-1 / p, g \in Z_{\rho} \text { a generator }
$$

and a D_{p}-action on $S^{2 l+1} \times S^{m}$ given by (1.1) in section 1 . We have these orbit spaces an m-dimensional real projective space $R P^{m}$, a ($2 l+1$)-dimensional lens space $L^{l}(p)$ and $D_{p}(l, m)$. There exist equivariant maps

$$
\begin{aligned}
& i: S^{2 l+1} \longrightarrow S^{2 l+1} \times S^{m}, \quad i(z)=(z,(1,0, \cdots, 0)) \\
& \left.j: S^{m} \longrightarrow S^{2 t+1} \times S^{m}, j(x)=((1,0, \cdots, 0), x)\right)
\end{aligned}
$$

and

$$
p: S^{2 l+1} \times S^{m} \longrightarrow S^{m}, p(z, x)=x
$$

compatible with injections $\tilde{i}: Z_{p} \longrightarrow D_{p}, \tilde{j}: Z_{2} \longrightarrow D_{p}$ and a projection $\tilde{\boldsymbol{p}}: \boldsymbol{D}_{p}$ $\longrightarrow Z_{2}$ respectively. It follows immediately that

$$
\begin{equation*}
j!p!=1 \tag{2.1}
\end{equation*}
$$

Let H be a normal subgroup of a finite group G and A be a unitary representation of H. The induced representation A^{G} is defined as follows

$$
A^{G}(g)=\left(\begin{array}{cccc}
A\left(t_{1} g t_{1}\right) & A\left(t_{1} g t_{2}\right) & \cdots & A\left(t_{1} g t_{n}\right) \tag{2.2}\\
A\left(t_{2} g t_{1}\right) & A\left(t_{2} g t_{2}\right) & \cdots & A\left(t_{2} g t_{n}\right) \\
\vdots & \vdots & & \vdots \\
\vdots & \vdots & & \vdots \\
A\left(t_{n} g t_{1}\right) & A\left(t_{n} g t_{2}\right) & \cdots & A\left(t_{n} g t_{n}\right)
\end{array}\right)
$$

where $G / H=\left\{\left\{t_{1}\right\},\left\{t_{2}\right\}, \cdots,\left\{t_{n}\right\}\right\}$ and $A\left(t_{i} g t_{j}\right)=0$ if $t_{i} g t_{j} \notin H$.
Denote by L a standard representation space with ($\exp 2 \pi \sqrt{-1} / p$). For a standard Z_{p}-space $S^{2 l+1}$ with $S^{2 l+1} / Z_{p}=L^{l}(p)$, we put

$$
\xi_{l}=S^{2 l+1} \times{ }_{z_{p}} L
$$

N. Mahammed [5] obtained that

$$
K_{z_{p}}\left(S^{2 l+1}\right) \cong K\left(L^{l}(p)\right) \cong Z\left[\xi_{l}\right] /\left(\xi_{l}^{p}-1,\left(\xi_{l}-1\right)^{l+1}\right)
$$

Hence, the homomorphism $\pi: R\left(Z_{p}\right) \longrightarrow K_{Z_{p}}\left(\boldsymbol{S}^{2 t+1}\right)$ is surjective. Then, we define the homomorphism

$$
i_{*}: K_{Z_{p}}\left(\boldsymbol{S}^{2 l+1}\right) \longrightarrow K_{D_{p}}\left(\boldsymbol{S}^{2 l+1} \times S^{m}\right)
$$

by $\boldsymbol{i}_{*}\left(\boldsymbol{S}^{2 t+1} \times \boldsymbol{M}\right)=\boldsymbol{S}^{2 t+1} \times \boldsymbol{S}^{m} \times \boldsymbol{M}^{1 p_{p}}$, where \boldsymbol{M} is representation space of \boldsymbol{Z}_{b} and $M^{D_{p}}$ is the induced representation space.

We consider a \boldsymbol{Z}_{2}-action over $\boldsymbol{K}_{\%_{p}}\left(\boldsymbol{S}^{2 l+1}\right)$ given by

$$
t\left(S^{2 l+1} \times M\right)=S^{2 l+1} \times \bar{M}
$$

where \bar{M} is a conjugate representation space of \boldsymbol{M} and t is a generator of Z_{2}.

Let $K_{Z_{p}}\left(\boldsymbol{S}^{2 t+1}\right)^{z_{2}}$ be the invariant subgroup under the Z_{2}-action. Then, we have

Proposition 2.1. For $\eta \in K_{z_{p}}\left(\boldsymbol{S}^{2 t+1}\right)^{z_{2}}$,

$$
i!i_{*}(\eta)=2 \eta
$$

Proof. Suppose that $\eta=S^{2 t+1} \times \boldsymbol{M} \in K_{z_{p}}\left(S^{2 /+1}\right)^{1_{2}}$, that is, $\bar{M}=\boldsymbol{M}$. Let A be the representation of M. Then, $i_{*}(\eta)=S^{2 l+1} \times S^{m} \times M^{p p}$, where $M^{D_{p}}$ is the induced representation space of M. The representation $A^{p p}$ of $M^{p p}$ is given as follows:

$$
A^{\nu p}(g)=\left(\begin{array}{lr}
A(g) & 0 \\
0 & \bar{A}(g)
\end{array}\right), g \in Z_{p}
$$

Since $\bar{M}=M$ and $\bar{A}=A$,

$$
i i_{*}(\eta)=2 \eta . \quad \text { q. e. d. }
$$

Theorem 2.2. The homomorphism

$$
\theta: \tilde{K}_{z_{p}}\left(\boldsymbol{S}^{2 t+1}\right)^{z_{2}} \oplus \tilde{K}_{Z_{2}}\left(\boldsymbol{S}^{m}\right) \longrightarrow \tilde{K}_{D_{p}}\left(\boldsymbol{S}^{2 l+1} \times \boldsymbol{S}^{m}\right)
$$

given by $\theta(\eta, \nu)=i_{*}(\eta)+p!(\nu)$ is injective.
Proof. Suppose that $\theta(\eta, \nu)=0$. Since $i!p!=0$, we have $i!i_{*}(\eta)=0$. Hence, from Proposition 2.1, it follows that $\eta=0$. On the other hand, from (2.1), we have $\nu=j!p^{!}(\nu)=0$. q. e. d.
3. The manifold $D_{p}(l, m)$ is homeomorphic to an orbit space ($L^{l}(\boldsymbol{p})$ $\left.\times S^{m}\right) / Z_{2}$, where a Z_{2}-action on $L^{l}(p) \times S^{m}$ is given by

$$
t^{j}([z], x)=\left(\left[c^{j}(z)\right],(-1)^{j} x\right)
$$

where t is a generator of Z_{2}. Denote by $\left(C_{i}, D_{j}\right)$ a cell of $\left(L^{l}(p) \times S^{m}\right) / Z_{2}$ represented by a standard cell C_{i} of $L^{l}(p)$ and a standard cell D_{j} of S^{m}
and by $\left(c^{i}, d^{j}\right)$ a dual cochain of $\left(C_{i}, D_{j}\right)$. The coboundary relations are given by

$$
\begin{aligned}
& \partial\left(c^{2 i+1}, d^{j}\right)=p\left(c^{2(i+1)}, d^{j}\right)+\left\{(-1)^{i}+(-1)^{j}\right\}\left(c^{2 i+1}, d^{j+1}\right) \\
& \partial\left(c^{2 i}, d^{j}\right)=\left\{(-1)^{i}+(-1)^{j+1}\right\}\left(c^{2 i}, d^{j+1}\right)
\end{aligned}
$$

Therefore, we have the following.
Proposition 3.1. The integral cohomology group $\tilde{H}^{*}\left(D_{p}(2 k+1,2 n+1) ; Z\right)$ is a direct sum of the following groups:
free groups generated by $\left(c^{0}, d^{2 n+1}\right),\left(c^{4 k+3}, d^{0}\right)$ and $\left(c^{4 k+3}, d^{2 n+1}\right)$,
torsion groups generated by $\left(c^{0}, d^{2 j}\right)$ and $\left(c^{4 k+3}, d^{2 j}\right)$ whose orders are 2
and torsion groups generated by $\left(c^{4 i}, d^{0}\right)$ and $\left(c^{4 i}, d^{2 n+1}\right)$ whose orders are p, where $1 \leq j \leq n$ and $1 \leqq i \leq k$.

Denote by Y the $(4 k+2 n+3)$-skeleton of $D_{p}(2 k+1,2 n+1)$. Then, we have

$$
\hat{H}^{i}\left(D_{p}(2 k+1,2 n+1) / Y ; Z\right)= \begin{cases}Z & i=4 k+2 n+4 \tag{3.1}\\ 0 & \text { otherwise }\end{cases}
$$

and
(3.2) $\quad \tilde{H}^{i}(Y ; Z) \sim \begin{cases}\tilde{H}^{i}\left(D_{p}(2 k+1,2 n+1) ; Z\right) & i \leqq 4 k+2 n+3, \\ 0 & \text { otherwise. }\end{cases}$

Proposition 3.2. There exists a short exact sequence

$$
0 \longrightarrow Z \longrightarrow \tilde{K}\left(D_{p}(2 k+1,2 n+1)\right) \longrightarrow \tilde{K}(Y) \longrightarrow 0
$$

Proof. Consider the exact sequence of K-groups with respect to a pair $\left(D_{p}(2 k+1,2 n+1), Y\right)$,

$$
\begin{aligned}
\cdots & \tilde{K}^{-1}\left(D_{p}(2 k+1,2 n+1)\right) \xrightarrow{!} \tilde{K}^{-1}(Y) \longrightarrow \tilde{K}\left(D_{p}(2 k+1,2 n+1) / Y\right) \\
& \longrightarrow \tilde{K}\left(D_{p}(2 k+1,2 n+1)\right) \longrightarrow \tilde{K}(Y) \longrightarrow \tilde{K}^{1}\left(D_{p}(2 k+1,2 n+1) / Y\right) \longrightarrow \cdots
\end{aligned}
$$

Note that from (3.1) we have

$$
\tilde{K}^{i}\left(D_{p}(2 k+1,2 n+1) / Y\right) \simeq \begin{cases}Z & \text { if } i \text { is even } \\ 0 & \text { if } i \text { is odd }\end{cases}
$$

From the discussion of the Atiyah-Hirzebruch spectral sequence for $\tilde{\boldsymbol{K}}^{-1}(\boldsymbol{X})$ with $E_{2}^{s . t}(X) \cong \tilde{H}^{s}\left(X ; \tilde{K}^{t}\left(S^{0}\right)\right)$ [2], $X=D_{p}(2 k+1,2 n+1)$ or Y, we have the following,
the free part of $\tilde{K}^{-1}(X) \cong Z \oplus \boldsymbol{Z}$.
Hence, it follows that $i!: \tilde{K}^{-1}\left(D_{p}(2 k+1,2 n+1)\right) \longrightarrow \tilde{K}^{-1}(Y)$ is isomorphic. q. e. d.

Proposition 3.3. The order of the group $\tilde{K}(Y) \leqq p^{k} 2^{n}$.
Proof. The order of $E_{\infty}^{s . t}(Y)$ is not more than that of $E_{2}^{s . t}(Y), s+t=$ even. From Proposition 3.1, the proposition follows.

Proof of Theorem 1.1.

Denote by c and r the complexification and the real restriction. Put $\sigma_{m}=\xi_{m}-1$, then

$$
\sigma_{m}+\bar{\sigma}_{m}=c r \sigma_{m}
$$

In [4], it is proved that $r \sigma_{m},\left(r \sigma_{m}\right)^{2}, \cdots,\left(r \sigma_{m}\right)^{(p-1) / 2}$ are linearly independent in $\widetilde{K O}\left(L^{m}(p)\right)$ and if $m=s(p-1)+t, 0 \leq t<p-1$ then

$$
\text { the order of }\left(r \sigma_{m}\right)^{i}= \begin{cases}p^{s+1} & \text { if } 2 i \leqq t \\ p^{s} & \text { if } 2 i>t\end{cases}
$$

We note that if $m=2 k+1$, the complexification c is injective and $\sigma_{m}+\bar{\sigma}_{m}$ belongs to $\hat{K}\left(L^{m}(\boldsymbol{p})\right)^{z_{2}}$. Therefore, we have that the order of $\tilde{K}\left(L^{2 k+1 k}(\boldsymbol{p})\right)^{z_{2}}$ $\geqq \boldsymbol{p}^{\boldsymbol{k}}$. Since $\tilde{K}_{Z_{2}}\left(\boldsymbol{S}^{2 n+1}\right) \cong \tilde{K}\left(\boldsymbol{R} P^{2 n+1}\right) \cong \boldsymbol{Z}_{2^{n}} \quad[\mathbf{1}]$,
the order of $\tilde{K}\left(L^{2 k+1}(p)\right)^{z_{2}} \oplus \tilde{K}\left(R P^{2 n+1}\right) \geqq p^{k} 2^{n}$.
It follows from Theorem 2.2, Proposition 3.3 that the torsion part of $\tilde{K}\left(D_{p}(2 k+1,2 n+1)\right)$ is isomorphic to $\tilde{K}\left(L^{2 k+1}(p)\right)^{z_{2}} \oplus \tilde{K}\left(R P^{2 n+1}\right)$. q. e. d.

Department of Mathematics, Fukuoka Technological University,

Department of Mathematics, College of General Education, Kyushu University
and
Department of Mathematics, College of General Education, Kyushu University.

References

[1] J. F. Adams, Vector fields on spheres, Ann. of Math., 75(1962), 603-622.
[2] M. F. Atiyah and F. Hirzebruch, Vector bundles and homogeneous spaces, Proc. Symp. Pure Math. vol. III, Amer. Math. Soc., Providence, R. I., 1961, 7-38.
[3] M. Kamata and H. Mimami, Bordism groups of dihedral groups, J. Math. Soc. Japan, 25(1973), 334-341.
[4] T. Kambe, The structure of K_{A}-ring of lens space and their application, J. Math. Soc. Japan, 18(1966), 135-146.
[5] N. Mahammed, A propos de la K-théorie des espaces lenticulaires, C. R. Acad. Sci. Paris, Ser. A-B, 271(1970), 639-642.
[6] G. B. Segal, Equivariant K-thery, Inst. Hautes Etudes Sci, Publ. Math., 34(1968), 129-155.

