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   1. Let D, be a dihedral group of order 2p which is generated by g 

of order p and t of order 2 such that tgt= g ' . We consider an action of 

D, over a product space S2' x S"'CC`'' ;< R"t+1 of spheres, given by

(1. 1)gkt'(z, x) = (p kc'(z), (-1)'x),

where c is the conjugation and p =exp2n,/ -1/p. Denote by D,(/, m)--(S21+1 

x S"')/D, the orbit space [3] . We are concerned with the complex K-group 

of D, (2k +1, 2n+1) where p is an odd prime. 

   Consider an action of Z2i a cyclic group of order 2, over the complex 

K-group K(X), given by the conjugation automorphism [e]=[c. Let K(X)z2 

be the invariant subgroup of K(X) under the involution. In this paper 
we obtain

   THEOREM 1. 1. Suppose that p is an odd prime. Then, there exists an 

isomorphism 

K(D,(2k+1, 2n+1)) 'v Z(+K(L2k+' (p)) z25K(Rp2n+l), 

where L2k+1(p) is a standard (4k +3)-dimensional lens space and RP2"+1 is a 

(2n +1)-dimensional real projective space.

   2. Denote by KG (X) the equivariant K-group of G-space X. It is 

well-known that if the action of G is free then K(X)K(X/G). There 

is a canonical homomorphism from the representation ring R(G) to KG(X) 

which maps a representation space M to a equivariant G-bundle X x M. If 

X is free G-space then there is a homomorphism

n: R(G) .KG(X)^-K(X/G).

Let a: be a homomorphism and f: be an equivariant map 

from H-space Y to G-space X, that is, f(h • y) = a (h) • f(y) . The equivariant 

map f induces the homomorphism



 f!  . KG (X) t K1I (I') [6] .

We take a Z2-action on S'" by

t' • x (-1)'x, t E Z2 a generator,

a Zn-action on S'"' by

g' • z = p'z, p = exp2ic —1/ p, g E Z, a generator

and a D, -action on S"t i 1 x S"` given by (1.1) in section 1. We have these 

orbit spaces an m-dimensional real projective space RPm, a (21+1)-dimensi-

onal lens space L' (p) and D,(1, m) . There exist equivariant maps

1: S'l-I 1 __~S21 '><S' ,i(z) = (z, (1, 0,...,0)), 

j:S"`,S211xS",j(x) = ((1, 0,...,0),x))
and

p: S'"t ' x S," ~Sm, p(z,x) = x

compatible with injections i : Zp ~Dp j: Z2 >D, and a projection p : D, 

Z2 respectively. It follows immediately that

(2.1)j•p • = 1.

   Let H be a normal subgroup of a finite group G and A be a unitary 

representation of H. The induced representation AG is defined as follows

(2. 2) AG (g) =

' A(t 1gt1) A(t1gt2) ••• A(tlgt„) 

A(t2gt1) A(t2gt2) ••• A(t2gt„) 

A(t„gt1) A(t„gt2) • • • A(t„gt„)

where G/H=((t1), (t2),•••,(t„)) and A(t,gt,)=0 if t,gt, $ H. 

   Denote by L a standard representation space with (exp2ir^ —1/P). For 

a standard Zp-space S21+' with S21+'/Zp=L'(p), we put 

e1 = S21+1 x , L.

N. Mahammed [5] obtained that 

             KZp(S2111)'K(L`(p)) -Z[$1] —1, (E1-1)1+1). 

Hence, the homomorphism n: R(ZZ) -KZp(S21+1)is surjective. Then, we 

define the homomorphism/



 K,p(S2' : 1) —+K„p(S21 '' x Sm)

by i*(S21+1 x M) =S21 "x S"' x M"P, where M is representation space of Zp and 

MDP is the induced representation space. 

   We consider a Z2-action over K(S21) given by

t(S21+'; M) = S''"xAl,

where M is a conjugate representation space of M and t is a generator of 

Z2. 

   Let K,2(S2'-'1)z2 be the invariant subgroup under the Z2-action. Then, 

we have

PROPOSITION 2. 1. For + E Kzh(S21') Z21 

i!i* 07) = 2v.

   PROOF. Suppose that = SL"' x M E K,p(S221'1) z2, that is, M-- M. Let 

A be the representation of M. Then, 402) = S2l' 1 x S"` x M"p, where MDP is 

the induced representation space of M. The representation A"p of M"p 

is given as follows :

     /A(g) 0 A"p(g) _ — , g E Zp. 
      0 A(g)

Since M = M and A = A,

   =q . e. d.

THEOREM 2.2.Thehomomorphism 

0:KZp(S2'+1)Z2KZZ(Sm).KDp(S21+1X5")

given by 0(2, v) = i*(i)+p!(v) is injective. 

   PROOF. Suppose that 0(v, v) = 0. Since i!p! = 0, we have i!i*(77) = 0. 

Hence, from Proposition 2.1, it follows that = 0. On the other hand, 

from (2. 1), we have v = f!p•' (v) = 0. q. e. d. 

   3. The manifold Dp(l, m) is homeomorphic to an orbit space (L'(p) 

x S'") /Z2, where a Z2-action on L' (p) x Sm is given by 

t'([z], x) = ([c'(z)], (-1)'x), 

where t is a generator of Z2. Denote by (Co D2) a cell of (L' (p) x Sm)/Z2 

represented by a standard cell C1 of .1.1(p) and a standard cell D, of S'



and by  (c', d') a dual cochain of (C,, Di) . The coboundary relations are 

given by

3(c21+1, d') = p(c2<<+>> , d') + ((-1)'+ (_1),) (c2z+1 d'+'), 

d(c2t, d') = ((-1)`+(-1)'")(c2,,

Therefore, we have the following.

   PROPOSITION 3. 1. The integral cohomology group H*(Dp(2k+1, 2n+1) ; Z) 

is a direct sum of the following groups: 

   free groups generated by (c°, d2„+1), (c4k+3, d°) and (c4k+3, (12"+1), 

   torsion groups generated by (c°, d2') and (c4k+3, d2') whose orders are 2 

   and torsion groups generated by (c4t, d°) and (c4', d2n+1) whose orders are p, 

where 1 <j< n and 1<i<k. 

   Denote by Y the (4k +2n+3)-skeleton of Dp (2k +1, 2n+1). Then, we 

have

tZ i = 4k+2n+4 , 
(3. 1) II' (Dp(2k+1, 2n+1)/Y; Z)= 

                              0 otherwise

and

(3.2) /it( Y; Z) ^ H'(Dp(2k+1, 2n+1) ; Z) i<4k+2n+3, 
0otherwise.

PROPOSITION 3.2. There exists a short exact sequence 

0—.Z -K(Dp(2k+1, 2n+1))—=K(Y) ~O.

   PROOF. Consider the exact sequence of K-groups with respect to a pair 

(Dp(2k+1, 2n+1), Y), 

'K-1(Dp(2k+1, 2n+1)) '~ -K-1(Y) -K(Dp(2k+1, 2n+1)/Y) 

—4(Dp(2k+1 , 2n+1))--4(Y) -K1(Dp(2k+1, 2n+1)/Y)-

Note that from (3.1) we have

IZ if i is even, 
K'(Dp(2k+1, 2n+1)/Y) ^ 1 

10 if i is odd.

From the discussion of the Atiyah-Hirzebruch spectral sequence for IC-'(X) 

with Ez•t(X)^-~HS(X; Kt(S°)) [2], X=Dp(2k+1, 2n+1) or Y, we have the 

following,



the free part of  K--i(X)

Hence, it follows that i!: K-1(D¢(2k+1, 2n+1))-->K 1(Y) is isomorphic. 

q. e. d.

   PROPOSITION 3.3. The order of the group K(Y) <pk2n 

   PROOF. The order of E;•t(Y) is not more than that of EZ•t(Y), s+t = 

even. From Proposition 3.1, the proposition follows. 

   PROOF OF THEOREM 1. 1. 

   Denote by c and r the complexification and the real restriction. Put 

         then

(1„,+-6-„,= crcm.

In [4] , it is proved that ram,(r6m) 2, • • •, (r6m) cr-1,'2 are linearly independent 

in KO(Lm (p)) and if m = s(p-1) +t, 0<t<p-1 then

p5+1 if 2i<t, 
the order of (ram)t = 

ps if 21>t.

We note that if m=2k+1, the complexification c is injective and 6m+6m 

belongs to K(Lm(p))zj. Therefore, we have that the order of K(LZk+1k (p))Z2 

>pk. Since KZ2(S2n+1) ,, g(Rp2n+1) ,,, Z2n [1] ,

the order of K(L2k+1(p)) z2OK(RPZn+1) > pk2 n

It follows fromTheorem 2. 2, Proposition 3.3 that the torsion part of 

(1),,(2k +1, 2n+1)) is isomorphic to K(Lzk+i(p))z20+ K(RP2n+1) q. e. d.
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