九州大学学術情報リポジトリ
Kyushu University Institutional Repository

On commutativity and associativity of multiplications in η－coefficient cohomology theories

Ishikawa，Nobuhiro
College of General Education，Kyushu University

https：／／doi．org／10．15017／1448950

出版情報：九州大学教養部数学雑誌．8（2），pp．29－42，1972－12．College of General Education， Kyushu University
バージョン：
権利関係：

On commutativity and associativity of multiplications in η-coefficient cohomology theories

By

Nobuhiro Ishikawa

(Received Dec. 25, 1972)

In the previous paper [2], we discussed the admissible multiplications in the cohomology theories with coefficient maps and obtain some uniqueness type theorems at the admissible multiplications. And, by constructing the multiplication, we have the existence theorem in the cohomology theory with coefficient the Hopf map $\eta\left(S^{3} \rightarrow S^{2}\right)$. This note contains some corrections to [2] (Lemma 3. 9 and (3.19)) and the theorems on the commutativity and associativity of the admissible multiplications in the η-coefficient cohomology theory.

1. Preliminaries.

Let $\{\tilde{h}, \sigma\}$ be a reduced cohomology (defined on the category of finite $C W$-complexes) and be equipped with an associative and commutative multilication μ.

The (reduced) η-coefficient cohomology $\left\{\tilde{h}(; \eta), \sigma_{\eta}\right\}$ is defined by

$$
\begin{aligned}
& \tilde{h^{\prime}}(X ; \eta)=\tilde{h}^{1+4}(X \wedge P) \text { for all } i \text { and } X, \\
& \sigma_{\eta}=\left(1_{X} \wedge T\right){ }^{*},
\end{aligned}
$$

where $P=S^{2} U_{\eta} e^{4}$ and $\boldsymbol{T}=\boldsymbol{T}\left(S^{1}, P\right): S^{1} \wedge P \rightarrow P \wedge S^{1}$. Denote by

$$
i: S^{2} \rightarrow P \text { and } \pi: P \rightarrow S^{4}
$$

the canonical inclusion and the map collapsing S^{2} to a point. Then the reduction $\rho_{n}=(1 \wedge \pi)^{*} \sigma^{4}$ and the Bockstein homomorphism $\delta_{n}=(1 \wedge \pi)^{*} \sigma^{2}(1 \wedge i)^{*}$ are defined.

A multiplication in $\tilde{h}(; \eta)$ is said to be admissible if it is compatible with the reduction, quasi associative and the Bockstein homomorphism works as a derivation in a certain sense (cf. [2], 1. 6.).

We have the following theorems in [2].
(1. 1) Theorem. If $3 \nu^{* *}=0$ in \tilde{h} then admissible multiplication μ_{η} exists in $\tilde{h}(; \eta)$.
(1.2) ThEOREM. If there exists an admissible multiplication in $\tilde{h}(; \eta)$ then admissible multiplications are in one-to-one correspondence with the elements of $\tilde{h}^{-4}\left(\boldsymbol{S}^{0} ; \eta\right)$.
(1. 3) Theorem. If there exists an admissible multiplication in $\tilde{h}(; \eta)$ then either there is no commutative one, or every one is commutative.

And see the formula (\#) in the proof of Theorem 2.5 in [2], we obtain
(1. 4) THEOREM. If there exists an associative and commutative admissible multiplication in $\tilde{h}(; \eta)$ then every one is associative.

Furthermore in this note we obtain the following theorems.
(1. 5) ThEOREM. The admissible multiplication μ_{n} which is given by (1. 1) is commutarive, i. e., if $3 \nu^{* *}=0$ in \tilde{h} then the admissible multiplications in $\tilde{h}(; \eta)$ are commutative.
(1. 6) TheOrem. The admissible multiplication μ_{η} which is given by (1. 1) is associative, i. e., if $3 \nu^{* *}=0$ in \tilde{h} then the admissible multiplications in $\tilde{h}(; \eta)$ are associative.

From Theorem 5. 3 in [2], we obtain
(1. 7) Corollary. Through the Wodd isomorphism $\tilde{K U}^{*}() \rightarrow \tilde{K O} *(; \eta)$, there exist the admissible multiplications in $K U$-theory and they are commutative and associative.

In this note we devoted the proofs of (1.5) and (1.6). Throughout this note we use the same notations as [1] and [2].
2. Correction and enlargement to the article [2].
2. 1. Put

$$
P=S^{2} \bigcup_{\eta} e^{1}, Q=S^{3} \bigcup_{3 \nu} e^{7}, \vec{N}_{\eta}=\left(S^{3} P \bigvee S^{6}\right) \bigcup_{3 i \nu \vee \eta} e^{8} \quad \text { and } \quad N_{n}=\left(S^{4} \vee S^{6}\right) \bigcup_{3 \vee \vee \eta}^{\bigcup} e^{8},
$$

where η, ν are 1 -stem and 3 -stem Hopf maps respectively and $i: \boldsymbol{S}^{2} \rightarrow P$ is natural inclusion (cf. [2], §3). We have following cofibration sequences,

$$
\begin{equation*}
S^{3} \xrightarrow{\eta} S^{2} \stackrel{i}{\longrightarrow} P \xrightarrow{\pi} S^{1} \tag{2.1}
\end{equation*}
$$

$$
\begin{equation*}
S^{7} \xrightarrow{3 \nu} S^{4} \stackrel{i^{\prime}}{\longrightarrow} S Q \xrightarrow{\pi^{\prime}} S^{8} \tag{2.2}
\end{equation*}
$$

$$
\begin{equation*}
S^{3} P \xrightarrow{3\left(S^{2} i\right) \nu\left(S^{3} \pi\right)} S^{2} P C \stackrel{\overline{i_{0}}}{\longrightarrow} \bar{N}_{\eta} \xrightarrow{\overline{\pi_{0}}} S^{4} P \tag{2.3}
\end{equation*}
$$

$$
\begin{equation*}
S^{3} P \xrightarrow{3 \nu\left(S^{3} \pi\right)} S^{4} \xrightarrow{i_{0}} N_{\eta} \xrightarrow{\pi_{0}} S^{4} P, \tag{2.4}
\end{equation*}
$$

$\boldsymbol{Q} \xrightarrow{\eta \pi^{\prime}} S^{6} \stackrel{i_{1}}{\longrightarrow} N_{n} \xrightarrow{\pi_{1}} S \boldsymbol{Q}$,
$S^{5} \xrightarrow{i_{0} \eta} N_{n} \xrightarrow{j} \bar{N}_{\eta} \xrightarrow{p} S^{6}$.

And we have relations
(2. 6) $\quad \pi_{0} i_{1}=S^{4} i,\left(S^{4} \pi\right) \pi_{0}=\pi^{\prime} \pi_{1}$ and $\pi_{1} i_{0}=i^{\prime}$.
2. 2. Making use of Lemma 3.1 in [2] and Puppe's sequence associated with the cofibration (2.1), we have following exact sequence

where $(\bar{\nu}),(\nu \pi)$ are represented by the generators of above groups. Denote by $\{\alpha, \beta, \gamma\}$ the Toda bracket [4], we consider an element $\tilde{\nu} \pi$ of $\left\{S^{3} P, P\right\}$ which is an extension of $\nu \pi$, then

$$
12 \tilde{\nu} \pi \in-i_{*}\{\eta, \nu, 12 \pi\} .
$$

Since $\{\eta, \nu, 12 \pi\}$ consists of a single element,

$$
\{\eta, \nu, 12 \pi\}=\left\{\eta, \eta^{3}, \pi\right\}=\left\{\eta^{3}, \eta, \pi\right\}=12 \bar{\nu} .
$$

Thus,

$$
12 \tilde{\nu} \pi=-12 i \bar{\nu} \text { and } 12(i \bar{\nu}+\tilde{\nu} \pi)=12\left(1_{P} \wedge \nu\right)=0 .
$$

Similarly, we have the following exact sequence

Since $1_{P} \wedge r=3 i \nu(S \pi)$ and

$$
\bar{\eta}=\bar{\nu}\left(1_{P} \wedge \eta\right)=3 \bar{\nu} i \nu(S \pi)=3 \nu^{2} \pi=\nu^{2} \pi,
$$

i_{*} is trivial in the above sequence. Then we have
(2. 7) Proposition. $\left\{S^{3} P, P\right\} \simeq Z_{12}+Z_{24}$: with generators $1_{P} \wedge \nu, i \bar{\nu}($ or $\tilde{\nu} \pi)$, $\left\{S^{4} P, P\right\}=0$.
2. 3. By (3. 25) in [2], $\boldsymbol{\omega}_{0}{ }^{\prime}\left(=\alpha_{0}{ }^{\prime}\right) \in\left\{\boldsymbol{S}^{6}, P \wedge P\right\}$ is of type (1, 1). Exchanging the generator, we obtain
(2. 8) Proposition. $\left\{S^{6}, P \wedge P\right\} \cong Z+Z$: with generators $\alpha_{0}{ }^{\prime}$ and $\tilde{\zeta} \wedge i$, where $\alpha_{0}{ }^{\prime}$ satisfies $\left(1_{P} \wedge \pi\right) \alpha_{0}{ }^{\prime}=\left(1_{P} \wedge \pi\right) T \alpha_{0}{ }^{\prime}=S^{4} i \quad(T=T(P, P))$.

The element of $\left\{S^{6}, P \wedge P\right\}$ is determined by its type. Since $i \wedge \tilde{\boldsymbol{\zeta}}$ is of type (0,2), we obtain

$$
i \wedge \tilde{\zeta}=2 \alpha_{0}{ }^{\prime}-\tilde{\zeta} \wedge i
$$

There are some mistakes on the generators of Lemma 3.6 in [2], then we revise as follows.
(2. 9) Proposition. The groups $\left\{S^{2-k}, P \backslash P\right\}$ and $\left\{P \wedge P, S^{4+k} P\right\}$ are isomorphic to the corresponding groups in the following table:

	$k \geqq 3$	$k=2$	$k=1$	$k=0$	$k=-1$	$k=-2$
	0	Z	0	$Z+Z+Z$	Z_{3}	$Z+Z+Z$
$\begin{gathered} \text { generators of } \\ \left\{S^{2-k} P, P \wedge P\right\} \end{gathered}$		$(i \wedge i) \pi$		$\begin{aligned} & 1_{P} \wedge i, \alpha_{0}{ }^{\prime}\left(\boldsymbol{S}^{2} \pi\right), \\ & \bar{\zeta} \wedge i(\text { or } \tilde{\zeta} \pi \wedge i) \end{aligned}$	$i \nu\left(S_{\pi}\right) \wedge i$	$\begin{gathered} \tilde{\zeta}\left(S^{2} \bar{\zeta}\right) \wedge i, 1_{P} \wedge \tilde{\zeta}, \\ \tilde{\alpha}_{1}\left(\text { or } \bar{\alpha}_{1}\right) \end{gathered}$
generators of $\left\{P \wedge P, S^{4+k} P\right\}$		$\left(S^{2} i\right) \pi \wedge \pi$		$\begin{aligned} & 1_{P} \wedge \pi,\left(S^{4} i\right) \beta_{0} \\ & i \bar{\zeta} \wedge \pi(\text { or } \widetilde{\zeta} \pi \wedge \pi) \end{aligned}$	$S^{3} i(\nu \pi \wedge \pi)$	$\begin{gathered} S_{2} \tilde{\zeta}(\bar{\zeta} \wedge \pi), 1_{P} \wedge \bar{\zeta}, \\ \tilde{\beta}_{1}\left(\text { or } \bar{\beta}_{1}\right) \end{gathered}$

where $\tilde{\alpha}_{1}, \tilde{\beta}_{1}, \bar{\alpha}_{1}$ and $\bar{\beta}_{1}$ are elements satisfying

$$
\left(1_{P} \wedge \pi\right) \tilde{\alpha}_{1}=\tilde{\zeta} \pi, \tilde{\beta}_{1}\left(1_{P} \wedge i\right)=\tilde{\zeta}_{\pi} \pi,\left(1_{P} \wedge \pi\right) \bar{\alpha}_{1}=i \bar{\zeta} \quad \text { and } \bar{\beta}_{1}\left(1_{P} \wedge i\right)=i \bar{\zeta} .
$$

(2. 9^{\prime}) Proposition. We can choose the element $\tilde{\alpha}_{1}$ as the generator of $\left\{S^{4}, P \wedge P\right\}$ such that

$$
\tilde{\alpha}_{1}\left(S^{4} i\right)=\tilde{\zeta} \wedge i \text { and }\left(1_{P} \wedge \pi\right) \tilde{\alpha}_{1}=\tilde{\zeta} \pi
$$

Proof. Making use of (2. 8') and the relation $\bar{i}+\tilde{\zeta}_{\pi}=2 \cdot 1_{p}$, we obtain

$$
\pi^{*}(\tilde{\zeta} \wedge \tilde{\zeta})=2 \cdot 1_{P} \wedge \tilde{\zeta}-(i \wedge \tilde{\zeta})\left(S^{4} \bar{\zeta}\right)=2\left(1_{P} \wedge \bar{\zeta}-\alpha_{0}{ }^{\prime}\left(S^{4} \bar{\zeta}\right)\right)+\tilde{\zeta}\left(S^{2} \bar{\zeta}\right) \wedge i .
$$

On the other hand, since

$$
\left(1_{P} \wedge \pi\right)_{*}\left(1_{P} \wedge \tilde{\zeta}-\alpha_{0}{ }^{\prime}\left(\boldsymbol{S}^{4} \bar{\zeta}\right)-\tilde{\alpha}_{1}\right)=2 \cdot 1_{S^{4} P}-\boldsymbol{S}^{4}(i \bar{\zeta}+\tilde{\zeta} \pi)=0,
$$

we have

$$
1_{P} \wedge \tilde{\boldsymbol{\zeta}}-\tilde{\alpha}_{0}^{\prime}\left(\boldsymbol{S}^{4} \bar{\zeta}\right)=l^{\prime}\left(1_{P} \wedge i\right)\left(\boldsymbol{S}^{2} \tilde{\boldsymbol{\zeta}}\right)\left(\boldsymbol{S}^{4} \bar{\zeta}\right)+\tilde{\alpha}_{1}
$$

for some integer l^{\prime}. Then,

$$
\pi^{*}(\tilde{\zeta} \wedge \tilde{\zeta})=\left(2 l^{\prime}+1\right) \tilde{\zeta}\left(S^{2} \bar{\zeta}\right) \wedge i+2 \tilde{\alpha}_{1}
$$

Put $i^{*} \tilde{\alpha}_{1}=l(\tilde{\zeta} \backslash i)+m \alpha_{0}{ }^{\prime}$ (for some integers l, m),

$$
\begin{aligned}
& 0=i^{*} \pi^{*}(\tilde{\zeta} \wedge \tilde{\zeta})=\left(2 l^{\prime}+1\right) i^{*}(\tilde{\zeta} \backslash i)\left(S^{\prime} \bar{\zeta}\right)+2 i^{*} \tilde{\alpha_{1}} \\
&=\left(2\left(2 l^{\prime}+1\right)+2 l\right) \tilde{\zeta} \backslash i+m \alpha_{0}^{\prime} .
\end{aligned}
$$

Thus $l=-\left(2 l^{\prime}+1\right)$ and $m=0$.
Therefore, we put $\tilde{\alpha}_{1}^{\prime}=\left(l^{\prime}+1\right) \tilde{\zeta}\left(S^{2} \bar{\zeta}\right) \wedge i+\tilde{\alpha}_{1}$ and take $\tilde{\alpha}_{1}=\tilde{\alpha}_{1}^{\prime}$ as a generator of $\left\{S^{4}, P \backslash P\right\}$ then $\tilde{\alpha}_{1}$ satisfies (2. 9^{\prime}).
2. 4. The results (3.19) in [2] are incorrect, they should be replaced by following ;
(2.10) Proposition.

groups	$i \geqq 7$	$i=6$	$i=5$	$i=4$	$i=3$	$i=2$
$\left\{N_{\eta}, S^{\prime} P\right\} \cong$	0	Z	0	$\boldsymbol{Z}+\boldsymbol{Z}$	Z_{3}	$\boldsymbol{Z}+\boldsymbol{Z}$
generators		$i \pi \pi_{0}$ $=i \pi^{\prime} \pi_{1}$		$\pi_{0}, \tilde{\zeta} \pi \pi_{0}=\tilde{\zeta} \pi^{\prime} \pi_{1}$ (or $\left.\tilde{\zeta} \pi_{0}\right)$	$i \nu \pi \pi_{0}$ $=i \nu \pi^{\prime} \pi_{1}$	$\tilde{\zeta}\left(S^{2} \tilde{\zeta}\right) \pi_{0}, \varepsilon_{0}$

where ε_{0} is defind by $\varepsilon_{0} i_{0}=2 \cdot i$.
2. 5. Making use of Lemma 3.5 in [2] and (2.9), we have following exact sequence associated with (2.5),

Then we obtain that $\left(N_{\eta}, P \wedge P\right\}$ is a free group with generators $\left(\tilde{\zeta}\left(\boldsymbol{S}^{2} \bar{\zeta}\right) \wedge i\right)$ $\pi_{0},\left(1_{P} \wedge \tilde{\zeta}\right) \pi_{0}, \tilde{\alpha}_{1} \pi_{0}$ and w, where w is an extension of $i \wedge i$ (cf. [2], (3.22)). By (2.10) and the relation $1_{P} \wedge \eta=3 i \nu(S \pi)$, the map $\left(1_{P} \wedge \eta\right)_{*}:\left\{N_{n}, S^{4} P\right\} \rightarrow\left\{N_{\eta}\right.$, $\left.S^{3} P\right\}$ is trivial. And since $\left(1_{P} \wedge \pi\right)_{*}\left(\tilde{\zeta}\left(S^{2} \bar{\zeta}\right) \wedge i\right) \pi_{0}=0,\left(1_{P} \wedge \pi\right)_{*}\left(1_{P} \wedge \tilde{\zeta}\right) \pi_{0}=2 \pi_{0}$ and $\left(1_{P} \wedge \pi\right)_{*} \tilde{\alpha}_{1} \pi_{0}=\tilde{\zeta} \pi \pi_{0}$, we can put $\left(1_{P} \wedge \pi\right)_{*} w=(2 a+1) \pi_{0}+b \tilde{\zeta}_{\pi} \pi_{0}$ for some integers a and b. Here we put

$$
w^{\prime}=w-a\left(1_{P} \wedge \tilde{\zeta}\right) \pi_{0}-b \tilde{\alpha}_{1} \pi_{0}
$$

then $w^{\prime} i_{0}=w i_{0}=i \wedge i, \quad\left(1_{P} \wedge \pi\right) w^{\prime}=\pi_{0}$. Thus we have the following
(2. 11) Proposition.
$\left\{N_{\eta}, P \wedge P\right\} \cong Z+Z+Z+Z:$ with generators $\left(\tilde{\zeta}\left(S^{\tau} \bar{\zeta}\right) \wedge i\right) \pi_{0},\left(1_{P} \wedge \tilde{\zeta}\right) \pi_{0}, \tilde{\alpha}_{1} \pi_{0}$ and w, where w is an element satisfying $w i=i \wedge i$ and $\left(1_{P} \wedge \pi\right) w=\pi_{0}$.
2. 6. We consider the ordinary homology maps induced by elements of $\left\{N_{n}, P \wedge P\right\}$. Let e_{k}^{\prime} be a generator of group $\tilde{H}_{k}\left(N_{n}\right)(k=4,6,8)$ and e_{i} $\wedge e_{j}$ be generators of group $\tilde{H}_{k}(P \wedge P)(i, j=2$, or $4, i+j=k)$ given by 3.5 in [2]. For the generators, induced homology maps can be expressed as

$$
\begin{aligned}
& \left(\tilde{\zeta}\left(S^{2} \bar{\zeta}\right) \wedge i\right)_{*} \pi_{0 *}:\left(e_{4}{ }^{\prime}, e_{6}{ }^{\prime}, e_{8}{ }^{\prime}\right) \longmapsto\left(0,4 e_{4} \wedge e_{2}, 0\right), \\
& \left(1_{P} \wedge \tilde{\zeta}\right)_{*} \pi_{0 *}:\left(e_{4}{ }^{\prime}, e_{6}{ }^{\prime}, e_{8}{ }^{\prime}\right) \longmapsto\left(0,2 e_{2} \wedge e_{4}, 2 e_{4} \wedge e_{4}\right), \\
& \tilde{\alpha}_{1 *} \pi_{0 *}:\left(e_{4}{ }^{\prime}, e_{6}{ }^{\prime}, e_{8}{ }^{\prime}\right) \longrightarrow\left(0,2 e_{4} \wedge e_{2}, 2 e_{4} \wedge e_{4}\right), \\
& w_{*}:\left(e_{4}{ }^{\prime}, e_{6}{ }^{\prime}, e_{8}{ }^{\prime}\right) \longmapsto\left(e_{2} \wedge e_{2}, k e_{4} \wedge e_{2}+e_{2} \wedge e_{4}, e_{4} \wedge e_{4}\right),
\end{aligned}
$$

for some integer k.
Thus the element of stable homotopy group $\left\{N_{n}, P \wedge P\right\}$ is determind by its ordinary homology map type. Particularly the homology map induced by α (given by Proposition 3. 8 in [2]) is
(2. 12) $\quad \alpha_{*}:\left(e_{4}{ }^{\prime}, e_{6}{ }^{\prime}, e_{8}{ }^{\prime}\right) \longrightarrow\left(m e_{2} \wedge e_{2}, e_{4} \wedge e_{2}+e_{2} \wedge e_{4}, e_{4} \wedge e_{4}\right)$,
for some integer m. And $T \alpha$ has of same homology map type (where $\boldsymbol{T}=\boldsymbol{T}(\boldsymbol{P}, P)$). Then we obtain
(2. 13) Lemma. $T \alpha=\alpha$ in $\left\{N_{n}, P \wedge P\right\}$, where α is given by Proposition 3. 8 in [2] and $T=T(P, P)$.

3. Proof of Theorem (1.5).

Let μ be an associative and commutative multiplcation in \tilde{h}, and assume that $\left(1_{X} \wedge 3 \nu\right)^{*}=0$ in \tilde{h} for any finite $C W$-complex X. And let μ_{η} be the admissible multiplication in $\tilde{h}(; r)$ constructed in [2]. That is, for $x \in$ $\tilde{h}^{\tilde{i}}(X ; \eta)=\tilde{h}^{i+4}(X \wedge P)$ and $y \in \tilde{h}^{\prime}(Y ; \eta)=\tilde{h}^{j+4}(Y \wedge P)$, we have

$$
\mu_{\eta}(x \otimes y)=\sigma^{-4} \gamma_{W}\left(1_{W} \wedge \alpha\right)^{*}\left(1_{X} \wedge T^{\prime} \wedge 1_{P}\right)^{*} \mu(x \otimes y)
$$

where $W=X \wedge Y$ and $T^{\prime}=T(Y, P)$.
Put

$$
\mu_{n}^{\prime}(x \otimes y)=(-1)^{i j} T^{\prime \prime} * \mu_{n}(y \otimes x)
$$

for $T^{\prime \prime}=T(X, Y) . \quad \mu_{n}^{\prime}$ is also an admissible multiplication and by a rautine calculation making use of the naturality of γ etc., we see that

$$
\mu_{\eta}{ }^{\prime}(x \otimes y)=\sigma^{-4} \gamma_{W}\left(1_{W} \wedge(T \alpha)\right)^{*}\left(1_{X} \wedge T^{\prime} \wedge 1_{P}\right)^{*} \mu(x \otimes y)
$$

where $\boldsymbol{T}=\boldsymbol{T}(\boldsymbol{P}, \boldsymbol{P})$. From (2.13), $\boldsymbol{T} \alpha=\alpha$ in $\left\{\boldsymbol{N}_{\eta}, \boldsymbol{P} \wedge \boldsymbol{P}\right\}$ thus $\mu_{\eta}^{\prime}=\mu_{\eta}$, it followes Theorem (1. 5).

4. Stable homotopy of some elementary complexes

4. 5. Making use of Lemma 3.1 in [2], (2.6) and Puppe's exact sequences associated with (2.2) and (2. 4^{\prime}), we obtain following tables (4.1) and (4.2).
(4. 1) Proposition.

groups								
$\left\{S^{i} P, S Q\right\} \cong$	$i \leqq-1$	$i=0$	$i=1$	$i=2$	$i=3$	$i=4$	$i=5$	$i=6$
	0	Z	0	Z	Z_{3}	Z	Z_{6}	Z
generators		$i^{\prime} \pi$		$i^{\prime}\left(S^{2} \bar{\zeta}\right)$	$i^{\prime} \nu\left(S^{3} \pi\right)$	$\tilde{\pi}$	$i^{\prime} \bar{\nu}$	$\tilde{\zeta}$

where $\tilde{\pi}, \tilde{\zeta}$ are elements satisfying $\pi^{\prime} \tilde{\pi}=4\left(S^{4} \pi\right)$ and $\pi^{\prime} \tilde{\tilde{\zeta}}=4\left(S^{6} \bar{\zeta}\right)$.
(4. 2) Proposition.

groups	$i \leqq-1$	$i=0$	$i=1$	$i=2$	$i=3$	$i=4$
$\left\{S^{i} P, N_{\eta}\right\} \cong$	0	Z	0	$Z+Z$	Z_{3}	$Z+Z$
generators		$i_{0} \pi$		$i_{0}\left(S^{2} \bar{\zeta}\right), i_{1}\left(S^{2} \pi\right)$	$i_{0} \nu\left(S^{3} \pi\right)$	$i_{1}\left(S^{4} \bar{\zeta}\right), \widetilde{\xi}_{0}$

where $\tilde{\xi}_{0}$ is defined by $\pi_{1} \tilde{\xi}_{0}=\tilde{\pi}$.
4. 2. Consider the Puppe's exact sequence associated with a cofiberation
(4. 3)
$S^{4} P \longrightarrow P \wedge S Q \longrightarrow S^{8} P$.

From results of Lemmas 3.1, 3.2 in [2], (2.7), (4.1) and (4.2), we have following tables (4.4)~(4.7).
(4. 4) Proposition.

groups	$i \geqq 13$	$i=12$	$i=11$	$i=10$	$i=9$	$i=8$	$i=7$	$i=6$
$\left\{P \wedge \boldsymbol{S}, \boldsymbol{S}^{i}\right\} \cong$	0	Z	0	Z	Z_{3}	Z	Z_{6}	Z
generators		$\pi \wedge \pi^{\prime}$		$\bar{\zeta} \wedge \pi^{\prime}$	$\nu \pi \wedge \pi^{\prime}$	$\bar{\pi}$	$\bar{\nu} \wedge \pi^{\prime}$	$\bar{\zeta}$

wher $\bar{\pi}, \bar{\zeta}$ are defined by $\bar{\pi}\left(1_{P} \wedge i^{\prime}\right)=4\left(S^{4} \pi\right)$ and $\bar{\zeta}\left(1_{P} \wedge i^{\prime}\right)=4\left(S^{4} \bar{\zeta}\right)$.
(4. 5) Proposition.

groups$\left\{P \wedge S Q, S^{t} Q\right\} \simeq$	$i \geqq 10$	$i=9$	$i=8$	$i=7$	$i=6$
	0	Z	0	z	Z_{3}
generators		$i^{\prime} \pi \wedge \pi^{\prime}$		$i^{\prime}\left(\bar{\zeta} \wedge \pi^{\prime}\right)$	$i^{\prime} \nu\left(\pi \wedge \pi^{\prime}\right)$
$\begin{gathered} \text { groups } \\ \left\{P \wedge S Q, S^{\prime} Q\right\} \cong \end{gathered}$	$i=5$		$i=4$		$i=3$
	$Z+Z$		Z_{6}		$Z+Z$
generators	$\left(1_{s a} \wedge \pi\right)$	$\left.1_{P} \wedge \pi^{\prime}\right)$	$i^{\prime}\left(\bar{\nu} \wedge \pi^{\prime}\right)$	(1)	T, $\tilde{\zeta}\left(1_{p} \wedge \pi^{\prime}\right)$

where $T=T(P, S Q)$.
(4. 6) Proposition.

groups$\left\{P \wedge S Q, S^{i} P\right\} \cong$	$i \geqq 11$	$i=10$	$i=9$	$i=8$	$i=7$
	0	Z	0	$Z+Z$	Z_{3}
generators		$i\left(\pi \wedge \pi^{\prime}\right)$		$\bar{i} \bar{\wedge} \wedge \pi^{\prime}, 1$	$i \nu(S \pi)\left(1_{P} \wedge \pi^{\prime}\right)$
groups $\left\{P \wedge S Q, S^{i} P\right\} \cong$	$\boldsymbol{i}=6$		$i=5$		$i=4$
	$\boldsymbol{Z}+\boldsymbol{Z}$		$Z_{3}+Z_{6}$		$Z+Z$
generators	$\overline{i \pi}, \tilde{\zeta}\left(S^{2} \bar{\zeta}\right)\left(1_{P} \wedge \pi^{\prime}\right)$		$1_{P} \wedge \nu \pi$ (or	$\begin{aligned} & \overline{i v}\left(1_{P} \wedge \pi^{\prime}\right) \\ & \left.\left(1_{P} \wedge \pi^{\prime}\right)\right) \end{aligned}$	$\bar{\xi}_{1}, i \overline{\bar{\zeta}}\left(\right.$ or $\overline{\widetilde{\zeta}}^{\text {a }}$)

where $\overline{i \pi}, \bar{\xi}_{1}, \overline{\tilde{\xi}_{\pi}}$ are defined by $\overline{i \pi}\left(1_{P} \wedge i^{\prime}\right)=2 i \pi, \bar{\xi}_{1}\left(1_{P} \wedge i^{\prime}\right)=4 \cdot 1_{\text {s4P }}$ and $\overline{\tilde{\zeta} \pi}\left(1 \wedge i^{\prime}\right)=$ $4 \tilde{\zeta}^{\pi}$.
(4. 7) Proposition.

groups	$i \geqq 9$	$i=8$	$i=7$	$i=6$	$i=5$	$i=4$
$\left\{P \wedge S Q, S^{i} N_{n}\right\} \cong$	0	Z	0	$Z+Z$	Z_{3}	$Z+Z+Z$
generators		$i_{0} \pi \wedge \pi^{\prime}$		$\begin{aligned} & i_{0}\left(\bar{\zeta} \wedge \pi^{\prime}\right), \\ & i_{1}\left(\pi \wedge \pi^{\prime}\right) \end{aligned}$	$i_{0} \nu\left(\pi \wedge \pi^{\prime}\right)$	$\begin{aligned} & i_{1}\left(\bar{\zeta} \wedge \pi^{\prime}\right) \\ & \tilde{\xi}_{0}\left(1_{P} \wedge \pi^{\prime}\right), p_{0} \end{aligned}$

where p_{0} is an element satisfying

$$
\begin{equation*}
p_{0}\left(1_{P} \wedge i^{\prime}\right)=S^{4}\left(i_{0} \pi\right), \quad\left(S^{4} \pi_{1}\right) p_{0}=\left(1_{s Q} \wedge \pi\right) T \text { and }\left(S^{4} \pi_{0}\right) p_{0}=1_{P} \wedge \pi^{\prime} . \tag{4.8}
\end{equation*}
$$

Proof of (4.8). We take $p_{0}{ }^{\prime \prime}$ as a generator of $\left\{P \wedge S Q, S^{\prime} N_{n}\right\}$ such that $p_{0}{ }^{\prime \prime}\left(1_{P} \backslash i^{\prime}\right)=S^{4}\left(i_{0} \pi\right)$. From (4.5), we can put

$$
\left(S^{4} \pi_{1}\right) p_{0}^{\prime \prime}=a\left(1_{s Q} \wedge \pi\right) T+b \tilde{\pi}\left(1_{P} \wedge \pi^{\prime}\right)
$$

for some integers a and b. Since $T\left(\mathrm{~S}^{4}, S^{4}\right)=1$ and $\pi_{1} i_{0}=i^{\prime}$,

$$
\left(S^{4} \pi_{1}\right) p_{0}^{\prime \prime}\left(1_{P} \wedge i^{\prime}\right)=a\left(1_{s Q} \wedge \pi\right) T\left(1_{P} \wedge i^{\prime}\right)=a S^{4}\left(i^{\prime} \pi\right)
$$

and $a=1$. Put

$$
p_{0}^{\prime}=p_{0}^{\prime \prime}-b \tilde{\xi}_{0}\left(1_{P} \wedge \pi^{\prime}\right)
$$

then we have the following relations

$$
\begin{equation*}
\left(S^{4} \pi_{1}\right) p_{0}{ }^{\prime}=\left(1_{s Q} \wedge \pi\right) T, p_{0}{ }^{\prime}\left(1_{P} \wedge i^{\prime}\right)=\boldsymbol{p}_{0}^{\prime \prime}\left(1_{P} \wedge i^{\prime}\right)=S^{4}\left(i_{0} \pi\right) . \tag{*}
\end{equation*}
$$

We discuss the ordinary homology maps induced by the elements of $\left\{P \wedge S Q, S^{8} P\right\}$ and $\left\{P \wedge S Q, S^{4} N_{\eta}\right\}$. Since $p_{0}{ }^{\prime}$ satisfies the relations (*), the map $p_{0}{ }^{\prime} *$ is repraced as

$$
p_{0^{\prime} *}{ }_{*}:\left(e_{2} \wedge e_{4}, e_{4} \wedge e_{1}, e_{2} \wedge e_{8}, e_{4} \wedge e_{8}\right) \mapsto\left(0, \sigma^{4} e_{4}^{\prime}, l^{\prime} \sigma^{4} e_{6}^{\prime}, \sigma^{4} e_{8}^{\prime}\right),
$$

for some integer l^{\prime}, where $e_{i} \wedge e_{j}$ is a generator of $\tilde{H}_{t^{+}}(P \wedge S Q)$ and $e_{k}{ }^{\prime}$ is a generator of $\tilde{H}_{k}\left(N_{\eta}\right)$. From (4.6), the element of $\left\{P \wedge S Q, S^{B} P\right\}$ is determined by its homology map type. Then considering the homology maps, we obtain

$$
\left(S^{4} \pi_{0}\right) p_{0}{ }^{\prime}=1_{P} \wedge \pi^{\prime}+l\left(i \bar{\zeta} \wedge \pi^{\prime}\right)
$$

for some integer l and $l^{\prime}=2 l+1$.
Hence we take

$$
p_{0}=p_{v^{\prime}}-l \cdot S^{4} i_{1}\left(\bar{\zeta} \wedge \pi^{\prime}\right)
$$

then it satisfies the relations (4.8) and we can choose it as a generator of $\left\{P \wedge S Q, S^{4} N_{n}\right\}$.
Q. E. D.
4. 3. Since $i^{*}:\left\{S^{5} P, S^{4}\right\} \rightarrow\left\{S^{7}, S^{4}\right\}$ is isomorphic and $\nu \bar{\zeta} i=2 \nu$, we have $\nu \bar{\xi}$ $=2 \nu$. Then

$$
\begin{aligned}
\left(1_{P} \wedge 3 \nu\right)\left(i \bar{\zeta} \wedge \pi^{\prime}\right) & =3 \cdot S^{5}\left(i \nu\left(S^{3} \bar{\zeta}\right)\right)\left(1_{P} \wedge \pi^{\prime}\right) \\
& =6 \cdot S^{5}(i \bar{\nu})\left(1^{P} \wedge \pi^{\prime}\right) .
\end{aligned}
$$

We consider the following exact sequence associated with the cofibration (4.3).

$$
\begin{aligned}
& 0 \rightarrow\left\{P \wedge S Q, S^{4} P\right\} \xrightarrow{\left(1 \wedge i^{\prime}\right)} *\left\{(P \wedge S Q, P \wedge S Q\} \xrightarrow{\left(1 \wedge \pi^{\prime}\right)}{ }^{*}\left\{P \wedge S Q, S^{3} P\right\}\right. \\
& \xrightarrow{(1 \wedge 3 \nu)^{*}}\left\{P \wedge S Q, S^{5} P\right\} \rightarrow \cdots .
\end{aligned}
$$

Making use of (4.6) and above relation, $\left(1_{P} \wedge 3 \nu\right)_{*}$ is trivial in this sequence and we obtain the following
(4. 9) Proposition. $\{P \wedge S Q, P \wedge S Q\} \cong Z+Z+Z+Z$; with generators $(i \wedge$ $\left.i^{\prime}\right) \bar{\zeta},\left(1_{P} \wedge i^{\prime}\right) \bar{\xi}_{1}, 1_{P \wedge S Q}$ and $i \bar{\zeta} \wedge 1_{S Q}$.
4. 4. The following lemma will be used in the next section.
(4. 10) Lemma. For any $\alpha \in\left\{N_{\eta}, P \wedge P\right\}$ satisfying $\left(1_{P} \wedge \pi\right) \alpha=\pi_{0}$ there exists an element $\kappa=\kappa_{\alpha} \in\left\{P \wedge S Q, P \wedge N_{\eta}\right\}$ such that

$$
\left(1_{P} \wedge \pi_{0}\right) \kappa=\left(S^{4} \alpha\right) p_{0} \in\left\{P \wedge S Q, P \wedge S^{4} P\right\}
$$

and

$$
\left(1_{P} \wedge \pi_{1}\right) \kappa=1_{P \wedge s Q} \in\{P \wedge S Q, P \wedge S Q\}
$$

Proof. Since $\left(1_{P} \wedge \boldsymbol{S}^{4} \pi\right)\left(S^{4} \alpha\right) p_{0}=1_{P} \wedge \pi^{\prime}$ (by (4.8)),

$$
\left(1_{P} \wedge 3 \nu \pi\right)_{*}\left(S^{4} \alpha\right) p_{0}=\left(1_{P} \wedge 3 \nu\right)\left(1_{P} \wedge \pi^{\prime}\right)=3 \cdot 1_{P} \wedge \nu \pi^{\prime}=0
$$

in $\left\{P \wedge S Q, S^{5} P\right\}$. Thus there exists an element $\kappa^{\prime} \in\left\{P \wedge S Q, P \wedge N_{n}\right\}$ such that

$$
\left(1_{P} \wedge \pi_{0}\right) \kappa^{\prime}=\left(S^{4} \alpha\right) p_{0}
$$

And we have

$$
\left(1_{P} \wedge \pi^{\prime}\right)\left(1_{P} \wedge \pi_{1}\right) \kappa^{\prime}=\left(1_{P} \wedge S^{4} \pi\right)\left(1_{P} \wedge \pi_{0}\right) \kappa^{\prime}=\left(1_{P} \wedge \pi^{\prime}\right) 1_{P \wedge S Q}
$$

Therefore,

$$
1_{P \wedge S Q}-\left(1_{P} \wedge \pi_{1}\right) \kappa^{\prime} \in \operatorname{Image}\left\{\left(1_{P} \wedge i^{\prime}\right)_{*}:\left\{P \wedge S Q, S^{4} P\right\} \rightarrow\{P \wedge S Q, P \wedge S Q\}\right\}
$$

Thus for some element $x \in\left\{P \wedge S Q, S^{4} P\right\}$,

$$
1_{P \wedge S Q}=\left(1_{P} \wedge \pi_{1}\right) \kappa^{\prime}+\left(1_{P} \wedge i^{\prime}\right) x
$$

Put $\boldsymbol{\kappa}=\boldsymbol{\kappa}^{\prime}+\left(1_{P} \backslash \boldsymbol{i}_{0}\right) \boldsymbol{x}$ then

$$
\begin{aligned}
& \left(1_{P} \wedge \pi_{0}\right) \kappa=\left(1_{P} \wedge \pi_{0}\right) \kappa^{\prime}=\left(S^{4} \alpha\right) p_{0}, \\
& \left(1_{P} \wedge \pi_{1}\right) \kappa=\left(1_{P} \wedge \pi_{1}\right) \kappa^{\prime}+\left(1_{P} \wedge i^{\prime}\right) x=1_{P \wedge s Q}
\end{aligned}
$$

because $\pi_{1} i_{0}=i^{\prime}$.
Q. E. D.
4. 5. We shall discuss some structure of $P \wedge P \wedge P$.
(4. 11) Proposition. There exists a (stable) homotopy equivarence

$$
\varepsilon \in\left\{S^{6} P \vee(P \wedge S Q), P \wedge N_{\eta}\right\}
$$

such that $\left(1_{P} \wedge \pi_{1}\right) \varepsilon$ is the projection of $S^{6} P \bigvee(P \wedge S Q)$ onto $P \wedge S Q$.
Proof. Consider the cofibration (2.4') we have

$$
P \wedge N_{\eta}=P \wedge\left(S^{6} \bigcup_{\eta \pi^{\prime}} C Q\right)=S^{6} P \bigcup_{1 P \wedge \eta \pi^{\prime}} C(P \wedge Q)
$$

By (4. 6), $1_{P} \wedge \eta \pi^{\prime}=\left(1_{P} \wedge \eta\right)\left(1_{P} \wedge \pi^{\prime}\right)=3 i \nu(S \pi)\left(1_{P} \wedge \pi^{\prime}\right)=0$ in $\left\{P \wedge S Q, S^{7} P\right\}$. Thus, by
general argument we can conclude the proposition.
From the complex structure $N_{\eta}, 3 i_{0} \nu$ is homotopic to $i_{1} \eta$ then

$$
\begin{aligned}
1_{P} \wedge i_{0} \eta & =\left(1_{P} \wedge i_{0}\right) S^{4}(3 i \nu(S \pi))=\left(i \wedge 3 i_{0} \nu\right) S^{5} \pi \\
& =\left(i \wedge i_{1} \eta\right) S^{5} \pi=\left(1_{P} \wedge i_{1}\right) S^{4}(i \eta(S \pi))=0
\end{aligned}
$$

in $\left\{S^{5} P, P \backslash N_{\eta}\right\}$. Thus

$$
P \wedge \bar{N}_{n}=P \wedge\left(N_{i_{i 0}} \cup C\left(S^{5}\right)\right)=\left(P \wedge N_{\eta}\right) \bigcup_{1_{P} \wedge i_{0}} C\left(S^{5} P\right)
$$

is homotopic to $\left(P \wedge N_{n}\right) \bigvee S^{6} P$, i. e., there exists a homotopy equivarence ε_{1} $\epsilon\left\{P \wedge \bar{N}_{n},\left(P \wedge N_{n}\right) \backslash \boldsymbol{S}^{6} P\right\}$.

Using the homotopy equivarence $\bar{\alpha} \in\left\{\bar{N}_{n}, \boldsymbol{P} \wedge \boldsymbol{P}\right\}$ (Lemma 3.3 in [2]) we put

$$
\tilde{\alpha}=\left(1_{P} \wedge \bar{\alpha}\right) \varepsilon_{1}^{-1}\left(\varepsilon \backslash 1_{s^{6}}{ }^{6}\right) \in\left\{S^{6} P \backslash(P \wedge S Q) \bigvee S^{6} P, P \wedge P \wedge P\right\}
$$

then $\tilde{\alpha}$ is a homotopy equivarence. Thus we have
(4. 12) Proposition. The space $S^{6} P \vee(P \wedge S Q) \bigvee S^{6} P$ is homotopic to $P \wedge P$ $\wedge P$ (in stable).

By (4.6) and (4.9), the elements of $\left(P \wedge S Q, S^{6} P\right\}$ and $\{P \wedge S Q, P \wedge S Q\}$ are determind by these induced homology map types. Therefore, we obtain
(4. 13) Proposition. $\{P \wedge S Q, P \backslash P \wedge P\} \cong Z+Z+Z+Z+Z+Z+Z+Z$ and the element is determind by induced homology map type.

Now we consider the homology maps induced by $\left(1_{P} \wedge \alpha\right) \kappa$ and $T^{\prime}\left(1_{P} \wedge\right.$ $\alpha) \kappa$, where $T^{\prime}=\boldsymbol{T}(P, P \wedge P)$. Denote by $e_{i} \wedge e_{j} \wedge e_{k}$ generators of $\tilde{H}_{l}(P \wedge P \wedge P)$ where $l=i+j+k$ and $i, j, k=2$, or 4. From (2.12) and (4.10), we obtain

$$
\begin{aligned}
\left.1_{P} \wedge \alpha\right)_{*} \kappa_{*}: & \left(e_{2} \wedge e_{4}, e_{4} \wedge e_{4}, e_{2} \wedge e_{8}, e_{4} \wedge e_{8}\right) \rightarrow\left(m e_{2} \wedge e_{2} \wedge e_{2}, m\left(e_{2} \wedge e_{2} \wedge e_{4}+e_{2} \wedge\right.\right. \\
& \left.\left.e_{4} \wedge e_{2}+e_{4} \wedge e_{2} \wedge e_{2}\right), e_{2} \wedge e_{4} \wedge e_{4}+e_{4} \wedge e_{2} \wedge e_{4}+e_{4} \wedge e_{4} \wedge e_{2}, e_{4} \wedge e_{4} \wedge e_{4}\right),
\end{aligned}
$$

and

$$
T^{\prime}{ }_{*}\left(1_{P} \wedge \alpha\right)_{*} \kappa_{*}=\left(1_{P} \wedge \alpha\right)_{*} \kappa_{*}
$$

Thus we have the following
(4. 14) Lemma. $\left(1_{P} \wedge \alpha\right) \kappa=T^{\prime}\left(1_{P} \wedge \alpha\right) \kappa \quad$ in $\{P \wedge S Q, P \wedge P \wedge P\}$, where $\quad T^{\prime}=T(P, P \wedge P)$.
5. Proof of Theorem (1. 6).
5. 1. Let μ be an associative commutative multiplication in \tilde{h}, and as-
sume that $3 \nu^{* *}=0$ in \tilde{h}. Under this assumption the exact sequence of \tilde{h} associated to the cofibration (2.2) brakes into the following short exact sequences
for any W and k. In particular, for $W=S^{0}$ and $k=4$, we can choose an element $\gamma_{1} \in \tilde{h}^{4}(S Q)$ such that

$$
\begin{equation*}
i^{\prime *} \gamma_{1}=\sigma^{4} 1 . \tag{5.2}
\end{equation*}
$$

Put $\gamma_{0}=\pi_{1}{ }^{*} \gamma_{1}$. Then, by (2.6), γ_{0} satisfies the relations

$$
i_{0}{ }^{*} \gamma_{0}=\sigma^{4} 1 \text { and } i_{1}{ }^{*} \gamma_{0}=0 .
$$

Hence any multiplication μ_{η} constructed in [2] by making use of this γ_{0} is admissible. We discuss the asscoiativity of such a multplication μ_{η}.

Since, for $x \in \tilde{h}^{k}(W \wedge S Q)$,

$$
\begin{aligned}
\left(1_{W} \wedge i^{\prime}\right) * \mu\left(\sigma^{-4}\left(1_{W} \backslash i^{\prime}\right) * x \otimes r_{1}\right) & =\mu\left(\sigma^{-4}\left(1_{W} \wedge i^{\prime}\right) * x \otimes i^{\prime} * r_{1}\right) \\
& =\left(1_{W} \wedge i^{\prime}\right) * x,
\end{aligned}
$$

$x-\mu\left(\sigma^{-4}\left(1_{w} \wedge i^{\prime}\right)^{*} x \otimes \gamma_{1}\right) \in \operatorname{Ker} .\left(1_{w} \wedge i^{\prime}\right)^{*} . \quad$ By (5.1), $\left(1_{w} \wedge \pi^{\prime}\right)^{*}$ is monomorphic. Thus we can defined a homomorphism

$$
\tilde{\gamma}_{W}: \tilde{h}_{k}(W \backslash S Q) \rightarrow \tilde{h}^{k}\left(W \backslash S^{8}\right)
$$

for any W by

$$
\begin{equation*}
\tilde{\gamma}_{W}(x)=\left(1_{W} \wedge \pi^{\prime}\right)^{*-1}\left(x-\mu\left(\sigma^{-4}\left(1_{W} \wedge i^{\prime}\right) * x \otimes \gamma_{1}\right)\right) . \tag{5.3}
\end{equation*}
$$

Similarly as in Lemma 4.3 in [2], we see
(5.4) Lemma. (i) $\tilde{\gamma}_{W}$ is a left inverse of $\left(1_{\mathbb{W}} \wedge \pi_{0}\right)^{*}$,
(ii) $\tilde{\gamma}_{W}$ is natural in the sense that

$$
\left(\boldsymbol{S}^{8} f\right) * \tilde{\gamma}_{W}=\tilde{\boldsymbol{\gamma}}_{W^{\prime}}\left(f \wedge 1_{s \varrho}\right)^{*}
$$

for $f: W \rightarrow W^{\prime}$.
5. 2. We define γ_{w} by using $\pi_{1}{ }^{*} \gamma_{1}$ as γ_{0} (cf. [2], 4. 2). For any $x \in$ $\tilde{h}^{k}\left(W \wedge N_{\eta} \wedge \boldsymbol{S}^{4}\right)$ and \boldsymbol{p}_{0} of (4.8) we obtain

$$
\begin{aligned}
& \left(1_{W \wedge P} \wedge \pi^{\prime}\right) * \sigma^{4} \gamma_{W} \sigma^{-4} x=\left(1_{W} \wedge P \wedge \pi^{\prime}\right)^{*}\left(1_{W} \wedge S^{4} \pi_{0}\right)^{*-1}\left(x-\sigma^{4} \mu\left(\sigma^{-4}\left(1_{W} \wedge i_{0}\right)^{*} \sigma^{-4} x \otimes r_{0}\right)\right) \\
& =p_{0}{ }^{* *} x-\left(1_{W} \wedge p_{0}\right) * \sigma^{4} \mu\left(\sigma^{-4}\left(1_{\mathbb{W}} \wedge i_{0}\right) * \sigma^{-4} x \otimes \pi_{1}{ }^{*} \gamma_{1}\right) \\
& =p_{0}{ }^{* *} x-\left(1_{W} \wedge T_{1}\left(S^{4} \pi_{1}\right) p_{0}\right){ }^{*} \mu\left(\left(1_{w} \wedge i_{0}\right)^{*} \sigma^{-4} x \otimes \gamma_{1}\right) \\
& =p_{0}{ }^{* *} x-\left(1_{W} \wedge \pi \wedge 1_{s Q}\right){ }^{*} \mu\left(\left(1_{W} \wedge i_{0}\right) * \sigma^{-4} x \otimes r_{1}\right) \\
& =p_{0}{ }^{* *} x-\mu\left(\sigma^{-4}\left(1_{W} \wedge S^{4}\left(i_{0} \pi\right)\right) * x \otimes r_{1}\right)
\end{aligned}
$$

$$
\begin{aligned}
& =p_{0}^{* * x-\mu\left(\sigma^{-4}\left(1_{\mathbb{W} \wedge P} \wedge i^{\prime}\right) *\left(1_{\mathbb{W}} \wedge p_{0}\right) * x \otimes r_{1}\right)} \\
& =\left(1_{W \wedge P} \wedge \pi^{\prime}\right) * \tilde{\gamma}_{\mathbb{W} \wedge P}\left(1_{\mathbb{W}} \wedge p_{0}\right) * x, \quad \text { where } T_{1}=T\left(S Q, S^{4}\right) .
\end{aligned}
$$

Since $\left(1_{W \wedge P} \wedge \pi^{\prime}\right)^{*}$ is monorphic, we have
(5. 5) Lemma. For the element $p_{0} \in\left\{P \wedge S Q, S^{4} N_{\eta}\right\}$ of (4. 8) there holds the relation

$$
\tilde{\gamma}_{W \wedge P}\left(1_{w} \wedge p_{0}\right)^{*}=\sigma^{4} \gamma_{W} \sigma^{-4} .
$$

For any $x \in \tilde{h}^{k}\left(W \backslash P \wedge N_{\eta}\right)$, we put

$$
x^{\prime}=\mu\left(\sigma^{-4}\left(1_{W \wedge P} \wedge i_{0}\right) * x \otimes \boldsymbol{r}_{1}\right)=\sigma^{-4}\left(1_{W \wedge P} \wedge\left(i_{0} \wedge 1_{s Q}\right) \boldsymbol{T}_{1}\right) * \mu\left(x \otimes \boldsymbol{r}_{1}\right) .
$$

Then we have

$$
\left(1_{W \wedge P} \wedge \pi_{0}\right) * \gamma_{W \wedge P} x=x-\left(1_{W \wedge P} \wedge \pi_{1}\right) * x^{\prime}
$$

and

$$
\begin{aligned}
\left(1_{W \wedge P} \wedge i^{\prime}\right)^{*} x^{\prime} & =\sigma^{-4}\left(1_{W \wedge P} \wedge\left(i_{0} \wedge 1_{s Q}\right)\left(1_{s^{4}} \wedge i^{\prime}\right)\right)^{*} \mu\left(x \otimes \boldsymbol{r}_{1}\right) \\
& =\sigma^{-4} \mu\left(\left(1_{W \wedge P} \wedge i_{0}\right) * x \otimes i^{\prime *} r_{1}\right) \\
& =\left(1_{W} \wedge P \wedge i_{0}\right) * x .
\end{aligned}
$$

Hence

$$
\tilde{\boldsymbol{\gamma}}_{\mathbb{W} \wedge P} x^{\prime}=\left(1_{\mathbb{W} \wedge P} \wedge \pi^{\prime}\right)^{*-1}\left(x^{\prime}-\mu\left(\sigma^{-4}\left(1_{\mathbb{W} \wedge P} \wedge \boldsymbol{i}_{0}\right) * x \otimes \boldsymbol{\gamma}_{1}\right)\right)=0 .
$$

Thus, by (4.10) and (5.5),

$$
\begin{aligned}
\gamma_{W}\left(1_{W} \wedge \alpha\right)^{*} \sigma^{-4} \gamma_{W \wedge P} x & =\sigma^{-4} \tilde{\gamma}_{W \wedge P}\left(1_{W} \wedge p_{0}\right)^{*}\left(1_{W} \wedge S^{4} \alpha\right)^{*} \gamma_{W \wedge P} x \\
& =\sigma^{-4} \tilde{\gamma}_{W \wedge P}\left(1_{W} \wedge \kappa\right)^{*}\left(1_{W \wedge P} \wedge \pi_{0}\right)^{*} \gamma_{W \wedge P} x \\
& =\sigma^{-4} \tilde{\gamma}_{W \wedge P}\left(\left(1_{W} \wedge \kappa\right)^{*} x-x^{\prime}\right) \\
& =\sigma^{-4} \tilde{\gamma}_{W \wedge P}\left(1_{W} \wedge \kappa\right)^{*} x .
\end{aligned}
$$

We have the following
(5. 6) Lemma. For $\kappa=\kappa_{\alpha}$ of (4.10) there holds the relation

$$
\gamma_{W}\left(1_{W} \wedge \alpha\right)^{*} \sigma^{-4} \gamma_{W \wedge P}=\sigma^{-\tilde{4}^{-} \tilde{\gamma}_{W \wedge P}}\left(1_{W} \wedge \kappa\right)^{*} .
$$

5. 3. Put $W=X \wedge Y \wedge Z$, the map $U: W \wedge P \wedge P \wedge P \rightarrow X \wedge P \wedge Y \wedge P \wedge Z \wedge P$ is given by a permutation of factors as $U\left(x, y, z, p, p^{\prime}, p^{\prime \prime}\right)=\left(x, p, y, p^{\prime}, z\right.$, $\left.p^{\prime \prime}\right)$. And put $T=T(P, P), T^{\prime}=T(P, P \wedge P), T_{1}=T(Y, P), T_{2}=T(Z, P), T_{3}=T$ $(X \wedge Y \wedge P, Z \wedge P), T_{4}=T(Z \wedge P, X \wedge P \wedge Y \wedge P)$ and $T_{2}{ }^{\prime}=T(Y \wedge Z, P)$. From Lemma 4.3 in [2] and (5.6) we obtain

$$
\begin{aligned}
\mu_{\eta}\left(1 \otimes \mu_{\eta}\right) & =\sigma^{-4} \gamma_{W} \alpha^{* *}\left(1_{X} \wedge T_{2}{ }^{\prime} \wedge 1_{P}\right) * \mu\left(1 \otimes \sigma^{-4} \gamma_{Y \wedge Z} \alpha^{* *}\left(1_{Y} \wedge T_{2} \wedge 1_{P}\right) * \mu\right) \\
& =\sigma^{-4} \gamma_{W} \alpha^{* *}\left(1_{X} \wedge T_{2}{ }^{\prime} \wedge 1_{P}\right) * \sigma^{-4} \gamma_{X \wedge P \wedge Y \wedge Z} \alpha^{* *}\left(1_{X \wedge P \wedge Y} \wedge T_{2} \wedge 1_{P}\right) * \mu(1 \otimes \mu) \\
& =\sigma^{-4} \gamma_{W} \alpha^{* *} \sigma^{-4} \gamma_{W \wedge P} \alpha^{* *} U^{*} \mu(1 \otimes \mu) \\
& =\sigma^{-\tilde{\delta}^{\tilde{\gamma}}} \underset{W \wedge P}{ }\left(1_{W} \wedge \kappa\right)^{*} \alpha^{* *} U^{*} \mu(1 \otimes \mu)
\end{aligned}
$$

On the other hand we obtain, from (2.13) and (4.14),

$$
\begin{aligned}
\mu_{\eta}\left(\mu_{\eta} \otimes 1\right)= & \sigma^{-4} \gamma_{W} \alpha^{* *}\left(1_{X \wedge Y} \wedge T_{2} \wedge 1_{P}\right)^{*} \mu\left(\sigma^{-4} \gamma_{X \wedge Y} \alpha^{* *}\left(1_{X} \wedge T_{1} \wedge 1_{P}\right) * \mu \otimes 1\right) \\
= & \sigma^{-4} \gamma_{W} \alpha^{* *}\left(1_{X \wedge Y} \wedge T_{2} \wedge 1_{P}\right) * T_{3} \sigma^{-4} \gamma_{Z \wedge P \wedge X \wedge Y} \alpha^{* *}\left(1_{z \wedge P \wedge X} \wedge T_{1} \wedge 1_{P}\right) * T_{4} * \\
& \mu(\mu \otimes 1) \\
= & \sigma^{-4} \gamma_{W} \alpha^{* *}\left(1_{W} \wedge T\right) * \sigma^{-4} \gamma_{W \wedge P} \alpha^{* *}\left(1_{W} \wedge T^{\prime}\right)^{*} U^{*} \mu(\mu \otimes 1) \\
= & \sigma^{-4} \gamma_{W} \alpha^{* *} \sigma^{-4} \gamma_{W \wedge P} \alpha^{* *}\left(1_{W} \wedge T^{\prime}\right) * U^{*} \mu(\mu \otimes 1) \\
= & \sigma^{-8} \tilde{\gamma}_{W \wedge P}\left(1_{W} \wedge \boldsymbol{\kappa}\right) * \alpha^{* *}\left(1_{W} \wedge T^{\prime}\right) * U^{*} \mu(\mu \otimes 1) \\
= & \sigma^{-8} \tilde{\gamma}_{W \wedge P}\left(1_{W} \wedge \boldsymbol{\kappa}\right) * \alpha^{* *} U^{*} \mu(\mu \otimes 1) .
\end{aligned}
$$

Since μ is an associative multiplication, we have

$$
\mu_{\eta}\left(1 \otimes \mu_{\eta}\right)=\mu_{\eta}\left(\mu_{\eta} \otimes 1\right) .
$$

Thus theorem is followed.
Kyushu University

References.

[1] S. Araki and H. Toda, Multiplicative structures in mod q cohomology theories I, and II, Osaka J. Math., 2 (1965), 71-115, and 3 (1966), 81-120.
[2] N. Ishikawa, Multiplications in cohomology theories with coefficient maps, J. Math. Soc. Japan, 22 (1970), 456-489.
[3] D. Puppe, Homotopiemengen und ihre induzierten Abbildungen, I, Math. Z., 69 (1958), 299-344.
[4] H. Toda, Composition methods in homotopy groups of spheres, Ann, of Math. Studies No. 49, Princeton, 1962.

