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In the previous paper [2], we discussed the admissible multiplications
in the cohomology theories with coefficient maps and obtain some uniqueness
type theorems at the admissible multiplications. And, by constructing
the multiplication, we have the existence theorem in the cohomology theory
with coefficient the Hopf map 7(§°-S$%). This note contains some corrections
to [2] (Lemma 3. 9 and (3. 19)) and the theorems on the commutativity
and associativity of the admissible multiplications in the 7-coefficient
cohomology theory.

1. Preliminaries.

Let (%, o} be a reduced cohomology (defined on the category of finite
CW-complexes) and be equipped with an associative and commutative
multilication .

The (reduced) 7-coefficient cohomology (k( ; 7), a,} is defined by

B(X; 7) = B (XAP) for all i and X,

oy = (1z/A\T)*a,
where P=S§?{J,e* and T=T(S', P): S'AP-PAS'. Denote by

i: S?>P and =x: P-S*,
the canonical inclusion and the map collapsing $* to a point. Then the
reduction p,=(1/\m)*s* and the Bockstein homomorphism 3,=(1/A\m)*a*(1/\i)*
are defined.

A multiplication in A( ; ) is said to be admissible if it is compatible

with the reduction, quasi associative and the Bockstein homomorphism
works as a derivation in a certain sense (cf. {2], 1. 6.).
We have the following theorems in [2].

(1. 1) TuEOREM. If 3v**=0 in h then admissible multiplication u, exists
in k( ; 7).
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(1. 2) THEOREM. If there exists an admissible multiplication in k(  ; 7) then
admissible multiplications are in one-to-one correspondence with the elements of
h=(8°; 7).

(1. 3) THEOREM. If there exists an admissible multiplication in b ( ; 7)
then either there is no commutative one, or every one is commutative,

And see the formula (#) in the proof of Theorem 2.5 in [2], we obtain

(1. 49 'THEOREM. If there exists an associative and commutative admissible
multiplication in h ( ;7)) then every one is associative.

Furthermore in this note we obtain the following theorems.

(1. 5) THeOREM. The admissible multiplication u, which is given by (1. 1) is
commutarive, i. e., if 3v**=0 in K then the admissible multiplications in i C 7
are commutative,

(1. 6) TureoreM. The admissible multiplication p, which is given by (1. 1)
is associative, i. e., if 3v**=0 in h then the admissible multiplications in k ( ; 7)
are associative. ’

From Theorem 5. 3 in [2], we obtain

(1. 7) CoroLLARY. Through the Wodd isomorphism K'f]*( )—>K7)*( 37,
there exist the admissible multiplications in KU-theory and they are commutative and
associative,

In this note we devoted the proofs of (1. 5) and (1. ). Throughout
this note we use the same notations as [1] and [2].

2. Correction and enlargement to the article [2].

2. 1. Put

P=S*J,¢', Q=8> ¢, N,=(S'P\/§") U ¢ and N,=(S'V/5%) U e,
3 3yva

3ivvay
where 7, v are 1-stem and 3-stem Hopf maps respectively and i: S*—P
is natural inclusion (cf. [2], §3). We have following cofibration sequences,

2 1 s, s, P T s,

@ 2 5T sl 50 T, 80,

@. 3) §3p 38 DV(ST) Gipe B F T sip
@. 4 P WEM) g B N T sip |
@ 4 Q1% sty N, ™, S0,

2. 5 s5 47 N, c J Nﬂ P g .



On commutativity and associativity of multiplications 31

And we have relations
2. 6) wol, =S8, (S'm)my=n'm, and w,i,=i'.

2. 2. Making use of Lemma 3.1 in [2] and Puppe’s sequence associated

with the cofibration (2. 1), we have following exact sequence
0——(SP, 82, (SP, P) .71, (P, §9——0,
) (vm)
where (v), (vm) are represented by the generators of above groups. Denote

by {a, B, r} the Toda bracket [4], we consider an element vr of (S°P, P}
which is an extension of vm, then

12vr € —iy(7, v, 127) .
Since {7, v, 127} consists of a single element,

{(n, v, 12x)={(n, 7%, m}=(n 7, w)=12v.
Thus,

12vm=—12iv and 12(iv +v7) =12(1,Av) =0.

Similarly, we have the following exact sequence

(P, §°) 7%, (S'P, §*) %, (s'P, P) %, 0.
I 0
24 ZZ
® ')
Since 1,/A\7=3iv(S7) and

w=v(1pA7) =3piv(St) =3v'r=1'rr,
ix is trivial in the above sequence. Then we have
(2. 7) PROPOSITION. (S°P, P}~Z,,+Z,,: with generators 1,/\v, iv(or vm),

{S*P, P}=0.

2. 3. By (3. 25) in [2], w/(=ay) € {S% PA P} is of type (1, 1). Ex-
changing the generator, we obtain
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(2. 8) PROPOSITION. (S%, PAP)=~Z+Z: with generators o' and ENi,
where a satisfies (1s/\7w)a’= e A\m)Tay =S8 (T=T(P, P)).

The element of (S° PAP) is determined by its type. Since iAf is of
type (0, 2), we obtain

@. 8) iNE=2a/—CNi.

There are some mistakes on the generators of Lemma 3. 6 in [2], then
we revise as follows.

(2. 9) ProrosiTION. The groups {S**, PAP) and (P/\P, S***P} are isomor-
phic to the corresponding groups in the following table:

| k=3 | k=2 k=t k=0 | k=—1 | k=—2
‘ 0 { z 0 \ Z1z4Z i z, | Z4-Z4-Z
- T . ~ <. . fod
1p/Ni /(S (S , 1p/\¢,
generators of | GAD .—p/\f, o ES n.), SN ( ¢ pYAL ) FYAN
{Sz_"P, P/\P} | IC/\I(OI' Cn/\l) a(or o)
generators of ‘ ‘\ 1A, (S48, S§2T(CAD), 1AL,
(S /\x | _ - S3i(vr/\n) . _
{PAP, S4++pP)} ‘ ‘ i \r(or {x/\x) BiCor B

where &, B., &, and B, are elements satisfying

UeAma=Cn, fi(LAD)=Cn, (pAm)a,=i% and B,(1,\D)=iC.
(2. 9) PROPOSITION. We can choose the element o, as the generator of
(S, PAP) such that

a, (S =CNi and (1,A\m)eo,=Cx.
Proor. Making use of (2. 8) and the relation i +&n = 2:1,, we obtain
*END =2-1,AE—GND) (8O =21 NE— ! (S'O)) +E(SD NI
On the other hand, since
AT« (1 AE— ! (8E) — ) =2+ 15— S* (i +E) =0
we have
1 AE—a/(8C) =V 1A (8%8) (SO +a,
for some integer I'. Then,
*END =@+ 1DESENI+2a, .

Put i*a,=I(EA\i)+ma, (for some integers I, m),
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0=i*z*EAD = @V + 1)i* EAD (8D) +2i*a,
= (2@ +1) +2DNi+ma,’ .
Thus [=-(2'+1) and m=0.
Therefore, we put a,’=('+1)£(5*) A\i+a, and take @, =a,’ as a generator of
(8%, PAP)} then a, satisfies (2. 9).

2. 4. The results (3.19) in [2] are incorrect, they should be replaced
by following ;

(2.10) PROPOSITION.

groups iz7| =6 | i=5 | i=4 =3 i=2
(Mo, S'P)= 0 |z o | z+z |z | ziz
I inmg ‘ o, Crmo=Cr'my ivan, 3(535)1“,, €
generators | -~
=in'r, | Cor ilmy) =iva'm
|

where ¢, is defind by e,i,=2-i.

2. 5. Making use of Lemma 3.5 in [2] and (2.9), we have following
exact sequence associated with (2. 5),

0——s(S'P, PAP)Z5 (N, PAP)-5(8", PAP)——0.

[ e
Z+Z+Z z

EEDONLLNE, a) GAD
Then we obtain that {N,, PAP) is a free group with generators (£(8%%)Ai)
7, (1pAEm, cim, and w, where w is an extension of iAi (cf. [2], (8.22)).
By (2.10) and the relation 1,/A\7= 3iv(S7), the map (1,/\7)«: {N,, $'P} — (N,
S°P) is trivial. And since (1,Am) G (S ADT=0, (1,AR) 1AL 7o = 21,
and (1,An)xamo=Cnr, we can put (1,An)sw = (2a+1) mo+bCam, for some
integers @ and 5. Here we put

w=w—a(l:\&)m—ba.m,
then wi,=wi,=i/\i, (1pAn)W'=m,. Thus we have the following
(2. 11) PROPOSITION.

(Ny PAP)2Z+Z+Z+Z: with generators (E(ST) \D 1o (LeAE) 0, ors and w,
where w is an element satisfying wi=i/\i and (1,/\m)w = m,.
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2. 6. We consider the ordinary homology maps induced by elements
of {N,, PAP}. Let e’ be a generator of group H, (N,) (k=4, 6, 8) and e,
/\e;, be generators of group H, (PAP) (i, j=2, or 4, i+j=k) given by 3.5 in
[2]. For the generators, induced homology maps can be expressed as

C(SDND xmox: (&, &y &) i—> (0, de, ey, 0) ,
LA smox: (&, e, &) i—— (0, 2e,\e., 2e,\e,) ,
amox: (&, e, &) I—— (0, 2e,\e, 2e,\e,) ,
wy: (e, &, &) —— (e,/\e,, ke,/\e;+e,\e, e/\e) ,
for some integer k.

Thus the element of stable homotopy group (N, PAP} is determind by
its ordinary homology map type. Particularly the homology map induced
by « (given by Proposition 3. 8 in [2]) is

(2. 12) ax: (e, e, &) —— (me,/\e,, e,/\e;+e/\e, e/\e),
for some integer m. And Ta has of same homology map type (where
T=T(P, P)). Then we obtain

(2. 13) Lemma. Ta=a in {N,, P/\P), where « is given by Proposition 3.
8in [2] and T=T (P, P).

3. Proof of Theorem (1.5).

Let u be an associative and commutative multiplcation in #, and assume
that (1;A3»)*=0 in £ for any finite CW-complex X. And let u, be the
admissible multiplication in # ( ; 7) constructed in [2]. That is, for x €
B(X; 7)=hK*XAP) and y € F(Y; 7)=K*(YAP), we have

(X Q) =0 ry Ly AN)*(LAT' A1) *u(x @ ¥)
where W=XAY and T'=T(Y,P).

Put

! (x @ y)=(=D"T"* 11, (y ® x)
for T"=T(X, Y). u, is also an admissible multiplication and by a rautine
calculation making use of the naturality of r etc., we see that

#! (x @ y)=0""ry Ly \N(T))*AxA\T'N\1p)*p(x @ ¥),

where T=T(P, P). From (2.13), Ta=« in (N, PAP)} thus u,=p, it fol-
lowes Theorem (1. 5).
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4. Stable homotopy of some elementary complexes.

4. 1. Making use of Lemma 3. 1in [2], (2. 6) and Puppe’s exact sequences
associated with (2. 2) and (2. 4), we obtain following tables (4.1) and (4. 2).

(4. 1) PROPOSITION.

groups i<—1 | i=0 ’ i=1] =2 | i=3 ‘ i:4‘ i=5 | i=6 1
|
(S'P, SQ)= | 0 1 zZ | o z z, .z ‘ Z, | z ‘
| | !
generators ‘ i'n (820 i"v(S3) ] P } iy ¢ |

where T, E are elements satisfying n’E=4(S4n) and n’C::4(SGC_).

(4. 2) PROPOSITION,

. T — T T
groups i1 1 i=0 ‘ i=1 i=2 ‘ i—=3 ‘ i=4
\ l
(8P, NJy= | O z ] 0 Z+Z \ Zs | Ziz
\ |
|
| generators ‘ iom ! 1,(S20), i1(Sx) ‘ iw(S%) (S, &,
)

where £, is defined by m& —m.

4.2. Consider the Puppe’s exact sequence associated with a cofiberation
4. 3) S'P—>PASQ—>S°P .

From results of Lemmas 3.1, 3.2 in [2], (2.7), (4.1) and (4. 2), we have
following tables (4. 4)~(4.7).

(4. 4) PROPOSITION.

: - T T e o
eroups | 1Z13 ’ =12 ' =11 | i=10 \ i=9 | =8 | =7 ] i=6 |
(PASQ,S")= | 0 z 0 ‘ z ‘ Z, l z Z, ‘ z [

’ generators ‘ z A=’ \E/\n’ va Nz’ P vAx! ' ¢
‘ . |

wher 7 ,C are defined by 7(1,\i") =4(S*n) and C(1,A\")=4(S'T) .
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(4. 5) PROPOSITION.

groups i=10 i=9 i=8 i=7 i=6
(PASQ, S'Q)~ 0 z 0 z Z,
generators 'z \x’ "¢\ v(z/N\a")
groups i=5 i=4 i=3
{(PASQ, S'Q}=< zZ+Z Z; Z+-Z
generators AoADOT, 2CpATD | TGARD (sADT, SCpAT)

where T=T(P, SQ).

(4. 6) PROPOSITION.

groups i=11 i=10 i=9 i=8 i=7
{PASQ, S'P)= 0 zZ 0 Z+Z Zs
generators i(x/\n") ieAx!, 1pAx! | iv(Sz)(ApAx’)
groups 7 ,,,i=6 ] i=5 i=4
{PASQ, SiP)== Z+Z Zs+Zg Z4-Z
— .. 1p/\va!, iv(1p/\z") . = =
generators ir, {(SDAp A" . &y, i¢Cor {n)
Cor ve(1p/A\z"))

where ix, &, En are defined by in(1,\i")=2in, & (1s/\¥") =4-1sp and TN =
.

(4. 7) PROPOSITION.

eroups i;g\ i=8 ’i:7 i=6 i=5 i=4
(PASQ, S'N,)=| 0 z |0 Z+Z Z, Z+Z+2Z
| |
| WGARD, H(EA=D,
generators o\’ iw(x/\z’) .
INCIAC D) Ea(Lp/A\x"), Py

where p, is an element satisfying
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. 8) Po(1eNI) =8 (i), (S*m)pe= 1sa/A\T)T and (S'w))py=1p/\7'.

Proor or (4.8). We take p,” as a generator of {PASQ, S'N,} such
that p,/’ (1, \#) =S'(ior). From (4.5), we can put

(SAT"l)Po":a(lso/\ﬂ)T‘{'bﬁ(lP/\ﬂ")
for some integers a and 5. Since T(S*, $")=1 and mi,=/,
($'7)p" (Le\i) =a(lso \T)T (1p/\i") = aS* (i)
and ¢=1. Put
pu’=P0"~b§0(1P/\7T'>
then we have the following relations
™ (S'm)p'=Ase \NTT, p’ AN\ =po" Ap/N\i")=8*(iyrr) .

We discuss the ordinary homology maps induced by the elements of
{P/A\SQ, S*P} and {PASQ, S*N,}. Since p, satisfies the relations (*), the map
po'x 1S repraced as

P« (@/\e, e/\e, e;/\es, e,/\e&) > (0, d'e/, l'a'ed, a'e)’) ,
for some integer , where e,/\e, is a generator of H,,,(PASQ) and e’ is
a generator of ITI,‘(NW). From (4.6), the element of {PASQ, S‘P} is deter-
mined by its homology map type. Then considering the homology maps,
we obtain
(S'm)pd =1p A\’ + 1 A\n")
for some integer ! and I'=2/+1.
Hence we take
po=p/—1-8%,(EA\n")

then it satisfies the relations (4.8) and we can choose it as a generator of
(PA\SQ, S'N,). Q. E. D.

4. 3. Since i*: {$°P, $'}~>(S", $*} is isomorphic and »Zi=2y, we have &
=2y. Then

(LA (ENAT) =38 (i ($0)) (L Ant')
=6-S*(iV) I°A\rn") .
We consider the following exact sequence associated with the cofibra-
tion (4. 3).

0o (PASO, §ip) (D A

= {(PASQ, PN\SQ} - = (PA\SQ, S°P)
AN

{PN\SQ, S°P)—---,
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Making use of (4.6) and above relation, (1,/\3v)x is trivial in this sequence
and we obtain the following

(4. 9) ProrpositioN. {PASQ, PASQ)=~Z+Z+Z+Z; with generators (i/\
ing, (lp/\i')éu lpase and ia/\lso-

4. 4. The following lemma will be used in the next section.

(4. 10) LemMmAa. For any a € {N, PAP)} satisfying (1z/\n)a=mn, there
exists an element k=k, € {PA\SQ, PAN,} such that

A A7) = (S*a)p, € {PA\SQ, PN\S‘P}
and

AeAm)E=1ppsa € {(PASQ, PASQ} .
Proor. Since (1,/\S'm) (S'a)po=1/A\n' (by (4.8)),
1e/A\3vm) 5 (S* ) po= (1,/\3v) (1p/\n") =3-1,/\va' =0
in (PASQ, S$°P}. Thus there exists an element &’ € {PASQ, P/A\N,) such that
A A\mo)E' = (S*a)p, .
And we have
A7) Qe Am)E' = 1e/\S*T) Lp AT E'= (Le A7) 1ppso -
Therefore,
1paso— (1p/Am) &’ € Image{(1oA\")x: {PASQ, S*P}—({P/\SQ, PASQ}} .
Thus for some element x € {PASQ, S‘P},
leaso=ApAm )&+ Ao AiD)x .
Put k=«'+(1,/\is)x then
ApN\mo)e= (1p/\7o) &' = (S*a)ps ,
AeAm)e=Le/\m)E' + (1e/\I') X=1pps0
because n,,=1{'. Q. E. D.
4, 5, We shall discuss some structure of PAPAP.
(4. 11) ProprosiTION. There exists a (stable) homotopy equivarence
e € (S°P\/(PASQ), P/\N,}
such that (1,/\m.)e is the projection of S°P\/(P/\SQ) onto PA\SQ.
Proor. Consider the cofibration (2.4’) we have

PAN,=PAS* |J CO)=SF | C(PAQ) .
By (4. 6), 1o/\7a'= (Lp/\7) (Le/Aw) =3iv (Sm) (Le/\w) =0in (PASQ, §'P). Thus, by
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general argument we can conclude the proposition.
From the complex structure N,, 3i,v is homotopic to i, then

1p/\io77=(lp/\io)s‘(sll}(sn')):'(l/\3i0V>ssﬂ'
=({NLD)S =1 NS (in (Sm))=0
in {S°P, PAN,}). Thus
PAN,=PA\(N, U C(§))=(PAN,) U C(5°P)
17 1pAign
is homotopic to (PAN,)\V/S°P, i. e., there exists a homotopy equivarence ¢,
€ (PAN,, (P/\N,)\/S°P}.

Using the homotopy equivarence a € (N,, PAP} (Lemma 3.3 in [2]) we

put
a=(1rA@)e, (V1) € (S°P\/(PASQ)\/SP, PAPAP)
then « is a homotopy equivarence. Thus we have

(4. 12) ProposITION, The space S°P\/(PN\SQ)\/S°P is homotopic to P/\P
/\P (in stable).

By (4.6) and (4.9), the elements of {PASQ, S$°P} and {PASQ, PASQ}
are determind by these induced homology map types. Therefore, we obtain

(4. 13) ProrosiTioN. {PASQ, PNPN\PY>=Z+Z+Z+Z+Z+Z+Z+Z and
the element is determind by induced homology map type.

Now we consider the homology maps induced by (1,Aa)x and T'(1,A\
@)k, where T'=T(P, PAP). Denote by e/\e/\e, generators of H,(PAPAP)
where I=i+j+k and i, j, k=2, or 4. From (2.12) and (4.10), we obtain

AN xks: (€:/\i e/\ei, €:/\e, e,/\&) I~ (me,/\e./\e,, m(e./\e,/\e,+e,/\

eNe+e/\e/\e), e/\e,\e,+e/\e./\e+eN\e /e, e/\e e,
and
T (e ) sk 5= (1p/\ ) sk .
Thus we have the following

4.14) LemMma. L, A)e=T'(1,A\a@)k in {PA\SQ, PA\PN\P),

where T'=T(P, P/\E).

5. Proof of Theorem (1. 6).

5.1, Let ux be an associative commutative multiplication in % and as-
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sume that 3v**=( in A. Under this assumption the exact sequence of &
associated to the cofibration (2. 2) brakes into the following short exact
sequences

6. 1) 0—m (W ASH AT je e 80y AN gn A 5150 |
for any W and k. In particular, for W=S$° and k=4, we can choose an
element 7, € A*(SQ) such that

(5. 2) i"*r,=0d'1.
Put 7r,=m*r,. Then, by (2.6), 7, satisfies the relations

i *ro=0'1 and i *r,=0.

Hence any multiplication x, constructed in [2] by making use of this 7, is
admissible. We discuss the asscoiativity of such a multplication ,.

Since, for x € **(WASQ) ,

AN *u(a™ (L NE)*x Q 71) =p(o™* (Aw /NI *x & 7))
=y N\i")*x,
x—u(e™*AwNANDN*x Q1) €Ker. AyNi*. By (5.1), (Iy/\n’)* is monomorphic.
Thus we can defined a homomorphism
Tv: B(W/\SQ)—k (WS

for any W by

6. 3 7w () = Ly AT ¥ (x— u(o™ Ay AN *x @ 1)) .

Similarly as in Lemma 4.3 in [2], we see

(5. 4) LemMa. (1) 1y is a left inverse of (1, \mo)*,
(ii) 71w is natural in the sense that

(SN *Tv=7w(fA\Lsa)*

for [ W—>W",

5. 2. We define vy by using m*r, as 7, (cf. [2], 4. 2). For any x €
R*(WAN,/\S* and p, of (4.8) we obtain

Awar AT ¥ ryo™*x=Aprr AT )* Ay AS' 1) ¥ (x— 0" u(o* Ay Ni) *o™x @ 10))
= po**x— (Iy/\po)*a'u(o™* (/i) ¥a~'x @ m:*7y)
= pM*x— Ly AT (S'm)po) * (v Ni)*o™'x @ 71)
= po**x~—(Ly/\w\1sa) *u(Ay/Ni)*¥a™*x Q 7))
= p**x—p (0 (Lw/\S* (0m))*x Q 71)
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= po**x—pu(@* Lpre /N *Ap/\P)*x @ 71)
= Qwar AT *rwar 1w/A\Po)*x, where T,=T(SQ, s9.
Since (1y.r/A7')* is monorphic, we have

(5. 5) LemMA. For the element p,€ {PA\SQ, S'N,} of (4. 8) there holds the

relation
’;W/\P(]-W/\pl))*: a'ryo".

For any x 671”(W/\P/\Nﬂ), we put
x'=u(a*Awar/Ni)*x @ 1) =07 Ly ar/ N\ U A1) T *u(x R 7)) .

Then we have

Awar /A7) *rwrpx=x— Aypp/Nr,) *x!

and
Qwar/N)Y X' =07 L pr/\ Go/\Lso) Qe AP ) (xR 71)
=0~ u(Awrr/\i)*x @ i'*r,)
=AwpapNin)*x .
Hence '

;W/\Px,= Awar ATDY* X' =m0 A parNi) *x Q r))=0.

Thus, by (4.10) and (5. 5),
TW(]-I’/\a)*0--4TWAPx=a'_47:‘WAP(IW/\pﬁ)*(lW/\S‘a)*TWAPx
=0_4;WAP(1W/\'C)*(IWAP/\RO)*TWAPX
ZU-“;WAP((IW/\'@*X—X')
=U—‘;WAP(1W/\K)*x .

We have the following
(5. 6) LeEMMA. For k=k, of (4.10) there holds the relation

Tw(lw/\a)*d_‘pr=0_4;'WAP(1W/\’C)* .

5. 3. Put W=XAYAZ, the map U: WAPAPAP—->XA\PAYNPAZAP is
given by a permutation of factors as U(x, y, z, p, P, p") = (x, p, ¥, P', 2,
p"). And put T=T(P, P), T'=T(P, PAP), T,=T(Y, P), T,=T(Z, P), T,=T
XNYAP, ZN\P), T,=T(ZN\P, XN\PANYAP) and T,)=T(YAZ, P). From Lem-
ma 4.3 in [2] and (5.6) we obtain



42 N. IsHIKAWA

(1@ pn) = a7'rya**(LxA\T/ A1) ¥ @ 67 rraz2** (Lr AT A\Lp) *10)
= o7'rya** (1T ALp) *6 ™ Y xnparaz@™* Qxarar/\T:/A\12)* (A& 1)
= o7 rwa** Ty p @ U (1 Q 1)

0" wae(Ly/ AR *a* U*u(1 @ 1)

On the other hand we obtain, from (2.13) and (4. 14),

2,1, @ 1) = a7 rya** (Lx sy AT AL * (0™ T xava** Ax AT A1) * ® 1)
= 07y * (A xar AT /AL *T5*0 1 20 axar@** (A zapax/ANT1 /A1) *T ¥
u(e@1)
= 07 rya** Ly AT o7 'rwara®** (L \NT)¥ U u(1 ® 1)
= o'ty ety pa™* (Ly/NT ) * Uk (1 @ 1)
= 0~ Tuar(ln/\RY*@* Ly NT)*U* (1 @ 1)
= 0 Fuar(Ly/\E) ¥ U (@ 1) .

Since u is an associative multiplication, we have

/“ﬂ(]- ® luﬂ) =ﬂw(ﬂw & 1) .

Thus theorem is followed.
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