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   In the previous paper [2] , we discussed the admissible multiplications 

in the cohomology theories with coefficient maps and obtain some uniqueness 

type theorems at the admissible multiplications. And, by constructing 

the multiplication, we have the existence theorem in the cohomology theory 

with coefficient the Hopf map n(S3-*S2). This note contains some corrections 

to [2] (Lemma 3. 9 and (3. 19)) and the theorems on the commutativity 

and associativity of the admissible multiplications in the 72-coefficient 

cohomology theory.

   1. Preliminaries. 

   Let {h, a) be a reduced cohomology (defined on the category of finite 

CW-complexes) and be equipped with an associative and commutative 

multilication p. 

   The (reduced) -coefficient cohomology {h( ; '), a„) is defined by 

re ; 77) = hf +4 (XAP) for all i and X, 

a„ = (1xAT)*a, 

where P=S2 Un e4 and T=T(S', P) : SiAP-->PAS'. Denote by 

                                                            S2—>P and 7r: P-->S4 , 

the canonical inclusion and the map collapsing S2 to a point. Then the 

reduction p„= (1Air) *a° and the Bockstein homomorphism 3,7= (1Air) *a2 (1Ai) * 

are defined. 

   A multiplication in h( ; 77) is said to be admissible if it is compatible 

with the reduction, quasi associative and the Bockstein homomorphism 
works as a derivation in a certain sense (cf. [2], 1. 6.). 

   We have the following theorems in [2] . 

   (1. 1) THEOREM.If 3v**=0 in it then admissible multiplication p„ exists 

in it ; 72).



   (1. 2) THEOREM. If there exists an admissible multiplication in  h( ; ') then 
admissible multiplications are in one-to-one correspondence with the elements of 

h-"(S° ; 77). 

   (1. 3) THEOREM. If there exists an admissible multiplication in h ( ; )7) 
then either there is no commutative one, or every one is commutative. 

   And see the formula (#) in the proof of Theorem 2. 5 in [2], we obtain 

   (1. 4) THEOREM. If there exists an associative and commutative admissible 

multiplication in h ( ; i) then every one is associative. 

   Furthermore in this note we obtain the following theorems. 

   (1. 5) THEOREM. The admissible multiplication ,u, which is given by (1. 1) is 
commutarive, i, e., if 3v**=0 in h then the admissible multiplications in h ( ; )7) 

are commutative. 

   (1. 6) THEOREM. The admissible multiplication p, which is given by (1. 1) 

is associative, i. e., if 31)**=0 in it then the admissible multiplications in h ( 77) 

are associative. 

   From Theorem 5. 3 in [2] , we obtain 
                    ~VN 

   (1. 7) COROLLARY. Through the Wodd isomorphism KU*( )-->K0*( ( ;77), 
there exist the admissible multiplications in KU-theory and they are commutative and 

associative. 

   In this note we devoted the proofs of (1. 5) and (1. 6). Throughout 

this note we use the same notations as [1] and [2] .

   2. Correction and enlargement to the article [2] . 

   2. 1. Put 

   P=S2 U e4, Q=S3 U e7, Nn, (S3PVS6) U e8 and N,= (S"\/S6) U e8, 
3y 3.1,23yVn 

where 77, v are 1-stem and 3-stem Hopf maps respectively and i : S2—>P 

is natural inclusion (cf. [2], § 3). We have following cofibration sequences,

(2. 1) S'  2> S'r1>P S", 
(2. 2) S'  3v> S" ~'~ SQ -5.1> S3, 
(2. 3) S'P 3(S2i)v(S37t) SZPC t0 N,7 '~0> S"P , 
(2. 4) S'P 3v (S3'r) S" r r°, Nn n° > S"P , 

(2. 4') Q S6 L-`- Nn SQ , 

(2. 5) SS t0-7> Nn c ~  N P •



And we have relations 

    (2. 6)v01=S4i, (S47)n0=n'r1and nlio=i'. 

   2. 2. Making use of Lemma 3. 1 in [2] and Puppe's sequence associated 

with the cofibration (2. 1), we have following exact sequence

 0—~  (S3P, S2) 1 L, (S3P, (S3P, S4) --->0 , 
Cit 

Z24Z12 

(i)(v7r)

where (v), (v7r) are represented by the generators of above groups. Denote 

by (a, (3, r) the Toda bracket [4] , we consider an element v7r of (S3P, P) 

which is an extension of v7r, then

12vn E —i*(v, v, 127r) . 

 Since (v, v, 12n) consists of a single element, 

(77, v, 12n) = (r„ i3, 70= (773, V, 7r) =12v . 

 Thus, 

12v-n= —12iv and 12 (iv +vn) =12(1P/\v) =0 . 

    Similarly, we have the following exact sequence

—.(S4P, S3) IL, (S4P, S2) t!, (S4P, P) ~L, 0 . 
II? II~ 

  Z2 4 Z2 

  (v) (v2n)

Since 1pAi =3iv(S7r) and 

nv=;(1PAn) =3yiv(Sir) =3v2n=v2n , 

i* is trivial in the above sequence. Then we have 

   (2. 7) PROPOSITION. (S3P, P)"'Z12 +Z24 : with generators 1P/\v, iv (or vn) , 

(S4P, P) =0 . 

   2. 3. By (3. 25) in [2] , { ' (=a09 E (S6, P A P) is of type (1, 1) . Ex-

changing the generator, we obtain



   (2. 8)  PROPOSITION. (S6, +Z : with generators ao' and CAi, 
where ao' satisfies (lpArr)ao'= (1pAr[)Tao'=S4i (T=T(P, P)). 

   The element of (S6, PAP) is determined by its type. Since is of 

type (0, 2), we obtain

(2. 8')

   There are some mistakes on the generators of Lemma 3. 6 in [2], then 

we revise as follows. 

   (2. 9) PROPOSITION. The groups (S2-k, PAP) and (PAP, S4+kP) are isomor-
nhic to the corresnondinQ .rtrouns in the following table:

k?3 k=2 k=1 k=0 k=-1 k=-2 

      0 Z 0 Z+Z-}-Z Z3 Z+Z+Z 

generators of 1pAi, ao'(S27r), C(S2C)/\i, 1pAC, 

(S2-Y, PAP)(`nl)~iCAi(or CzrAi)iv(SK)Ai a1(or al) 

generators of1pAr, (S4i)f0, S2C(Cnn), 1pA, 
(S207rA7r IS3i(Y7rA7r) 

(PAP, S4-"P) 1 iA7r(or C7rA7r) f1(or fin)

where al, Q1, al and 01 are elements satisfying 

(1pArr)a1=Cn, Q1(1pA (lpAa')a1=iC and 0,(1pAi)=iC. 

   (2. 9') PROPOSITION. We can choose the element al as the generator of 

(S4, PAP) such that 

a1(S4i) =CAi and (1pA7r) a1=Cn . 

   PROOF. Making use of (2. 8') and the relation iC+Crc = 2.1p, we obtain 

      7r*(bAb) =2.1p/ \C— (IAs) (S4C) =2(1pA~—ap'(S4C)) (S2t.)Ai . 

On the other hand, since 

(lpA7r)*(1pAC—ao'(S4C) — =2•lsap—S4(iC+Crr) =0 , 

we have 

1p/ Z'—a0'(S4)=l'(lp/\i)(S2C)(S4C)+al , 

for some integer 1'. Then, 

     rr*(CAC) = (2l'+1)C(S2C)Ai+2a1. 

Put i*a1=1(CAi)+mao' (for some integers 1, m),



 0=i*7r*(CAC) = (21'+1)i*(CAi) (S4C) +2i*al 
            = (2(21'+1) +21)CAi+ma°' . 

Thus 1= — (21'+1) and m=0. 

Therefore, we put al'=(1'+1)e(S2C)Ai+a, and take al=a1' as a generator of 

(S4, PAP) then a1 satisfies (2. 9'). 

   2. 4. The results (3.19) in [2] are incorrect, they should be replaced 

by following ; 

(2.10) PROPOSITION.

 groups i>7 1=6 l 1=5i=4  i=3 i=2 
{N,,, S'P}= 0   Z 0--- Z+ZZ3Z +.Z  

iaaopro. Criro={a'7r1bin-7r° C(S2C)iro, eo 
generators 

=hr'r'(or iCiro) =ivs'nl

where e° is defind by eoi° = 2 • i. 

   2. 5. Making use of Lemma 3.5 in [2] and (2. 9), we have following 

exact sequence associated with (2. 5),

0--~ {S4P, P/~P} n0- {N~,                       PAP)-->(S4,0  PAP) --->0 . 
                   IR 

Z+Z+ZZ 

(~(S'2~)~i,1 \S, al) ('Al)

Then we obtain that (Ne, PAP) is a free group with generators (C (S2C) Ai) 

7r°y (1pAC)n°, a17ro and w, where w is an extension of iAi (cf. [2], (3. 22)). 

By (2. 10) and the relation 1pAv = 3iv (S7r), the map (1pA'2) * : {N,,, S4P) -* (N,, 

S3P) is trivial. And since (1pA7r)*(C(S2C)Ai)no=0, (1pA7r)*(1pA4) = 2rr, 

and (1pA7r) * a17ro = C7r7ro, we can put (1 pA7r) *w = (2a +1) no + bC7r7ro for some 

integers a and b. Here we put

w'=w—a(1p/\e)7ro—ba17r°

then w'i°=wi°=iAi, (1p/\7r)w'=7ro. Thus we have the following 

   (2. 11) PROPOSITION. 

(Ne, PAP).Z+Z-I-Z+Z: with generators (C(S2C) Ai) no, (1pAC) 7ro, a17r° and w, 
where w is an element satisfying wi = iAl and (1pA7r) w = 7r°.



   2. 6. We consider the ordinary homology maps induced by elements 

of  (N„, PAP) . Let ek' be a generator of group 11,(N„) (k=4, 6, 8) and et 

Ae, be generators of group Hk (PAP) (i, j=2, or 4, i+j=k) given by 3. 5 in 

[2] . For the generators, induced homology maps can be expressed as 

(~(S2C)Ai)*7r,* : (e4', es', e8') I--> (0, 4e,Ae2, 0) , 

(1P/ C)*iro* : (e4', e6', e891—, (0, 2e2Ae4, 2e4Ae4) , 

ai*7To* : (e4', e6', e8') (0, / \                                         2e4e2,2e4/ \e4), 

w*:(e4',e,',e8')f--(e2Ae2, \e2, ke4//~\e2+e2//~\e4, e4Ae4)                                                          \e4)

for some integer k. 

   Thus the element of stable homotopy group (N„, PAP) is determind by 

its ordinary homology map type. Particularly the homology map induced 

by a (given by Proposition 3. 8 in [2]) is 

    (2. 12) a*: (e4', e6', e801---> (me2Ae2, e4Ae2+e2Ae4, e4Ae4), 

for some integer m. And Ta has of same homology map type (where 

T=T(P, P)). Then we obtain 

    (2. 13)LEMMA. Ta = a in (N„, PAP) , where a is given by Proposition 3. 

8 in [2] and T=T (P, P).

   3. Proof of Theorem (1. 5) . 

   Let p be an associative and commutative multiplcation in h, and assume 

that (lxA3v)*=0 in h for any finite CW-complex X. And let p„ be the 

admissible multiplication in h ( ; r,) constructed in [2] . That is, for x E 

h'(X ; 7) =hi}4(XAP) and y E h'(Y; 72) =h'"(Y/\P), we have 

,u„(x 0 Y) =Q-4rw(1 wna) * (1xAT'A1P) *P(x ® y) 

where W=XAY and T'=T(Y,P). 

   Put 

,t„'(x ®y) = (-1)t;T”*p,7(Y ® x) 

for T"=T(X, Y) . p„' is also an admissible multiplication and by a rautine 

calculation making use of the naturality of r etc., we see that 

/e„'(x ®Y)=0-4rw(1wA(Ta))*(1xAT'A1P)*,a(x 0 y), 

where T=T(P, P). From (2. 13), Ta=a in (N„, PAP) thus p„'=,u„, it fol-

lowes Theorem (1. 5) .



   4. Stable homotopy of some elementary complexes. 

   4. 1. Making use of Lemma 3. 1 in  [2]  , (2. 6) and Puppe's exact sequences 

associated with (2. 2) and (2. 4'), we obtain following tables (4. 1) and (4. 2). 

   (4. 1) PROPOSITION.

 groupsi<-1 i=0i=1 i=21=3 i=4 1=5 i=6 

(S`P, SQ)^' 0 Z 0 ZZ3 Z Z6 Z 

----------------------------------------------------------------------------------------------1 generatorsi'ir i'(S2C) i'v(S3ir) 7Ci'V C

where rr, C are elements satisfying n'rr=4(S47) and n'e=4(S6). 

   (4. 2) PROPOSITION.

 groupsi<-1 i=0 1=1 i=2i=3i=4 

(Si P, N„)- 0 Z 0Z+ZZ3Z+Z 

generatorsiorio(S2C), ii(S2n) iov(S37t) ii(S'C), Fo         
i I

where eo is defined by n,Eo=7r.

   4. 2. Consider the Puppe's exact sequence associated with a cofiberation 

  (4. 3)ST- - PASQ S8P 

From results of Lemmas 3. 1, 3. 2 in [2] , (2. 7), (4. 1) and (4. 2), we have 

following tables (4. 4)—(4. 7) . 

   (4. 4) PROPOSITION.

 groupsi>13 1=12 1=11 i=10 i=9 i=8 i=7 i=6 

{PASQ,S`)='  0 Z 0 Z Z3 Z Z6 Z 

                                                                                                               i generatorsnnn'CAir' vnAn'n vAir' C

wher rr ,C are defined by 7r(1P/\i')=4(S4n) and C(1PAi') =4(S4C) .



(4. 5)  PROPOSITION.

 groupsi�_10 i=9 i=8 1=7i=6 

(PASQ, S'Q) 0 Z0ZZ3 

 generatorsi'irAir'i'(CAi') i'v(rrArc') 

 groups 1=5i=41=3 

(PASQ, S'Q)Z+ZZ6Z+Z 

  generators (lsQAa)T,rc(1pArr')i'(;Arc') (1SQAC)T, C(1pArc')

where T =T (P, SQ) . 

   (4. 6) PROPOSITION.

 groupsi>11 i=10i=9 i=81=7 

(PASQ, S'P)- 0 Z0 Z+ZZ3 

  generatorsi (rr/\rr')i-eArr', 1pArr' iv(S7r)(1pAa') 

 groupsi=6i=5i=4 

(PASQ, S'P)-Z+ZZ3+--Z6Z+Z 

                                  1p/\vrr', Iv(1pArr') _ 
 generators irr, C(S2e)(1pAn') _C1, i{'(or Cir)                                     (

or vrr(1pAir'))

where iir, are defined by iir(1 pAi') =2iir, E, (1pAi') ^4.1$4p and Cr(1Ai') _ 

4C7r

(4. 7) PROPOSITION.

  groupsi?9 i=8 1=7 i=6 1=5i=4 

(PASQ, S'N„)- 0 Z 0 Z+Z Z3Z+Z+Z 

io(C/\n'),il(CArc'), 
 generatorsioiArr'iov(rrArr') i
i(lrAir')Co(1pnir'), Po

where Po is an element satisfying



   (4. 8)  Pa(1PAi')=S4(io7r), (S4ir1)1)0=(lsQArr)T and (S'rro)Po=IPArr'• 

   PROOF OF (4. 8). We take pa" as a generator of (PASQ, S'N7) such 

that po" (1 PAi') = S4 (ion). From (4. 5), we can put 

(S471'1)Po"=a(lsgA7r)T+bir(1PA7r') 

for some integers a and b. Since T(S4, S9=1 and rrlio=i', 

(S4i1)P0"(1P/ \i') =a(lsQA7r)T(1PAi') =aS4(i'n) 

and a=1. Put 

Po'=Po"—bfo(1pAir') 

then we have the following relations 

(*) (S4rr1)Po'= (1sQA7r)T, Pu'(1P/\i') =Po"(1p \i') =S4 (ion) . 

   We discuss the ordinary homology maps induced by the elements of 

(PASQ, S8P) and (PASQ, S4N) . Since po' satisfies the relations (*), the map 

Po'* is repraced as 

Po'* : (e2Aea, e4/ \e4, e2Ae8, e4Ae8) r- (0, c4e1', l'a4e6', a4e8') 

for some integer 1', where e1Ae, is a generator of I +,(PASQ) and ek' is 

a generator of Hk (Nn) . From (4. 6), the element of (PASQ, SAP) is deter-

mined by its homology map type. Then considering the homology maps , 
we obtain

(S4rro)Po =1p/1rr'+l(iCArr') 
for some integer 1 and l'=21+1. 

   Hence we take 

Po =Po'— l• S41.1(C/\i') 
then it satisfies the relations (4. 8) and we can choose it as a generator of 

(PASQ, S4Nn} •Q. E. D. 

   4. 3. Since i* : (SSP, S4)---(S7, S4) is isomorphic and v&i=21), we have 

= 2v. Then 

(1PA3v) (ft.-An') =3.  S5 (lv (S3")) (1pArr') 
=6-S5(iv) (1PAn'') • 

   We consider the following exact sequence associated with the cofibra-

tion (4. 3).

0—*{PASQ, S4P) (1Al')*~(PASQ, PASQ)(ln'r')—*-> (PASQ, S3P) 

(1A3v)*(PASQ
,5 —a...



Making use of (4. 6) and above relation,  (1PA3v)  * is trivial in this sequence 

and we obtain the following 

   (4. 9) PROPOSITION. ^                    (PASQ, PASQ)Z+Z+Z+Z; with generators (iA 

i')C, (1P/ \i') #1, 1PASQ and ibyA1SQ • 

   4. 4. The following lemma will be used in the next section. 

   (4. 10)LEMMA. For any a E (Nv, PAP) satisfying (1PArr) a = rro there 

exists an element K=Ka E (PASQ, PANO such that 

(1PAno)K= (S4a)Po E (PASQ, PAS4P)

and 

(1P/Vr1)K=IPASQ E (PASQ, PASQ) • 

   PROOF. Since (1P/\S47r) (S4a)po=1PArr' (by (4. 8)), 

(1PA3vn')*(S4a)Po= (1P/\3v) (1PAir') =3.1PAvir'=0 

in (PASQ, S5P) . Thus there exists an element K' E (PASQ, PAN,) such that 

                     C1P/ \~0)~'- (S4a)Po • 
And we have 

^/~/~/~/~            (1P/ir') (1pir1)ic'= CIP/\S4ir) CIP/7ro)K'— CIP/7r')1PASQ

Therefore, 

1PASQ- (1P/ \7r1) K' E Image ((1P/\i') * : (PASQ, S4P) —~ (P/\SQ, PASQ)) • 

Thus for some element x E ST)(PASQ, S

/) ,                  1PASQ—ClP/nlr1)K'+ (lp/\t')x . 

Put rc=x'+ (1PAio)x then 

(1PA7'o)K= (1PAno)K'= CS4a)Po 

(IPAlr1)K— (1P/ ir1)i'+ (1P/ \i')x=1PASQ 

because rrlio=i'.Q. E. D. 

   4. 5. We shall discuss some structure of PAPAP. 

   (4. 11)PROPOSITION. There exists a (stable) homotopy equivarence 

                 e E (S6PV (PASQ), PAN„) 

such that (1PArr1) a is the projection of S6PV (PASQ) onto PASQ. 

   PROOF. Consider the cofibration (2. 4') we have 

PANN=PA(S6 U CQ) =S6P U C(PAQ) 
777['11DA727r 

By (4. 6), 1PAvrr'= (1PAi) (1PArr') =3iv (Sir) (lp/\rr') =0 in (PASQ, S'P). Thus, by



general argument we can conclude the proposition. 

   From the complex structure  Nn, 3i0v is homotopic to i1.7 then 

1pAion= (1pAio)S4(3iv(Sir)) _ (iA3iov)S5ir 

_ (iAi171)S5ir= (1pni1)S4(k(Sir)) =0

in (S5P, PAN?) . Thus

PAN? =PA (Nn U C(S5)) _ (PANn) U C(S5P) 
      ion1pA{0n

is homotopic to (PAN?) VS6P, i, e., there exists a homotopy equivarence el 

E (PAN,, (PANn) V S6P) .

   Using the homotopy equivarence a E (Nn, PAP) (Lemma 3. 3 in [2]) we 

put 

a=(1pAa)e1-1(eVls6p) E (S6PV (PASQ) VS6P, PAPAP) 

then a is a homotopy equivarence. Thus we have 

   (4. 12) PROPOSITION. The space S6PV (PASQ) /S6P is homotopic to PAP 

AP (in stable).

   By (4. 6) and (4. 9), the elements of (PASQ, S6P) and (PASQ, PASQ) 

are determind by these induced homology map types. Therefore, we obtain 

   (4. 13)PROPOSITION. (PASQ, PAPAP)^ZZ+Z+Z+Z+Z+Z+Z+Z and 

the element is determind by induced homology map type. 

   Now we consider the homology maps induced by (lpAa),c and T'(lpA 

a)K, where T'=T(P, PAP). Denote by e,Ae,Aek generators of /it (PAPAP) 

where l=i+j+k and i, j, k=2, or 4. From (2. 12) and (4. 10), we obtain 

(1p/ \a)*K*: (e2/ \e4, e4Ae4, e2 \e8, e4/ \e8) i-> (me2 \e2 \e2, m(e2 \e2 \e4+e2 \ 

e4Ae2 + e4Ae2Ae2), e2Ae4Ae4+e4Ae2Ae4+e4Ae4/\e2, e4Ae4Ae4), 

and

T'* (1pAa) *4 _ (1p/\a) *K*

Thus we have the following 

   (4. 14) LEMMA. (lpAa)K=T'(lpAa),c in (PASQ, PAPAP), 

where T'=T(P, PAP).

5. Proof of Theorem (1. 6) .

5. 1. Let p be an associative commutative multiplication in h, and as-



sume that  3v**=0 in h. Under this assumption the exact sequence of h 

associated to the cofibration (2. 2) brakes into the following short exact 

sequences

(5. 1) ('A7r2:n (W/\SQ) (1—Ai9->hk(WAS4)->o .
for any W and k. In particular, for W=S° and k=4, we can choose an 

element r, E h4 (SQ) such that

(5. 2)i'*r, =a41 .

Put ro=7r,*r, . Then, by (2. 6), To satisfies the relations 

i°*ro = a41 and i,*ro=0 . 

Hence any multiplication ,a, constructed in [2] by making use of this To is 

admissible. We discuss the asscoiativity of such a multplication ,a0. 

   Since, for x E hk(WASQ) 

(1wAi0*,a(0-4(1wAi')*x ® Ti) =,a(a-4(1wAi0*x ® i'*ri) 

(lwAi') *x , 

x—,a(0-4(1wAi0*x ®r,) E Ker. (1w/\i')*. By (5. 1), (1w/\7r')* is monomorphic. 

Thus we can defined a homomorphism 

rw hk(W/\SQ)~>hk(W/\S8) 

for any W by 

   (5. 3) rw(x) = (1w/\7r9*-1(x—,a(a-4(1wAi')*x ® r,)) 

   Similarly as in Lemma 4. 3 in [2] , we see 

   (5. 4) LEMMA. (i) rw is a left inverse of (lwA7ro)* , 

(ii) rw is natural in the sense that 

                      (S8f)*rw=rw• (fAlso) * 

for f:

   5. 2. We define rw by using 7rl*Ti as To (cf. [2], 4. 2). For any x E 

hk(WANNAS4) and Po of (4. 8) we obtain 

    (1wAp \7')*c4rwa-4x—(1wApn')*(1w/ \S47r0)*-,(x—c4a(a-4(1w/io)*a_4x ® To)) 

Po**x—Clw//~\P0)*a41a(c-4(1wAio)*(f4x®ni*r,) 
          = Po**x— (1wAT,CS47,)Po)* ,2((lwAio)*(7-4x ® Ti) 

          = Po**x— (1w/\lAlso) *At((lw/\io) *a-4x ®r,) 

= po**x—p (a-4(1w/\S4(io7r))*x ® Ti)



=  po**x—,(6-4(1WAPAi0*(1wAPo)*x 0 ri) 

= (1WAPA7')*TWAP(1wAP0)*x, where T1=T(SQ, S4). 

   Since (1WAPA7r')* is monorphic, we have 

   (5. 5) LEMMA. For the element po E (PASQ, S4N~) of (4. 8) there holds the 
relation 

-7-WAPC1w/ P0)*=0-4rwC-4. 

   For any x E hk(WAPAN,), we put 

x,= p(6-4(1 wAPAio)*x ® ri) =c-4(1wAPACioAlso)T1)*,u(x ® ri) • 

Then we have 

(lwAP/ \io)*rwnPx=x— (lwAP/ \7T1)*x' 

and 

(1WAPA')*x'=c-4C1WAP/ \(i4Also)(ls4Ai'))*, (x0r1) 
=6-4/2((1WAP/ \i0)*x 0 i'*r1) 
= (1WAP/ i0)*X

Hence 

rwnPx'= (1wAP/ n')*-1(x'—,a(6-4(1wAP/ i0)*x ® ri)) =0 . 

Thus, by (4. 10) and (5. 5), 

rw(lwAa)*a-4rwAPX=6-4rwAP(1w/ \PO)*(1wAS4a)*rwnPx 

=c-4rwAP (1wAK) * (1 WAP/ \iro) *rwAPX 

= c-4rwAP (CiwAK) *X - x') 

=6-4rwAP(1WAK)*x

We have the following 

   (5. 6) LEMMA. For K=Ka of (4. 10) there holds the relation 

rw(lwAa)*6-4rwnP=6-4rwAp(1wAK)* . 

   5. 3. Put W=X/\ YAZ, the map U: WAPAPAP--->XAPA YAPAZAP is 

given by a permutation of factors as U(x, y, z, p, p', p") = (x, p, y, p', z, 

p"). And put T=T(P, P), T'=T(P, PAP), T1=T(Y, P), T2=T(Z, P), T3=T 

(XAYAP, ZAP), T4=T(Z/\P, XAPAYAP) and T2'=T(Y/\Z, P). From Lem-
ma 4. 3 in [2] and (5. 6) we obtain



 /27,  (10 /1,) = Q-41,Wa**(1

AT/                      R/AT2'~/ \1P)*P(1 0 Q-4rYAZa**(1Y/ \T2/ \1P)*/J)         =Q-4rwa**(1X21\1P)*Q-4rXAPAYAZa**(1XAPAYAT2A1P)*P(1®,/) 
         = 0-4rwa**a-4rwnpa**U*,u(1 ®,u) 

       = v-1rwAP(1WA1)*a**U*,u(10 p)

   On the other hand we obtain,from(2. 13) and (4.14), 

  /n(1, 0 1) =c4rwa**(1xAy/\T2/n\1P)*P(Q-4rxAYa** (11\T1/n\1P)*1 0 1) 
= Q-4rwa**(1XAYAT2A1P)*T3*Q-4rZAPAXAYa**(1zAPAXAT1A1P)*T4* 

/2(11®1) 
= c-4rwa**(1wAT)*(1-4rwAPa**(1 WAT)*U*,u(,u 0 1) 

= v-4rWa**a-4rWAPa**(1WAT')*U*p(P 0 1) 

                     M = o-BrwnP(1 wAK)*a**(1 wAT')*U*,u(p 0 1) 

= Q-arwnP(1w/~K)*a**U*/~(/2 0 1) 

i 

   Since ,u is an associative multiplication, we have 

/277(1- 0 /2) ,un (/2n 0 1) 

Thus theorem is followed.
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