九州大学学術情報リポジトリ Kyushu University Institutional Repository

Existence of the admissible multiplication in η^2 -coefficient cohomology theories

Ishikawa, Nobuhiro College of General Education, Kyushu University

https://doi.org/10.15017/1448942

出版情報:九州大学教養部数学雑誌. 8 (1), pp.1-9, 1971-10. College of General Education, Kyushu University

Minversity バージョン: 権利関係:

Existence of the admissible multiplication in η^2 -coefficient cohomology theories

Ву

Nobuhiro ISHIKAWA (Received July 15, 1971)

1. Introduction

Let \tilde{h} be a reduced cohomology (defined on the category of finite CW-complexes) and be equipped with a multiplication μ , i.e., μ is a map: $\tilde{h}^i(X) \otimes \tilde{h}^i(Y) \rightarrow \tilde{h}^{i+j}(X \wedge Y)$ for all i and j, which is i) linear, ii) natural, iii) has a bilateral unit $1 \in \tilde{h}^0(S^0)$ and iv) is compatible with suspension σ in \tilde{h} in the sense that $\sigma \mu(x \otimes y) = (1 \wedge T)^* \mu(\sigma x \otimes y) = (-1)^i \mu(x \otimes \sigma y)$ for deg x = i, where T is a map switching factors $T = T(Y, S^i)$. If the map μ is commutative (in the general sense), or associative, we say that multiplication μ is commutative, or associative.

Let η be a stable class of the Hopf map $S^3 \rightarrow S^2$ and $\eta^2 = \eta \cdot (S\eta)$ be a generator of stable homotopy group (S^{n+2}, S^n) . The (reduced) η^2 -coefficient cohomology $\tilde{h}(\ ; \eta^2)$ of a cohomology theory \tilde{h} is defined by

$$\widetilde{h}^{i}(X;\eta^{2}) = \widetilde{h}^{i+5}(X \wedge Q)$$
 for all i ,

where $Q = S^2 \bigcup_{\eta 2} e^5$. And the *suspension* isomorphism $\sigma_{\eta 2} : \tilde{h}^i(X; \eta^2) \to \tilde{h}^{i+1}(SX; \eta^2)$ is defined as the composition $\sigma_{\eta 2} = (1_X / T)^* \sigma$, where $T = T(S^1, Q)$. Let $i: S^2 \to Q$, $\pi: Q \to S^5$ be the inclusion and the map collapsing S^2 . We define

$$\rho_{\eta^2}: \widetilde{h}^i(X) \rightarrow \widetilde{h}^i(X; \eta^2), \text{ reduction mod } \eta^2,$$

$$\delta: \widetilde{h}^i(X; \eta^2) \rightarrow \widetilde{h}^{i+3}(X), \text{ Bockstein homomorphism,}$$

respectively by $\rho_{\eta^2} = (-1)^i (1/\pi)^* \sigma^5$, $\delta = (-1)^i \sigma^{-2} (1/i)^*$. We call $\delta_{\eta^2} = \rho_{\eta^2} \cdot \delta$ the mod η^2 Bockstein homomorphism.

The multiplication μ induces the following multiplications

$$\mu_R: \widetilde{h}(;\eta^2) \otimes \widetilde{h} \rightarrow \widetilde{h}(;\eta^2),$$

$$\mu_L: \widetilde{h} \otimes \widetilde{h}(;\eta^2) \rightarrow \widetilde{h}(;\eta^2)$$

in a natural way (c. f. [3]). A multiplication μ_{η^2} in $\tilde{h}(;\eta^2)$ is said to be admissible if it satisfies

- (Λ_1) $\mu_R = \mu_{\eta^2}(1 \otimes \rho_{\eta^2}), \ \mu_L = \mu_{\eta^2}(\rho_{\eta^2} \otimes 1),$
- (Λ_2) $\delta_{\eta^2}\mu_{\eta^2}(x\otimes y) = \mu_L(\delta x\otimes y) + (-1)^i\mu_R(x\otimes \delta y)$ for deg x=i and
- (Λ_3) if x or y, or z, is ρ_{η^2} -images, then

$$\mu_{\eta^2}(\mu_{\eta^2}(x \otimes y) \otimes z) = \mu_{\eta^2}(x \otimes \mu_{\eta^2}(y \otimes z)).$$

In this note we discuss the admissible multiplications in the η^2 -coefficient cohomology theories.

LEMMA 1. (H. Toda [5] Lemma 3.5) $1_{Q} \wedge \eta^{2} = 0$ in the stable homotopy group $\{S^{4}Q, S^{2}Q\}$.

Then we have homotopy equivarence $Q \wedge Q \sim S^2 Q \vee S^5 Q$ in the stable range. We obtain

PROPOSITION 2. Let ν be a generator of $\{S^{n+3}, S^n\}$ and G be a subgroup of $\{S^5Q, S^5Q\}$ generated by $S^5(i\nu\pi)$ then there exist an element $\gamma \in \{S^5Q, Q \land Q\}$ satisfying the relations

- i) $-(1_Q \wedge \pi) \gamma = (1_Q \wedge \pi) T \gamma = 1_{SSQ}$ in $\{S^5Q, S^5Q\} \mod G$ and
- ii) $T(1_Q \wedge i) = 1_Q \wedge i \gamma(S^5 i)(S^2 \pi)$ in $\{S^2 Q, Q \wedge Q\}$, where T is a map switching factors T = T(Q, Q).

Making use of γ we define a map μ_{η^2} as the composition;

Then we obtain

THEOREM 3. If $(1_X \wedge i\nu\pi)^* = 0$ in \tilde{h}^* for any X and if \tilde{h} is equipped with an associative multiplication, then there exists an admissible multiplication μ_{η^2} in \tilde{h} (; η^2).

Throughout this note we use the same notations as [1] and [3].

2. Stable homotopy groups of some elementary complexes

New we compute some stable homotopy groups for the proof of Proposition 2. Let $Q = S^2 \bigcup_{\pi^2} C(S^1)$. We have a cofiblation

$$S^2 \xrightarrow{i} Q \xrightarrow{\pi} S^5$$

where i is the inclution and π is the map collapsing S^2 to a point.

From the Puppe's exact sequence associated with above cofiblation, we obtain

(2.1) the groups $\{S^{n+i}, S^nQ\}$ and $\{S^nQ, S^{n+7-i}\}$ $(i \le 8)$ are both isomorphic to the corresponding groups in the following table;

	<i>i</i> ≤1	i=2	i =3	i=4	<i>i</i> =5	i=6	i=7	i=8
$\{S^{n+i}, S^nQ\} \simeq$ $\{S^nQ, S^{n+7-i}\} \simeq$	0	Z	Z_2	0	Z - $\vdash Z_{12}$	0	Z_2	$Z_2 + Z_{24}$
generators of $\{S^{n+i}, S^nQ\}$		i	iη		ξ, ίν		$\widetilde{\eta}^2$	iv², ṽ
generators of $\{S^nQ, S^{n+7-i}\}$		π	ηπ		ζ, νπ		$\bar{\eta^2}$	$v^2\pi$, $\overline{\nu}$

where ξ , ζ , $\tilde{\eta}^2$, $\bar{\eta}^2$, $\tilde{\nu}$, and $\bar{\nu}$ are elements satisfying

$$\pi\xi = 2 \cdot 1_{S^5}$$
, $\zeta i = 2 \cdot 1_{S^2}$, $\pi \tilde{\eta}^2 = \eta^2$, $\bar{\eta}^2 i = \eta^2$, $\pi \tilde{\nu} = \nu$, $\bar{\nu} i = \nu$,

and we have relations $\xi \eta = 0$, $\eta \zeta = 0$.

(2.2) The groups $\{S^nQ, S^{n+i}Q\}$ $(i \ge -2)$ are as follows;

	<i>i</i> ≥4	<i>i</i> =3	<i>i</i> =2	i=1	<i>i</i> =0	i=-1	i=-2
$(S^nQ, S^{n+i}Q)\simeq$	0	Z	Z_2	0	$Z+Z+Z_{12}$	Z_2	Z_2
generators		$(S^3i)\pi$	$(S^2i)\eta\pi$		1_Q , $\xi \pi$ or $i\zeta$, $i\nu \pi$	$1_Q extstyle \eta$	$\widetilde{\eta}^2\pi = i\overline{\eta^2}$

and we have relation $i\zeta + \xi \pi = 2 \cdot 1_Q$.

From Lemma 1 (Toda [5] Lemma 3.5) we have a homotopy equivarence

$$Q \land Q \sim S^2 Q \lor S^5 Q = N$$

in the stable range. Hereafter, we use the following notations:

 $i_0: S^2Q \rightarrow N$, $i_1: S^5Q \rightarrow N$ the inclusions,

 $\pi_0: N \rightarrow S^5Q$, $\pi_1: N \rightarrow S^2Q$ the map collapsing S^2Q or S^5Q and these mappings will be fixed so as to satisfy the relations:

$$\pi_1 i_0 = 1_{S^2Q}, \ \pi_0 i_1 = 1_{S^5Q}.$$

- (2.3) There exists an element α of $\{N, Q \land Q\}$ satisfying the following three relations:
- i) α is a homotopy equivarence; i. e., there is a inverse $\beta \in \{Q / Q, N\}$ of α such that $\alpha\beta=1$ and $\beta\alpha=1$,
 - ii) $\alpha i_0 = 1_Q \wedge i$ thus $\beta(1_Q \wedge i) = i_0$,
 - iii) $(1_Q \wedge \pi) \alpha = \pi_0$ thus $\pi_0 \beta = 1_Q \wedge \pi$.

Put $\alpha_0 = \alpha i_1(S^5 i) \in \{S^7, Q \land Q\}$ and $\beta_0 = (S^2 \pi) \pi_1 \beta \in \{Q \land Q, S^7\}$. It follows from ii), iii) of (2.3) that

$$(1_Q \wedge \pi) \alpha_0 = S^5 i$$
 and $\beta_0 (1_Q \wedge i) = S^2 \pi$.

For any CW-complex W, we have the short exact sequences

$$0 \rightarrow \{W, S^{2}Q\} \xrightarrow{(1_{Q} \wedge i)_{*}} \rightarrow \{W, Q \wedge Q\} \xrightarrow{(1_{Q} \wedge \pi)_{*}} \rightarrow \{W, S^{s}Q\} \rightarrow 0,$$

$$0 \rightarrow \{S^5Q, W\} \xrightarrow{(1_Q \land \pi)^*} \rightarrow \{Q \land Q, W\} \xrightarrow{(1_Q \land i)^*} \rightarrow \{S^2Q, W\} \rightarrow 0,$$

associated with the cofiberation

$$S^2Q \xrightarrow{1_Q \land i} O \land O \xrightarrow{1_Q \land \pi} S^5Q$$

since $(1_Q \wedge \eta^2)_*$ and $(1_Q \wedge \eta^2)^*$ are trivial.

From (2.1), (2.2) and the above short exact sequence, we obtain

(2.4) the groups $\{S^i, Q \land Q\}$ and $\{Q \land Q, S^{14-i}\}$ are both isomorphic to the corresponding groups in the following table;

	<i>i</i> ≤3	i=4	i=5	<i>i</i> =6	i=7	i=8	<i>i</i> =9
$\{S^i,\;Qigwedge Q\}\simeq \ \{Qigwedge Q,\;S^{14-i}\}\simeq$	0	Z	Z_2	0	$Z+Z+Z_{12}$	Z_2	Z_2
generators of $\{S^i, Q \land Q\}$		i∧i	iη∧i		α_0 , $\xi \wedge i$, $i \nu \wedge i$	$i\widetilde{\eta}$	$\widetilde{\eta}^{2} \wedge i$
generators of $\{Q \land Q, S^{14-i}\}$		$\pi \wedge \pi$	ηπ/\π		β_0 , $\zeta \wedge \pi$, $\nu \pi \wedge \pi$	ηπ	$\overline{\eta}^2 / \pi$

where $i\eta$ and $\eta \pi$ are elements satisfying

$$(1_Q \wedge \pi) \widetilde{i\eta} = i\eta, \ \overline{\eta\pi} (1_Q \wedge i) = \eta\pi,$$

and we have relation $i\eta \eta^2 = \eta^2 \overline{\eta \pi} = 0$.

(2.5) The groups $\{S^iQ, Q \land Q\}$ are as follows:

generators

$$egin{aligned} &\{S^iQ,\ Q {ackslash}Q\}(i{\le}{-2}){\simeq}0 &; \ &\{S^{-1}Q,\ Q {ackslash}Q\}{\simeq}Z &; \ &(i{\wedge}i)\pi; \end{aligned}$$

$$egin{aligned} \{Q,\ Q ackslash Q\} &\simeq Z_2 & ; \ (i ackslash i) \eta \pi \,; \ \{S^1Q,\ Q ackslash Q\} &\simeq 0 & ; \ \{S^2Q,\ Q ackslash Q\} &\simeq Z + Z + Z + Z + Z_{12} \,; \ 1_Q ackslash i, \ lpha_0 (S^2\pi), \ \xi\pi ackslash i, \ i
u\pi ac$$

3. Proof of Proposition 2

First we consider the ordinary homology maps induced by the ele-

ments of
$$\{S^7, Q \land Q\}$$
 and $\{S^2Q, Q \land Q\}$. Let s_7 , $\binom{\sigma^t e_2}{\sigma^t e_5}$ and $\binom{e_2 \land e_2}{e_5 \land e_5}$ be $e_5 \land e_5$

the generators of the groups $\widetilde{H}_{7}(S^{7})$, $\widetilde{H}_{*}(S^{1}Q)$ and $\widetilde{H}_{*}(Q \wedge Q)$ respectively, where $\sigma^{i}e_{j}$ is a generator of $\widetilde{H}_{i+j}(S^{1}Q)$, $e_{i} \wedge e_{j}$ is that of $\widetilde{H}_{i+j}(Q \wedge Q)$, $e_{5} \wedge e_{2}$ is represented by 7-cell of $S^{2}Q$ if we put $Q \wedge Q = S^{2}Q \underset{1 \wedge \eta^{2}}{\cup} C(S^{4}Q)$ and $e_{2} \wedge e_{5}$ is the other 7-dim. generator. The element $f \in \{S^{7}, Q \wedge Q\}$ is called to be of type (k, l) if the induced homology map is $f_{*}(s_{7}) = k(e_{5} \wedge e_{2}) + l(e_{2} \wedge e_{5})$ for some integers k and l. From the relations $(\pi \wedge 1_{Q})(\xi \wedge i) = 2 \cdot (1_{Q} \wedge i)$, $(1_{Q} \wedge \pi)(\xi \wedge i) = 0$ and $(1_{Q} \wedge \pi)\alpha_{0} = S^{5}i$, the maps $\xi \wedge i$, α_{0} , $i \nu \wedge i$ are of type (2, 0), (n, 1) and (0, 0) respectively. Since $T\alpha_{0}$ is of type (1, n), n is odd. We put n = 2m - 1. The generator of $\{S^{2}Q, Q \wedge Q\}$ induce the homology maps $\widetilde{H}_{*}(S^{2}Q) \rightarrow \widetilde{H}_{*}(Q \wedge Q)$;

$$(1_{Q} \wedge i)_{*} : \begin{pmatrix} \sigma^{2}e_{2} \\ \sigma^{2}e_{5} \end{pmatrix} \longmapsto \begin{pmatrix} e_{2} \wedge e_{2} \\ e_{5} \wedge e_{2}, 0 \end{pmatrix},$$

$$(\alpha_{0}(S^{2}\pi))_{*} : \begin{pmatrix} \sigma^{2}e_{2} \\ \sigma^{2}e_{5} \end{pmatrix} \longmapsto \begin{pmatrix} 0 \\ (2m-1)(e_{5} \wedge e_{2}), e_{2} \wedge e_{5} \end{pmatrix},$$

$$(\xi\pi \wedge i)_{*} : \begin{pmatrix} \sigma^{2}e_{2} \\ \sigma^{2}e_{5} \end{pmatrix} \longmapsto \begin{pmatrix} 0 \\ 2(e_{5} \wedge e_{2}), 0 \end{pmatrix},$$

$$(i\nu\pi \wedge i)_{*} : \begin{pmatrix} \sigma^{2}e_{2} \\ \sigma^{2}e_{5} \end{pmatrix} \longmapsto \begin{pmatrix} 0 \\ 0, 0 \end{pmatrix}.$$

By (2.5), any element $f \in \{S^2Q, Q \land Q\}$ can be expressed as

$$f = a(1_Q \wedge i) + b\alpha_0(S^2\pi) + c(\xi\pi\wedge i) + d(i\nu\pi\wedge i)$$

for some integers a, b, c and d. Then

$$f_*: \begin{pmatrix} \sigma^2 e_2 \\ \sigma^2 e_5 \end{pmatrix} \longmapsto \begin{pmatrix} a(e_2 \wedge e_2) \\ (a + (2m-1)b + 2c)(e_5 \wedge e_2), \ b(e_2 \wedge e_5) \end{pmatrix}.$$

Let G' be a subgroup of $\{S^2Q, Q \land Q\}$ generated by $i\nu\pi\wedge i$, then the element $f \in \{S^2Q, Q \land Q\}$ mod G' is determined by its homology map. And then we can put

$$T(1_Q \wedge i) \equiv 1_Q \wedge i + \alpha_0(S^2\pi) - m(\xi\pi \wedge i) \mod G'$$

considering these homology maps.

If

$$T(1_{\wp} \wedge i) = 1_{\wp} \wedge i + \alpha_{\wp}(S^{2}\pi) - m(\xi\pi \wedge i) + k(i\nu\pi \wedge i)$$

for some $k \in \mathbb{Z}_{12}$, we take $\gamma_0 \in \{S^7, Q \land Q\}$ as

$$\gamma_0 = -\alpha_0 + m(\xi \wedge i) - k(i\nu \wedge i)$$

of type (1, -1). Then we can put

$$T\gamma_0 = \alpha_0 - m(\xi \wedge i) + k'(i\nu \wedge i)$$

for some $k' \in \mathbb{Z}_{12}$ and $T\gamma_0$ is of type (-1, 1). Thus γ_0 satisfies the relations:

i')
$$-(1_{Q} \wedge \pi) \gamma_0 = (1_{Q} \wedge \pi) T \gamma_0 = S^5 i$$
 in $\{S^7, S^5 Q\}$

and

ii')
$$T(1_Q \wedge i) = 1_Q \wedge i - \gamma_0(S^2\pi)$$
 in $\{S^2Q, Q \wedge Q\}$.

Next we consider the following commutative exact diagram

$$0 \longrightarrow (S^{10}, S^{2}Q) \longrightarrow (S^{10}, Q \land Q) \longrightarrow (S^{10}, S^{5}Q) \longrightarrow 0$$

$$0 \longrightarrow (S^{5}Q, S^{2}Q) \xrightarrow{(1 \land i)_{*}} \rightarrow (S^{7}Q, Q \land Q) \xrightarrow{(1 \land \pi)_{*}} (S^{7}Q, S^{5}Q) \longrightarrow 0$$

$$0 \longrightarrow (S^{7}, S^{2}Q) \longrightarrow (S^{7}, Q \land Q) \longrightarrow (S^{7}, S^{5}Q) \longrightarrow 0$$

$$\downarrow 0 \longrightarrow (S^{7}, S^{5}Q) \longrightarrow 0$$

From (2.2)~(2.5) we choose $\bar{\xi} \in \{S^3Q, Q\}$ and $\tilde{\xi} \in \{S^{10}, Q \land Q\}$ satisfying the relations

$$(1_Q \wedge i)(S^2 \overline{\xi})(S^5 i) = \xi \wedge i$$
 and $(1_Q \wedge \pi) \widetilde{\xi}(S^5 \pi) = S^5 (\xi \pi)$.

Thus the free part of $\{S^{s}Q, Q \land Q\}$ is Z+Z+Z generated by $\alpha i_{1}, \overline{\xi} \land i$ and $\widetilde{\xi}(S^{s}\pi)$.

Let H be the torsion subgroup of $(S^{s}Q, Q \wedge Q)$. And if we put $f \equiv a\alpha i_1 + b(\overline{\xi} \wedge i) + c\tilde{\xi}(S^{s}\pi) \mod H$, then

$$f_*: \begin{pmatrix} \sigma^5 e_2 \\ \sigma^5 e_5 \end{pmatrix} \mid \longrightarrow \begin{pmatrix} (an+2b)(e_5 \land e_2), \ a(e_2 \land e_5) \\ (a+2c)(e_5 \land e_5) \end{pmatrix}.$$

Thus the element $f \in \{S^5Q, Q \land Q\} \mod H$ is determined by its homology map. Since $(S^5i)^*1_{SSQ} = S^5i = (1_Q \land \pi)_*(-\gamma_0)$ and since $(1_Q \land \pi)_*$ is epimorphic in the above diagram, we can take $\gamma \in \{S^5Q, Q \land Q\}$ satisfying the relations

$$(S^{5}i)^{*}\gamma = \gamma_{0} = -\alpha_{0} + m(\xi \wedge i) - k(i\nu \wedge i),$$

 $(1_{Q} \wedge \pi)_{*}\gamma = -1_{S^{5}Q}.$

And, considering the homology maps, we obtain

$$\gamma = -\alpha i_1 + m(\overline{\xi} \wedge i)$$
 and $T\gamma = \alpha i_1 - m(\overline{\xi} \wedge i)$ mod H .

Thus γ satisfies

$$(1_{\varrho} \wedge \pi) \gamma = -1_{S5\varrho} \equiv -(1_{\varrho} \wedge \pi) T \gamma \mod G$$

and

$$T(1_Q \wedge i) = (1_Q \wedge i) - \gamma(S^5 i)(S^2 \pi)$$
 (by ii')),

where G is a subgroup of $\{S^5Q, S^5Q\}$ generated by $S^5(i\nu\pi)$.

4. Proof of Theorem 3

Let μ be an associative multiplication in a cohomology theory \tilde{h} , we shall prove that μ_{n^2} is an admissible multiplication.

(4.1) If $(1_X \wedge i\nu\pi)^* = 0$ in \tilde{h}^* then the map μ_{η^2} is a multiplication in $\tilde{h}^*(\ ;\ \eta^2)$ satisfying (Λ_1) .

PROOF. The linearity and the naturality of μ_{η^2} are obvious. To prove (Λ_1) , put T=T(Q,Q), $T_1=T(Y,Q)$, $T_2=T(Y\wedge Q,S^5)$ and $T'=T(S^6,Q)$. By definitions of μ_{η^2} and ρ_{η^2} we have on $\tilde{h}^i(X)\otimes \tilde{h}^i(Y;\eta^2)$

$$\mu_{\eta^{2}}(\rho_{\eta^{2}} \otimes 1)$$

$$= (-1)^{2i}\sigma^{-5}(1_{X\wedge Y}\wedge \gamma)*(1_{X}\wedge T_{1}\wedge 1_{Q})*\mu((1_{X}\wedge \pi)*\sigma^{5} \otimes 1_{Y\wedge Q})$$

$$= \sigma^{-5}(1_{X\wedge Y}\wedge \gamma)*(1_{X}\wedge T_{1}\wedge 1_{Q})*(1_{X}\wedge \pi\wedge 1_{Y\wedge Q})*\mu(\sigma^{5} \otimes 1)$$

$$= \sigma^{-5}(1_{X\wedge Y}\wedge \gamma)*(1_{X\wedge Y}\wedge \pi\wedge 1_{Q})*(1_{X\wedge Y}\wedge T')*(1_{X}\wedge T_{2})*\mu(\sigma^{5} \otimes 1)$$

$$= \sigma^{-5}(1_{X\wedge Y}\wedge \gamma)*(1_{X\wedge Y}\wedge T)*(1_{X\wedge Y\wedge Q}\wedge \pi)*(1_{X}\wedge T_{2})*\mu(\sigma^{5} \otimes 1)$$

$$= \sigma^{-5}(1_{X}\wedge T_{2})*\mu(\sigma^{5} \otimes 1) \qquad \text{by Proposition 2, i)}$$

$$= \mu = \mu_{L}.$$

Similarly we see that on $\tilde{\mathit{h}}^{i}(\mathit{X}\,;\,\eta^{2})\!\otimes\!\tilde{\mathit{h}}^{i}(\mathit{Y})$

$$\mu_{\pi^2}(1 \otimes \rho_{\pi^2}) = (-1)^j (1_X \wedge T_1)^* \mu = \mu_R$$

i. e., (Λ_1) was proved.

Since unit 1 is a left unit for μ_L and a right unit for μ_R , then (Λ_1) implies that $\rho_{\eta^2}(1)=1_{\eta}$ is a bilateral unit of μ_{η^2} .

To prove the compatibility of μ_{η^2} with σ_{η^2} , put $T_1 = T(Y, Q)$, $T_2 = T(S^1, Q)$, $T_3 = T(Y \land Q, S^1)$, $T = T(Y, S^1)$ and $T_1' = T(SY, Q)$. By definition of μ_{η^2} and σ_{η^2} we have on $\tilde{h}^i(X; \eta^2) \otimes \tilde{h}^i(Y; \eta^2)$

$$egin{aligned} \sigma_{\eta^2}\mu_{\eta^2}&=(-1)^i(1_{X\wedge Y}ackslash T_2)^*\sigma\sigma^{-5}(1_{X\wedge Y}ackslash \gamma)^*(1_Xackslash T_1ackslash 1_Q)^*\mu\ &=(-1)^{i+1}(1_{X\wedge Y}ackslash T_2)^*\sigma^{-5}(1_{X\wedge Y}ackslash S\gamma)^*(1_Xackslash T_1ackslash 1_{SQ})^*(1_{X\wedge Q}ackslash T_3)^*\mu(\sigma\otimes 1)\ &=(-1)^{i+1}(1_Xackslash T_1ackslash 1_Q)^*\sigma^{-5}(1_{SX\wedge Y}ackslash \gamma)^*(1_{SX}ackslash T_1ackslash 1_Q)^*\mu((1_Xackslash T_2)\sigma\otimes 1)\ &=(1_Xackslash T)^*\mu_{\eta^2}(\sigma_{\eta^2}\otimes 1), \end{aligned}$$

since $T_0 = T(S^1, S^5)$ is a map of degree -1. Similarly we see that

$$\begin{split} \sigma_{\eta^2} \mu_{\eta^2} &= \sigma^{-5} (1_{X \wedge SY} \wedge \gamma)^* (1_X \wedge T_1' \wedge 1_Q)^* \mu (1 \otimes (1_Y \wedge T_2) \sigma) \\ &= (-1)^i \mu_{\eta^2} (1 \otimes \sigma_{\eta^2}). \end{split} \qquad Q. \text{ E. D.}$$

(4.2) The multiplication $\mu_{\eta 2}$ satisfies (Λ_2) .

PROOF. Put T=T(Q, Q), $T_1=T(Y, Q)$ and $T'=T(Y \land Q, S^2)$. We have on $\tilde{h}^i(X; \eta^2) \otimes \tilde{h}^j(Y; \eta^2)$

$$\begin{split} \mu_{L}(\pmb{\delta} \otimes 1) + & (-1)^{i}\mu_{R}(1 \otimes \pmb{\delta}) \\ &= (-1)^{i}\mu(\sigma^{-2}(1 \wedge i)^{*} \otimes 1) + (-1)^{i+2j+3}(1_{X} \wedge T_{1})^{*}\mu(1 \otimes \sigma^{-2}(1 \wedge i)^{*}) \\ &= (-1)^{i}\sigma^{-2}\{(1_{X} \wedge T')^{*}(1_{X} \wedge i \wedge 1_{Y \wedge Q})^{*} - (1_{X} \wedge T_{1} \wedge 1_{S2})^{*}(1_{X \wedge Q \wedge Y} \wedge i)^{*}\}\mu \\ &= (-1)^{i}\sigma^{-2}\{(1_{X \wedge Y \wedge Q} \wedge i)^{*}(1_{X \wedge Y} \wedge T)^{*} - (1_{X \wedge Y \wedge Q} \wedge i)^{*}\}(1_{X} \wedge T_{1} \wedge 1_{Q})^{*}\mu \\ &= (-1)^{i}\sigma^{-2}\{(1_{X \wedge Y} \wedge T(1_{Q} \wedge i))^{*} - (1_{X \wedge Y} \wedge 1_{Q} \wedge i)^{*}\}(1_{X} \wedge T_{1} \wedge 1_{Q})^{*}\mu \\ &= (-1)^{i+1}\sigma^{-2}(1_{X \wedge Y} \wedge \gamma(S^{6}i)(S^{2}\pi))^{*}(1_{X} \wedge T_{1} \wedge 1_{Q})^{*}\mu \quad \text{by Proposition 2, ii)} \\ &= \pmb{\delta}_{\eta 2}\mu_{\eta 2}. \end{split}$$

(4.3) The multiplication $\mu_{\eta 2}$ satisfies (Λ_3) .

PROOF. Since $\mu_{\eta 2}$ satisfies (Λ_1) it is sufficient to prove the following three relations:

- i) $\mu_{\eta^2}(\mu_L \otimes 1) = \mu_L(1 \otimes \mu_{\eta^2})$ on $\tilde{h}^i(X) \otimes \tilde{h}^j(Y; \eta^2) \otimes \tilde{h}^k(Z; \eta^2)$,
- ii) $\mu_{\eta^2}(\mu_R \otimes 1) = \mu_{\eta^2}(1 \otimes \mu_L)$ on $\tilde{h}^i(X; \eta^2) \otimes \tilde{h}^i(Y) \otimes \tilde{h}^k(Z; \eta^2)$,
- iii) $\mu_R(\mu_{\eta^2} \otimes 1) = \mu_{\eta^2}(1 \otimes \mu_R)$ on $\tilde{h}^i(X; \eta^2) \otimes \tilde{h}^j(Y; \eta^2) \otimes \tilde{h}^k(Z)$.

To prove i) putting $T=T_1(Z, Q)$, we have

$$\mu_{\eta^2}(\mu_L \otimes 1) = (-1)^{i+j} \sigma^{-5} (1_{X \wedge Y \wedge Z} \wedge \gamma) * (1_{X \wedge Y} \wedge T_1 \wedge 1_Q) * \mu(\mu \otimes 1)$$
$$= (-1)^{i+j} \sigma^{-5} \mu(1 \otimes (1_{Y \wedge Z} \wedge \gamma) * (1_Y \wedge T_1 \wedge 1_Q) * \mu)$$

$$= (-1)^{j} \mu (1 \otimes \sigma^{-5} (1_{Y \wedge Z} \wedge \gamma)^{*} (1_{Y} \wedge T_{1} \wedge 1_{Q})^{*} \mu)$$

= $\mu_{L} (1 \otimes \mu_{\eta^{2}}).$

In a similar way we can easily see ii) and iii). Q. E. D.

References

- [1] S. Araki and H. Toda, Multplicative structures in mod q cohomology theories I, and II, Osaka J. Math., 2 (1965), 71-115, and 3 (1966), 81-120.
- [2] A. Dold, Relation between ordinary and extra-ordinary homology, Colloq. on algebraic top., 1962, Aarhus Univ., 2-9.
- [3] N. ISHIKAWA, Multiplications in cohomology theories with coefficient maps, J. Math. Soc. Japan, 22 (1970), 456-489.
- [4] D. Puppe, Homotopiemengen und ihre induzierten Abbildungen, I, Math. Z., 69 (1958), 299-344.
- [5] H. Toda, Composition methods in homotopy groups of spheres, Ann. of Math. Studies No. 49, Princeton, 1962.