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Abstract

We developed an iterative method for determining the time-dependent three-

dimensional temperature distribution in a spherical body with smooth sur-

face that is irradiated by a star. In the method developed in our previous

paper (Sekiya et al., 2012), only the rotational motion is taken into account

and the effect due to the revolution around the star is ignored. The present

work includes both the effects of the rotation and the revolution. We take

into account the cooling due to the surface radiation that is proportional to

the fourth power of the temperature; this is the difference in the present work

from Vokrouhlický (1999) that employs the linear approximation for the ra-

diative cooling. It is assumed that material parameters such as the thermal

conductivity and the thermometric conductivity are constant throughout the

spherical body. We obtain a general solution for the temperature distribution

inside a body by using the spherical harmonics and the spherical Bessel func-
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tions for space and the Fourier series for the time. The term in the boundary

condition that represents the heating due to the star is also expanded into

the spherical harmonics and the Fourier series. The coefficients of the gen-

eral solution are fitted to satisfy the surface boundary condition by using an

iterative method. We obtained solutions that satisfy the nonlinear boundary

condition within 0.1% accuracy. The temperature distribution determined

according to the iterative method is different from that according to the

linear approximation; both the maximum and minimum temperatures at a

given time after the summer solstice for an iterative solution are lower than

those for a linear solution. The maximum difference between rate of change

of the semimajor axis due to the Yarkovsky effect according to the iterative

solution and that according to the linear solution is about 20%. Therefore,

current understanding of the Yarkovsky effect based on linear solutions is

fairly good.

Keywords: Temperature, radiation, asteroids, small bodies, meteorites

1. Introduction

In planetary science, accurate determination of the temperature distribu-

tion in a small body is important. The Yarkovsky effect, i.e. the variation

of the orbital semimajor axis of a small body in a planetary system due to

the recoil force of the thermal radiation, is determined by the surface tem-

perature distribution and its diurnal and seasonal variation (Bottke et al.,

2006, and reference therein). In many asteroid families, members with small

absolute magnitude (i.e. large ones) reside near the mean value of the semi-

major axis, while members with large absolute magnitude (i.e. small ones)
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spread over a wide range of the semimajor axis; this is explained by the

Yarkovsky effect because a smaller body has a larger surface area-to-mass

ratio and susceptible to the orbital change due to the surface recoil force of

the thermal radiation (Vokrouhlický et al., 2006a,b). The Yarkovsky effect is

also important for continuous supply of near-Earth asteroids whose survival

time is considered much less than the age of the solar system (Gladman et

al., 2000). The main belt asteroids migrate slowly by the Yarkovsky effect,

and some of which are captured into, for example, powerful ν6 secular reso-

nance at the inner edge of the asteroid belt and 3/1 mean-motion resonance,

etc., and transported to near-Earth region (Bottke et al., 2002; Morbidelli

and Vokrouhlický, 2003; La Spina et al., 2004).

Information on the albedo and size distribution of asteroids is important

to elucidate their mineralogy, taxonomy and origins. Simultaneous observa-

tions of an asteroid by the visible and the thermal infrared combined with a

suitable thermal model allow one to determine the diameter and the albedo

(Delbó and Harris, 2002; Masiero et al., 2011).

For a sample-return mission, e.g. Hayabusa (MUSES-C) of JAXA that

collected more than 1500 dust particles from Asteroid 25143 Itokawa (Naka-

mura et al., 2011), preliminary estimates of size and geometry of a target

body by using a thermal model was important for planning (Sekiguchi et al.,

2003). Hayabusa 2 of JAXA and OSIRIS-REx of NASA are sample-return

missions, targets of which are asteroids 1999 JU3 and 1999 RQ36, respec-

tively; preliminary estimates of their temperature as a function of the depth

are very important because organic compounds may be destroyed under a

high temperature at its surface and we have to know in advance the depth

3



below which organic compounds keep their primitive compositions (Michel

and Delbo, 2011; Delbo and Michel, 2011).

Most of theoretical works on the thermal evolution of parent bodies of

meteorites have been performed with an assumption that the surface tem-

perature is given by a constant average temperature (Miyamoto et al., 1981;

Grimm and McSween, 1989; Ghosh and McSween, 1998; Young et al., 2003;

Wakita and Sekiya, 2011). However, the surface temperature is, in reality,

not constant, and changes with time due to the rotation and revolution of

a parent body. Some types of carbonaceous chondrites (CI, CM and CR)

contain solar-wind-implanted gases; hence, these meteorites came from the

surface of their parent bodies (Bischoff et al., 2006). Volatile organic matters

and some components of the rare gases may be lost if the surface temper-

ature rises significantly above the average temperature. Thus it would be

interesting to incorporate the diurnal as well as the seasonal variation of the

surface temperature distributions into the thermal evolution model of parent

bodies of meteorites.

If radiogenic heat sources are negligible, the temperature distribution is

determined by the surface heating due to the irradiation of the star, the

radiative cooling due to the Stefan–Boltzmann law that is proportional to

the fourth-power of the temperature, and the heat conduction inside the

body. A pioneering work by Vokrouhlický (1998) solved the temperature

distribution in a small body analytically taking the rotation of the body

but omitting the revolution around a star by using the linear approximation

(Tav + δT )4 ≈ T 4
av + 4T 3

avδT for the radiative cooling term, where Tav is the

average temperature and δT is the difference between the temperature and
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the average temperature. In the subsequent work, Vokrouhlický (1999) ob-

tained an analytic solution that takes into account both the rotation and the

revolution completely, assuming that the orbit of the body is circular and us-

ing the linear approximation. Vokrouhlický and Farinella (1999) developed a

semianalytical-nonlinear theory of the seasonal Yarkovsky effect by assuming

an axisymmetric temperature distribution.

We recently developed an iterative method for determining temperature

distribution of a rotating spherical body using the fourth power of the tem-

perature for the radiative cooling taking only the rotational motion into

account but omitting the seasonal variation due to the revolution around a

star (Sekiya et al., 2012, hereafter cited as Paper I). Paper I corresponds to a

nonlinear version of Vokrouhlický (1998). Next step is to develop a nonlinear

version of Vokrouhlický (1999); this is the subject of the present work.

2. Basic equations

2.1. General formulation

We consider a spherical body that rotates at a constant angular veloc-

ity ω̃rot (hereafter, we use a tilde for dimensional variables in order to dis-

tinguish them from the corresponding dimensionless variables that will be

introduced later). It is assumed that the orbit of the body is circular; there-

fore, the body revolves around the star with a constant angular velocity

ω̃rev = (G̃M̃∗/ã
3)1/2, where G̃ is the universal gravitational constant, M̃∗

is the mass of the star, and ã is the semimajor axis. It is assumed that

the luminosity of the star, L̃∗, remains constant; therefore, the stellar flux

F̃∗ = L̃∗/(4πã
2) will also remain constant. Further, we assume that the sur-
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face of the body is smooth and all relevant physical properties of a body,

such as the absorption coefficient α = 1 − A where A is the Bond albedo,

and the emissivity ϵ of the surface, thermal conductivity k̃T , and the ther-

mometric conductivity κ̃ = k̃T/(ρ̃C̃), where ρ̃ is the material density and C̃

is the specific heat, are constant throughout the object and remain constant

with time.

Figure 1

We use a coordinate system (x̃, ỹ, z̃) with the origin at the center of the

body (see Fig. 1); this coordinate system does not rotate with respect to the

inertial system, even though a translational displacement occurs due to the

body’s orbital motion around the star; the z̃ axis is set in the direction of

the rotational angular momentum of the body; the x̃ axis is set so that the

direction of the star viewed from the body on the time of summer solstice is

in the x̃-z̃ plane at an angle γ from the x̃–axis, where γ is the obliquity of

the rotation axis of the body; finally, ỹ–axis is determined so that x̃, ỹ and

z̃ form a right-handed coordinate system. The orbital velocity of the body

is in the opposite direction of the ỹ–axis at the time of summer solstice.

Figure 2

The thermal conduction equation is expressed as follows:

∂T̃

∂t̃
+ ω̃rot

∂T̃

∂ϕ
=

κ̃

r̃2

{
∂

∂r̃

(
r̃2
∂T̃

∂r̃

)
+

[
1

sin θ

∂

∂θ

(
sin θ

∂T̃

∂θ

)
+

1

sin2 θ

∂2T̃

∂ϕ2

]}
.

(1)

Here, we use the spherical coordinate system (r̃, θ, ϕ), the pole of which is in

the direction of the rotation axis; θ is the colatitude and ϕ is the longitude
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measured from the x̃-z̃ plane as illustrated in Fig. 2, and r̃ is the distance

from the center of the body. Note that r̃ = R̃ at the surface of the body,

where R̃ is the radius of the body. Further, T̃ is the temperature, t̃ is the time,

and the second term on the left-hand side (LHS) represents the advection of

the temperature for an angular velocity ω̃rot. In Paper I, the first term on the

LHS was omitted, because we ignored the orbital motion of the body. On the

other hand, we take into account the orbital motion in this paper, and the

direction of stellar flux changes with time; hence, the first term on the LHS

should remain. Because the orbital motion is periodic with the revolution

period P̃rev = 2π/ω̃rev, we restrict ourselves to solve solutions of T̃ that have

the period P̃rev. Note that the rotational motion is treated as the advection,

hence, the period of T̃ with respect to time is independent of the rotation

period P̃rot = 2π/ω̃rot; this is the advantage of treating the rotational motion

as the advection in non-rotating frame of reference.

The stellar heating rate Γ̃ is given by Eq. (3) of Paper I, where Θ is

the angle between the direction of the star and of a point with the spherical

coordinates (R̃, θ, ϕ) on the surface of the body when viewed from the center

of the body, as shown in Fig. 2. Note that Θ is a function of θ, ϕ and t̃,

unlike the case of Paper I in which Θ was independent of t̃. The dependence

of Θ on t̃ is periodic with the period P̃rev. The surface boundary condition is

given by Eq. (4) of Paper I that expresses the energy balance of the radiative

cooling, thermal conduction, and heating by the star per unit time and per

unit surface area of a body. The total balance of the stellar heating rate and

radiative cooling rate is expressed as:

πR̃2αF̃∗ = 4πR̃2ϵσ̃ <<< T̃ 4 >ϕ>θ>t̃, (2)
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where σ̃ is the Stefan–Boltzmann constant, <>ϕ≡ [1/(2π)]
∫ π

−π
dϕ is the

mean with respect to the longitude, <>θ ≡ (1/2)
∫ 1

−1
d cos θ is the mean

with respect to the colatitude, and <>t̃ ≡ (1/P̃rev)
∫ P̃rev

0
dt̃ is the mean with

respect to the time. Note that the mean with respective to the time of the

surface integral of the heat conduction flux must be zero because of the energy

conservation. We define the average temperature as T̃av ≡ [<<< T̃ 4 >ϕ>θ>t̃

]1/4 = [αF̃∗/(4ϵσ̃)]
1/4 = 280[(α/ϵ)(L̃∗/L̃⊙)]

1/4(ã/AU)−1/2 [K], where L̃⊙ is the

solar luminosity.

In the following part of the paper, we use the dimensionless temperature

T ≡ T̃ /T̃av, radius r ≡ r̃/R̃, time t ≡ t̃κ̃/R̃2, the angular velocity of

the revolution ωrev ≡ ω̃revR̃
2/κ̃ and the angular velocity of the rotation

ωrot ≡ ω̃rotR̃
2/κ̃. Note that T is a function of four independent real variables:

(r, θ, ϕ, t). The average temperature can be considered to be Tav = 1. By

using these variables, Eq. (1) is expressed as

∂T

∂t
+ ωrot

∂T

∂ϕ
=

1

r2

{
∂

∂r

(
r2
∂T

∂r

)
+

[
1

sin θ

∂

∂θ

(
sin θ

∂T

∂θ

)
+

1

sin2 θ

∂2T

∂ϕ2

]}
.

(3)

The dimensionless form of the boundary condition is given by Eq. (7)

of Paper I, and the dimensionless heating rate Γ and the global thermal

parameter qglobal are given by Eqs. (8) and (9), respectively, of Paper I. Note

that qglobal was denoted by λ in Vokrouhlický (1998) and χ in Vokrouhlický

(1999).

2.2. Iterative solution

Now, we develop an iterative method for determining a solution of Eq.

(3) that satisfies the dimensionless boundary condition given by Eq. (7) of
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Paper I. We choose T (0) = 1 as the zero-th order solution that satisfies Eq.

(3). The j-th order solution is expressed as follows:

T (j) = T (j−1) + δT (j). (4)

Because Eq. (3) is linear in T , its difference δT (j) too must satisfy Eq.

(3). In order to solve Eq. (3) for δT (j), we first expand δT (j) by using the

Fourier series with respect to time

δT (j) (r, θ, ϕ, t) =
ℓmax∑

ℓ=−ℓmax

δT
(j)
F,ℓ (r, θ, ϕ) exp (−iℓωrevt) , (5)

where i is the imaginary unit, and δT
(j)
F,ℓ (r, θ, ϕ) is the complex Fourier coef-

ficient (the subscript “F” shows that they are the Fourier components of the

corresponding variable). We should replace ℓmax by ∞ for the completeness

of the Fourier series. However, we use a finite value of ℓmax for numerical

computation. We set ℓmax=32 throughout this paper; we have confirmed well

convergence using this value for solutions we have obtained. Note that δT
(j)
F,ℓ

is a function of three independent real variables, r, θ, ϕ, and one integer

index ℓ. The Fourier component of T (j) (r, θ, ϕ, t) is expressed as

T
(j)
F,ℓ (r, θ, ϕ) = δℓ0 +

j∑
j′=1

δT
(j′)
F,ℓ (r, θ, ϕ) , (6)

where δℓ0 is Kronecker’s delta; this term comes from the zero-th order solution

T (0) = 1.

We further expand δT
(j)
F,ℓ (r, θ, ϕ) by using the spherical harmonics for

(θ, ϕ)

δT
(j)
F,ℓ (r, θ, ϕ) =

nmax∑
n=0

n∑
m=−n

δT
(j)
n,m,ℓ (r)Cn,m (θ, ϕ) , (7)
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where Cn,m (θ, ϕ) is a complex spherical harmonics defined just below, and

δT
(j)
n,m,ℓ (r) is a complex function of a real variable r and three integer indices

(n,m, ℓ); a method to derive a general solution of δT
(j)
n,m,ℓ (r) will be shown

below. There are several definitions of the spherical harmonics; we use a

definition,

Cn,m (θ, ϕ) ≡ (−1)(m+|m|)/2

√
(n− |m|)!
(n+ |m|)!

P |m|
n (cos θ) exp(imϕ), (8)

where P
|m|
n (cos θ) is the associated Legendre function of the first kind. Note

that Cn,m = [4π/(2n + 1)]1/2Yn,m, where Yn,m is the normalized spherical

harmonics defined, e.g., by Eq. (15.3) of Wigner (1959). Further, note that

the spherical harmonics, Cn,m(θ, ϕ) with 0 ≤ n < ∞ and −n ≤ m ≤ n form

a complete orthogonal system for a continuous complex function of (θ, ϕ).

However, we use a finite value of nmax for numerical computation. We set

nmax = 32 throughout this paper; we confirmed well convergence when we

used this value.

Because the thermal conduction equation is linear, we can solve each term

in the summation on the RHS of Eq. (7) separately. By substituting Eq.

(7) into Eq. (5), and substituting the resultant expression into Eq. (3) and

comparing each term proportional to Cn,m (θ, ϕ) exp (−iℓωrevt), we get

(−iℓωrev + imωrot) δT
(j)
n,m,ℓ(r)

=
1

r2

{
d

dr

[
r2

d

dr
δT

(j)
n,m,ℓ(r)

]
− n(n+ 1)δT

(j)
n,m,ℓ(r)

}
. (9)

A solution of this equation, that is regular at r = 0, is jn(βm,ℓ r), where jn is

the spherical Bessel function of the first kind and βm,ℓ ≡ (iℓωrev−imωrot)
1/2.
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Among two square roots, we choose

βm,ℓ =

 bm,ℓ + ibm,ℓ for ℓωrev ≥ mωrot,

bm,ℓ − ibm,ℓ for ℓωrev < mωrot,
(10)

where bm,ℓ ≡ (|ℓωrev −mωrot|/2)1/2. Because jn(βm,ℓ r) and its derivative

βm,ℓj
′
n(βm,ℓ r) may take very large or very small values, we multiply them by

Bn(βm,ℓ), a coefficient that depends on n and βm,ℓ, as follows:

ĵn(βm,ℓ, r) ≡ Bn(βm,ℓ)jn(βm,ℓ r), (11)

and

ĵ′n(βm,ℓ, r) ≡ Bn(βm,ℓ)βm,ℓj
′
n(βm,ℓ r), (12)

in order to get appropriate values for computation. Note that ĵn(βm,ℓ, r) and

ĵ′n(βm,ℓ, r) are functions of a complex number βm,ℓ, a real number r and an

integer index n. We find it convenient to use the following equations for

determining Bn(βm,ℓ):

Bn(βm,ℓ) =

 βm,ℓ/ sin (βm,ℓ − [nπ/2]) for |βm,ℓ| ≥ 1,

(2n+ 1)!! (βm,ℓ)
−n for |βm,ℓ| < 1.

(13)

Note that we get ĵn(βm,ℓ, r) = rn and ĵ′n(βm,ℓ, r) = nrn−1 if βm,ℓ = 0 (i.e.,

ℓωrev = mωrot). The detailed procedures for calculating ĵn(βm,ℓ, r) and

ĵ′n(βm,ℓ, r) using Bn(βm,ℓ) determined by Eq. (13) are given in Appendix

A of Paper I, although we did not realize that ĵ and ĵ′ are determined by

a set of three variables βm, r and n when we wrote Paper I, and we used

inappropriate expressions ĵn,m(βm) and ĵ′n,m(βm), that should be replaced by

ĵn(βm, 1) and ĵ′n(βm, 1).
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Hence, we obtain a general solution of Eq. (9) that is regular at r = 0

δT
(j)
n,m,ℓ(r) = δT (j)

n,m,ℓ ĵn(βm,ℓ, r), (14)

where δT (j)
n,m,ℓ is a constant complex number, and it will be determined on the

basis of the surface boundary condition. Substituting Eq. (14) into Eq. (7),

and substituting the result of which, in turn, into Eq. (5), we get a general

solution of Eq. (3):

δT (j) (r, θ, ϕ, t) =
ℓmax∑

ℓ=−ℓmax

nmax∑
n=0

n∑
m=−n

δT (j)
n,m,ℓ ĵn(βm,ℓ, r)Cn,m (θ, ϕ) exp (−iℓωrevt) .

(15)

Substituting Eq. (4) into the surface boundary condition given by Eq.

(7) of Paper I, we get[
1

4

(
T (j−1) + δT (j)

)4
+ qglobal

(
∂T (j−1)

∂r
+

∂δT (j)

∂r

)]
r=1

= Γ (cosΘ). (16)

We expect that δT (j) is on the order of o(εj), where ε is a positive number

less than unity. By expanding the nonlinear term using δT (j) and omitting

the terms on the order of o(εj), we get
(
T (j−1) + δT (j)

)4 ≈ (T (j−1)
)4
+4δT (j).

Hence, we get the following boundary condition:[
δT (j) + qglobal

∂δT (j)

∂r

]
r=1

= Γ (cosΘ)− Λ(j−1)(θ, ϕ, t)− qglobal

[
∂T (j−1)

∂r

]
r=1

,

(17)

where we denote the dimensionless radiative-cooling-rate by Λ(j−1)(θ, ϕ, t) ≡[
1
4

(
T (j−1)

)4]
r=1

.

Because we have already obtained the general solutions of the thermal

conduction equation for δT (j) by performing the expansion on the basis of
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the spherical harmonics and the Fourier series, and because Eq. (17) is linear

in δT (j), we can get a solution that satisfies Eq. (17) by expanding the right-

hand side (RHS) of Eq. (17) on the basis of the spherical harmonics and

the Fourier series. The last term on the RHS of Eq. (17) has been already

determined when we are going to calculate δT (j) by employing the iterative

method.

Figure 3

The first term on the RHS of Eq. (17) is expressed as follows:

Γ (cosΘ) =
nmax∑
n=0

Γn Pn(cosΘ), (18)

(see Eq. (25)–(27) of Paper I as for the values of the coefficients Γn). In

order to calculate Pn(cosΘ), we use a different coordinate system (x̃′, ỹ, z̃′)

(see Fig. 3); the origin and ỹ axis of this coordinate system are identical to

those of the coordinate system (x̃, ỹ, z̃); z̃′ axis is set in the direction of the

orbital angular momentum of the body in the inertial frame whose origin is

at the star; x̃′ axis is set so that x̃′, ỹ and z̃′ form a right-handed coordinate

system. The coordinate system (x̃′, ỹ, z̃′) does not rotate with respect to the

inertial frame. The unit vector in the direction of the star viewed from the

center of the body is expressed as n∗ = (cos(ωrevt), sin(ωrevt), 0) in coordinate

system (x̃′, ỹ, z̃′), where we set t = 0 at an instant of the summer solstice. We

define a corresponding spherical coordinates (r̃, θ′, ϕ′) in the usual manner as

shown in Fig. 3. Because Θ is the angle between two points with sets of the

colatitude and the longitude (θ′, ϕ′) and (π/2, ωrevt) when viewed from the

center of the body as drawn in Fig. 3, the Legendre polynomial as a function
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of cosΘ is expressed using these variables according to the addition theorem

(e.g., Arfken , 1970, Eq. (12.200))

Pn(cosΘ) =
n∑

ℓ=−n

Cn,ℓ(θ
′, ϕ′)C∗

n,ℓ(π/2, ωrevt)

=
n∑

ℓ=−n

Cn,ℓ(π/2, 0)Cn,ℓ(θ
′, ϕ′) exp(−iℓωrevt). (19)

Because (x̃, ỹ, z̃) system is given by rotating (x̃′, ỹ, z̃′) system with respect to

the ỹ axis at an angle γ, we get

Cn,ℓ(θ
′, ϕ′) =

n∑
m=−n

Cn,m(θ, ϕ)D(n)({0, γ, 0})m,ℓ, (20)

from Eq. (15.5) of Wigner (1959), where the elements of the transformation

coefficient are given by Eq. (15.27) of Wigner (1959):

D(n)({0, γ, 0})m,ℓ =
∑
k

(−1)k
[(n+ ℓ)!(n− ℓ)!(n+m)!(n−m)!]1/2

(n−m− k)!(n+ ℓ− k)!k!(k +m− ℓ)!

× cos2n+ℓ−m−2k (γ/2) sin2k+m−ℓ (γ/2) , (21)

where integer k varies within the range so that all arguments in factorials

are greater than or equal to zero. Hence, we get complete expansion of the

heating term by using the spherical harmonics as well as the Fourier series:

Γ (cosΘ) =
nmax∑
n=0

n∑
m=−n

n∑
ℓ=−n

Γn,m,ℓCn,m(θ, ϕ) exp(−iℓωrevt), (22)

where

Γn,m,ℓ = ΓnCn,ℓ(π/2, 0)D(n)({0, γ, 0})m,ℓ. (23)

Next, we express the second term on the RHS of Eq. (17) by using the

Fourier series:

Λ(j) (θ, ϕ, t) =
1

4

[
T (j) (1, θ, ϕ, t)

]4
=

ℓmax∑
ℓ=−ℓmax

Λ
(j)
F,ℓ (θ, ϕ) exp (−iℓωrevt) , (24)
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where the first argument “1” of T (j) shows that it is the temperature at the

surface of the body where r = 1. Note that Λ(j) (θ, ϕ, t) is a real number, but

its Fourier component Λ
(j)
F,ℓ (θ, ϕ) is a complex number. Further, note that we

used superscript (j) in the above equations to represent a general relation,

but we should replace (j) by (j− 1) when we apply this relation to Eq. (17).

The Fourier component is given by

Λ
(j)
F,ℓ (θ, ϕ)

=
1

4

[ ∑
ℓ1+ℓ2+ℓ3+ℓ4=ℓ

T
(j)
F,ℓ1

(1, θ, ϕ)T
(j)
F,ℓ2

(1, θ, ϕ)T
(j)
F,ℓ3

(1, θ, ϕ)T
(j)
F,ℓ4

(1, θ, ϕ)

]
,

(25)

where the summation is performed for all repeated permutation of four in-

tegers −ℓmax ≤ ℓp ≤ ℓmax (p = 1, 2, 3, 4) with the condition that the sum of

the four integers should be equal to a given value of ℓ.

We further expand Λ
(j)
F,ℓ (θ, ϕ) by using the spherical harmonics:

Λ
(j)
F,ℓ (θ, ϕ) =

nmax∑
n=0

n∑
m=−n

Λ
(j)
n,m,ℓCn,m (θ, ϕ) , (26)

where Λ
(j)
n,m,ℓ is a constant complex number, the value of which is calculated

by using the orthogonal relation of the spherical harmonics:∫ π

0

dθ sin θ

∫ π

−π

dϕCn,m (θ, ϕ)C∗
n′,m′ (θ, ϕ) =

4π

2n+ 1
δn,n′δm,m′ , (27)

where δn,n′ and δm,m′ are Kronecker’s deltas. Hence, we get

Λ
(j)
n,m,ℓ =

2n+ 1

4π

∫ π

0

dθ sin θ

∫ π

−π

dϕΛ
(j)
F,ℓ (θ, ϕ)C

∗
n,m (θ, ϕ) . (28)

This double integral is numerically calculated by using the quadrature by

parts; we used 360 and 720 meshes for ranges 0 ≤ θ ≤ π and −π ≤ ϕ ≤ π,

respectively, in the integration.
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Thus, by using the spherical harmonics with respect to (θ, ϕ) and the

Fourier series with respect to t, we can expand all the three terms on the

RHS of Eq. (17). By comparing terms with each set of (n,m, ℓ), we get

δT (j)
n,m,ℓ = frelax

Γn,m,ℓ − Λ
(j−1)
n,m,ℓ − qglobalT (j−1)

n,m,ℓ ĵ
′
n(βm,ℓ, 1)

ĵn(βm,ℓ, 1) + qglobalĵ′n(βm,ℓ, 1)
, (29)

where T (j−1)
n,m,ℓ = δn,0δm,0δℓ,0 +

∑j−1
k=1 δT

(k)
n,m,ℓ. The factor frelax should be equal

to unity in order to satisfy Eq. (17). If δT (j) that satisfies Eq. (17) is on

the order of εj with 0 ≤ ε < 1, the summation
∑∞

0 δT (j) would converges.

However, we found that the summation does not converge for parameters

we used. Hence, we set frelax = 0.5 throughout this paper for obtaining

iterative solutions; the summation always converged by using frelax = 0.5.

On the other hand, the linear solution is obtained by setting frelax = 1 and

j = 1 in Eq. (29).

We define the RMS error of the boundary condition for Fourier component

ℓ by

∆
(j)
ℓ ≡

{
1

4π

∫ 1

−1

d cos θ

∫ π

−π

dϕ∣∣∣∣∣ΓF,ℓ (θ, ϕ)− Λ
(j)
F,ℓ (θ, ϕ)− qglobal

[
∂T

(j)
F,ℓ (r, θ, ϕ)

∂r

]
r=1

∣∣∣∣∣
2}1/2

,(30)

where the Fourier transform of the heating term is given by

ΓF,ℓ (θ, ϕ) =
nmax∑
n=0

n∑
m=−n

Γn,m,ℓCn,m (θ, ϕ) . (31)

We continued the iteration until ∆ℓ ≤ 1 × 10−3 was satisfied for all the

Fourier components (-ℓmax ≤ ℓ ≤ ℓmax). In principle, we can obtain a solu-

tion that satisfies the nonlinear boundary condition with an arbitrary accu-

racy by using large values of ℓmax and nmax, and a large number of meshes
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for performing numerical integration of Eq. (28), and repeatedly using the

above-mentioned recurrence formulas as many times as needed.

2.3. Calculation of the thermal force

The force that acts on a spherical body due to the thermal emission for

the temperature distribution determined by j-th iteration is given by

f̃
(j)

= −R̃2

∫ π

−π

dϕ

∫ π

0

dθ sin θ

{
2ϵσ̃

[
T̃ (j)(R̃, θ, ϕ)

]4
/(3c̃)

}
n̂

= −2R̃2αF̃∗

3c̃

∫ π

−π

dϕ

∫ π

0

dθ sin θΛ(j) (θ, ϕ, t) (sin θ cosϕ x̂+ sin θ sinϕ ŷ + cos θ ẑ) ,

(32)

where c̃ is the speed of light, n̂ is the unit vector normal to the surface of the

spherical body, and x̂, ŷ and ẑ are the unit vectors in the directions of x̃-,

ỹ- and z̃-axes, respectively. By expanding Λ(j) (θ, ϕ) in Eq. (32) using Eqs.

(24) and (26), and using orthogonal relation given by Eq. (27) , we get

f̃ (j)
x − if̃ (j)

y =
8
√
2πR̃2αF̃∗

9c̃

ℓmax∑
ℓ=−ℓmax

Λ
(j)
1,1,ℓ exp(−iℓωrevt), (33)

and

f̃ (j)
z = −8πR̃2αF̃∗

9c̃

ℓmax∑
ℓ=−ℓmax

Λ
(j)
1,0,ℓ exp(−iℓωrevt), (34)

where f̃
(j)

= f̃
(j)
x x̂ + f̃

(j)
y ŷ + f̃

(j)
z ẑ. The unit vector in the direction of

revolution velocity is expressed as v̂ = cos γ sin(ωrevt)x̂ − cos(ωrevt)ŷ +

sin γ sin(ωrevt)ẑ. The time-averaged rate of change in the semimajor axis

is given by

⟨ ˙̃a(j)⟩t = 2 < f̃
(j) · v̂ >t /(m̃ω̃rev), (35)
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where m̃ is the mass of the body. We define the dimensionless rate of change

in the semimajor axis, ⟨ȧ(j)⟩t ≡ ⟨ ˙̃a(j)⟩t ω̃rev/Φ̃, where Φ̃ = πR̃2αF̃∗/(m̃c̃) is

the usual radiation force factor. The dimensionless rate ⟨ȧ(j)⟩t is expressed

as the sum of two terms:

⟨ȧ(j)s ⟩t =
8

9
sin γ

{
−ℑ

[
Λ

(j)
1,0,1

]
+ ℑ

[
Λ

(j)
1,0,−1

]}
, (36)

and

⟨ȧ(j)d ⟩t =
8
√
2

9

{
(1 + cos γ)ℑ

[
Λ

(j)
1,1,1

]
+ (1− cos γ)ℑ

[
Λ

(j)
1,1,−1

]}
, (37)

where ℑ represents the imaginary part of a complex number. These two

parts correspond to the “seasonal component” and the “diurnal/mixed com-

ponents” of the rate of change in the semimajor axis based on the linear

solution obtained by Vokrouhlický (1999). The seasonal component, ⟨ȧ(j)s ⟩t,

is strictly equal to zero, when γ= 0◦ and 180◦, as seen from Eq. (36). On the

other hand, the diurnal/mixed components ⟨ȧ(j)d ⟩t is not necessarily equal to

zero, even if γ= 90◦ as was found for the linear solutions by Vokrouhlický

(1999).

The dimensionless rate of change of the semimajor axis obtained by us-

ing the linear approximation, < ȧ >t, linear, is expressed as the sum of the

following two terms (Vokrouhlický, 1999):

< ȧs >t, linear=
8

9

[
−sin2 γ

4
(E1,0,1 − E1,0,−1)

]
, (38)

and

< ȧd >t, linear=
8

9

[
− cos4(γ/2)E1,1,1 + sin4(γ/2)E1,1,−1

]
, (39)

where

En,m,ℓ = ℑ

[
1

1 + qglobal{ĵ′n(βm,ℓ, 1)/ĵn(βm,ℓ, 1)}

]
. (40)
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2.4. Dimensionless parameters

The dimensionless temperature distribution (i.e., the dimensional tem-

perature distribution normalized by the average temperature) as a function

of θ, ϕ and t is determined on the basis of four dimensionless parameters:

qglobal, ωrot and ωrev, and γ. The global thermal parameter defined by Eq.

(9) of Paper I is expressed as qglobal = R̃c/R̃ where R̃c is the critical radius

defined by Eq. (37) of Paper I. The thermal parameters of the rotation and

the revolution are defined as

qrot ≡ k̃T T̃av/l̃rot

αF̃∗
= ω

1/2
rot qglobal = (P̃c/P̃rot)

1/2, (41)

and

qrev ≡ k̃T T̃av/l̃rev

αF̃∗
= ω1/2

revqglobal = (P̃c/P̃rev)
1/2, (42)

respectively. Here, l̃rot ≡ (κ̃/ω̃rot)
1/2 and l̃rev ≡ (κ̃/ω̃rev)

1/2 are penetration

depths of thermal waves for rotation and revolution, respectively, and the

critical period P̃c is given by Eq. (38) of Paper I. Note that the values of ωrot

and ωrev are determined from Eqs. (41) and (42) if the values of qglobal, qrot

and qrev are given.

3. Results and Discussion

We here show temperature distributions on the surface of a spherical

asteroid that has 100m in the physical radius, and 2.6AU in the orbital radius

as an example. We assume that the asteroid has the representative values

of the thermal conduction coefficient and the thermometric conductivity of

ordinary chondrites, k̃T = 1Wm−1 K−1 and κ̃ = 1×10−6 m2 s−1, respectively

(Yomogida and Matsui, 1983; Opeil et al., 2010); we further assume that

19



α = 1 and ϵ = 1 for simplicity. In this case, we get qrev ≈ 0.2 and qglobal ≈

0.01. We employ the relation of the rotation period and the physical radius

determined by Kadono et al. (2009), P̃rot(s) ≈ 20R̃(m); thus, we get qrot ≈ 50.

The temperature distributions are calculated at the summer solstice and the

autumn equinox, i.e. ωrevt = 0◦ and 90◦, respectively, in the case of γ = 60◦,

as an example.

Figure 4

Fig. 4 (a) and (b) shows the Mollweide projections of the temperature

distributions at the summer solstice (ωrevt = 0◦) determined by (a) the it-

erative method (frelax = 0.5 and j = 16) and (b) the linear approximation

(frelax = 1 and j = 1), respectively. The substellar point is shown by a sym-

bol “⋆”, the coordinates of which is (θ, ϕ) = (30◦, 0◦) at the summer solstice

(see Figs. 1 and 2 as for the definition of the coordinates). The eastern and

western ends on the equator in the Mollweide projections denoted by “E”

and “W”, respectively, show an identical point where it is the midnight with

coordinates (θ, ϕ) = (90◦, 180◦) and (θ, ϕ) = (90◦, −180◦) at the summer

solstice. The temperature is almost constant for the longitude at an each

colatitude in both the iterative and linear solutions. This is because the

temperature is averaged out over whole range of the longitude because of

fast rotation in the case of qrot = 50, i.e. P̃rot = 4× 10−4P̃c. The maximum

dimensionless-temperature is achieved around the north pole (T = 1.34 for

the iterative solution and T = 1.53 for the linear solution). It is rather dif-

ficult to determine an accurate position at which the temperature has the

maximum value, because the temperature distribution is very flat around

the north pole. The minimum dimensionless-temperature is achieved at the
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south pole in both the iterative solution (T = 0.64) and the linear solution

(T = 0.78). Both the maximum and minimum temperatures of the iterative

solution are lower than those for the linear solution. This is because the

dimensionless form of the cooling rate T 4/4 = (1+ δT )4/4 used to determine

the nonlinear solution is larger than (1/4) + δT used to determine the linear

solution for a certain value of δT .

Figure 5

Fig. 5 shows the temperature distributions of (a) iterative and (b) linear

solutions at the autumn equinox, ωrevt = 90◦, with the same parameters

as Fig. 4. The substellar point at the autumn equinox with coordinates

(θ, ϕ) = (90◦, 90◦) locates at the center of the Mollweide projections. Note

that we use a coordinate system that keeps a same direction with respect

to the inertial frame as shown in Figs. 1 and 2; therefore the sunup and

the sunset occur at ϕ = 0◦ and 180◦, respectively, at the autumn equinox.

The eastern and western ends on the equator in the Mollweide projections

denoted by “E” and “W”, respectively, show an identical point where it

is the midnight on the equator with coordinates (θ, ϕ) = (90◦, 270◦) and

(θ, ϕ) = (90◦, −90◦), at the autumn equinox. The temperature dependence

on the colatitude of the iterative solution shown in Fig. 5 (a) is different

from that of the linear solution shown in Fig. 5 (b): It is seen in Fig. 5 (a)

that the south pole is very cold (T = 0.60) for the iterative solution, because

the south pole has been in the polar night until the autumn equinox. In

contrast, Fig. 5(b) shows that the south pole is not so cold (T = 0.77). This

is again attributed to the difference in the nonlinear and linear cooling rates.

On the other hand, both the iterative and linear temperature distributions
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show the same value of the maximum temperature, T = 1.07, at almost same

positions, (θ, ϕ) = (82◦, 126◦) for the iterative solution and (81◦, 126◦) for

the linear solution. This is because δT = 0.07 is sufficiently less than unity

so that the linear approximation is good.

For comparison, we also obtained the iterative and linear solutions for

the thermal conduction coefficient k̃T = 1× 10−3 W m−1 K−1 and the ther-

mometric conductivity κ̃ = 1 × 10−9 m2 s−1; these values are a thousandth

of those of ordinary chondrites. Such low values may be realized for an as-

teroid covered by a thick regolith layer (Bottke et al., 2006). Although it is

more precise to employ a model developed by Vokrouhlický and Brož (1999)

in which a regolith shell with a low thermal conductivity covers a remaining

rocky body with a high thermal conductivity, we here use our model with the

uniform thermal and thermometric conductivities assuming that the regolith

is thicker than the penetrating depth of the seasonal thermal wave. The

values of dimensionless parameters are estimated to be qglobal = 1 × 10−5,

qrot = 1.5 and qrev = 6× 10−3.

Figure 6

Fig. 6 shows the Mollweide projections of the temperature distributions

at the summer solstice for qglobal = 1× 10−5, qrot = 1.5, qrev = 6× 10−3 and

γ = 60◦ determined by (a) the iterative method (frelax = 0.5 and j = 41)

and (b) the linear approximation (frelax = 1 and j = 1). The minimum

dimensionless-temperature is achieved at the south pole in both the iterative

solution (T = 0.40) and the linear solution (T = 0.75). The value of the

minimum dimensionless-temperature for the iterative solution (T = 0.40) is
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much less than that in Fig. 4(a) (T = 0.64), because the seasonal thermal

inertia is effective in the case of Fig. 4 for qrev = 0.2, but is ineffective in

the case of Fig. 6 for qrev = 6× 10−3, and the south pole cools down rapidly

during the polar night. The difference in the minimum temperatures is not

clearly seen in the linear solutions: T = 0.78 in Fig. 4(b), and T = 0.75

in Fig. 6(b). The maximum values of the dimensionless-temperature are

T = 1.39 at (θ, ϕ) = (22◦, 15◦) for the iterative solution, and T = 1.64 at

(θ, ϕ) = (14◦, 27◦) for the linear solution. Note that it is rather difficult to

determine an accurate position at which the temperature has the maximum

value, because the temperature distribution is very flat around its maximum.

Both the maximum and minimum temperatures of the iterative solution are

lower than those for the linear solution as in Fig. 4 for the same reason. A

major difference in Fig. 6 compared to Fig. 4 is that the diurnal variation

of the temperature is clearly seen for a constant colatitude. For example, at

the equator with θ = 90◦, the maximum temperature (T = 1.03) is achieved

at ϕ = 24◦ in the afternoon (note that ϕ = 0◦ at noon), and the minimum

temperature (T = 0.77) is achieved at ϕ = −92◦ just before the sunrise

(ϕ = −90◦) for the iterative solution, and similar variation is seen also in the

linear solution.

Figure 7

The temperature distributions in Fig. 7 are also different from those in

Fig. 5; the diurnal variation of the temperature is large for both the iterative

and linear solutions. The maximum temperature is T = 1.28 at (θ, ϕ) =

(90◦, 109◦) for the iterative solution, and T = 1.35 at (θ, ϕ) = (90◦, 113◦) for

the linear solution. By noting that the coordinates of the substellar point at
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the autumn equinox are (θ, ϕ) = (90◦, 90◦), the angle between the maximum

temperature point and the substellar point is estimated to be about 20◦ for

both the iterative and linear solutions; the maximum temperature is attained

about 0.06Prot after the noon when viewed on a fixed point on the equator of

the body. A large diurnal variation of the temperature accompanied with a

significant angle of the maximum-temperature point and the substellar point

when viewed from the center of a body is characteristic to the case when

qrot ∼ 1 with qglobal <∼ 1 (see Fig. 5 of Paper I, in which we used the notation

qthermal instead of qrot). It is also seen that the north and south poles are

very cold (T = 0.53 for the north pole and T = 0.47 for the south pole)

in the case of the iterative solution; because qrev ≪ 1, the seasonal thermal

inertia is ineffective and the north pole cools down to a temperature similar

to that of the south pole in a timescale much shorter than the revolution

period, even though the midnight sun continued to irradiate the north pole

until the autumn equinox. The temperatures at both poles in the case of the

linear solution is T = 0.76; this value is very different from those of iterative

solution. The maximum and minimum temperatures of the linear solutions

are larger than those of iterative solutions. This is again attributed to the

smaller cooling rate used in the linear approximation compared to the precise

cooling rate used in the iterative method.

The dimensionless rate of change in the semimajor axis is listed in Table 1

for two sets of values of (qglobal, qrot, qrev) with various values of γ; the former

set is that corresponds to Figs. 4 and 5, and the latter to Figs. 6 and 7. The

value of ⟨ȧ(j)s ⟩t is strictly equal to zero when γ = 0◦ and 180◦, and otherwise

it is negative; the absolute value of ⟨ȧ(j)s ⟩t is maximum at γ = 90◦. The
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absolute value of ⟨ȧ(j)d ⟩t have maximum value when γ = 0◦ and 180◦. The

value of ⟨ȧ(j)d ⟩t is not completely equal to zero when γ = 90◦ because of the

diurnal-seasonal mixed effect (Vokrouhlický, 1999); however, it is negligibly

small, similarly to the case of the linear solution obtained by Vokrouhlický

(1999). Note that the absolute values of ⟨ȧ(j)⟩t has a very small value for

qglobal = 1×10−2, qrev = 0.2, qrot = 50 and γ = 30◦, because ⟨ȧ(j)d ⟩t and ⟨ȧ(j)s ⟩t
cancel each other. Similar cancelation is seen in the linear solution for the

same parameter set. On the other hand, the small absolute value of ⟨ȧ(j)⟩t
for qglobal = 1× 10−5, qrev = 6× 10−3, qrot = 1.5 and γ = 90◦ is attributed to

the small value of qrev for which the value of ⟨ȧ(j)s ⟩t is small (Note that ⟨ȧ(j)d ⟩t
is very small for γ = 90◦ as described above).

In order to examine the difference between ⟨ȧ(j)⟩t and ⟨ȧ(j)linear⟩t, we cal-

culated the values of them for wide range of dimensionless parameters cor-

responding to 1 × 10−3 ≤ k̃T [W m−1 K−1] ≤ 1 and 1 ≤ R̃ [m] ≤ 103 at

2.6AU from the sun with γ = 0◦ and 90◦ as shown in Table 2. Because the

values of parameter set (qglobal, qrev, qrot, γ) are given for the calculation of

the change rates of semimajor axis in Table 2, these values of parameter set

are accurate; on the other hand, the values of k̃T and R̃ are written to only

one significant figure. As described above, ⟨ȧ(j)⟩t = ⟨ȧ(j)d ⟩t for γ = 0◦, and

⟨ȧ(j)⟩t ≈ ⟨ȧ(j)s ⟩t for γ = 90◦. We have not calculated the rate of change of

the semimajor axis for other values of γ. The value of ⟨ȧ(j)⟩t for γ = 180◦

has almost the same absolute value as that for γ = 0◦ as seen from Table

1. The values of ⟨ȧ(j)⟩t for 0◦ < γ < 90◦ and 90◦ < γ < 180◦ are given by

a mixture of seasonal component and the diurnal component; it is difficult

to define the error for mixture of two components because the sum of two

25



components in some cases becomes very small due to the cancellation of pos-

itive and negative values (e.g. the case where qglobal = 1 × 10−2, qrev = 0.2,

qrot = 50 and γ = 30◦ in Table 1). The maximum error of the time rate

of the change of the semimajor axis among our results is 24%. Hence, the

linear approximation (Vokrouhlický, 1999) is fairly good as far as the orbital

evolution due to the Yarkovsky effect is concerned.

4. Conclusions

We have developed an iterative method for determining a time-dependent

temperature distribution of a spherical body rotating itself and revolving

around a star that irradiates the body. The nonlinear boundary condition

with the radiative cooling that is the fourth power of the surface temper-

ature is fully taken into account. We assumed that the body’s surface is

smooth and the thermal and the thermometric conductivities are constant in

the body and remains constant for time. The main advantage of the present

method compared to the previous works (Vokrouhlický, 1998, 1999) is that

we can obtain a solution that satisfies the nonlinear boundary condition with

an arbitrary accuracy by using large values of nmax and ℓmax, using a large

number of meshes for performing numerical integration of Eq. (28), and re-

peatedly using the above-mentioned recurrence formulas as many times as

needed. The temperature distribution determined according to the iterative

method is different from that according to the linear approximation; both

the maximum and minimum temperatures for an iterative solution are lower

than those for a linear solution. However, the rate of change in the semimajor

axis due to the Yarkovsky effect determined by the linear solution (Vokrouh-
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lický, 1999) provides a fairly good approximation of that determined by the

iterative method.
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Figure Captions

Fig. 1. The coordinate system (x̃, ỹ, z̃). The origin is at the center of the

body. The axis of rotation is z̃, that has the obliquity γ with respect to the

orbital angular momentum of the body in the inertial system in which the

star is at the origin. The direction of the star viewed from the body’s center

is in the x̃-z̃ plane and it is at an angle γ from the x̃ axis at the summer

solstice.

Fig. 2. The spherical coordinate system (r̃, θ, ϕ). The origin is at the center

of the body. The pole of this coordinate system is in the direction of the axis

of rotation axis, z̃. The angle between the substellar point “⋆” at which the

stellar direction is perpendicular to the body’s surface and a point “P” with

coordinates (R̃, θ, ϕ) when viewed from the center of the body is Θ .

Fig. 3. The coordinate system (x̃′, ỹ, z̃′). The origin and the ỹ–axis are

identical to those in the coordinate system (x̃, ỹ, z̃) drawn in Figs. 1 and 2.

The z̃′–axis is in the direction of the orbital angular momentum. The angle

between the z̃′– and z̃–axes is equal to the obliquity γ. The corresponding

spherical coordinate system (r̃, θ′, ϕ′), the pole of which is in the direction

of z̃′–axis, is shown. The angle between the substellar point “⋆” with co-

ordinates (R̃, π/2, ωrevt) and a point “P” with coordinates (R̃, θ′, ϕ′) when

viewed from the center of the body is Θ .

Fig. 4. The temperature distributions at the summer solstice in the case

of qglobal = 0.01, qrot = 50, qrev = 0.2 and γ = 60◦ determined by (a) the

iterative method (frelax = 0.5 and j = 16) and (b) the linear approximation

(frelax = 1 and j = 1). The north pole where θ = 0◦ is shown by “N”,

the south pole where θ = 180◦ by “S”. The eastern end “E” and western
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end “W” on the equator of the Mollweide projection show an identical point

with (θ, ϕ) = (90◦, 180◦) and (90◦,−180◦), respectively. The substellar point

marked by a star “⋆” is at (θ, ϕ) = (30◦, 0◦).

Fig. 5. The temperature distributions at the autumn equinox for same

values of parameters qglobal, qrot, qrev and γ as Fig. 4. The symbols have same

meanings as Fig. 4, but the coordinates of “E” , “W” and “⋆” at the autumn

equinox are (θ, ϕ) = (90◦, 270◦), (90◦,−90◦) and (90◦, 90◦). respectively.

Fig. 6. The temperature distributions at the summer solstice in the case

of qglobal = 1 × 10−5, qrot = 1.5, qrev = 6 × 10−3 and γ = 60◦ determined

by (a) the iterative method (frelax = 0.5 and j = 41) and (b) the linear

approximation (frelax = 1 and j = 1). The symbols have same meanings as

Fig. 4. The substellar point is at the same position as that in Fig. 4.

Fig. 7. The temperature distributions at the autumn equinox for same

values of parameters qglobal, qrot, qrev and γ as Fig. 6. The symbols have

same meanings as Fig. 5. The substellar point is at the same position as

that in Fig. 5.

29



T
ab

le
1:

T
h
e
ti
m
e-
av
er
ag

ed
ra
te

of
ch
an

ge
of

th
e
se
m
im

a
jo
r
ax

is
n
or
m
al
iz
ed

b
y
Φ̃
/ω̃

r
e
v
.
T
h
e
d
iu
rn
al
/m

ix
ed

ra
te
s
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