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The ultradiscrete sine-Gordon equation: introducing the oiston

Graduate School of Mathematical Sciences, the University of Tokyo WILLOX Ralph‡

Centre de Physique Théorique, Ecole Polytechnique, France RAMANI Alfred

IMNC, Université Paris VII & XI, CNRS, France GRAMMATICOS Basil

We study the interaction of solitons of the ultradiscrete sine-Gordon equation. We give an explicit algorithm which allows

one to calculate the asymptotic state of the solitons after interaction, from their asymptotic state before interaction. This

algorithm is formulated in terms of a new entity, which we call ‘oiston’, the origin of which can be traced back to an

ultradiscrete version of the discrete KdV equation.

1. Introduction

In this paper we shall study the interaction of soliton-like structures of the cellular automaton related

to the sine-Gordon equation and interpret their dynamics in terms of a new entity which we have called

“oiston” [1]. Starting from the discrete analogue of the sine-Gordon (sG) equation, introduced in [2] by

Hirota,

zM+1
N+1 z

M−1
N+1 =

δ + zMN+2z
M
N

1 + δzMN+2z
M
N

, (1)

we proceed to derive its ultradiscrete limit following the procedure proposed by Tokihiro and collaborators

[3]. Namely, making the assumption that z is positive definite, we introduce the ansatz z = eZ/ϵ (and

δ = e−1/ϵ, which implicitly assumes that δ < 1) and take the limit ϵ → +0. Using the well-known identity

limϵ→+0 ϵ log(e
A/ϵ + eB/ϵ) = max[A,B] we obtain

ZM+1
N+1 + ZM−1

N+1 = max[−1, ZM
N+2 + ZM

N ]−max[0,−1 + ZM
N+2 + ZM

N ] . (2)

In the sections that follow we restrict the dependent variable to integer values and thus define a generalised

cellular automaton. Moreover we consider the evolution along the M direction, which plays the role of

“time”, while N is the “space” variable. Given the form of (2), the evolution must take place on a

checkerboard, i.e. on the sites (M,N) of the lattice where the sum M +N has the same parity (which

we shall take here to be even, without loss of generality).
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The dynamics we shall be inter-

ested in concern the interaction of

solutions with finite support. As

shown in [1], the ultradiscrete sG

has soliton-like solutions which sat-

isfy
∣∣ZM

N + ZM
N+2

∣∣ ≤ 1 and which

can move in either direction at the

“speed of light”, i.e. with speed ±1.

The soliton collisions of the ultradis-

crete sG were studied in [4] where

three different types of behaviour were identified. First, the solitons can be mutually transparent. Sec-

ond, the solitons can interact elastically, emerging from the collision with just a phase-shift. The unusual

interaction is the third one. Indeed the solitons can interact inelastically, emerging from the collision
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having acquired (or lost) a head or a tail. The figure above shows such an inelastic collision. Note that

throughout the paper, dots denote zero entries and underscores denote negative values.

Moreover, this dressing/undressing of solitons has a finite capacity, i.e. for every soliton there exists a

finite set of obtainable states – obtainable through successive dressing and undressing – amongst which

there are unique states (up to an overall change of sign) with minimal and maximal length. Practically,

in the example at hand this means: starting with a soliton of the form [1,−2, 1,−1] we can undress it to

the minimal state [1,−2, 1] which, in turn, can be dressed to [−1, 1,−2, 1]. Both ‘dressed’ states can be

dressed once more to the maximal state [−1, 1,−2, 1,−1]. Similarly, the second soliton [1,−1, 1] cannot

be dressed further and has a unique undressed state [−1, 1].

The difficulty in interpreting the dynamics of the ultradiscrete sG solitons stems from the fact that these

solitons are not the ultradiscrete analogues of the solitons of the discrete sG equation (1), which are not

positive definite and therefore not ultradiscretisable. Still, as we shall explain in the following sections,

it is possible to obtain a complete description of the dynamics, introducing a new entity which we have

dubbed the “oiston”.

2. The oiston

In order to implement the algorithm we start by introducing the rotated axes m = M+N
2 , n = M−N

2 ,

which are aligned with the light-cones of the solitons. We now have solitons that propagate either along

the m direction, or along the n direction. For the solitons that propagate along the n-axis we introduce

a convenient auxiliary variable

Y m
n = (−1)mZM

N , (3)

which has the advantage of rectifying the alternating sign in the solitons. Similarly, for the solitons that

propagate along the m-axis we introduce

Ỹ m
n = (−1)nZM

N . (4)

Furthermore, for both types of soliton we define new quantities

V m = max
[
Y m+1
ν , Y m−1

ν

]
− Y m

ν , Wm = Y m
ν −min

[
Y m+1
ν , Y m−1

ν

]
(5)

Ṽn = max
[
Y µ
n+1, Y

µ
n−1

]
− Y µ

n , W̃n = Y µ
n −min

[
Y µ
n+1, Y

µ
n−1

]
(6)

which are computed from the asymptotic state of the solitons before interaction. Since an asymptotically

free soliton retains its shape during propagation these quantities are independent of the positions ν and

µ, provided the latter are situated sufficiently far in the past. It is the vector

(
W
V

)
which defines the

oistons. Let us give a few examples of the oiston construction.

Y 0 0 1 0 0

W 0 0 1 0 0
V 0 1 1 1 0

Y 0 0 1 1 1 0 0

W 0 0 1 0 1 0 0
V 0 1 0 0 0 1 0

We remark, reading from left to right, that in the arrangement of vectors

(
W
V

)
in the picture on the

left, we have an ascending slope of 1’s followed by a descending one, enclosing a −1, which constitute an

elementary trapezoidal oiston. In the picture on the right we have first an ascending elementary oiston

followed by a descending one.

Y 0 0 1 0 1 0 0

W 0 0 1 1 1 0 0
V 0 1 1 1 1 1 0

Y 0 0 1 0 1 1 1 0 0

W 0 0 1 1 1 0 1 0 0
V 0 1 1 1 0 0 0 1 0
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In the picture on the left we still have a single trapezoidal oiston, although with more structure than

the elementary one above. On the right we have, first, an ascending parallelogram-shaped oiston which

is again more complicated than the elementary one that had width one, followed by an elementary

descending oiston. These examples show how to derive the oistons from the solitons of the ultradiscrete

sG. The reverse construction is also possible. Given an arrangement of oistons, one can obtain the

corresponding soliton in the Y variable by a very simple procedure. We illustrate this procedure on the

last example of the decomposition into oistons given above. Starting from

W 0 0 1 1 1 0 1 0 0
V 0 1 1 1 0 0 0 1 0

we discard the negative 1’s,

W 0 0 1 1 1 0 1 0 0
V 0 1 1 1 0 0 0 1 0

and follow from left-to-right (or from right-to-left) the slopes in the remaining pattern of 1’s. We first

assign the value 0 to Y and, sweeping for example from left-to-right, we increase the value of Y by 1

when we encounter an ascending slope within an oiston, or decrease Y by 1 in case of a descending slope.

W 0 0 1 1 1 0 1 0 0
V 0 1 1 1 0 0 0 1 0

+ − + −
Y 0 0 1 0 1 1 1 0 0

Hence we see that the oistons offer a faithful representation of the (asymptotically free) solitons for the

ultradiscrete sG, expressed in the Y variable.

3. The interaction rules

In order to explain the interaction rules for the oistons, we start by decomposing the initial condition

[. . . , 0, 1,−2, 1,−1, 0, 0, 0, 0, 1,−1, 1, 0, . . .] whose evolution is given in the introduction. Following the

procedure given in the previous section, we find

· · 1 2 1 1 · · · · 1 1 1 · ·

Ỹ 1 2 1 1 1 1 1 Y

W̃ · 1 1 · 1 · · 1 · 1 · · W
Ṽ · 1 1 1 1 · 1 · · 1 · · · 1 · V

as decompositions for the solitons moving along the m-axis (with tildes) and n-axis (without tildes).

Sweeping from left to right, for the contribution stemming from

(
W̃
Ṽ

)
we encounter an elementary up-

wards pointing oiston of width 1, an elementary trapezoidal oiston touching it, followed by an elementary

downwards pointing oiston of width 1 at distance 1. These three oistons will interact with the two oistons

stemming from

(
W
V

)
which are at distance 1 relative to each other.

The asymptotic consequence of the interaction is such that each set of oistons is conserved, separately, but

that the relative distances within each oiston train change according to a very particular rule. Moreover,

what really matters are not the distances themselves but their parities. If we denote the inter-oiston

distances in each oiston train by D̃i (i = 1, . . . , p− 1) and Di (i = 1, . . . , q − 1) for the general case of a
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train consisting of p oistons for the solitons moving along the m-axis and q oistons for the solitons that

move along the n-axis, we define

θ̃i = D̃i mod 2 (i = 1, . . . , p− 1) , θi = Di mod 2 (i = 1, . . . , q − 1) . (7)

In fact, the changes of the inter-oiston distances due to the interaction are all of the form

Di = 2Li + θi → D′
i = 2Li + θ′i (8)

(and similarly for the tildes) where the new parities θ′i will be given by the procedure described below.

Practically speaking this means that the inter-oiston distances can change at most by one unit.

The remaining quantity that plays a role in the interaction will be denoted as κ and encodes the relative

signs of the ‘heads’ of the first two solitons that will interact: κ = 0 if these heads have the same sign

and κ = 1 if they have opposite signs. For the initial condition analysed above, we find

· · 1 2 1 1 · · · · 1 1 1 · ·

Ỹ 1 2 1 1 1 1 1 Y

W̃ · 1 1 · 1 · · 1 · 1 · W
Ṽ · 1 1 1 1 · 1 · · 1 · · · 1 · V

↑ ↑ ↑
θ̃2=0 θ̃1=1 (κ=1) θ1=1

Using these data we construct a master array

A =
[
θ̃p−1, θ̃p−2, · · · , θ̃1, κ , θ1, θ2, · · · , θq−1

]
, (9)

which in the present case is A =
[
0, 1, 1, 1

]
.

In general, for a master array A = [a1, . . . , ap+q−1], the asymptotic consequence of the oiston interaction

is to ‘exchange’ in some sense inter-oiston gaps between the two oiston trains. More precisely, from this

master array we can recover the gaps in the oiston trains after interaction, by reinterpreting the entries

ai in the master array as

A =
[
θ′1, θ

′
2, · · · , θ′q−1, κ

′ , θ̃′p−1, θ̃
′
p−2, · · · , θ̃′1

]
, (10)

i.e.,

θ′i = ai (i = 1, . . . , q − 1) , κ′ = aq , θ̃′i = aq+i (i = 1, . . . , p− 1) (11)

in which the θ′i are the parities of the new gaps, as defined in (8), for the oiston train that moves along

the n-axis, and the θ̃′i are the parities of the new gaps for the oiston train that moves along the m-axis.

The relative sign of the tails of the last two solitons to exit from the interaction is given by (−1)κ
′
.

Moreover, the front of each outgoing soliton train will incur a phase-shift. Namely, the leading oiston for

the soliton moving along the m-axis is shifted back by δm steps in this direction and, analogously, that

for the soliton moving along the n-axis is shifted back by δn steps, where

δm = q − κ−
q−1∑
j=1

θj , δn = p− κ−
p−1∑
j=1

θ̃j . (12)

Note that these phase-shifts will also induce overall sign changes in the original Z variable, given by

relations (3) and (4).

Going back to the example given in the beginning of this section, starting from the master array A =[
0, 1, 1, 1

]
, we find the new arrangement of oistons given below. As θ′1 = 0, the two oistons that evolve
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along the n-axis and that were at distance D1 = 1 are now at distance 0. Similarly, as θ̃′2 = θ̃′1 = 1,

the three oistons evolving along the m-axis are now completely separated. The reconstruction of the

corresponding soliton trains, expressed in the Y variable, is easily performed along the lines of the

procedure explained at the end of section 2. From these values for Y and using the information on the

phase-shifts obtained from (12), one can easily reconstruct the asymptotic state of the outgoing solitons

in the variable Z using (3) and (4). This state corresponds exactly to what we obtained by a direct

simulation of the initial condition.

· · 1 1 · ·

1 1 Y ′

· 1 1 · W ′

· 1 · · 1 · V ′

↑
θ′
1=0

· · 1 1 2 1 1 · ·

Ỹ ′ 1 1 2 1 1

W̃ ′ · 1 · 1 · 1 ·
Ṽ ′ · 1 · 1 1 1 · 1 ·

↑ ↑
θ̃′
2=1 θ̃′

1=1

Note that the value of κ′ = 1 corresponds exactly to the relative sign of the tails of the reconstructed

outgoing solitons. Notice also that for the soliton on the left, the oiston train is the maximally undressed

one, while on the right we have a maximally dressed soliton. In fact, the dressing/undressing process is

completely explained by the above interaction rules – and in particular by relation (8) – which show that

for a given configuration of p oistons there are only 2p−1 different arrangements of inter-oiston gaps.

4. Where do the oistons come from?

While the introduction of the oistons for the construction of the asymptotic soliton states may appear

somewhat magical, it has a quite rational origin. As we have shown in [5] the discrete sG equation is

related to the discrete modified KdV equation

ym+1
n+1 = ymn

ym+1
n + δymn+1

δym+1
n + ymn+1

(13)

by the transformation

ymn = (zMN )(−1)m . (14)

At the ultradiscrete limit this relation leads to (3) and (4). Next, we use the Miura transformations [6]

um
n =

(1 + δ)ymn
δym−1

n + ymn−1

, (15a)

vmn+1 =
δ

1− δ

ym+1
n + ym−1

n

ymn
(15b)

relating the discrete mKdV to the Yang-Baxter form [7] of the discrete KdV

um+1
n =

1

∆(um
n + vmn )

, (16a)

vmn+1 =
um+1
n

um
n

vmn , (16b)

where ∆ = (1− δ)/(1 + δ).

Taking the ultradiscrete limit of (16) as um
n = eU

m
n /ϵ and vmn = 2δ

1−δ e
V m
n−1/ϵ for δ = e−1/ϵ and ϵ → +0, we

obtain

Um+1
n = min[−Um

n , 1− V m
n−1] , (17a)

V m
n = V m

n−1 + Um+1
n − Um

n . (17b)
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Note that eliminating the variable V from the system (17) yields an ultradiscrete version of the KdV

equation which is not the standard Box&Ball one, since it corresponds to the limit ∆ → 1. Note also

that, at the ultradiscrete limit, the Miura transformation (15) for the variable v yields

V m
n = max[Y m+1

n , Y m−1
n ]− Y m

n , (18)

which is nothing but the defining relation for the V part of the oistons given in section 2. In fact, the

variable W , which together with V allows the construction of an oiston, is nothing but the value obtained

from (18) by changing Y → −Y , which corresponds to the fundamental symmetry y → 1/y of the discrete

mKdV (13).

5. Conclusion

In this paper we have introduced an important new notion, that of the oiston. These new entities, which

compose the solitons of the ultradiscrete sG, are conserved during a soliton collision and thus we may

consider them as more fundamental than the soliton themselves. Be that as it may, it is the very fact

that the ultradiscrete sG solitons are composed of oistons that explains the inelastic character of the

scattering of these solitons.
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Given the inelastic behaviour observed

in the soliton collisions, one may won-

der whether the term soliton is still

appropriate in this case. While one

can argue that it should be possible

to trace the conservation of the ois-

tons back to the conserved quantities

of the sG (something that remains

to be proven) the situation becomes

more complicated when one strays

from pure integers. (In fact, as we have shown in [8], if one wishes to have an as complete as possi-

ble description of the dynamics of an ultradiscrete system, one must not limit oneself to integer values.)

An interaction of solitons that take rational values is presented in the figure above. We remark that

the result of the collision is the creation of a bridge of constant height linking the two outgoing solitons.

The figure, however, hints at a more physical interpretation of this phenomenon. One could interpret

the above situation as that of two incoming waves which are partly reflected on the light-cone, but with

constructive interference between the waves inside the light-cone. In fact, in a forthcoming paper we

shall explain how such interactions can be understood in relation to dispersive waves for the discrete sG

equation.
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