
九州大学学術情報リポジトリ
Kyushu University Institutional Repository

Frequency-based Constraint Relaxation for
Private Query Processing in Cloud Databases

Kawamoto, Junpei
Kyushu University

Gillett, Patricia L.
École Polytechnique de Montréal

https://hdl.handle.net/2324/1445771

出版情報：Proceedings of the 27th Annual IEEE Canadian Conference on Electrical and Computer
Engineering, pp.1275-1280, 2014-05. IEEE
バージョン：
権利関係：

Frequency-based Constraint Relaxation
for Private Query Processing in Cloud Databases

Junpei Kawamoto
Kyushu University

744 Motooka, Nishiku
Fukuoka, Japan

Email: kawamoto@inf.kyushu-u.ac.jp

Patricia L. Gillett
École Polytechnique de Montréal

C.P. 6079, Succ. Centre-ville
Montréal, Québec, Canada

Email: patricia-lynn.gillett@polymtl.ca

Abstract—We introduce a new definition of privacy based
on query frequencies, as well as a frequency-based constraint
relaxation methodology for private queries. Private queries un-
dergo processing so that users may obtain data from a database
in such a way that the user’s search intentions, i.e. the data
which the user is interested in, will be protected against exposure.
Most existing protocols for private querying rely on the following
two constraints to achieve privacy: i) queries are encoded so
that the database server can handle query processes but cannot
actually decode queries; ii) the server is forced to check all data
in the server when computing query results. Because of these
constraints, even database servers cannot distinguish which data
are selected from the database. However, this second constraint
compels servers to spend O(n) computational cost for each query
processed, where n is the number of data entries on the server. We
introduce a weaker privacy condition which ensures that search
intentions are hidden within a portion of the database, as opposed
to ordinary private queries which hide search intentions among
all data in the database, and we argue that this definition of
privacy is sufficient to combat attacks based on query frequencies.
Our relaxation methodology relaxes the second constraint above
and allows private querying while only examining a portion of the
data in most cases. Our methodology is also flexible and applies
not only to exact match queries in one dimensional data but also
to range queries in one dimensional data and exact match queries
in two dimensional data.

I. INTRODUCTION

Private queries undergo processing to allow users to obtain
data from a database without exposing which data the user is
interested in (their search intentions), and they are a necessary
technology in order for people to safely use web services
such as databases as a service. This is because a user ’s
search intentions are used enterprisingly, despite potentially
containing sensitive information about the user. For example,
let us imagine a magazine website where people can access
articles of interest. In this case, a malicious person could sneak
a peek at a reader ’s search intentions, i.e. which articles the
reader accesses, and possibly determine the hobbies, political
views, or religion of the reader. Some people would wish
to keep such information private. To give a more serious
example, let us imagine a website where users search a
database for information about prescription medicines. In this
case, malicious parties who steal the search intentions of a user
might learn that the user is suffering from a serious illness.

We introduce three ideas for our discussion of private
queries; search intention, query, and handled set. Search in-

Fig. 1: Search intention, query, and handled set.

tentions are what users are really interested in and hope to
obtain from information services. Queries are requests which
the users send to servers to obtain information associated with
their search intentions. These queries typically conform to a
format defined in protocols which the users and the servers
employ. The Handled set is the data set which servers must
check to compute the results of a given query from the user.
Figure 1 illustrates these ideas. A user of some magazine site
is now interested in an article x, so the search intention of the
user is x. If we assume that the user and the magazine site
simply use the HTTP protocol, then the user sends a query
“GET x HTTP/1.1” to obtain article x. A server of the site
receives the query, checks part of the website’s database, and
finds article x. Finally, the server returns article x to the user.

Most existing protocols for private querying [1], [2] achieve
privacy by imposing the following two constraints: i) queries
are encoded in such a way that the server can handle query
processes but cannot actually decode queries; ii) the server
is made to check all data in the database when computing
any query result. To satisfy the first constraint, protocols
employ secure encoding techniques such as encryption. By
using the second constraint, the full database is taken as the
handled set and even servers cannot distinguish which data
have been selected from the entire database. On the other
hand, the second constraint compels servers to spend O(n)
computational cost executing each query, where the database
has n entries. This means that these protocols have a high
computing cost to process each query, and do not seem to be
suitable for large databases.

On the other hand, we might suppose that there are cases
in which we do not need to retrieve the entire database to
sufficiently obscure search intentions. For instance, let us recall
the example of the magazine website. In that case, we may be
able to sufficiently obscure political and religious views by
retrieving data from a carefully chosen subset of the database

rather than retrieving the entire database. This would allow us
to relax the second constraint and achieve sufficient privacy
of search intentions using a subset of the database. Another
protocol which relaxes the second constraint is bbPIR [3], a
naı̈ve protocol which relaxes the second constraint and only
ensures that the search intention x is hidden among k − 1
neighbouring data entries, i.e. handled sets in bbPIR have only
k items. However, this approach may not be sufficient. We can
imagine a case for the magazine site in which x is a popular
article and the other k−1 neighbouring articles are less popular
and infrequently requested. If this fact is known, the user’s
search intention can be guessed from among bbPIR’s relaxed
handled set with high probability.

Agrawal et al. introduce a methodology which hides fre-
quencies of queries [4] based on an order preserving encryption
[5], [6]. This work achieves private queries in a different
way than our work. By Agrawal et al.’s order preserving
encryption scheme, encrypted items retain the same order as
plain items, so they are comparable after encryption. Their
schema can also modify the distribution of items; for example,
we may have plain items from a zipf distribution which become
uniformly distributed after encryption. However, they focus not
only on the distribution of items but also on the frequencies
of queries, and so adversaries who know the frequencies of
queries are able to match items with search intentions even if
encrypted items have uniform distributions. Lu also introduces
a query processing methodology over encrypted items using
order-preserving encryption and making tree structures [7].
It achieves O(log n) computational cost of servers, but it is
also pointed out in the paper that the proposed methodology
is not secure against frequency-based attacks. In contrast,
our methodology gives a frequency-based relaxation approach
which satisfies some requirements for privacy.

In this paper, we introduce a secure relaxation methodology
which uses the frequencies of search intentions to guide the
relaxation of the second constraint. The core idea of our
methodology is that popular items can be guessed with higher
probability, so the users search intentions should be better hid-
den by using a large handled set, while less popular items can
be sufficiently hidden using a small handled set. Our proposal
methodology reduces the handled sets in most cases, while
also proving that the worst case risk of having ones search
intentions exposed is no worse than when using unrelaxed
protocols, which we refer to as complete protocols. We assume
that complete protocols provide sufficient privacy, and, under
this assumption, our approach does as well. We begin by
introducing a relaxation methodology for exact match queries
in one dimensional data. After that, we extend it to range
queries in one dimensional data and exact match querying in
two dimensional data. We discuss how our methodology can
be applied to cPIR, a well known private querying protocol,
and compare the efficiency of this with ordinary cPIR.

II. BASIC NOTIONS

We assume that a database D consists of n items, i.e. D =
{t1, t2, · · · , tn}, and a user wants to obtain the x-th item tx
from the database D1. In this case, the search intention of the

1For range queries, the user wants to obtain data in a sequence [x, y], i.e.
{tx, tx+1, · · · , ty}. We discuss this case further in section III-B.

user is x. Recalling the magazine website we introduced in
section I, for example, this site has n articles and provides a
table of contents (TOC) for those articles. A reader of this site,
ie. a user, chooses an article x from the TOC and its associated
number is sent to the server as a request. Yoshida et al. have
proposed a keyword search protocol over this setting [8], so
that we can extend this to some cases in which TOCs and
catalogs are not provided and users need to search for items
by keyword.

In most private querying protocols including cPIR [1] and
IPP method [2], plain search intentions x are not sent to servers
directly. Instead, search intentions are encoded and servers
must check all data to compute query results, meaning that
Hcomplete(x) = D ∀x ∈ D. On the other hand, in bbPIR
[3], the naı̈ve relaxed protocol, the size of a handled set is k
for any query, ie. |HbbPIR(x)| = k ∀x ∈ D.

We denote the frequency of a search intention x ∈ D to
be Freq(x). We assume frequencies are normalized so that∑

x∈D Freq(x) = 1.

Definition 1: Using this frequency function, we define
query risk to be the conditional probability that the search
intention is x given that we know the handled set H used.
For the purposes of this paper, we will consider query risk
a measure of exposure risk for private queries. Query risk is
then formulated as

Risk (x|H(x)) =
Freq(x)∑

y∈H(x) Freq(y)
. (1)

We assume that potential attackers know the frequencies of
search intentions. Such an adversary is called a full-knowledge
adversary. We suppose adversaries cannot see the user’s search
intention x directly but can learn the handled set ∀x ∈ D :
H(x). We also assume that servers may be adversaries, and
that full-knowledge adversaries wish to obtain search intention
x using handled set H(x) and frequencies Freq(x).

Definition 2: We say that a relaxed handled set Hrelaxed

is secure if, for any search intention x, the query risk is at
most the worst case query risk of the complete protocol. In
other words, for all x ∈ D;

Risk (x|Hrelaxed(x)) ≤ max
y∈D

Risk (y|Hcomplete(y)) . (2)

We assume that the level of security provided by complete
protocols is sufficient, and therefore that our approach will
also be considered secure if it satisfies this condition.

Finally, we define the query processing costs for servers.
We denote the query processing cost of a search intention x to
be C(x), which is the cardinality of the handled set H(x). We
also define the expected query processing cost C to be C =∑

x∈D Freq(x)C(x). In the complete protocol, servers must
check all data for each query associated with a search intention
x, so that ∀x ∈D: Hcomplete(x) =D and Ccomplete(x) = n.
Therefore, Ccomplete=

∑
x∈DFreq(x)Ccomplete(x)=n.

III. RELAXATION

Our constraint relaxation methodology lets servers process
queries by only checking items in a subset of database D.

Require: Database D, frequency function Freq.
bestsofar ← |D|+ 1, best← [0, |D| − 1]
bestsum←

∑
y∈D Freq(y), i← x, j ← x

vsum← Freq(x), µ← Freq(x)/maxy∈D Risk(y)
while vsum < µ and i ≥ 1 do
i← i− 1, vsum← vsum+ Freq(i)

end while
if vsum ≥ µ then
bestsofar ← j− i+1, best← [i, j], bestsum← vsum

end if
while i ≤ x do

while vsum ≥ µ do
j ← j + 1, vsum← vsum+ Freq(j)

end while
if vsum ≥ µ then

if j − i+ 1 < bestsofar then
bestsofar ← j − i+ 1, best← (i, j)
bestsum← vsum

else if j − i + 1 = bestsofar and vsum > bestsum
then
bestsofar ← j − i+ 1, best← (i, j)
bestsum← vsum

end if
end if
i← i+ 1, vsum← vsum− Freq(i− 1)

end while
return best

Fig. 2: Find Hr(x).

For simplicity, we first introduce the relaxation algorithm in
one dimensional data. We only consider relaxed handled sets
which are continuous, ie. Hrelaxed = {ti, ti+1, · · · , tj} where
i ≤ x ≤ j. Because Hrelaxed(x) ⊆ Hcomplete(x), our
methodology can reduce the computational costs of servers.
Generally, any constraint relaxation holds negative aspects.
In this case, it causes an increase in query risks. However,
our approach bounds query risks for each search intention
to complete protocols’ worst case query risk.the maximum
query risk of the complete protocols, ie. relaxed handled sets
satisfy (2). Therefore, relaxed handled sets still protect privacy
against full-knowledge adversaries. The following sections will
explain how relaxed handled sets are calculated.

A. Exact match queries in 1D data

Problem 1: Find handled set Hr such that, for a search
intention x:

1) x ∈ Hr(x),
2) Risk(x|Hr(x)) ≤ maxy∈D Risk(y),
3) the size of the set, j− i+1, is minimized among sets

which meet the above two criteria,
4) if multiple solutions have equal size, the one which

maximizes
∑

y∈Hr(x)
Freq(y) is chosen.

This handled set will be the smallest possible set which
contains x and has sufficiently low query risk.

Figure 2 shows the O(n) algorithm which solves this
problem for 1D exact queries. However, we can compute
Hr(x) before querying time and use it repeatedly for the search

intention x, so we presume that the computation of the handled
set is not included in query processing time. The expected cost
of the handled set Hr computed by Algorithm 2 is evaluated as
Crelaxed =

∑
x∈D Freq(x)|Hr(x)| ≤

∑
x∈D Freq(x)× |D| =

n, and this will be smaller than that of a complete protocol.

B. Range queries in 1D data

We extend the previous algorithm to range queries in one
dimensional data. Search intentions for 1D range queries are
continuous subsets {txL , txL+1, · · · , txR} instead of single
values x. We denote these search intentions as X ⊆ D. For
this X , we extend our definitions of frequencies and risks as
follows:

Freq(X) =

∑
x∈X Freq(x)∑
y∈2D Freq(y)

,

Risk(X|H(X)) =
Freq(X)∑

y∈H(X) Freq(y)
.

We also extend query costs and expectations:

C(X) = |H(X)|, C =
∑

X∈2D

Freq(X)× C(X).

In complete protocols, handled sets for a ranged search
intention X are again the full database D. On the other
hand, our relaxed handled sets will be continuous subsets
of database D, ie. Hr(X) = {ti, ti+1, · · · tj}. Therefore, we
extend Problem 1 for range queries in one dimensional data
as follows.

Problem 2: Find a continuous subset Hrr = {ti, ti+1,
· · · , tj} ⊆ D which satisfies the following conditions for a
given search intention X;

1) X ⊂ Hrr,
2) Risk(X|Hrr(X)) ≤ maxy∈D Risk(y),
3) minimize |Hrr(X)|, and
4) maximize

∑
y∈Hrr(X) Freq(y) under the condition 3).

This problem is solved by making a small modification to the
algorithm shown in figure 2. Letting the range for range search
intention X be [xL, xR], we can initialize the algorithm as
in problem 1 with the following alterations: when initializing
the algorithm, let x ← xL, i ← xL, j ← xR, vsum ←
Freq(X), µ ← Freq(X)/maxy∈DRisk(y). As in algorithm
2, (i, j) will give the indices of the first and last members of
the handled set at termination. As before, the complexity of
the algorithm to find the handled set is O(n).

C. Exact match queries in 2D data

Finally, we extend our relaxation algorithm to exact match
queries in two dimensional databases. We consider a 2D
database to be a matrix consisting of l rows and m columns,
where l ×m = n. A user has search intention x = (e, g). In
complete protocols, ∀x ∈ D the handled set is Hcomplete(x) =
D, so Ccomplete(x) = |Hcomplete(x)| = n regardless of x,
with the servers accessing every item in the database.

We relax this constraint and choose as our handled set a
submatrix which minimizes querying costs while satisfying
condition (2), ie. sufficient security against full-knowledge

adversaries. We will denote a submatrix which consists of rows
ia to ib and columns ja to jb of D as D[ia : ib, ja : jb]. We
define the problem of identifying a sub matrix for a search
intention x as follows.

Problem 3: Find a submatrix of D, Hrm = D[[top, top+
height − 1]; [left, left + width − 1]] which satisfies the
following conditions for a given search intention x = (e, g);

1) x must be included, ie. top ≤ e < top+ height and
left ≤ g < left+ width,

2) Risk(x|Hrm(x)) ≤ maxy∈D Risk(y),
3) minimize size = height× width, and
4) secondary to 3), maximize

∑
y∈Hrm(x) Freq(y)

among submatrices of the same size.

We can find this optimal submatrix using the algorithm
shown in figure3. The initial best solution is the full matrix
D. We observe that a submatrix can be defined uniquely by 4
variable: the indices (i, j) of its upper-leftmost element (the
matrix’s anchor position) and the submatrix’s height and width.
We solve the problem by iterating on height and width to
consider different matrix shapes (while ignoring shapes which
imply a larger size than the best known solution), and then by
considering, for each shape, all anchor positions such that the
associated submatrix would include element (e, g)). The best
known solution is updated if a new matrix has fewer elements
and a sum greater than the threshold, or if it has the same
number of elements and a larger sum than the best known
solution.

For convenience, we denote 1lh×w to be an h by w matrix
in which every element is 1.

In order to reduce computation, we maintain two matrices
C and M which store sums of parts of D. C is called the
column sum matrix, and it stores sums of submatrices of
D with dimensions h × 1, ie, partial columns. Ci,j stores
the value of the column of height h which is anchored at
Di,j . ie, Ci,j =

∑i+height−1
k=i Dk,j . Rather than compute all

column sumns, we will keep values for only the submatrix
of C given by rangeC[0] ≤ i ≤ rangeC[1], rangeC[2] ≤
j ≤ rangeC[3]. When h increases, updateC lengthens each
column sum by one element. The rows of rangeC will also be
contracted below if necessary and expanded above if possible.
The columns of rangeC, however, are extended as needed and
contracted only if the column is guaranteed not to be needed
again.

M is called the submatrix sum matrix, and it stores sums
of submatrices of D with dimensions h × w. Like C sums
elements of D to produce partial column sums, M sums
elements of C to produce submatrix sums. As with C, we
only maintain data for the relevant portion of D, with this
active range given by rangeM . For relevant (i, j), Mi,j gives
exactly the sum of the h×w matrix anchored at (i, j). Unlike
C, M is updated with each increase in w, and must be reset
with every increase in h. When w increases, updateM finds
the new sum matrix M for h×w matrices by adding a partial
column sum (already calculated and stored in C) to each of
the h× w − 1 submatrix sums stored in M previously.

Functions updateC and updateM are omitted here, but
each cost only O(n) (where n = lm) because previously
calculated partial sums are retained and exploited. When C

Require: Database D ∈ Rl×m, frequency function Freq, x =
(e, g).
µ← Freq(x)/maxy∈D Risk(y)
vsum←

∑
i,j D, size← l ×m, best← (0, 0, l,m)

C ← −1lh×w, Ce,g ← De,g

rangeC ← (e, e, g, g)
h← 1, w ← 1, maxw ← m
while h ≤ min(l, size) do
M ← −1lh×w

Mi,g ← Ci,g ∀ rangeC[0] ≤ i ≤ rangeC[1]
rangeM ← (rangeC[0], rangeC[1], g, g)
while w ≤ maxw do
(inew, jnew)← argmax(M), vnew ←M [inew, jnew]
if (vnew > vsum) or (vnew ≥ µ and h × w < size)
then

vsum← vnew, size← h× w
best← (inew, jnew, h, w)
maxw ← min(m, ⌊ sizeh ⌋)

end if
w ← w + 1
if w ≤ maxw then

(C, rangeC,M, rangeM)
← updateM(h,w,C, rangeC,M, rangeM,D)

end if
end while
h← h+ 1, w ← 1
if h ≤ min(l, size) then
maxw ← min(m, ⌊ sizeh ⌋)
rangeC[2]← max(rangeC[2], g −maxw + 1)
rangeC[3]← min(rangeC[3], g +maxw − 1)
(C, rangeC)← updateC(h,C, rangeC,D)

end if
end while
return best

Fig. 3: Computation of Hrm(x).

and M are up to date for the current h, w, the scores of
all relevant h× w submatrices are readily accessible. We can
simply identify the largest element of M and update the best
solution if appropriate. Since h loops over m values, w loops
over l, and the tasks within the w loop have O(n) complexity,
the algorithm as a whole has O(n2) complexity.

As with the 1D problems, this calculation can be computed
infrequently and retained for future uses. For the 2D exact
match case, further efficiency would be gained by adapting
the method to process a batch of search intentions at once
rather than finding handled sets for one search intention at a
time.

IV. EVALUATION

We evaluate relaxed frequencies (observed frequencies by
servers), query risks, and costs over a real data set. We use the
Last.fm 1K data set2 which is a query log from the Last.fm
music service. The dataset contains 992 users, 1 084 871 songs,
and 19 150 868 queries. We sampled 100 000 songs and 1 800
145 queries from the original data set.

2http://www.dtic.upf.edu/∼ocelma/MusicRecommendationDataset/
lastfm-1K.html

� ����� ����� ����� ����� ������
[

���

���

���

���

���

���

���

���

���

)
UH
T
�[
�

�Hï�

RULJLQDO

(a) Frequencies

� ������ ������
[�
������ ������ ������

���

���

���

���

���

���

���

���

���

5
LV
N
�[
�

�Hï�

FRPSOHWH

(b) Query risks of complete protocols

Fig. 4: Overview of a sampled Last.fm data set.

The frequencies of search intentions in the sampled Last.fm
data set are shown in figure 4a. Items in the database are
sorted alphabetically and by song title. The x-axis in this
figure represents search intentions x, and the y-axis shows the
number of times users requested item tx, which is associated
with the search intention x. Figure 4b shows query risks of
complete protocols. High frequency items have more risks than
low frequency items.

Figure 5 shows observed frequencies, query risks, and costs
when users employ our relaxation methodologies, and Table I
shows maximum, minimum, and average query risks and costs.
Figure 5a describes that observed frequencies are skewed,
Again, the x-axis in this figure represents search intentions
x, and the y-axis shows the number of times users requested
item tx, which is associated with the search intention x. Figure
5b shows query risks from relaxed handled sets. Because of
relaxation, in most cases, those risks are bigger than those
of the complete protocols shown in figure 4b. From table Ia,
minimum and average query risks are in fact bigger than those
of complete protocols. However, any risks from the relaxed
handled set do not exceed the maximum risks of the complete
protocol, ie. that the relaxed handled set is frequentistically
private. Figure 5c shows query processing costs for servers.
These plots illustrate that our relaxation methodologies reduce
costs in most cases. From table Ib, the maximum cost is equal
to that of complete protocols, but in other cases, the costs
are much smaller. The average cost is 6.5% that of complete
protocols.

We also have evaluations on a sorted Last.fm data set. The
data set is constructed by sorting the sampled Last.fm data in
order of frequency, so that t1 is the most requested song and
tn is one of the most infrequent songs. The frequencies in this

data set are shown in figure 6a. In this graph, x-axis means
search intentions x and the y-axis means frequencies of those
search intentions. Note that the y-axis is plotted by log scale.

Figure 6 and table II compare query risks and costs between
complete protocols and our relaxed protocol. In all figures
of figure 6, x-axes represent search intentions and y-axes are
log scale. Query risks in our relaxed protocol stay below the
maximum acceptable risk, ie. the maximum query risk of a
complete protocol. Table IIa also supports this result, and the
difference between the minimum and maximum risk is quite
small. On the other hand, query processing costs in the relaxed
protocol are reduced from those in the complete protocols as
we can see in figure 6c and table IIb. For these tests, the
average cost of the relaxed protocol is only 1.1% that of a
complete protocol. Comparing alphabetically ordered search
intentions and frequency ordered search intentions, we see
that sorting by frequency improves query processing costs of
servers much more. In this evaluation, we see improvement by
a factor of over 5. Therefore, sorting all items by frequency
order before deploying databases is a better strategy. We
assume the frequencies of all items are public, so that users can
convert alphabetically ordered search intentions to frequency
ordered search intentions easily.

V. CONCLUSION

We introduced a frequency-based constraint relaxation
methodology for private queries. This methodology was mo-
tivated by the knowledge that most existing private querying
protocols provide a high level of privacy but impose an extreme
computational cost on servers. We relaxed constraint (ii) of
the complete protocols so that only a subset of the database
is retrieved for each query. Although using a smaller set will
increase the query risk, query risks with our method are not
worse than in the worse case for the complete protocol.

We presented dynamic programming algorithms for three
scenarios: 1D exact match, 1D range, and 2D exact match
queries. In each case, we demonstrated how partial sums can
be stored and reused to efficiently calculate the handled set for
a given search intention. We leave an open problem for future
work, which is that an attacker may be able to use knowledge
about the size of the handled set to better guess a users’ search
intention. One simple way to reduce this vulnerability might
be to add noise to the choice of handled set by randomly
increasing the size of the handled set.

We evaluated our methodology using a real dataset from
Last.fm. The results confirm that our protocol can reduce
computational costs in servers in most cases, and that the risk
of a query being exposed is not bigger than the maximum risk
in complete protocols.

ACKNOWLEDGMENT

This work is partly supported by The Nakajima Foundation,
Artificial Intelligence Research Promotion Foundation, and Grant-
in-Aid for Young Scientists (B) (26730065), Japan Society for the
Promotion of Science (JSPS).

� ����� ����� ����� ����� ������
[

���

���

���

���

���
)
UH
T
�[
�

�Hï�

REVHUYHG

(a) Frequency

� ����� ����� ����� ����� ������
[

���

���

���

���

���

���

���

���

���

5
LV
N
�[
�

�Hï�

UHOD[HG

UHOD[HG��DYJ��

(b) Query risk

� ����� ����� ����� ����� ������
[

���

���

���

���

���

���

&
R
VW
�[
�

�H�

UHOD[HG

UHOD[HG��DYJ��

(c) Cost

Fig. 5: Observed frequency, query risk, and cost of a sampled Last.fm data set.

TABLE I: Comparison of query risk and cost (dictionary order).
(a) Query risk

min. max. avg.
complete 5.5551 × 10−7 3.8564 × 10−3 1.0000 × 10−5

relaxed 1.4217 × 10−4 3.8564 × 10−3 3.7710 × 10−3

(b) Cost

min. max. avg.
complete 1.0 × 105 1.0 × 105 1.0 × 105

relaxed 2.0 1.0 × 105 6.4176 × 1003

� ����� ����� ����� ����� ������
[

��
��

��
��

��
��

��
��

��
��

)
UH
T
�[
�

RULJLQDO�

REVHUYHG

(a) Frequency

� ����� ����� ����� ����� ������
[

��
��

��
��

��
��

��
��

��
��

5
LV
N
�[
�

UHOD[HG

UHOD[HG��DYJ���

FRPSOHWH

(b) Query risk

� ����� ����� ����� ����� ������
[

��
�

��
�

��
�

��
�

&
R
VW
�[
�

UHOD[HG

UHOD[HG��DYJ���

FRPSOHWH

(c) Cost

Fig. 6: Observed frequency, query risk, and cost of a sorted Last.fm data set (sorted by frequencies).

TABLE II: Comparison of query risk and cost (frequent order).
(a) Risk

min. max. avg.
complete 5.5551 × 10−7 3.8564 × 10−3 1.0000 × 10−5

relaxed 3.3769 × 10−3 3.8564 × 10−3 3.4590 × 10−3

(b) Cost

min. max. avg.
complete 1.0 × 105 1.0 × 105 1.0 × 105

relaxed 1.45 × 102 1.0 × 105 1.1466 × 103

REFERENCES

[1] E. Kushilevitz and R. Ostrovsky, “Replication Is Not Needed: Single
Database, Computationally-Private Information Retrieval,” in Proc. of
the 38th Annual Symposium on Foundations of Computer Science.
Washington, DC, USA: IEEE Computer Society, 1997, pp. 364–373.

[2] J. Kawamoto and M. Yoshikawa, “Private Range Query by Perturbation
and Matrix Based Encryption,” in Proc. of the Sixth IEEE International
Conference on Digital Information Management. Melbourne, Australia:
IEEE Computer Society, 2011, pp. 211–216.

[3] S. Wang, D. Agrawal, and A. E. Abbadi, “Generalizing PIR for Practical
Private Retrieval of Public Data,” in Proc. of the 24th Annual IFIP WG
11.3 Working Conference on Data and Applications Security and Privacy.
Rome, Italy: Springer, 2010, pp. 1–16.

[4] R. Agrawal, J. Kiernan, R. Srikant, and Y. Xu, “Order Preserving
Encryption for Numeric Data,” in Proc. of the 23rd ACM SIGMOD
International Conference on Management of Data. New York, NY,

USA: ACM Press, 2004, pp. 563–574.
[5] A. Boldyreva, N. Chenette, Y. Lee, and A. O’Neill, “Order-Preserving

Symmetric Encryption,” in Proc. of the 28th Annual International Con-
ference on the Theory and Applications of Cryptographic Techniques.
Cologne, Germany: Springer-Verlag, 2009, pp. 224–241.

[6] A. Boldyreva, N. Chenette, and A. O. Neill, “Order-Preserving Encryp-
tion Revisited: Improved Security Analysis and Alternative Solutions,”
in Proc. of the 31st International Cryptology Conference, Santa Barbara,
CA, USA, 2011, pp. 578–595.

[7] Y. Lu, “Privacy-Preserving Logarithmic-time Search on Encrypted Data
in Cloud,” in Proc. of the 19th Annual Network & Distributed System
Security Symposium, San Diego, CA, USA, 2012.

[8] R. Yoshida, Y. Cui, R. Shigetomi, and H. Imai, “The practicality of the
keyword search using PIR,” in Proc. of the International Symposium on
Information Theory and its Applications. Auckland, New Zealand: IEEE
Computer Society, 2008, pp. 1–6.

