Ces quantités J et K, lorsqu'on suppose le module k nul, montrent que l'unité, exprimée par les intégrales rectangulaires

$$
J = \int \frac{k^2 e^2}{\sqrt{1 - e^2 k^2}} \, dt,
$$

$$
K = \int \frac{k^2 e^2}{\sqrt{1 - e^2 k^2}} \, dt.
$$

et l'on a, comme pour K et K', ces deux séries :

$$
J = \frac{\pi}{2} \sum_{n=0}^{\infty} \frac{(-1)^n (3 - 2n)}{2n + 1},
$$

$$
F = \frac{3}{2} \log \left(\frac{\sin \frac{1}{2} (3 - 2n)}{\sin \frac{1}{2} (3 - 2n)} \right) - \frac{2}{3} (3 - 2n) - \cdots
$$

en faisant

$$
K = \frac{3}{2} \sum_{n=0}^{\infty} \frac{(-1)^n (3 - 2n)}{2n + 1},
$$

$$
\sum_{n=0}^{\infty} \frac{(-1)^n (3 - 2n)}{2n + 1} = \frac{\pi}{2} \sum_{n=0}^{\infty} \frac{(-1)^n (3 - 2n)}{2n + 1}.
$$

Voici maintenant la propriété de la fonction de seconde espèce qui en doit regarder comme caractéristique et qui justifie son introduction à titre de nouvel élément analytique dans la théorie des fonctions elliptiques ; elle consiste dans les relations

$$
Z(x + sK) = Z(x) + sJ,
$$

$$
Z(x + s')(x) = Z(x) - sJ.
$$

Ces relations, qui découlent immédiatement des équations fondamentales

$$
\Theta(x + sk) = \Theta(x),
$$

$$
\Theta(s + k(x)) = \Theta(s + e^2 x).
$$

e n en prenant les dérivées logarithmiques, donnent en effet la notion d'un nouveau genre de fonctions qui, étant uniformes, se reproduisent avec l'addition d'une constante lorsqu'on augmente l'argument des quantités K et $J(x)$. Plus tard, on verra le rôle et l'importance de ce caractère qui n'est plus la double périodicité, mais qui s'y rattache d'une manière étroite.

On y parvenait d'ailleurs encore autrement, en partant de l'équation

$$
Z(x + a) = Z(x) + i k \sin \alpha \sin \alpha \sin \alpha \sin \alpha \sin \alpha (x + a),
$$

c'est-à-dire du théorème de l'addition des arguments dans la fonction de seconde espèce, que Jacobi démontre comme il suit :

D'abord, par rapport à x, l'équation

$$
\pi(x, a) = \frac{\pi(x, a)}{\pi(x, a)},
$$

il vient

$$
\pi(x, a) = \frac{\pi(x, a)}{\pi(x, a)}.
$$

Dans ces relations, ajoutées ensemble à ensemble, donnent

$$
\pi(x, a) = \frac{\pi(x, a)}{\pi(x, a)} = Z(x + a) = Z(x) - Z(a).
$$

III. = De la fonction $I(x, a)$.

On considère comme l'une des plus belles découvertes de Jacobi cette expression de $I(x, a)$ où figurent deux quantités, l'argument x et le paramètre a, la relation

$$
\pi(x, a) = \frac{\pi(x, a)}{\pi(x, a)} - \frac{\pi(x, a)}{\pi(x, a)},
$$

dans laquelle n'intervient que la seule fonction Θ avec sa dérivée. Il pourrait même paraître utile, à cause de la simplicité de cette expression, d'introduire avec une désignation spéciale et comme un élément analytique propre la fonction de troisième espèce.

Cette désignation cependant est consacrée par les travaux de Legendre qui ont précédé la découverte de Jacobi, et nous l'emploierons dans les énoncés des propositions suivantes.
L'équation fondamentale donne immédiatement
\[B(x, a) - B(a, x) = x \frac{W(a)}{W(x)} - a \frac{W(x)}{W(a)} \]
on bien encore
\[B(x, a) - B(a, x) = a Z(x) - x Z(a) \]
en introduisant la fonction de seconde espèce. Cette propriété peut être établie directement et étendue aux intégrales d'ordre supérieur par la méthode suivante qu'a encore donnée Jacobi.
Soit \(\varphi(x) \) un polynôme de degré quelconque en \(x \) et
\[F(x, a) = \int_{0}^{x} \left(x \frac{W(a)}{W(x)} - a \frac{W(x)}{W(a)} \right) \left(\varphi(x) \frac{W(x)}{W(a)} \right) dx \]
la différence \(F(x, a) - F(a, x) \), ou bien la somme des intègrales
\[\int_{0}^{x} \left(x \frac{W(a)}{W(x)} - a \frac{W(x)}{W(a)} \right) \frac{W(a)}{W(x)} dx + \int_{0}^{a} \left(x \frac{W(a)}{W(x)} - a \frac{W(x)}{W(a)} \right) \frac{W(x)}{W(a)} dx \]
pou être remplacée par l'intégrale double
\[\int_{0}^{a} \int_{0}^{x} \left(x \frac{W(a)}{W(x)} - a \frac{W(x)}{W(a)} \right) \left(\varphi(x) \frac{W(x)}{W(a)} \right) dx \]
On en trouve aisément que la quantité placée entre parenthèses est une fonction entière de \(x \) et de \(a \), de sorte que l'intégrale double se ramène à une somme de produits tels que
\[\int_{0}^{a} \frac{x}{W(x)} dx \times \int_{0}^{x} \frac{1}{W(x)} \frac{W(a)}{W(x)} dx \]
Le cas des intégrales elliptiques résulterait évidemment de \(B \), en posant
\[\varphi(x) = x(x - 1)(x - 4x) \]
et prenant, pour variables \(x \) et \(a \), les quantités \(\frac{1}{x \sin \pi m x} \) et \(\sin \pi m a \).

Supposons successivement dans l'équation précédente
\[B(x, a) = B(a, x) = a Z(x) - x Z(a) \]
\[x = K \quad \text{et} \quad a = iK \]
en observant qu'on aura
\[B(a, K) = a, \quad B(a, K) = K \]
on en concluant
\[B(K, a) = a K - K Z(a) = a J - K Z(a) \]
\[B(K, iK) = iK Z(a) = iK + K Z(a) \]
Telles sont les valeurs des fonctions complètes ou bien des intégrales définies
\[B(K) = \int_{0}^{A} \frac{1}{x \sin \pi x} \cos \pi m x \cos \pi m x dx \]
\[B(K - iK) = \int_{0}^{A} \frac{1}{x \sin \pi x} \cos \pi m x \sin \pi m x dx \]
Si pour un instant on désigne respectivement par \(B \) et \(iB \), on aura les relations
\[B(x, a) = B(x, a) \quad (a) \]
\[B(x + 1, a) = B(x, a) + \pi \]
et
\[iB = B(K, a) = B(K, a) + i \pi \]
\[K B = iK z = \frac{\pi}{z} \]
Mais nous observons, à l'égard de la fonction de troisième espèce, que l'intégration introduit, en modifiant le chemin décrit par la variable, un multiple entier positif ou négatif de \(\frac{\pi}{z} \), de sorte que ces relations n'ont lieu que pour certains modes d'intégration, tandis que les relations analogues relativement à la fonction de seconde espèce n'exigent aucune restriction de cette nature.
Considérons, pour fixer les idées, un nombre impair d'arguments $x_1, x_2, \ldots, x_{2n+1}$, liés par la relation

$$x_1 + x_2 + \ldots + x_{2n+1} = a.$$

L'équation fondamentale

$$H(x_1, a) = H(x_2, a) \cdots H(x_{2n+1}, a)$$

donnant

$$H(x_1, a) = \frac{i}{2} \log \left(\frac{H(x_1-a, a) \cdots H(x_{2n+1}-a, a)}{H(x_1+a, a) \cdots H(x_{2n+1}+a, a)} \right).$$

Cela posé, je dis que la quantité sous le signe logarithmique s'exprime rationnellement par

$$I(a) = \frac{i}{2 \sin a}, \quad \sin x_1, \ldots, \sin x_{2n+1},$$

$$f_1(x_1), \ldots, f_n(x_1), \quad f(x_1), \ldots, f(x_{2n+1}).$$

Rappelons, à cet effet, qu'en désignant par $f(x)$ et $f_1(x)$ des polynômes entiers en x des degrés n et $n-1$ et faisant

$$f(x) = \sin a f_1(x) \sin a f_1(x), \quad x = x_1, \ldots, x_{2n+1},$$

nous avons obtenu (p. 384) la relation suivante :

$$f(x) = A H(x_1-a, a) H(x_2-a, a) \cdots H(x_{2n+1}-a, a)$$

où les coefficients des polynômes f et f_1 doivent être déterminés par les équations linéaires

$$\gamma(x_1) = 0, \quad \gamma(x_2) = 0, \ldots, \quad \gamma(x_{2n+1}) = 0,$$

et sont des fonctions rationnelles des quantités (X).

Cela posé, en changeant x en $-x$, on en déduit

$$f(-x) = A H(x_1+a, a) H(x_2+a, a) \cdots H(x_{2n+1}+a, a).$$
c'est le théorème de l'addition des arguments sous la forme trouvée par Abel.

D. — De différentes fonctions analogues à la fonction de troisième espèce.

D'importantes questions de mécanique conduisant souvent à réduire aux fonctions Φ des intégrales semblables à la fonction de troisième espèce et qui s'y ramènent par quelques substitutions simples; aussi Joubert, dans son mémoire public, a-t-il jugé nécessaire de donner le Tableau suivant, qui offre la réunion complète de ces diverses intégrales ainsi que leurs expressions sous la forme la plus simple par les fonctions Φ.

1. \[\int \frac{\cos \alpha \cos \beta \cos \gamma}{\cos \alpha + \cos \beta + \cos \gamma} \, dx = \frac{\sin \alpha + \sin \beta + \sin \gamma}{\sin \alpha + \sin \beta + \sin \gamma} \frac{x}{\sin \alpha \sin \beta \sin \gamma} \]

2. \[\int \frac{\sin \alpha \cos \beta}{\cos \alpha + \cos \beta} \, dx = \frac{\sin \alpha}{\cos \alpha} \frac{x}{\sin \alpha \sin \beta} \]

3. \[\int \frac{\tan \alpha \cos \beta}{\cos \alpha + \cos \beta} \, dx = \frac{\tan \alpha}{\cos \alpha} \frac{x}{\sin \alpha \sin \beta} \]

4. \[\int \frac{\sec \alpha \sin \beta}{\cos \alpha + \cos \beta} \, dx = \frac{\sec \alpha}{\cos \alpha} \frac{x}{\sin \alpha \sin \beta} \]

5. \[\int \frac{\tan \alpha \sec \beta}{\cos \alpha + \cos \beta} \, dx = \frac{\tan \alpha \sec \beta}{\cos \alpha} \frac{x}{\sin \alpha \sin \beta} \]

6. \[\int \frac{\tan \alpha \sec \beta}{\cos \alpha + \cos \beta} \, dx = \frac{\tan \alpha \sec \beta}{\cos \alpha} \frac{x}{\sin \alpha \sin \beta} \]

7. \[\int \frac{\tan \alpha \sec \beta}{\cos \alpha + \cos \beta} \, dx = \frac{\tan \alpha \sec \beta}{\cos \alpha} \frac{x}{\sin \alpha \sin \beta} \]

Il nous suffira d'observer, pour qu'on puisse immédiatement les démontrer, que les équations 2, 3, à se déduire de la première en y changeant successivement x et α en

\[x - \lambda, \quad x - \lambda + \pi, \quad x + \lambda - \pi, \quad x + \lambda \]

Gros quatroèmes ainsi obtenues, on en tire les quatre suivantes par le changement de x en \(x + iK \) (1).

Des fonctions de M. Weierstrass.

Il a été déjà remarqué que si \(\sin \alpha, \cos \alpha, \Delta \sin \alpha \), pourront, pour des valeurs de x moindres que l'unité, être développées suivant des puissances de cette variable en séries dont les coefficients sont des fonctions entières et à coefficients rationnels de \(K \). Il en est évidemment de même de \(\sin \alpha x \), de la fonction de seconde espèce

\[L(x) = \int_{0}^{x} \sin \alpha x \, dx \]

de son intégrale \(L(x) = \int_{0}^{x} \sin \alpha x \, dx \) et même aussi de l'expression

\[\int_{0}^{x} \sin \alpha x \, dx \]

mais, tandis qu'à l'égard de \(\sin \alpha x \), \(Z(x) \) et \(\int_{0}^{x} \sin \alpha x \, dx \), les développements ne subsistent que pour des valeurs de la variable dont le module est inférieur à l'unité, l'exponentielle

\[\int_{0}^{x} e^{\alpha x} \, dx \]

conduit à un développement convergent dans toute l'étendue des valeurs réelles ou imaginaires de \(x \). Effectivement l'équation

\[Z(x) = \frac{e^{x} - e^{-x}}{2} \]

(1) Si l'on représente par \(F(x) \) l'une quelconque des huit formes de la fonction de troisième espèce \(f(x) \) aussi pour périodes \(iK \) et \(-iK \), et les expressions précédentes substituant immédiatement à l'un d'entre eux une expression générale des fonctions dérivées précédentes, qui sera établie à la fin de cette Note, aussi

\[F(x) = G + 2K \frac{H(x - \tau)}{H(x - \tau')} \]

les quatre \(2 \) étant les racines de l'équation \(\frac{1}{F(x)} = 0 \), c'est-à-dire des solutions de \(F(x) \).
donne

\[A(x) = e^{\int_0^x \frac{1}{1+e^{\theta(x)}} \, dx} = e^{\frac{1}{2} \sin x} \frac{\sin x + \sqrt{\sin^2 x + 4 e^{\frac{1}{2} \sin x}}}{\sqrt{\sin^2 x + 4 e^{\frac{1}{2} \sin x}}} \]

Voici donc une propriété bien digne d'attention de la fonction \(\Theta(x) \)' de se changer par l'introduction du facteur \(e^{\frac{1}{2} \sin x} \) qui donne une nouvelle fonction qui l'argument est aussi du signe connu \(\theta(x) \) et à la place des périodes s'ajoute le transcendant \(g = e^{\frac{1}{2} \sin x} \). Les mêmes choses auront encore leurs évidences à l'égard de ces trois autres fonctions :

\[
A(x) = \sin x \frac{\sin x + \sqrt{\sin^2 x + 4 e^{\frac{1}{2} \sin x}}}{\sqrt{\sin^2 x + 4 e^{\frac{1}{2} \sin x}}}, \\
A(x) = \cos x \frac{\cos x + \sqrt{\cos^2 x + 4 e^{\frac{1}{2} \cos x}}}{\sqrt{\cos^2 x + 4 e^{\frac{1}{2} \cos x}}}, \\
A(x) = \tan x \frac{\tan x + \sqrt{\tan^2 x + 4 e^{\frac{1}{2} \tan x}}}{\sqrt{\tan^2 x + 4 e^{\frac{1}{2} \tan x}}}.
\]

Il en résulte qu'à côté des développements périodiques

\[
\sin x = \frac{1}{2} \sqrt{1 + \sqrt{1 + 4 e^{\frac{1}{2} \sin x}}} - \\
\cos x = \frac{1}{2} \sqrt{1 - \sqrt{1 + 4 e^{\frac{1}{2} \cos x}}} - \\
\tan x = \frac{1}{2} \sqrt{1 + \sqrt{1 + 4 e^{\frac{1}{2} \tan x}}}
\]

on voit s'affiner un autre mode de représentation où les fonctions doublement périodiques sont exprimées par des quotients à séries rationnelles en \(\frac{x}{\pi} \), et convergentes quelles que soient les valeurs réelles ou imaginaires de ces deux quantités. Abel avait entrevu et rapidement indiqué la possibilité de ce nouveau mode d'expression des fonctions elliptiques, mais c'est à M. Weierstrass que revient l'honneur d'avoir mis dans la Science, au lieu du simple aperçu, une théorie profonde qui conduit directement à ces nouvelles fonctions, non seulement dans le cas des transcendants elliptiques, mais pour les transcendants abéliens à un nombre quelconque de variables. Ne pouvant exposer ici les principes dont cet auteur géométrique a tiré ces grandes et belles découvertes, nous nous hâterons, et sans sortir des fonctions elliptiques, aux indications suivantes.

I. — Définition des quatre fonctions \(A(x) \). — Équations différentielles.

Afin de rattacher immédiatement ces fonctions aux quatre fonctions \(\Theta(x) \), nous pouvons:

\[
A(x) = e^{\frac{1}{2} \sin x} \frac{\sin x + \sqrt{\sin^2 x + 4 e^{\frac{1}{2} \sin x}}}{\sqrt{\sin^2 x + 4 e^{\frac{1}{2} \sin x}}}, \\
A(x) = \cos x \frac{\cos x + \sqrt{\cos^2 x + 4 e^{\frac{1}{2} \cos x}}}{\sqrt{\cos^2 x + 4 e^{\frac{1}{2} \cos x}}}, \\
A(x) = \tan x \frac{\tan x + \sqrt{\tan^2 x + 4 e^{\frac{1}{2} \tan x}}}{\sqrt{\tan^2 x + 4 e^{\frac{1}{2} \tan x}}}, \\
A(x) = \sin x \frac{\sin x + \sqrt{\sin^2 x + 4 e^{\frac{1}{2} \sin x}}}{\sqrt{\sin^2 x + 4 e^{\frac{1}{2} \sin x}}},
\]

et, par suite,

\[
A(x) = e^{\frac{1}{2} \sin x} \frac{\sin x + \sqrt{\sin^2 x + 4 e^{\frac{1}{2} \sin x}}}{\sqrt{\sin^2 x + 4 e^{\frac{1}{2} \sin x}}}, \\
A(x) = \cos x \frac{\cos x + \sqrt{\cos^2 x + 4 e^{\frac{1}{2} \cos x}}}{\sqrt{\cos^2 x + 4 e^{\frac{1}{2} \cos x}}}, \\
A(x) = \tan x \frac{\tan x + \sqrt{\tan^2 x + 4 e^{\frac{1}{2} \tan x}}}{\sqrt{\tan^2 x + 4 e^{\frac{1}{2} \tan x}}}, \\
A(x) = \sin x \frac{\sin x + \sqrt{\sin^2 x + 4 e^{\frac{1}{2} \sin x}}}{\sqrt{\sin^2 x + 4 e^{\frac{1}{2} \sin x}}},
\]

Des relations (1) résultent en premier lieu celles-ci :

\[
AP(x) = AP(x) - A(x)P(x), \\
AP(x) = AP(x) - AP(x)P(x).
\]

Nous déduisons ensuite des égalités

\[
A(x) = \frac{1}{2} \int_0^x e^{\frac{1}{2} \sin t} \, dt, \\
A(x) = \sin x, \\
\]

deux équations différentielles, en prenant d'abord les secondes.
dériver de logarithmes des deux membres, ce qui donnera

$$\frac{d^2 \log A(x)}{dx^2} = \frac{d^2 \log A(x)}{dx^2} - \frac{d^2 \log A(x)}{dx^2} \cdot \frac{d^2 \log A(x)}{dx^2}$$

et

$$\frac{d^2 \log A(x)}{dx^2} = \frac{d^2 \log A(x)}{dx^2} - \frac{d^2 \log A(x)}{dx^2} \cdot \frac{d^2 \log A(x)}{dx^2}$$

D'où, à cause de l'équation précédente,

$$\frac{d^2 \log A(x)}{dx^2} = \frac{1}{sin^2 x} = -\frac{\Lambda(x)}{\Lambda(x)}$$

Voici, en développant, les équations différentielles qui en résultent :

$$\Lambda(x) \frac{d^2 A(x)}{dx^2} - \frac{dA(x)}{dx} = \frac{dA(x)}{dx} - \frac{dA(x)}{dx} = 0.$$

$$\Lambda(x) \frac{d^2 A(x)}{dx^2} - \frac{dA(x)}{dx} = \frac{dA(x)}{dx} - \frac{dA(x)}{dx} = 0.$$

On aurait une manière analogue, ou comme conséquence des relations algébriques,

$$\Lambda(x) \frac{d^2 A(x)}{dx^2} - \frac{dA(x)}{dx} = \frac{dA(x)}{dx} - \frac{dA(x)}{dx} = 0.$$

$$\Lambda(x) \frac{d^2 A(x)}{dx^2} - \frac{dA(x)}{dx} = \frac{dA(x)}{dx} - \frac{dA(x)}{dx} = 0.$$

Ces relations importantes que M. Weierstrass tire immédiatement des équations de définition :

$$\frac{d \sin x}{dx} = \cos x \times \frac{d x}{dx},$$

$$\frac{d \cos x}{dx} = -\sin x \times \frac{d x}{dx},$$

$$\frac{d \sin x}{dx} = \cos x \times \frac{d x}{dx},$$

et par une méthode qui s'applique aux transcendantes abéliennes les plus générales, peuvent alors, par une nouvelle méthode, conduire aux fonctions Θ, ou servir à démontrer directement qu'elles définissent des fonctions développables suivant les puissances de la variable en séries indéfiniment convergentes, et dont les coefficients sont des fonctions entières de Λ à coefficients rationnels. Toutefois, pour effectuer les développements, on suit une voie différente et plus simple dont voici le principe.

II. — Équations aux différentielles partielles. — Formules de développement.

Une analyse un peu trop longue pour que nous puissions la rapporter ici a conduit M. Weierstrass à ces équations linéaires aux différentes partielles, ainsi que :

$$\frac{d A(x) + \xi \frac{2 \pi}{\Lambda(x)} \frac{dx}{dx} - \frac{d A(x)}{dx} = 0,}$$

$$\frac{d A(x) + \xi \frac{2 \pi}{\Lambda(x)} \frac{dx}{dx} + \frac{d A(x)}{dx} = 0,}$$

$$\frac{d A(x) + \xi \frac{2 \pi}{\Lambda(x)} \frac{dx}{dx} + \frac{d A(x)}{dx} = 0,}$$

$$\frac{d A(x) + \xi \frac{2 \pi}{\Lambda(x)} \frac{dx}{dx} + \frac{d A(x)}{dx} = 0,}$$

$$\frac{d A(x) + \xi \frac{2 \pi}{\Lambda(x)} \frac{dx}{dx} + \frac{d A(x)}{dx} = 0,}$$

$$\frac{d A(x) + \xi \frac{2 \pi}{\Lambda(x)} \frac{dx}{dx} + \frac{d A(x)}{dx} = 0,}$$

Les relations importantes sont équivalents aux développements en séries, et l'on en tire les formules suivantes. Soit, en désignant le produit $x \cdots \cdot n$ par $n!$,

$$A(x) = 1 - \frac{x^2}{1!} + \frac{x^4}{2!} - \cdots + (-1)^{n-1} \frac{x^{n-1}}{n-1}! \cdots (1),$$

$$A(x) = 1 - \frac{x^2}{1!} + \frac{x^4}{2!} - \cdots + (-1)^{n-1} \frac{x^{n-1}}{n-1}! \cdots$$

$$A(x) = 1 - \frac{x^2}{1!} + \frac{x^4}{2!} - \cdots + (-1)^{n-1} \frac{x^{n-1}}{n-1}! \cdots$$

$$A(x) = 1 - \frac{x^2}{1!} + \frac{x^4}{2!} - \cdots + (-1)^{n-1} \frac{x^{n-1}}{n-1}! \cdots$$

$$(*)$$ Le terme en ξ^m n'est pas dans le développement, comme on le voit a priori par l'expression $\xi^m \frac{2 \pi}{\Lambda(x)} \frac{dx}{dx}$.
Théorie des fonctions elliptiques.

\[\text{D} \]

\[\begin{align*}
A_1 &= e^{it}, \\
A_2 &= e^{it} - e^{it}, \\
A_3 &= e^{it} + e^{it}, \\
A_4 &= e^{it} + e^{it} + e^{it}.
\end{align*} \]

\[\text{B} \]

\[\begin{align*}
B_1 &= e^{it}, \\
B_2 &= e^{it} + e^{it}, \\
B_3 &= e^{it} + e^{it}, \\
B_4 &= e^{it} + e^{it} + e^{it} + e^{it}.
\end{align*} \]

\[\text{C} \]

\[\begin{align*}
C_1 &= e^{it}, \\
C_2 &= e^{it} + e^{it}, \\
C_3 &= e^{it} + e^{it}, \\
C_4 &= e^{it} + e^{it} + e^{it} + e^{it}.
\end{align*} \]

\[\text{D} \]

\[\begin{align*}
\text{D}_1 &= A_1, \\
\text{D}_2 &= A_2, \\
\text{D}_3 &= A_3, \\
\text{D}_4 &= A_4.
\end{align*} \]

\[\text{E} \]

\[\begin{align*}
\text{E}_1 &= \text{D}_1, \\
\text{E}_2 &= \text{D}_2, \\
\text{E}_3 &= \text{D}_3, \\
\text{E}_4 &= \text{D}_4.
\end{align*} \]

\[\text{F} \]

\[\begin{align*}
\text{F}_1 &= \text{E}_1, \\
\text{F}_2 &= \text{E}_2, \\
\text{F}_3 &= \text{E}_3, \\
\text{F}_4 &= \text{E}_4.
\end{align*} \]

\[\text{G} \]

\[\begin{align*}
\text{G}_1 &= \text{F}_1, \\
\text{G}_2 &= \text{F}_2, \\
\text{G}_3 &= \text{F}_3, \\
\text{G}_4 &= \text{F}_4.
\end{align*} \]

\[\text{H} \]

\[\begin{align*}
\text{H}_1 &= \text{G}_1, \\
\text{H}_2 &= \text{G}_2, \\
\text{H}_3 &= \text{G}_3, \\
\text{H}_4 &= \text{G}_4.
\end{align*} \]

\[\text{I} \]

\[\begin{align*}
\text{I}_1 &= \text{H}_1, \\
\text{I}_2 &= \text{H}_2, \\
\text{I}_3 &= \text{H}_3, \\
\text{I}_4 &= \text{H}_4.
\end{align*} \]

\[\text{J} \]

\[\begin{align*}
\text{J}_1 &= \text{I}_1, \\
\text{J}_2 &= \text{I}_2, \\
\text{J}_3 &= \text{I}_3, \\
\text{J}_4 &= \text{I}_4.
\end{align*} \]

\[\text{K} \]

\[\begin{align*}
\text{K}_1 &= \text{J}_1, \\
\text{K}_2 &= \text{J}_2, \\
\text{K}_3 &= \text{J}_3, \\
\text{K}_4 &= \text{J}_4.
\end{align*} \]

Nous remarquons enfin qu’en passant ainsi des fonctions \(\theta(x) \) \(\Delta(x) \) qui ont perdu tout caractère périodique, les qua-
théorie des fonctions elliptiques.

1. -- Première méthode.

C'est celle qu'indique naturellement l'équation (1)

\[\frac{1}{2} \log \left(1 - |q| \cos \pi x + q^2 \right) = \frac{1}{2} \log \left(1 - |q| \cos \pi x + q^2 \right) + \frac{1}{2} \log \left(\frac{1}{2} |q| \cos \frac{\pi x}{2} \right) \]

En partant de ce développement

\[\frac{1}{2} \log \left(1 - |q| \cos \pi x + q^2 \right) = \frac{1}{2} \log \left(1 - |q| \cos \pi x + q^2 \right) + \frac{1}{2} \log \left(\frac{1}{2} |q| \cos \frac{\pi x}{2} \right) \]

ou bien

\[\frac{1}{2} \log \left(\frac{1}{2} |q| \cos \frac{\pi x}{2} \right) = \frac{1}{2} \log \left(\frac{1}{2} |q| \cos \frac{\pi x}{2} \right) + \frac{1}{2} \log \left(\frac{1}{2} |q| \cos \frac{\pi x}{2} \right) \]

Closer...
de troisième espèce, d'après les relations

\[B(x, a) = x \frac{\partial}{\partial a} \frac{x(a)}{x}(a=0) + \frac{x}{\pi} \log \frac{\partial}{\partial x}(x-a), \]

\[Z(x) = \frac{x}{\pi} \frac{\partial}{\partial x}(x-a), \]

c'est-à-dire les formules suivantes :

\[B \left(\frac{k}{\pi}, \frac{2k}{\pi} \right) = \frac{k}{\pi} \pi \left(\frac{k}{\pi} \right) \frac{x}{\pi} \frac{\partial}{\partial x}(x-a) + \frac{k}{\pi} \log \frac{\partial}{\partial x}(x-a), \]

\[Z \left(\frac{k}{\pi} \right) = \frac{x}{\pi} \frac{\partial}{\partial x}(x-a). \]

En différentiant par rapport à \(x \) la dernière, on obtient encore

\[\frac{d}{dx} \frac{x}{\pi} \frac{\partial}{\partial x}(x-a) = \left(\frac{\sin x}{\pi} \right) - \left(\frac{\sin x}{\pi} \right) \frac{\partial}{\partial x}(x-a) - \frac{\partial}{\partial x}(x-a) \frac{\sin x}{\pi} \frac{\cos x}{\pi} \frac{\sin x}{\pi} \frac{\cos x}{\pi}, \]

et

\[Z \left(\frac{k}{\pi} \right) = \frac{x}{\pi} \left(\frac{\sin x}{\pi} \right) \frac{\sin x}{\pi} \frac{\cos x}{\pi} \frac{\sin x}{\pi} \frac{\cos x}{\pi}. \]

Mais c'est à sin \(x \), cos \(x \), sin \(x \), qu'il s'agit de parvenir, et le même procédé s'appliquait à, si c'était possible de le consigner comme les dérivées logarithmiques de fonctions décomposables et facteurs ainsi que \(\Theta \left(\frac{x}{\pi} \right) \). Or, on a, en effet,

\[k \sin \mu x = \frac{d}{dx} \log (\frac{\sin \mu x}{\pi}), \]

\[ik \cos \mu x = \frac{d}{dx} \log (\frac{\cos \mu x}{\pi}), \]

\[i \lambda \sin x = \frac{d}{dx} \log (\frac{\sin \mu x}{\pi}). \]

Quant aux expressions des quantités

\[\lambda \sin x - ik \cos \mu x, \]
\[\lambda \sin x - i \lambda \sin x, \]
\[\cos x - i \lambda \sin x, \]

dont nous venons de nous servir, nous nous bornerons à établir l'une d'elles, la même méthode s'appliquant aux autres, et c'est la dernière que nous choisirons, les précédentes se trouvant dans les Fundamenta, car elles se tirent de l'équation (5), page 86, en y changeant pour la première \(x = \frac{\pi}{2} - x \) et pour la seconde \(q = -q \).

À cet effet, soit pour un instant, comme page 766,

\[q(x) = \frac{1}{\pi} \frac{\sin x}{\pi} \frac{\cos x}{\pi} \frac{\sin x}{\pi} \frac{\cos x}{\pi}. \]
l'expression qu'il s'agit de démontrer égale à
\[\cos \alpha \theta + i \sin \alpha \theta \]
prendra cette forme
\[e^{i \theta} y(x + i K) y(x + 2iK) y(x + 3iK) \ldots \]
\[y(x - iK) y(x - 2iK) y(x - 3iK) \ldots \]
od'où l'on voit qu'on la ramène déjà à avoir \(\Phi(x) \) pour dénominateur en multipliant les deux termes par
\[\lambda y(x + iK) y(x - 2iK) \ldots \]
A désignant une constante. Faisons donc
\[\Phi(x) = \lambda e^{i \theta} y(x + iK) y(x + 2iK) y(x + 3iK) \ldots \]
on aura évidemment
\[\Phi(x + iK) = \Phi(x) \]
et, en second lieu,
\[\Phi(x - iK) = \Phi(x) \frac{y(x + iK)}{y(x - iK)} = \Phi(x) e^{-i \theta} \]
Or on satisfaire de la manière la plus générale par des fonctions entières aux deux conditions
\[\Phi(x + iK) = \Phi(x) \frac{y(x + iK)}{y(x - iK)} = \Phi(x) e^{-i \theta} \]
en prenant
\[\Phi(x) = C \phi(x) + G_0 \phi_0(x) \]
de sorte qu'on peut poser
\[e^{i \theta} y(x + iK) y(x + 2iK) y(x + 3iK) \ldots \]
\[y(x - iK) y(x - 2iK) y(x - 3iK) \ldots \]
\[C \phi(x) + G_0 \phi_0(x) \]
en désignant par \(A \) et \(B \) des constantes, qu'on déterminera par une hypothèse particulière. Soit par exemple \(x = 0 \) et \(x = K \), on obtiendra immédiatement \(A = 1 \), \(B = 1 \), ce qui démontre notre formule.
ou bien, sous la forme d'une somme double,

\[\frac{dK}{dx} \sin \alpha x = \sum_{\nu} \sin \left(\nu + \frac{1}{2} \right) \sqrt{K(\nu + \frac{1}{2})}. \]

Faisons donc

\(\nu = \nu + \frac{1}{2} \)

\(\sin \nu = M \)

M représentera tous les nombres impairs, et le coefficient du terme quelconque \(\nu + \frac{1}{2} \), dans la série, sera la somme de toutes les quantités \(\sin \left(\nu + \frac{1}{2} \right)x \), où \(2 \nu + 1 \) est un diviseur de M. Et, comme tout diviseur d'un nombre impair est lui-même impair, on peut écrire plus simplement, en désignant par \(p \) un diviseur de M,

\[\frac{dK}{\sin \alpha x} \frac{dx}{\nu} = \sum_{\nu} \nu \sum_{\nu} \sin \nu x. \]

D'une manière toute semblable on obtiendra

\[\frac{dK}{\cos \alpha x} \frac{dx}{\nu} = \sum_{\nu} \nu \sum_{\nu} \cos \nu x. \]

A l'égard de \(\Delta \alpha x \), si l'on désigne par \(N = \nu \Delta \alpha \) un nombre entier quelconque, \(N^2 \) étant la puissance la plus élevée du facteur \(\Delta \) qu'il contienne, de sorte que \(\Delta \alpha \) soit impair, on aura

\[\frac{K}{\Delta \alpha x} \frac{dx}{\nu} \frac{dx}{\nu} = \frac{1}{4} \sum_{\nu} \nu \sum_{\nu} \nu \sum_{\nu} \nu \cos \nu x, \]

où \(\nu \) représente comme précédemment tout diviseur du nombre impair \(\Delta \alpha \). Il est impossible de ne pas être frappé du caractère arithmétique de ces expressions

\[\sum_{\nu} \nu \sum_{\nu} \cos \nu x, \]

\[\sum_{\nu} \nu \sum_{\nu} \nu \cos \nu x, \]

\[\sum_{\nu} \nu \sum_{\nu} \nu \cos \nu x. \]

elles offrent un exemple des fonctions numériques qui ont été le sujet des belles recherches de M. Liouville, et la manière simple dont elles sont aménées par la théorie des fonctions elliptiques peut aisément faire présumer le rôle de cette théorie dans l'étude des propriétés des nombres.

III. — Vérification des équations différentielles fondamentales.

Désignons par \(m \) et \(m' \) tous les nombres impairs positifs et négatifs, par la lettre \(n \) tous les nombres entiers pairs et impairs; en posant

\[U = \sum_{\nu} \frac{\nu}{1 - q^\nu}, \]

\[V = \sum_{\nu} \frac{\nu}{1 + q^\nu}, \]

\[W = \sum_{\nu} \frac{\nu}{q^{\nu + 1}}, \]

on aura

\[\frac{dK}{\sin \alpha x} \frac{dx}{\nu} = U, \]

\[\frac{dK}{\cos \alpha x} \frac{dx}{\nu} = V, \]

\[\frac{\Delta \alpha x}{\Delta \alpha x} \frac{dx}{\nu} = W, \]

Cela pose, aux équations

\[\frac{dU}{dx} = \sin \alpha x \frac{dx}{\nu} \]

\[\frac{dV}{dx} = -\cos \alpha x \frac{dx}{\nu} \]

\[\frac{dW}{dx} = \frac{1}{\nu} \sin \alpha x \frac{dx}{\nu}, \]

correspondent celles-ci

\[\frac{dx}{dx} = nV, \quad \frac{dx}{dx} = 2W, \quad \frac{dx}{dx} = 2U, \]

qu'on nous propose de vérifier.

Considérons pour cela les produits

\[VW = \sum_{\nu} \frac{\nu}{1 - q^{\nu + 1}}, \]

\[WV = \sum_{\nu} \frac{\nu}{1 - q^{\nu + 1}}, \]

\[UV = \sum_{\nu} \frac{\nu}{q^{\nu + 1}}, \]
et observons qu'on a identiquement

\[
\begin{align*}
&\frac{q^{m+n}}{1-q^n} = \sum_{n=0}^{\infty} q^{m+n} \left(\frac{1}{1-q^n} - \frac{q^n}{1-q^n} \right) \\
&\frac{q^{m-n}}{1-q^n} = \sum_{n=0}^{\infty} q^{m-n} \left(\frac{1}{1-q^n} - \frac{q^n}{1-q^n} \right) \\
&\frac{q^{m-n}}{1-q^n} = \sum_{n=0}^{\infty} q^{m-n} \left(\frac{1}{1-q^n} - \frac{q^n}{1-q^n} \right).
\end{align*}
\]

En posant

\[m > 3N = M,\]
\[m' > 3N = M',\]
\[m'' > 3N = N,\]

de sorte que \(M \) et \(M' \) soient des nombres impairs, et \(N \) un entier quelconque, on pourra écrire :

\[
\begin{align*}
VW &= \sum_{n=0}^{\infty} \left(\frac{q^{m+n}}{1-q^n} - \frac{q^{m-n}}{1-q^n} \right), \\
WV &= \sum_{n=0}^{\infty} \left(\frac{q^{m+n}}{1-q^n} - \frac{q^{m-n}}{1-q^n} \right), \\
UV &= \sum_{n=0}^{\infty} \left(\frac{q^{m+n}}{1-q^n} - \frac{q^{m-n}}{1-q^n} \right).
\end{align*}
\]

Ces expressions étant comparées respectivement à \(\frac{q^{m+n}}{1-q^n} \) et \(\frac{q^{m-n}}{1-q^n} \), on reconnaît qu'il suffit pour démontrer les relations différentielles d'établir qu'on a, en supprimant les accents :

\[
\begin{align*}
M &= \sum_{n=0}^{\infty} \left(\frac{1}{1-q^n} - \frac{q^{m+n}}{1-q^n} \right), \\
M' &= \sum_{n=0}^{\infty} \left(\frac{1}{1-q^n} - \frac{q^{m-n}}{1-q^n} \right), \\
N &= \sum_{n=0}^{\infty} \left(\frac{1}{1-q^n} - \frac{q^{m-n}}{1-q^n} \right).
\end{align*}
\]

Le procédé à suivre pour cela étant le même dans les trois équations, nous considérons, pour fixer les idées, la première. Distinguons, à cet effet, les valeurs positives des valeurs négatives et

\[
\text{théorie des fonctions elliptiques.}
\]

numéro \(m' \); les premières conduisent à l'expression

\[
\sum_{n=0}^{\infty} \left(\frac{1}{1-q^n} - \frac{q^{m-n}}{1-q^n} \right),
\]

qu'en supposant \(M \) positif, nous écrivons

\[
\sum_{n=0}^{\infty} \left(\frac{q^{m+n}}{1-q^n} - \frac{q^{m-n}}{1-q^n} \right),
\]

d'après les identités

\[
\frac{1}{1-q^n} = \frac{q^n}{1-q^n},
\]

\[
\frac{q^{m-n}}{1-q^n} = \frac{q^{m-n}}{1-q^n},
\]

les secondes, en mettant \(m' \) à la place de \(m' \), à celle-ci :

\[
\sum_{n=0}^{\infty} \left(\frac{1}{1-q^n} - \frac{q^{m+n}}{1-q^n} \right) = \sum_{n=0}^{\infty} \left(\frac{q^{m-n}}{1-q^n} - \frac{q^{m-n}}{1-q^n} \right),
\]

de sorte qu'il reste la quantité suivante :

\[
\sum_{n=0}^{\infty} \frac{q^{m-n}}{1-q^n} = \sum_{n=0}^{\infty} \frac{q^{m-n}}{1-q^n}.
\]

Mais, à partir de \(m' = 3M + 1 \), tous les termes de la première somme sont donnés par la seconde en signes contraires et disparaissent. Ainsi il ne subsiste plus qu'une série finie

\[
\sum_{n=0}^{\infty} \frac{q^{m-n}}{1-q^n},
\]

que nous décomposons comme il suit, en isolant le terme moyen, savoir :

\[
\sum_{n=0}^{\infty} \frac{q^{m-n}}{1-q^n} = \frac{1}{z} \sum_{n=0}^{\infty} \frac{q^{m-n}}{1-q^n},
\]

Ou, en remplaçant \(\frac{q^{m-n}}{1-q^n} \) par \(\frac{1}{1-q^n} \), la première somme est

\[
\frac{1}{1-q^n} + \frac{1}{1-q^n} + \cdots + \frac{1}{1-q^n}.
\]
et ces divers termes, respectivement ajoutés à ceux de la seconde, savour :
\[\frac{q^2}{3-q^2} + \frac{q^3}{1-q^3} + \cdots + \frac{q^x}{x-q^x}, \]
donnant autant de fois l'unité qu'il y a de termes, c'est-à-dire
\[\frac{M}{x}, \]
payant à cela la fraction \(\frac{M}{x} \) qui correspond au terme milieu, il vient en définitive
\[\frac{1}{2} + \frac{M}{x} = \frac{M}{x}, \]
ce qui est bien le résultat auquel il fallait parvenir. Enfin, si \(\alpha \) est supposé \(M \) négatif, on observera que l'expression que nous avons considérée change de signe avec \(M \), de sorte que
\[\sum \left(\frac{1-x}{1-x} - \frac{x}{1-x^2} \right) = \sum \left(\frac{1-x}{1-x^2} - \frac{x}{1-x} \right). \]
En effet, si \(z \) est dans le premier membre \(M + M \) au lieu \(-M \), on obtiendra identiquement le terme général de la série de la somme membre.

Après avoir ainsi montré par un exemple important de quels moyens nous pouvons nous servir pour développer des fonctions elliptiques, nous allons présenter à un point de vue plus général la comparaison entre les deux modes d'expansion, en donnant sous forme de série périodique simple une fonction uniforme quelconque à double période.

IV. — Développement en série de sinus et de cosinus d'une fonction doublement périodique.

Nous avons défini la fonction proposée, et 6 ses périodes; nous pouvons en premier lieu considérer nous définir les limites de la variable, entre lesquelles sera successivement représentée cette fonction par un développement en série de sinus et de cosinus qui soient en évidence, par exemple, la période \(a \). Observons, à cet effet, que l'expression \[z = at - \beta y, \]
en supposant réels \(t \) et \(\beta \), peut représenter toute quantité imaginaire, et que, s'il s'agit d'obtenir toutes les quantités que peut prendre \(F(z) \), il suffira, en regard à la double périodicité, d'attribuer à \(t \) et \(a \) toutes les valeurs réelles comprises entre \(x \) et l'unil. Nous appliquerons cette remarque aux racines de l'équation de la forme \(z^2 = \) qui dépendent des limitations que nous avons en vue, et en suivant l'ordre croissant depuis \(x \) à l'unité des valeurs de \(a \), nous les désignerons par \(\zeta, \zeta', \ldots, \zeta_{n}, \ldots, \) de sorte que \(\zeta \) correspond \(a = \zeta_{n} \). Cela posé, soit \(x \) une quantité comprise entre \(n \) et \(n_{x} \) \((1) \), les limites incluses, l'expression
\[F(at - \beta y), \]
e converge toujours pour aucune valeur réelle de \(t \), et donnant lieu par suite au développement
\[F(at + \beta y) = \sum \zeta_{n} \text{e}^{n\text{e}^{x}}, \]
convergent quelle que soit la variable. Par conséquent, si les quantités \(\zeta_{n} \) sont en nombre égal à \(p \), l'ensemble des \(p \) séries suivantes :
\[\sum \zeta_{n} \text{e}^{n\text{e}^{x}}, \sum \zeta_{n} \text{e}^{n\text{e}^{x}}, \sum \zeta_{n} \text{e}^{n\text{e}^{x}}, \]
représentent \(F(z) \) pour
\[z = at - \beta y, \]
e étant quelconque, mais moins que l'unité, mais toutefois en excluant les quantités
\[at = \beta y, \]
\[at = - \beta y, \]
\[\ldots \]
\[at + \beta y, \]
\[\ldots \]
\[1) \] La quantité \(x \) peut être supposée comprise non seulement entre \(x \) et \(a \), mais aussi entre \(0 \) et la valeur négative de \(a \) la plus petite, abstraction faite de l'unité.

III. — III.
Et si l'on reproduit périodiquement les mêmes séries, en faisant croître a depuis 0 jusqu'à l'infini, et décroître depuis l'infini jusqu'au zéro, on aura estimé toute l'étendue des valeurs imaginaires de l'argument et obtenu, sans les resterions indiquées, une représentation complète de la fonction. Celles-ci compris, nous allons donner la détermination des quantités λ_n.

Pour cela, nous employerons la proposition fondamentale du calcul des résidus, exprimée par l'équation
\[\int f(z)\,dz = 2\pi i \sum \lambda_n, \]

où le premier membre représente l'intégrale d'une fonction uniforme $f(z)$ prise le long d'un contour fermé quelconque, et λ_n somme des résidus de $f(z)$ pour toutes les valeurs de la variable qui correspondent à des points renfermés dans ce contour. Cette proposition de M. Cauchy, appliquée au cas où le contour est un parallélogramme ayant pour affixes de ses sommets les quantités
\[p, \quad p = a, \quad p = a - b, \quad p = b, \]

et pour équations de ses côtés ces relations où la variable croît & zéro à l'infini, savoirma:
\[z = p + at, \quad z = p + a + bt, \quad z = p + b + a + (s - t), \quad z = p + b + a - (s - t), \]

donnera
\[a \int_{a}^{1} f(p + at)\,dt + b \int_{b}^{1} f(p + a - bt)\,dt = \Lambda, \]
\[-a \int_{a}^{1} f(p + b + at)\,dt - b \int_{b}^{1} f(p + b - (s - t))\,dt = \Lambda, \]

ou plus simplement
\[a \int_{a}^{1} f(p + at)\,dt = \Lambda + b \int_{b}^{1} f(p + a + bt)\,dt \]
\[-a \int_{a}^{1} f(p + b - at)\,dt - b \int_{b}^{1} f(p + b + t)\,dt = 2\pi i \Lambda. \]

Cette équation nous donne la détermination des quantités λ_n. À supposer t et u compris entre zéro et l'infini. Cela posé, l'équation
\[F(at - b) = \sum \Lambda_n e^{i\pi n}, \]

donnant
\[\Lambda_n = \int_{a}^{1} f(at - b)\,e^{-i\pi n}\,dt, \]

nous appliquerons la relation (1) en faisant
\[t = b, \quad f(0) = f(a) e^{-i\pi}, \]

Comme on l'a évidemment
\[f(0) = f(a), \quad f(0) = f(b) e^{-i\pi}, \]

et qu'on a que plus haut
\[t = e^{i\pi}, \]

le premier membre de l'équation (1) se réduira à
\[a \Lambda_n (1 - e^{i\pi}). \]

Quant au second, c'est-à-dire à la somme des résidus de la fonction
\[F(z) = e^{i\pi n \frac{z + \xi}{\xi}}, \]

pour $z = \xi, \xi^2, \ldots, \xi^n$, nous supposerons pour simplifier que ces quantités soient des racines simples de l'équation $F(z) = 0$, alors, en désignant par B_1 la limite de $F(\xi + 1)$ pour $\xi = \xi$, on trouvera immédiatement
\[a = e^{\frac{\pi i}{2}} \left(B_1 e^{+i\pi} + B_2 e^{i\pi} + \cdots + B_n e^{i\pi n} \right). \]
On en conclut le développement cherché de la fonction \(F(z) \) pour \(z = at + b \), sous cette forme

\[
F(z) = \text{const.} + \frac{2iz}{a} \sum_{n=1}^{\infty} \frac{\sin n\pi at}{1 - e^{i\pi n}} - \frac{2\pi i}{a} \sum_{n=1}^{\infty} \frac{\sin n\pi at}{1 - e^{-i\pi n}} - \cdots - \frac{2\pi i}{a} \sum_{n=1}^{\infty} \frac{\sin n\pi at}{1 - e^{i\pi n}}
\]

où nous ajoutons une constante arbitraire, en supposant dans chaque somme le terme qui correspond à \(n = 0 \). Pour ce cas effectivement l'équation

\[
\alpha \Delta_{n}(1 - e^{i\pi n}) = \pi i z
\]

ne peut, comme on le voit, déterminer \(\Delta_{n} \), et donne seulement

\[
\alpha = 0, \quad c'est-à-dire \quad B_{1} + B_{2} + \cdots + B_{n} = a.
\]

Mais, avant d'aller plus loin, faisons de suite une application de la formule générale que nous venons d'obtenir en supposant \(F(z) = \sin \pi at \). Soit alors

\[
a = k, \quad b = iK,
\]

on aura

\[
\zeta_{1} = -ik, \quad \zeta_{2} = iK + k, \quad B_{1} = \lim_{n \to \infty} \sin (K/2 - n) = \frac{1}{2}.
\]

et, par suite,

\[
isin 2z = \frac{e^{iK} - e^{-iK}}{2i}, \quad \sum_{n=1}^{\infty} \frac{\sin n\pi at}{1 - e^{i\pi n}} = \text{const.}
\]

On voit qu'on peut ne conserver que les valeurs impaires de \(\alpha \), de sorte qu'en supposant nulle la constante, on trouve immédiatement

\[
isin 2z = \frac{e^{iK} + e^{-iK}}{2}, \quad \sum_{n=1}^{\infty} \frac{\sin n\pi at}{1 - e^{-i\pi n}} = \text{const.}
\]

ce qui est pour le second membre la série désignée par U, page 311.
le second, en réunissant les termes en R_i, s'écrit ainsi

$$
C \equiv \frac{2\pi i}{a} \sum_{n=0}^{\infty} \frac{\sum_{i=1}^{r} \frac{\phi(z - \zeta_i)}{\theta(z - \zeta_i)} \cdot \theta(z - \zeta_i)}{1 - \frac{q^n}{q^m}} = 1 + \frac{2\pi i}{a} \sum_{n=0}^{\infty} \frac{\sum_{i=1}^{r} \frac{\phi(z - \zeta_i)}{\theta(z - \zeta_i)} \cdot \theta(z - \zeta_i)}{1 - \frac{q^n}{q^m}} \cdot \ldots
$$

De là se tient une conséquence importante et qui justifiera ce que nous avons annoncé plus haut, sur le rôle de la fonction de seconde espèce.

Remarquons, en effet, que les diverses séries affectées des facteurs R_1, R_2, \ldots proviennent de ce seul développement

$$
\sum_{i=1}^{r} \frac{\phi(z - \zeta_i)}{\theta(z - \zeta_i)} \cdot \theta(z - \zeta_i)
$$

en y remplaçant z par $z - \zeta_i, z - \zeta_i, \ldots$ et $z - \zeta_i - b$ d'abord le second cas. Or, en mettant $z = \frac{b}{a}$ au lieu de z, ce développement prend la forme

$$
\sum_{i=1}^{r} \frac{\phi(z - \zeta_i)}{\theta(z - \zeta_i)} \cdot \theta(z - \zeta_i)
$$

qui nous rappelle immédiatement une expression analytique bien connue. Soit, en effet,

$$
\alpha = aK, \quad \beta = \gamma K,
$$

d'où

$$
\zeta = \gamma,
$$

ou nous avons

$$
\omega(z) = \frac{\theta(z)}{\theta(z - \zeta)} \sum_{i=1}^{r} \frac{\theta(z - \zeta_i)}{\theta(z - \zeta_i)} = \frac{\theta(z)}{\theta(z - \zeta)} \sum_{i=1}^{r} \frac{\theta(z - \zeta_i)}{\theta(z - \zeta_i)} m \omega z
$$

Nous pouvons, par conséquent, écrire, pour $z = \alpha + \beta\eta$,

$$
F(z - i\beta) = C - R_1 \frac{\omega(z - \zeta_1)}{\theta(z - \zeta_1)} - R_2 \frac{\omega(z - \zeta_2)}{\theta(z - \zeta_2)} - \ldots - R_k \frac{\omega(z - \zeta_k)}{\theta(z - \zeta_k)}
$$

e et, pour $z - i\beta = \alpha + \beta\eta$,

$$
F(z - i\beta) = C - R_1 \frac{\omega(z - \zeta_1)}{\theta(z - \zeta_1)} - R_2 \frac{\omega(z - \zeta_2)}{\theta(z - \zeta_2)} - \ldots - R_k \frac{\omega(z - \zeta_k)}{\theta(z - \zeta_k)}
$$

Dans le cas concret où ζ, le lieu d'être une racine simple de l'équi-
tation \(\frac{1}{F(z)} = 0 \), serait racine multiple d'ordre \(n \), ce qui donnerait lieu à la relation

\[n F(z) = A z^{n-1} + B z^{n-2} + \ldots + Q z^{n-1} + R z^{n-2} + \ldots \]

Le seul terme \(\frac{H(z)}{F(z)} \) devrait être remplacé dans la formule par l'ensemble

\[\frac{H(z)}{F(z)} = \frac{\text{d} \left[\frac{H(z)}{F(z)} \right]}{\text{d} z} \frac{H(z)}{F(z)} \]

Como qu'z \(= z \) et \(z \) \(= z \) sont des racines de \(\Phi(z) \) et \(\Phi(z) \), et qu'elles sont solutions des équations

\[\Phi(z) = 0, \quad \Phi(z) = 0 \]

Nous désignons les premières par \(\xi \) et les secondes par \(\zeta \), et notons qu'elles soient représentées par la formule

\[p = \nu K + \nu' K' \]

\(\xi \) et \(\nu \) restant comprises entre zéro et l'unité. A l'égard des racines de \(\Phi(z) \), on sait qu'ils sont égaux à \(+ \) \(\nu \) ou \(- \) \(\nu \), suivant qu'ils se rapportent aux quantités \(\xi \) ou \(\zeta \) et, comme leur somme est nulle, on est amené à la conséquence remarquable que ces quantités \(\xi \) et \(\zeta \) sont précisément en même nombre.

Théorie des fonctions elliptiques.

Gés posé, et en désignant ce nombre par \(a \), on aura

\[\Phi(z) = 0, \quad \Phi(z) = 0 \]

\(H(z) = H(z) \), \(H(z) = H(z) \), \(H(z) = H(z) \), \(H(z) = H(z) \)

expression qui doit avoir les quantités \(a K \) et \(\beta K' \) pour périodes.

On en faisant usage des relations

\[H(z + a K) = H(z), \quad H(z + \beta K') = H(z) \]

et représentant la somme des racines \(\xi \) par \(\Sigma \xi \), la somme des racines \(\zeta \) par \(\Sigma \zeta \), on trouve

\[\Phi(z + a K) = \Phi(z) \] \(e^{a \xi} \), \(\Phi(z + \beta K') = \Phi(z) \] \(e^{\beta \xi} \)

Le sorte qu'il faut poser

\[e^{a \xi} e^{\beta \xi} = 1, \quad e^{a \xi} e^{\beta \xi} = 1 \]

et ces conditions doivent, en désignant par \(\xi \) et \(\zeta \) des nombres entiers arbitraires,

\[\xi - \xi' = \xi' - \xi' \]

et, en second lieu,

\[\xi - \xi' = \xi' - \xi' \]

On observera cependant que, pour faire cette relation dont la démonstration appartient à M. Liouville, entre les racines des équations

\[\left\{ \begin{array}{l}
\Phi(z) = 0, \\
\Phi(z) = 0
\end{array} \right. \]

quant aux nombres entiers \(\xi \) et \(\zeta \) qui y figurent, j'ajouterai seule-